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REPORT 1142 

DIFFUSION OF HEAT FROM A LINE SOURCE IN ISOTROPIC TURBULENCE 1 

By MAHI N DE R • BE R O ! and S T ANLEY CORRS 1N 

SUMMARY 

An experimental and analytical study has been made oj ome 
j eatures oj the turbulent heat diffusion behind a line heated wire 
stretched perpendicular to a flowing isotropic turbulence. The 
mean temperature distributions have been mea ured with ys­
tematic variations in wind speed, ize oj turbulence-producing 
grid, and down tream location oj heat source. The nature oj 
the temperature fluctuation field has been studied. 

A comparison oj Lagrangian and Eulerian analyse j or dij­
jusion in a nondecaying turbulence yields an expre ion f or 
turbulent-heat-transf er coefficient in terms oj turbulence velocity 
and a Lagrangian" cale." 

The ratio oj Eulerian to Lagrangian micro cale has been de­
termined theoretically by generalization oj a 1'esult oj Hei enberg 
and, with arbitrary constants taken j rom independent sources, 
show rough agreement with expe1'imental results . 

A convenient j orm has been deduced jor the criterion oj inter­
changeabili ty oj instantaneous space and time derivatives in a 
flowing turbulence. 

INTRODUCTION 

One of the most striking a pects of tmbulent motion in 
fluids is its dispersive property . This "convective diffusion," 
illustrated by the general tati tical tendency of (non con­
tiguous) fluid elements to get farther apart with increa ing 
time, was probably first ob erved long before the era of 
analy tical fluid mechanics. An analy tical start on thi 
problem was not made, however, until the now-clas io work 
by Taylor in 1921 on diffusion by continuous movements 
(reference 1) . Not only did thi paper lay a groun lwork for 
the study of turbulen t diffu ion but i t also represented a 
forward step in the ideas e sential to development of a gen­
eral stati tical theory of tmbulence, a fi eld which had carcely 
progressed ince Reynolds' original formulation of the equa­
tions of motion for a flow in whi h mean and fluctuating 
parts could be distinguished. 

The diffu ive action of a turbulent flow may manife t itself 
in variou way , depending upon the initial and/or boundary 
condition and upon the intere t of the observer. The fol­
lowing po sible measure of the diffu ive power are neither 
exhau tive nor mutually independ en t: 

(J ) The average rate of di per ion of particles from a fixed 
source 

(2) The average rate of increase of spacing between difl'er­
ent particles 

t Supersedes N A OA 'l'N 2710, "Diffusion of R eal From a Line Source in IsotropiC Turbu · 
Jence" by Mabinder S. Uberoi and Stanley OOrl'Sin , 1952. 

(3) The average ra te of t ransport of particle concen tration 
under a given mean concentration O'radien t 

(4) The average rate of increase of the length of a fluid line 
(5) The average rate of increase of the area of a fluid sur-

face 
The word " particle" mean simply indelibly tagged fluid 
elements, much malleI' than the smalle t length a ociated 
wi th the turbulence. 

The present report i concerned primarily with mea ure 
(1) . The measurements have all been made in the thermal 
wake of a long thin heated wire mounted perpendicular to 
an isotropic turbulent air flow and producing no t w'bulent 
wake. H ere the tagging is thermal, and the degree of in­
delibility (negligibility of molecular diffusion) is one of the 
matters to be investigated. 

The diffu ive property (for scalars) of a turbulent flow is 
apparently a econdary characteri tic a t leas t in the sen e 
that it need not explicitly enter the dynamical problem . The 
diffu ion may be regarded as a kinematic phenomenon, to be 
dedu ced from the d \'namical olu tion to the problem if and 
when the latter is ob tained . Thus the obj ective of research 
on turbulent diffu sion may be to seek a connection between 
the diffusive and the dynamical sta tistical variables, even 
before th complete dynamical theory is availabl . 

:NI asure (3) is u uany termed the " turbulent tran port" 
or " tran fer" problem. Al though of exten ive practical im­
portance, i t has no t yet be n ubj ected to genuine theoretical 
tudy. 

]\1[0 tofthe emiempirical "theOl·ie " of turbulen t transpor t, 
for bo th calar and vector proper ties, employ an Eulerian 
formulation of the basic equation , and up to now they have 
been unable to relate Lhe turbulen t tran por t correlaLion to 
other stati tical funcLions describing the flow. Taylor 
(reference 1) showed that in th e simple case of a homogeneou 
fi eld of i otropic turbulence, and even in a decay ing i otropic 
turbulence (reference 2) , a Lagrangian formulation of Lhe 
tran port (i. e., diffu ion ; Lhe terms will be u ed interchang -
ably) problem lea Is to some important 1'e ulLs.2 

p to the pre en t time li t tle theoretical or experimenLal 
work has been done to find rela bon , if any, between the 
LaO'ranO'ian stati t ical mea ures of a turbulent field with its 

b b . 

Eulerian statisti cal mea urcs . Since turbulence dynamLC 
eems be t handled in the latter terms and turbulen t diffusion 

in the former, it i eviden t that such a cOlmection is impor-

2In his tensorial genera lization of 'Paylor'S work on case (I), Batchelor (refer nee 3) has 
chosen to call this an " Euierian" analysis, descri bing onl y case (2) as " Lagrangian." In 
keeping with prev iously accepted nomenclature, hotb cases are Lagrangian, (l) involving a 
single particle and (2) involvi ng a pair. In fact, case (2) might be termed a mixed (E ulerian 
and Lagrangian) probiem. 

1 
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tan t o H ence, one of the purpo e of the presen t ex periments 
ha been to compare the magni tudes of some of tbe e qu anti­
ties under variations in the turbulen t fi eld . F or example, 
the postulates of T aylor and H eisenberg on a l'elalion between 
Lagrangian and Eulerian micro calc ca.n be exam ined and, 
in corrected form , compared wi th experimen t. 

The turbulen t diffu ion from a fixed line ource can be set 
up an alytically a an ordinary (Eulerian) "heat-tran fer " 
problem , permit ting a s tar t to be m ade in relating mea m es 
(1) and (3) of the diffusive power of a turbulen t flo w, under 
cer tain simplifying a ump tions . 

M ea m e (4) and (e pecially) (5) may well be classed a 
characteristic of tbe " turbulen t-mixing" problem rather tb an 
diffusion in the common conno ta tion. 

Experimental work on diffu ion from a fixed local source 
in a turbulent flow has been meager . In iso tropic turbulence, 
there h ave been the mea urements of chubauer (reference 
4), immolls (reported by T aylor in reference 2) , Dupuis 
(repor ted by Kampe de F eriet in r eference 5), Fr nkiel (r efer­
ence 6), and Colli (reference 7). Of these, only t he da ta of 

immons and Collis arc extensive enou gh to permi t confiden t 
compu tation of the Lagrangian correla tion function. In 
turbulen t hear flow , kramstad and chubauer (reference ), 
Dryden (reference 9), and the pre en t au thors (reference 10) 
have m ea ured distribu tions close to a source; K alinske and 
P ien (reference 11) and Van Dries t (reference ] 2) have made 
measuremen ts somewhat far th er clown tl'eam . 

N one of the e studies was repeated wi th a ystem atic 
variation of the proper ties of the turbulence. I n spite of 
the poor precision inherent in this ty pe of m easurement , it 
wa hoped tha t uch an approach would a t lea l show up 
orne general trends in the rela tion between E ulerian and 

Lagrangian variable . 
This inve tiga tion ha been conducted a t the Aeronau tics 

D epartment of the Johns Hopkins ni ver ity under the 
sponsor hip and wi th the financial as i tance of the rational 
Advisory Commit tee for Acronau t ics. The aut hor would 
like to acknowledge the ass istance of ?\Ie rs . AJ an Ki tIer , 
George ' tim'hoff , and Allen Ga tes and ?\ii s Pat ricia O'Brien , 
as well as the helpful cri ticism of Dr. Francis H . Clau e1' and 
Dr. C. C. Lin. 

SYMBOLS 

c rool-mean-square molecular veloc ity 
specific heat per unit volume a t co n tant pres-

sure 
f( l' ) Eulerian velocity cOlTelation coeffi cient (no ta-

tion of Von Karman and H owarth) 

H == 2 pcp C 50'" e dy 

J-I*= l~_{ __ 

2p cp So fmd~ 
J width of rec(;angula r heat pul e 
k thermal onductivity 
kT turbulent-heat-transfer coeffi cien t 

L Eulerian scale (L == So'" f(r) dr) 

L L Lagrangian scale (LL == 5o "'R.(T)dT) 

L~ L agrangian cale for nondecaying and deca~'-

ing turbulence (L~== 50 "' R~ ( '7/ ) d'7/) 
mixing length 

111 grid mesh Ize 

j1l1 [ == 50 '" '7/R~~ '7/ ) d'7/ 
P(,J) probability den jty of flu ctuating t emperature 
p static pre ure 
RL turbulence R eynold number ba eel on Euler-

ian scal ( RL == u~L) 
_ _ v(l)v(l - T) 

tRt-T = R.(l , T) = v' (l)v ' (l - T) 

RuC T) Lagrangian correlation coeffi cient for nonde-
caying turbulence 

R~('7/) L agrangian correlation as a function of '7/ for 

1J v 
R", === eu 

nondecaying and decay ing turbulence 

Rx turbulence R eynolds number based on Euler-

. . I (R V'A) Ian mlCl'OSCa e x== -v-

l' calal' dis tance between two point 

s== _(~~y/[ (~~)2J/2 
S average on-cen ter spac ing of pul es 

T ==[(~~Ylu2 (~~)] /2 
t 
U 
u 

v' == ,!fJ 
w 

x 

J' 

xo 
c.. x=x-xo 
y 

Y' 

Y m 

y 
Z 

~ == OV +U ov 
al ox 

time 
m ean velocity in x-direction 
in tantaneou velocity fluctuation in x-direc­

tion 

mean velocity in y-direction 
in tantaneou velocity fluctua tion 111 y-

direction 

in tan taneous velocity fl uctuation ill z­
direction 

distance traveled 111 x-direction by a fluid 
particle 

distance downstream from grid 
loca tion of heating wire 

eli tance t raveleel in y-direction by a fluid 
particle 

l'oot-mean- quare displacemen t of a fluid 

par ticle in y-dil'ection (Y' == y 2) 
roo t-mean-square di placemen t of a molecule 
distance in direc tion of measured diffu ion 
distance in direction of heating wire 
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TfC1o,t)= v'(~)d~ J
' t 

t. 
e instantaneous LemperatUl'e (mea ured above 

e 

-J 

?J'= ~ 2 

?J o 

K 

it 
A 

AD 

Aq 

v 

- y 
~ = Y'(x) 

p 

T 

(-) 
ub cripL 

max 
min 

ambient room tempera,tUl'e) 

mean temperature 
maximum mean temperature at a cros sec­

tion, a function of D.X 
ins tan tan eou temperature difference 

temperature difference of r ectangular heat 
pul e 

dimensionle empiri cal constan t 
mean free path of a molecule 
Eulerian microscale of tUl'bulence 

(A =( _ /'CO)}/) 
Lagrangian micro cale of turbulence for non-

decaying turbulence (AD=(_i.ffCO)} /) 
J..Jagrangian micro cale of turbulence for 

nondecaying and decaying tUl'bulence 

(>-q=( _R~ff(O)}/) 
kinematic visco ity 

den i ty 
time difference 
mean value 01' ensemble average 

maximum 
minimum 

EQUIPMENT AND PROCED RE 

AERODY AMI C EQllPMENT 

The wind tunnel (fig. 1) i an op n-return NPL type tunnel 
with a 2- b y 2-foot worh:i.ng ection and a free-stream turbu­
lence level of v' /U= 0.06 percent and u' / U= 0.05 percen t at 
a mean velocity of 26 feet per econd. The turbulence­
producing grid s were as follow : 

Rod 
M~sh size diam-

(In. ) eter 
(in.) 

olidity D esignation Type 

1-----1------1---·------
I-in. grid ____ B iplane, wood __ 
>-2-1n. grid ___ WoveD, m etal 
j4-in. grid ____ Woven, m etaL -

J. 00 
•. 50 by 0.53 

. 25 

0.25 
.1 20 
.060 

0.437 
.41 
.42 

• The O.50-ln. mesh was set in d irection of measured diffusion. 

7' 

-+-i-~- \ \ - -+- -------t=::::::=-

8' i 1: Square ';~r;~und transit ion sections ,::: .. , 

5' 

'. 

. Cheesecloth screen Over- all length'" 4 2 ~ .0 

All other screens - # 24 wire mesh 

FIGUR E I. - Sketch of op n-return wind t unneL 

They were mounted in tUrn at the upstream end of the work­
ing section, 

The heat source wa an 0.00 -inch-diameter platinum WD:e 
stretched vertically acro the tunnel at variou distances 
from the grid. It wa heated by direct current to tempera­
tures between 500 0 u,nd 700 0 C, with th e latter figUl'e only 
at the high est operating velocity of 3 ,0 feet per second. 
The wire R eynolds numbers at tbi condition and at the wo 
other velocitie were a follow : 

M ean 
speed 
(fps) 

8.5 
25.6 
38.0 

Wire 

Reynold s number 
based 011 -

tempera· 1---,.-­
tu re 
(Oe) 

500 
000 
700 

Air tern- i~';;~ 
perature perature 

35 
105 
157 

6.4 
19 
19 

A preliminary investigation was made withou t grid to 
in m e that tbe e operating condition did not generate a 
vortex street down tream of the heated wD'e. 

With the grid D) place, the mean momentum wake became 
practically undetectable with total-head tube and manometer 
at distance greater th a.n 1 01' 2 inches down tream of the 
heating wire. 

MEASURl G EQUIPMEN T AND PRO CEDURES 

The m ean-temperature distributions were measure 1 with a 
Chromel-Alumel thermocouple and a Leeds and Torthrup 
type K- 2 potentiometer. The cold junction was kept out­
ide of the wind tunneL 

The hadowgraph technique was used Lo photograph he 
laminar thermal wake close to the ource with no grid in tbe 
wind tunneL Thi Dlfol'mation was applied to the problem 
of "correcting" th e thermal wake in turbulent flow for the 
effect of molecular diffu ion and of fulite source size. FigUl'e 
2 (a) i a shadow graph of the wire wake with no grid in the 
tunnel ; figure 2 (b) is a typical time exposure with O'rid­
produced turbulence. A l'e istance-thermometer traver e of 
the laminar wake in a flow of very small Lurbulence sbowed 
that the temperature profile had already become very nearly 
Gau ian at a di tance of 1 inch (125 wire diameters) down-
tream. The white lines on tbe ide of the dark wake 
hadow Dl figure 2 (a) corre pond to the mioimmus in the 
econd derivative of the density profile. For mall Lempera-

ture differences these coincide with the maximums in tbe 
econd derivative of the temperature profile. Al tbough the 

temperature difference are not mall in the immediate 
vicinity of tbe wire, thi condition is rea onably well atisfied 
at relatively small value of D.X a evidenced by the parabolic 
spread of this laminar \ ake. 

The tandal'd deviation of the wake could then be com­
pu ted from the spacing of tbese two bright lines, with tbe 
a sumption of a Gu,us ian di tribution. ince the clo est 
point of travel' e in the turbulent cases were X inch (63 wD'e 
diameter ) from the heat source, this wa probably a rea on­
able assumption. 

As poin ted out by T aylor (reference 2), the molecular and 
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(a) Ko grid in tunnel. 
(b) Gri I-produced tu rbulence. 

F I GURE 2.- hado\vg raph time expo ure of "'ire wake. 

the turbulent diffu ive ph enomena are tati ticall.\- ind e­
pendent, so that the q uares of the tandard deviation du e 
to the e two effects are additive. H ence the wake pread 
du e to turbulence alone, from a tru e line source, wa obtained 
by ub tracting the quare of the standard deviation of the 
laminar wake (computed from the sbadowgraph) from the 
quare of the tandard deviation of the total wake (from 

thermocouple traverses with grid turbulence present) at all 
stations. Thi difference was the square of the standard 
deviation of the de ired phenomena. All w'ake-spread data 
presented in the next sect ion have been corrected in thi 
fashion . 

Parenthetically, it should be remarked that the laminar 

wake in figure 2 (a) p reads parabolically within the limi ts 
of precision, from at least 1 inch on, so thaI, Lhe efl' ects of 
density differences on the flow phenomena must have been 
negligible for this in vestigation . 

Th e tl'ansver e turbulence levels v' Iii behind the grids 
were obtained from the initial rate of pread of the mean 
thermal wake (method due to chu bauer (reference 4)) after 
the effects of molecular spread and finite source had been 
removed. The resulting levels '\-ere omewhat higher than 
those obtained with a hot-wire anemomeLer bu t were u ed 
becau e of their con i tency with the re t of the mea ured 
diffusion curve. 

Free-stream velocit.\- fluctuation (without grids) and the 
" -alee temperature :fluctuations (with grid ) were m easured 
with the hot-wire anemometry equipment de cribed in refer­
ence 10. The wires were 0.00025-inch platinum etched 
from Wollaston; the compensated 1'e pon e of the sy tem 
was :flat within ± 2 percent over a frequency range from 3 
Lo 12,000 cycles pel' econd. 

o cillo O'rams of the temperature .fluctuation were recorded 
by photographing a blue oscilloscope t ube with fa t 35-
millinleter film in a General R adio type 651- AE camera. 

Probability den ities of the temperature .fluctuation at 
fixed points in the mean thermal wake were determined 
from pho toden itometer traverses of tim e-expo ure pho to­
graph of a shor t-persistence (0.001 sec) blue oscillo cope 
tube with the temperatUl'e fluctuations on one pai.r of plates 
and a 30,000-cycle-pel'-second weep on the oppo ite plate. 
The technique is e sentially that u ed by . immon and 
, al ter (reference 13). 

EXPERIMENTAL RESULTS 

MEAN THERMAL WAKE 

Complete mean-temperature wake behind a line ource 
of heat were m easured for 10 different condi t ion. Arranged 
to indicate the sy tematic variation of one parameter at a 
t ime, the e condition were a follow: 

I-in. grid ; TI= 43.4: V, fps 8. 5 
25. 6 
3 .0 

1---------------
(;= 25.6 fps; 3 - 43.4 ; grid , in ____ _ 

(7 = 25.6 fps ; ~- 6.1; !!Tid , in _____ _ 

U=25.6 fl's; .'A/ -in . grid ; I./AL _____ _ 

(7=25.6 fps; X -in. ~rid; .T . /}"L ______ I 

J 
' ., 
J.? 

I 
' ., 
J.? 

43.4 
86. I 

172. 3 

43. 4 
6. I 

172.3 
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o 

o o 

1.6 1.2 .8 

o 

.8 .6 .4 

.4 

.2 

o 
Y,in. 

o 
Y, in. 

.4 

(b) 

.2 .4 .8 

L!.x Xo -(a) M = 15, M=43.4, M = l inch, and U = 25.6 feet pe l' se cond. 

L!.x 9 Xo 1 -(b) M = 3 , M= 6.1, Af = '4 in ch , a nd U = 25.6 fee t p e l' e co nd. 

FII1URE 3.- Experime ntal scaLle r ; tempe rat ure be hind line so urce of 
heat. 

H ere U i the mean velocity, 1\11 i the grid mesh size, and 
Xo i the heat- ource location measured from the grid. ' ince 
orne individual ca es enter a elements in two sequ ence , 

the total number of element i more than 10. 
Two of the many mean- temperature travel' e in the 

y-di.l'ection (perpendicular to mean fiow and to source line) 
are hown in figure 3 to give an idea of the amo unt of exper­
imental scatter. The upper traverse was the worst of the 
lo t, even showing an apparent kewness which was no t 
borne ou t by the investiga tion a a whole. The lower trav­
erse is more nearly typical of the measured temperature eli -
tl'ibutions from which th tanelal'd deviations of the mean 

.8 

.6 

y ' 
M 

.4 

.2 

o 

[j 
(It /sec) 

o 38 
o 25.6 
<> 8 .5 

<> 
o 

to 

o 0 0 <> 
'0 

0 

0 

20 
, 6x 

M 

<> <> 0 0 
0 0 

0<0 
<> 0 
0 <> 

0 

o 0 0 
<> 

<> 

30 40 - 50 

F IGURE 4 .- Spread of heaL from a line o urce . ~;= 43.4 , 111= 1 inch . 

y ' 
M 

1.6 

1.2 

.8 

.4 

M 
(i n.) 

o I 
o 112 
<> 1/ 4 

o 50 

0 0 <> 

100 
6x 
M 

<> 

<> 

<> 

150 200 

F I GURE 5.- Spread of heat from a line source. ;;=43.4, 17= 25.6 feet 

per econd . 

thermal wake were compu ted. By compari on with the 
reference curve, it is een to be e sentiall,v Gau ian . Thi 
was the case for temperature profiles a all tations. ince 
the vi.r tually Gaus ian character of uch a wake has already 
been es tablished by several of the earlier publi cations, there 
seemed to be no point in reproducing here all of the !urge 
number of travel' es mea ured. 

The mean-thermal-wake spread for the 10 different con­
figurations studied i given in figures 4 to 7 as plot of cor­
rected standard deviation Y' again t di tance from the heat 
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0 
0 0 

.8 
0 

0 0 
M 

(in) 
0 0 

0 
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Y' 
.0 
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"' IfWRE 6.-Spread of heat from a line so urce. J\Il=86. 1 [/ = 2,5 .6 feet 

1.2 

. 8 

y ' 
M 

.4 

o 

M 
(in.) 

o 1/2 
o 1/ 4 

50 

pe r seco nd. 

100 
6x 
M 

o 
o 

o 
o 

150 200 

F Ie: HE 7.- 'pread of heat from a line source . ;;=172.25, [' = 25.6 
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ource tJ. .r . Each point in these fi gures co rres pond to a 
complete transverse temperature traver e. 

In ord er to have value of tran vcr c tu rbulence level l" f[J 
consistent w ith the the rmal-wake behavior, these value 
were dete rmined from the initial angle of spread of t he C01'­

rected wake standard dev iation (references 2 and 4) in tead 
of from dire t h ot-wire anemometer m ea urements. The 
re ult arc plotted in figure Since the e repre ent an 
insufficient number of point per grid to permit the drawing 
of reliable cu rves, some simplif~'ing as umptions werr made 
based upon the r esults of several more-d etailed turbu lence­
decay investigations . (See references 14 to 20. Thr pe rti­
nent r ult of refer nce ]4 to ]6 arc ummarized in r('fer-
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1 6. I 25.6 1.50 
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I ~ 172.3 25.6 1. 05 
~ 172. 3 25.6 .95 

"FJ(:U H f~ .- DC'cay of turbu lence as delermin d by t he rmal wake of a 
line so urce . 

ence 17.) In the light of the e papers, it wa assumed that 
the deca.,· curves had a common apparen t origin and that 
thi wa obtainable by dra'wing the best t raight line for all 
th e available points, ind ependent of the liA'ering wind peeds 
a nd mesh size. In computing any individual Lagrano-ian 
co rrelatio n fu nction from the corre poneling wake hi story, 
the turbulence decay rate \Va assumed to be given by the 
lin e drawn through thi common origin and the pecifi c tur­
bulence valu e giv ing the measured initial spread angle for 
this wake. Thi s i , of COUl" e, a ycry rough procedure, but 
the experimen tal catter in thi whole method of determin­
ing L ao-rangian co rrelation functions i 0 great that a more 
exten ive stud.\' of decay (including the resolu tion of incon­
si tencies between wake method and ho t-wire m thod) 
seemed unwar ranted at thi time. 

TEMPER AT HE FLUCT UATION 

Di tri butions of temperature-Auctuation level (j' /8 in the 
thermal wake have b een measured b.\' using th e ho t-wire 
anemometer as a resi tance th ermometer , that is , at a 
current low nough to render th e sen iti vit~· to velocity 
Auctuations negligible compared with the en itivit~, to tem­
perature fluctuations (r eference 21). A represen tati ve eli -

t ribution oftJ'(8 in th e x-di rection is given in figure 9. Typ­
ical transverse eli tribu tions are given in Flgures 10 (a) and 
10 (b) . It i clear that the temperatu re-A uctuation inten-
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i t.~- change very little wi th inct'ca ing valu s of [:, x. A 
rough explanation of the ve ry high values of tl' /8 (com­
pared with the concomitant turbulence level, for example) 
in term of the highly intermittent structure of the thermal 
wake ha been given in reference 10 and will b discu sed 
in more detail later in thi report. This intermit tency i 
h own ve ry clearly in figure 11 , a serie of temperature 

o ilIoO'ram recorded at two different po itions across the 
thermal wake for a fix cl valu e of 6 x and at two different 
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FIGURE n.- Oscillogram rcco rd. and normaliz d probability den ity 
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value of 6 x with y = O. The one-sided and pulse character 
of the in tantaneou tempera ture at a fixed point in pace 1 

also demon trated by its probability density. 

THEORET! AL CONSIDERATIONS 

HOMOGENEO S STEADY TURBULE CE AT REST 

For a nond ecaying incompressible t1.ll'buien e with no 
m ean motion, Taylor (reference 1) was followeel in ge tting 
an expres ion for the mean time rate of difI'usion in the y­
direc tion (say) from a fixed source as m ea ured by the 
econd moment of the probability den ity of the difIu ion, 

that i , the m ean-square particle di placement P(l): 
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The bar denotes en emble average. 
Taking vet) in id e the integral, interchanging the proces es 

of integration and averaging, and introdu cing th e Lagrangian 
(au to) correlation coeffi cient (following the fluid particle) I 

where r = l - ll , 

R.(r )=- 1}(~2v(l - r) 
v2 

there re ult 

(1) 

Thi i Ta~·lor's form . Integration by parts yield a form 
like tha t in the work of Kampe de F eriet (reference 5): 

p = 2v 2 i ' (l- r )R .(r) dr (2) 

In thi s Lagrangian analy is , vet) i the veloci ty of a fI uid 
particle in the y-clirection at time l; V(t- r) i the velocity of 
the same particle at time t - r. orre ponding expres ion 
can be wri tten for the rate of diffusion in any direction . 

Diffu ion from an infinite line source, the ca e to be 
discussed here, i a two-dim ensional problem in the m ean , 
and , in addition to equation (2), 

(3) 

A ten orial general ization of these concept has been given 
by Batchelor (reference 3) dealing with th e behavior of 
X jX j(l ) where X i and X j are any two of the or thogonal 
displacements of the particle at time t . 

It should be noted that this analysis give no information 
on the shape of the probability den ity of Y et) or of X (t). 
In fact there still exi ts no theory for these. H owever , 
experimen ts in flowing turbulence (the case to be considered 
next) show Gau ian den ity, within the experimental 
preci ion, fo r y et) at all values of l . 

For th i tationary ra,ndom proce s, T aylor (reference 1) 
introdu ced the concept of the Lagrangian "scale," 

(4) 

The e have the dimen ions of time and are charac teristic 
constant of the sy tem. 

In his laler work on the (Eulerian) dynamic (reference 2), 
Taylor had oceasion Lo introduce another measure of the 

correlation function, which he called the " microscale." 
Applying Lhe same geometrical concept to the pre ent 
function , the Lagrano-ian microscale 

2 2 
>- . = - R."(O) (5) 

i simply the r-intercept of the vertex-o culating parabola 
of the even functio n R .(r ). The kinematic ignificance IS 

cIearl.\· hown by a serie expan ion of v(t + r ) in Rv(r ): 

But v2=Constant, so that 

(6) 

From equatio ns (6) and (5), tlle Lagrangian microscale for 
1} (t ) is 

(7) 

or 

(7a) 

TURBULENCE I ' A F LOWI NG MEDI M 

The dictales of both practical interest and exp erimental 
feasibility req uire analys i of the diffu ion when there is a 
mean yelocity (J relative to the somc. Since the diffu ion 
phenomenon i linear, th probability density (mean-concen­
tration dist ribution of tagged particle in the wake) i simply 
proportional to the superimposed probability den iLie of a 
continuous line of som ces moving with Lh mean velocit.r (J 

with their lime (and space) origin at th e actual fL"Xed source. 

Thi i illustrated in figure 12 (a) for 1} ',U' <1. The eircle 
U 

(corresponding Lo isotropy) arc the tandard deviation · of 
the disper ion that would occur from moving our e. The 
envelope of these circle give a mea ure of the mean wake. 
It i obvioLl that in general the functional form of the mean­
concentration distribution along a line 6.x= Con tan t will not 
be the ame as the functional form of the ame quantity for 
the individual so urce at Lime t, thal is, at position x=Ut. 
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However , i ' is extremely likely that if crx l 

« 1 (fig . 12 (b) 

the mean concentration along a line ~x=Constant become 
very nearly of the same fun ctional form as that for the our e 
at X= Ut. }for a zero-colTelaLion Gaus ian elen ity, the 
equivalence is ea ily demonstrable.3 

'I'he d" dY I 1 ill I • 1 h con ItIOn dx« w a ways occur au arge el10Llg 

VI 
value of ~x when = < 1. This follows from the a ymptotic 

U 

3 The most general mathematical restrictions under which the super position of a lille of 
identical densities will yield a "cross·section" density of the same form have not been studied 
herc. It is obvious that tbe cond ition of sta tisticai ind pendence is sufficient. The fact that 
the density of cach of the velocity components in isotropic turbulence has been found to be 
Gaussian wit.hin the experimental precision seems to show that the equivalence under 
discussion is at least. a good approximation. 

parabolic behavior, yl (t) '" t (reference 1), of the diffusive 
v' 

process. It will occur for all value of ~x when =«1. There-
U 

fore, in this ca e a simple approximate space-time transforma­
tion in the mean is permissible, and the t-variation in Taylor'S 
theory of diffusion by continuous movements becomes a 
variation of x/U. (It mu t be emphasized that the fore­
going eli cussion does not apply directly to the possibility of 
applying a space-time tmnsformation to the instantaneous 
turbulence variable. This latter question will be di cussed 
la ter.) 

v' In the present mea urements =«1 , and , therefore, the ~x-
U 

variation of diffusion gives an approximate mea ure of the 
Lagrangian correlation coefficient (in time). Equation (2) 
can be rewritten as: 

( ) 

DECAYING ISOTROPIC TURBULE CE 

When the turbulence i elecaying in time ( imilar to space 
in the flowing turbulence) v 2 is no longer constant, and the 
analysi cannot be carried out as far as equation (1). The 
arne approach top with 

(9) 

where the prime denote l'oot-mean- quare value, an 1 

There is no a priori reason to believe that tRt- T is a function 
of T alone, a in th nond ecaying turbulent flow. 

At this point Taylor (reference 2) invokes the empirical 
fact that over a wide range of mean velocities (all of which 
give essentially the arne eli tribution of vl /7J in x behind a 
grid) the thermal wake behinel a line heat source at fixed x 
appear to be unchanged in form, within the experimen tal 
error. Thi i consi tent with dependence of the eliffu ive 
proces upon a variable of type 

(10) 

Therefore, Taylor ha postulated the unique dependence of 
tR t-T on the variable 71 . With this po tulate and the space­
time transformation valid foJ' small turbulence level, he 
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arrives at 

01' 

where 

cl } T2 2 v' r 'R ( ) l 
dx = c Jo , 1/ t G 1/t 

= v'dt 

(11 ) 

(12) 

Equ ation (11) and (12) look like the equ ation fo r non­
decaying turbulence. T hey also g iy e 

(13) 

A physical s ignifi cnnce of the length 1/ i underscored by 
the limi t ing form of equation ( J:~) as 1/ --i>0 and H, l. Theil , 

o that 1/ is a measure of the lateral difl"u ion tha L would 
occur if the la teral " elocit." fluctu ation following a particle 
v(t) r emained perfectly co rrelated bu t decreased in m agn i­
tude according to the decay rate of th turbulence level. 

In postulating tHt_T= R,(1/ ), T aylor was appa ren tly com­
paring onl.\' diffu iYe proces e in turbul ence fields with 

VI 
ident ical U (x) . Of mo re general in te rest is the eompari on 

of difl'us ion in fi elds wi th difrering turbulence-level distribu­
tions. Although uch a generalized application of his po tu­
late is doub tless no t too \I-ell appli cable, i t is conceivable it 
migh t have approximate succe s in the more general com­
panson. For both conveni ence and lack of an.'- obviousl.\-
uperior alternative, his suggestion i therefore applied in 

compu ting the results of the m easurem ents reported here. 4 

With th e 1/-PO tulatc, the R, Lagrangian correlation func­
tion can be obtained from m easurem ent of yz a a function 
of t.x: 

(14) 

4 Aftl'r this work was compI('tNi, Dr. BnLCh('Iol' suggested an alLernutin' approximatc 
approach: In order to construct :1 stationary random function out of th(' llol1stationary v(l ) 
onc n"t normalizes the dependent yariable with its rool·mean-Square yalue. (This bas been 
automaticallyaccomplishcd by use of the correlation coefficient.) If the decaying Quantity 
is assumed to maintain complctc Sim ilarity during decay, all characteristic times (e. g., 
Lagrangian time sca le and mlcroscalc) ,·ary in the same way with t and the new independ­
ent variable is constructed by dividing T by this t·varlation. nfortunately, this variation 
is unknown a priori, so it would be necessary to assume further that the Lagrangian sca les arc 
directly proportional to the Eulrrian scales, about which there is previous C'xperimental infor· 
maUon. His work has now bC'('1l published; see reference 22. 

A scale and a mi cro calc can also be defin ed for R,: 

(15) 

(16) 

vfith nondecaying turbulence , no one-parameter true 
(time) Lagrangian correlation function exi ts, and the 
1/-formulation is much more convenient. A further signifi­
cance of thi variable will appear in the comparison of 
Eulerian and Lagrangian treatment of diffusion from a line 
ource in flowing turbulence. 

ACCELE R ATIO S I DECA YI , G TU RB ULENCE 

A seri expansion of V(t+ T) for decaying turbulence will 
how omething about the initial behavior of the true (time) 

Lagrangian correlation fun ction and will indicate an experi­
m ental m ethod for examining a hypothe is of Taylor on the 
interchangeability of ins tantaneous time and space dm·iva­
Live wh en the turbulence level is low (reference 23). 

Wri te the L agranO"ian co rrela tion coeffi cient 

v(t) v(t - T) 
R.(t, T) = v l (t) VI (t - T) (17) 

into numerator and denomina to r, and re trict the analysis 
to mall vnIu of T: 

v2(l)-! ( clo
2
) T+ [ ! (d~V2) _(dV) 2J T2 

R,(l,T):::< 2 dl, ...:. dl
2

, .!.l, 2 (1 ) 

V / (t)~ V~(t)_ (dlt2}T+i ((~~~2}T 2 

Divide uumerator and denominator b.\- v2
, expand the square 

roo t in the num erator, and keep term in T 2: 

[ (d VI)2 (d V)2 T2 
R .Cl,T):::< l - - ell, + dt t 2v2(l) (19) 

F or negligible decay rate this redu ces to equation (6). 

Equation (19) shows that a Lagra ngian microscale defined 
b.\-

_ 1_=,. [ 1- R ,(llT2] 
",z(t)':';; T2 

(20) 

is expre ible a 

1 1 [(clV)Z (clVI)Z] 
",zu) = 2v2 dt - ([t (21) 
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Introduction of Taylor' 7J-pO tulate tran forms equation 

(19) to 
(22) 

after thc additlonal approximation that v'er,) ""'v ' (O) whcn 
7J is very small. 

This gives a new expl'e ion for Lagrangian microscale A~: 

(23) 

Equation (23) is in contradiction to equation (17) of part 
IV of referen e 2. In that work Taylor ha apparently 
a sumed that v' i a nondecaying fun tion of 1/. However it 
certainly is decaying , even in terms of thi distort d coordi­
nate, and the dv' /dT)-term must b · included . 

, ince A~ and v'(x) can be detClmin ed experimentally from 
th e m ean thermal wake behind a line heat ource, equation 

(23) permits determination of (~~y ·which is imply relate 1 

to the m ean- quare" toke " acceleration (~~)2 = (V' )2 (~~f· 
This quantity i of particular intere t for the po ibility of 
an in tantaneous pace-time tran formation at low turbu­
lence level. TIllS wa fir t proposed by Taylor (reference 23) 
and ha since been u cd very widely, e pecially to get approx­
imate value of partial derivativ s ,,-ith re pect to x (the 
m ean-flow direction) by m easurem ent of time partial 
derivatives . 

The total (or tokes) c1 erivativ of vex, y, z, t) in a turbulent 

flow with mean velocity U along the x-direction i 

or 

Taylor's hypothesi amounts Lo the Latement that 

av - av 
7Jt "'" - ax 

av av -= - u - +€ at ax 
with r ? JI/2 

Lu' (~:)' « 1 

In detail , equation (25) is 

(24) 

(24a) 

(25) 

(25a) 

In the ab ence of information on th e algebraic sign of the 
triple correlation term, it. i ufficient to requir the Lwo 

conditions" 

L ~ l1/2«1 
L rf (~~YJ 

(26) 

Bu t (~~) 
2 

can be determined from measurement of Y' (x) ; 

(~~)2 = 2~, where A is the Eulerian microscale (referenc 2) ; 

and upper bounds, in terms of mea ura,ble function , can be 

se t on U tUj ~ v ~ v with the use of Schwarz inequalities. Thu , 
u Xt U Xj 

an experimen ta,l check of the requiremen ts in equation (26) 
is to be mad e in the section entitled "Computation of 

R esult ." 

RE LATION BETWEEN EULERIA AND LAGHA GIA MI CHOSCALES 

Taylor (reference 2) inferred a n approximaLe relation 
between A~ and A by neglecting the effect of vi 0 ity on 

[(~)2JI/2 
pressure-gradien t D ucLuation and esLimating 0; as 

[ - 2J1/2 
being approximately 3 P v 2 (~~) This led Lo a con tant 

ra,tio A~/A for all turbulence. The rough na ture of this 
analy is induced H ei enberg (reference 25) Lo conduct a 
more detailed study of th e Latic-pres ure flu cLuation and 
to ree tima,te the A~ /A ratio . HONever, he followed Taylor 
in ignoring Lhe dv' jdT)-Lerm in Lhe rela tion between A~ and 

(~~)2 ( ee equa lion (23)) and in neo-lec ting vi cou term in 

the relation between A~ and (~;f· 
Although the e omi sions arc probably no t serious except 

in the low R eynolds number range, iL eems interes ting, if 
only for the ake of ompletene s, to use a H ei enberg type 

of approximation for (~;f and Lo r epeaL hi tr atmen L with 

the omission rectifi ed. 

, Lin has discu cd the valid ity of Taylor's hypothe is using a slightl y difTerent fo:mulation 

" in reference 21 . H e pOints ou t there that if .Ii = 1: a. , then (fro m the chwarz inequali ty 
1 .. 

(A l) 1/2 ~ 1: (0. 1) 1/2 where a. i a set of numbers. 
1 
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From the complcte t\avi er-~tokes eq uation in the wave­
number space, H eisenberg deduced an approximate expres-
sion for (\lpF in terms of mean quadruple products of the 
" harmonics" of the velocity field. Hi principal simplifying 
a sumptions were: 

(a) Differen t Fourier components of the velocity field are 
uncorrelated 

(b) The turbulent energy pectrum i given by the solution 
to his equilibrium-energy-transfer equation, abo ve a lower 
cut-off wave number k. 

Following these, but using Chandrasekhar's (reference 26) 
solution to the H eisenberg equation instead of the inter­
polation formula use 1 by Heisenberg, there 1'e ult 

(27) 

where K is a dimen iouless empirical con tan to 
The numerical constan t in equa tion (27) would perhaps 

have been given more accurately by the usc of a " elf­
pre erving" spectrum (calculated by Chandra ekhar from 
Hei enberO" equation) in tead of the stationary spectrum 
with low cut-off wave number . Time was no t taken to make 
the 1'equi ite additional calculations because: (a) The value 

of (~~y depends principall.v upon the high-wave-numbe[, 

region of the velocity spectrum rather than the low-wave­
number region, where the difference would be greatest, and 
(b) the experimental re ults and (e pecially) the value of 

K both have a con iderable range of uncertainty. 
The m an square of the y-component of the Taviel'-, tok es 

equation will lead to a relation between A~ and A: 

th erefore, 

elv = o v +u o v + v o v +w o v 
dt ot Ox o y o z 

= _1:. op + v\l2v 
P oy 

( elV ) 2 =~ (op)2 + V2(\l2V)2 
elt p2 o y (28) 

where the correlation between pressure gradient and velocity 
Laplacian function is zero becau e of isotropy. 

Equations (23) and (2 7) give the first two terms in terms 
of the microscale , and the mean-square Laplacian funclion 
i expressible in term of the fourth derivative of the Von 
Karman-Howarth fer) cOlTelation coefficient at r= O (refer­
ence 27): 

(29) 

Conseq uently, equation (2 ) becomes 

2 (VI)4+(elVI) 2=25.2 v (V ')3+ 35 V2(V')2p.(0) 
A/ elt K A 3 3 

The econd term in this equation can be replaced by the 

tu rbulence-deca.vequation 

el(V ')2 (V ')2 
--=- 10" - (30) elt A2 

whence 

o that 

thorefore, 

V'A 
where Rx=-' 

II 

clv ' _ v' 
Tt=-bv A2 

Batchelor and Townsend (reference 19) have deduced an 
expression for It·(O) which is valid in the region of decay 
where both 1/(v' )2 and A2 increa e linearly wi tb t (col'l'espond­
ing to large values of R x): 

A 4110(0)= 30 +1:. R AS (32) 
7 2 

(OV)3/[(OV)2 J3/2 

where = - oy oy J the kewness factor. Theil' 

experimentalre ults showed S=0.39 approximately con tant 
for i otropie tu rbulence. Then the e timate for A/A~ 
become 

(33) 

The value of K was fir t estimated by H eisenberg (reference 
25), from mea urements of t urbulence decay, as O. 5. 
'I'hi method may be regarded as emphasizing the (relatively 
low wave number) energy-bearing range of the spectrum. 
Lee (reference 2 ) worked out an e timate based upon 
kewnes factor (K=0 .13), which give heavy weight to the 

high-wave-numbel' range. Proud man (reference 29) has 
reestimated K by comparison with measured curves of the 
double and triple velocity correlations. The value K=0.45 
leads to reasonably good agreement for the moderately 
high-wave-number region, over a wide range of values of B

A
• 

It may be remarked that the uppo ed con taney of K i 
merely a postulate of the Hei enberg dimensional formulation 
of the spectral transfer function. In fact it is by no mean 
obviou that thi turbulent part of the tran fer i q uantita­
Lively independent of the amo un t of spectrally local eli­
ipation to heat. In any case, Proudman's e tima te of 

K= 0.45 ha been used hore. Therefore, 

(3 4) 

In the limi t of R x ~ 0, equa tion (34) doe not apply ince 
eq uation (32) docs no t apply. However, the appropriate 
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limiLing relation can bc obtained directly. In this limi ting 
condition the pres ure term in equation (28) i negligible 
compared with the viscous term (the former goes with 
l /RA and th e latter wi.th 1/ R ,2) , and the Eulerian velocity 
correlation coeffi cient is (r eference 27) j(r) =e-

r2m2
. This 

gives r(0)=3/}.. 4 and 

(
}..)2 3.5 
}.. ~ = R,2 (35) 

EU LERIAN ANALYSIS OF HEAT DIFFUSION FUOM A LINE SOURCE 

The t wo-dimensional t urbul en t-heat-transfer eq uation i.s 

uoe + voe=~ (028+028)_~ (t?-u)-~ (t?-v) 
o x oy pC p o x 2 oy2 o x oy 

(36) 

where 8 is m ean temperature, 1} is temperature fluctuation 
abou t the m ean , k i thermal conduc ivity, and Cp is pecific 
heat at constant pressure. 

For the thermal wake behind a line sour e in isotropic 
turbulence with con tant m ean velocity V = O. With 
restriction to low turbulence level, a "boundary-layer " type 
of approximation can be applied to the mean. wake, so that 

and 
o (- ) -08 - t?-u «U­

o x o x 

so that equation (3 6) take the approximate form 

(3 7) 

It must be emphas ized that for thi particular ini tial con­
dition on the temperature (e ffectively a " poin t ource"), 
the re triction to m all turbul ence level v' / U « 1 does not 
imply that 1}' /8 i small. In fact, for thi problem t?-' /e is 
often greater than unity, espec ially at tbe "edge" of the mean 
wake, as h a been eli cus ed in r eference 10 and will be 
brought ou t again later in the present report. 

"\iVhen the molecular tran por t can be neglected=relative to 
turbulent tran por t 

- oe 0 (- ) [ - = -- t?- v 
o x oy 

(3 ) 

an equation given in referen e 10; a slightly-more general 
t reatment follows: 

W ith a constan t rate of heat generation ( imilal' to teady 
state in the average), the application of a Von Karman 
in tecrral-relation treatment to equation (3 ) .vield an intecrral 
condi tion: 

2pc"U 1'" 8 dy =Constant= H (39) 

where H is the average time rate at which heat -crosse all 

planes perpendicular to Ti per unit length of h eat so urce 

(z-direction). Of course, t?-u has been neglected relative to 
8fJ in equation (39). 

Equation (:3"8) ha two unknown, and the first objective 
i to expres t?-v as a fun ction of the (more easily m easurable) 
S (x, y ). After integration with resp ect to y, 

- - ( V oe 
1}v=-U Jo ox dy + F(x) 

But, by ymmetry, 1}v= O for y = O. Bence F(x) = 0 and 

- - ( V oe 
t?-v = -U Jo ox dy (40) 

This relation is sufficient for th e computation of 1}v(x,y ) 
from the m easured 8 (x,y) but the empirical fact of simple 
geometrical imilarity in S(x,y) ugge ts exploi tation of the 
consequent simplifi cation. 

Assume 
e(x, y)=eo(x)f(~) 

where ~=y /Y' (x). Th i transforms equation (39) to 

_ H * 
8 o(x)Y'(x)=-=-

(41) 

(42) 

where H* 
H 

f
a> = Constant. It tran form eq ua-

2pc p j(~) d~ 
o 

tiOD (40) to 

t?- v= ( -U l~.r(~)d~) Y'(x) ~~o+(U 1~ ~ ~f d~)eo(x) dd~' 
(43) 

Wi th equation (42), 8o(x) can be eliminated from equation 
(43), and after integration of the climen ionle integral thi 
lead to the final forID for th e turbulen t-heat-transfer 

COlT lation, 

where 

_ * 1 dY' 
t?- v(x, y)=H HW Y'(x) dx (44) 

The sam e ort of analysis can be made on equation (37) 
which includes the molecular conduction, but the rather large 
experimental scatter in the present m easurement seem to 
make uch a r efinem ent inappropriate. 

An "exchange" coefficien t or " diff usion" coefficient for 
turbulent h efi.t transfer kT i simply expre sible in term of 
Sex, y). A conventional procedure for emiempirical analyses 
is to write for the turbulent tran port an e).,})ression ju t like 
that for the molecular transport: 

- 08 
- pC p.,J v= k T oy (45) 

which serve a the definition of k T • 

-~ ------- --
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For the simple case of equation (44), it turns out that 

k = C U [llW] Y/(X) elY' 
T p P elf elx 

d~ 

(46) 

This has the particularly interesting proper ty that in a 
nondecaying turbulence at verr large value of x, where the 
mean thermal wake spread s parabolically (reference 1) , kT 
become independent of explicit dependence on x. 

A more tartling impli.fication follow for a particular 
mean temperature di tribution across the wake: All depend­
ence of kT on y di appears if 

that j , if 

(47) 

But thi i the Gau sian fun ction , which is found empirically 
to fit all the m ea urem ent ,,-ithin tb e expe rimental catter. 
H ence one arrive at the empirical re ul t tbat in both non­
decaying and decaying turbulence kT is ind ependent of y 
in the th ermal wake behind a line ource of h eat. From 

cquation (47), ~~=-UW ancl 

k U }TI( ) dY' T= pCp :;: df (4 ) 

It can be scen that in the nondecaying casc at v r .)' large 
value of x , kT icon tant and indepcnd ent of both y and x. 

RELATION BET WEEN SO M E LAG R A G IAN AND EULERIAN 
PARAMETERS I N TRAN PORT 

There has apparently been little effort to relate the 
Eulerian and Lagrangian formulation of turbulent difl'u ion 
up to th e present time. Exceedingly simple boundary con­
litions permit som e connection to be made in restricted 

ranges of th e pre en t problem . 
For n ond ecaying or (with much Ie accuracy) decaying 

turbulence, eq11a tion (13) applies: 

01' , equaLion (12), 

7) 2 
For small values of 7) , R"= 1-):2 wh en ce 

" 
(49) 

ubstituted into equation (44) thcse g ive 

-- * y ( 1 7) 2) V/ 
,J V = H f m 7) 2 1 - 12 t.. / [; 

while equalion (46 ) become 

_ _ / f (~) ( 1 7)2) 
kT- pcp V y df/d~ 1-"4 A/ 

where 7) = 1 rz v'dx !.md ~=yY( ) """,JL (1 +-\ 7)
22)' 

U Jo x 7) L t.." 
v/ 

for small ntlue of 7) , 7) """' = X. 
U 

(5 0) 

(52) 

In fact, 

v/ 
For low-level nondeca~T ing tm-bul nee, .,., == x, and equa-

U 
t ion (51) become 

( 
1 ""0 ") -l' -- 1J / .. x-

,J v = [J* rm -'- 1 - -- =:; -- --. :r2 1 ') l "0 , 2 / 
~ "" v 

while quation (52) becomes 

/ fm ( 1 c
2 

.r
2

) 
kT= pc pv Yelf/(n 1-4" ["2 t.. .2 

As 7) -70 bo th equations (51) and (5:3) r edu ce to 

while equations (52) and (54) reduce to 

At th c other ext reme, when 7) is vel".\' large, 

y 2= 27)L"- 2J11 

where 1\11 = 1 '" 7)R"(7) ) d7) = on ta nt and 

In th is case, 

and 

(53) 

(54) 

(55) 

(56) 

(57) 

(5 ) 

(59) 

(6 0) 

As indi cated pJ"cyiou ly, the 7)-variation can be cxp res eel 
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in terms of x 01' t . 
If 17 is allowed to become large enough to make yL~» ]Y[I 

v' 
y= - U 

'; v = H* fW 23/2 312 L 1/2 
17 ~ 

_ I 1W (L")1 /2 
kT- pC pv df/d~ Y 21/ 

(61) 

(62) 

The above formulas taJ\:e on particularly simple form if 
the empirical re ult of a Gaus ianfW i utilized: 

-!.~, 
1W=e 2 

Then the general expr lon for ';v and kT ( quatioD (44) 
and (46)) become 

_ H * dY' _1 (...!..)' 
-Qv(x y) ye 2 yf 
If ,= (Y' )2(X) dx ' (63) 

and 
(64) 

the latter having been deduced in the previou ection. The 
particular forms for small value of 1/ would follow from sub­
titution of equation (49 ) and (50) into these two. 

However , the most intere ting form occur for very large 
value of 1/ . There Y' (x) i given by equation (57) and 

'; v(x, y )· 

leT(x, y)= pCpv ' L~= Con tant 

For till larger value of 17 , uch that M I «1/L~, 

and 

v' 
y= 

_ H * U (1 y2) 
';v(x, y)=-- 3/2L 1/2 exp - -4 - L 227] ~ 7] ~ 

(65) 

(66) 

(67) 

The con tancy of le T for large values of 7] (large values of t 
or x) is to be eAlle ted ; a treatment of molecular diffusion by 
thi metho 1 must cer tainly yield a con tant coefficient for 
times much larger than the mean free time (of £light) of the 
molecules- that is, for all "macro copic tim ." Put an­
other way, the simple parabolic behavior of Y' for large 
values of 17 i a nre indication that e obey the simple 
cla ical diffusion equation with constant coeffLCient, wb en 
viewed extremely "coarsely ." 

P erhap the chief intere t of equation (66) is it identifica­
tion of L~ a a ignifi cant Lagrangian length for diffusion at 
a large distance from th ourc . It enters the expre ion 

for turbulent-diffu ion coeffi cient in much the same way as 
m ean free path enters the expre ions for the molecular­
diffu ion co ffi cien t. Furthermore, it role appears to be 
much like that attributed to Prandtl' "mLxing length ," 
which was brought into the turbulen t-transport problem in 
a more or Ie s intuitive fa hion. 

Of CO Ul" e, the po sible crude nature of T aylor' original 
1/-po tulate may render the significance of L" more qualitative 
than quantitative in the case of decaying turbulence. 

COMPUTATIO OF RE ULT 

Although Taylor' a sumption of the unique dependence 
of ,R '-T upon 7] i no t likely to be accurate for collapsing 
together ca es with widely differin.g turbulence decay rates, 
it does provide a rlatively imple r lation between yl(X) 

and R"(7]) . Therefore all of the mean-thermal-wake data 
were reduced on the 7]-ba is. 

In principle tb e omplete R"(7]) curve can be obtained from 
Y Z(x) by double differentiation (equation (12)) : 

1 ([2 -
R"= 2 d7] z (Y2) (6 ) 

or 

However, simple double di.ff rentiation of the squares of 
a curve as uncertain as Y' (x) seem almo t hopele ly in­
determinate- although Taylor (reference 2) and Collis 
(reference 7) have apparently followed thi procedure. A 
om what more cir urn pect technique has been tried here: 

The value of A" and L" were determined first, thr·ough certain 
limit relations (to be de cribed). Then the R~ curvc was 
determined by doubl differentiation, subj ect to the rc tric­
tion of agreement with th previously determined cale. 
Thank to rather poor determinancy of value of A" and L~ 
this method is not 0 much of an improvement as it might 
fu· t appear. 

LAG RANGIAN MI CROSCALE ~. 

If equation (13) is restricted to very small value of 7] the 
parabolic approximation fo r R" can be introduced: 

(6 9) 

therefore 

whence 

(70) 

The computational procedul"C wa to plo t y 2/1/2 again t 17
2 

and to estimate th lope of the faired curve at 7] = 0 where 
tbe curve mu t pa s through unity. The ab cissa intercept 
of the a-tangent i 6At The actual points, faired curve, 
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FIC: URE 13.-Determinat ion of X. and L .; ;;=43.4, AJ= 1 inch, and 

U = 8.5 feet per second. 

and tangent for all cases arc pre ented in figures 13 to 22. 
Clearly the precision i poor. 

LAG R ANG I AN SCA LE L . 

Con idel' equation (12) in the limit as 1) -7 co. 

ately o-ives 

1 . (dP) L'= -2 hm --
. -.a> d1) 

It immedi-

(71 ) 

and the graphical procedure ba cd on thi is also presented in 
figure 13 to 22. Some of the a ymptotic slopes drawn arc 
not the besL representation of the experimental point . This 
is due to the aLixiliar.Y (as Lim ed) rest riction that B. cannot 
increa e with incI"ea ing values of 1) a long a B. has not 
prev iou Iy dropped below zero. The graphical precision 
attainable j pC/'hap a little heLler here than that fo r A/, but 
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Frc: UR E 14.- Dete rmination of X. and L.; ~j=43.4, i\{= 1 inch, and 

[7= 25.6 feet per econd. 

the quare root nece ary to get A,means thaL A. i determined 
about a well aiL •. 

LAG R ANGI AN CORRE LATIO FUNCTION R .(,) 

With A. and L . determined , the initial ( mall 6x) and final 
(large 6x) behavior of Lhe curve Y' (6x) i pre cribed. The e 
parL of the CUTve were dravvn on a graph with the experi­
mental points. Then the fairing in of a rea onable cen­
tral por tion to thi mean Y' (6x) curve wa a relatively 
simple matter. The R, curve was then obtained by double 
differentiation. 

The curves drawn for Y' (6x) in figures 23 to 32 were de­
termined in the fashion de cribed above, as were the curves 
for R. in the same fio-UTes. 

EULERJA MICR OSCALE >. 

In view of the approximate nature of the determinaLion of 
A., no new direct mea uremen t were made of the Euler ian 
micro cale A. In tead, A wa computed with the energy 
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equation for isotropic turbulence, from the measurements of 
t urbulence decay: 

or , with the space-time transformation, 
2 

A2=- lO jl~ 
- d v 2 

u ­dx 

EU LE RI AN S CALE L 

(72) 

(73) 

Earlier inves tigation have hown that the Eulerian cale 
in a grid-prod uced turbulence is closely a linear function of 
the me h ize of the grid producing the turb ulence (for a 
given value of x and grid geom try) and is no t ignificantly 
dependen t upon the mean velocity (or grid R eynolds num­
ber, provided it is sufficien t to cau e turbulence) . Therefore 
the values of L have been deduced from earlier mea uremen ts 
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F I G RE 16.- Determination of A. and L,; ~1=43.4, M=~ inch , and 

U = 25.6 feet per second. 

a t the California In titute of Technology (reference 1 ) on 
grids of es en tially the same geometry. 

Table I summarizes the re ul ts for Lagrangian and E ulerian 
scales and microscale. The resul t have been grouped to 
how the effect of systematic variation of one parameter a t a 

time. ome of the r ult are pre en ted in figure 33, 34, 
and 35. 

I NSTA TAN EOUS SPA CE· TlME TRANSFORMATION 

The permis ibili ty of an instan taneous pace-time tran . 
formation in f10wing turbulence, 

(74) 

can be e timated in accordance with equa tions (26) . For 
equation (74) to be valid , the ufficient requiremen t ar e those 
given in equation (26) that: 
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T=l (~l~)2 ]1/2 ~l 
U2 (OV)2 

OX 

OV OV]I/2 

u;:(~~r « 1 

With lhe aid of equa tion (23), the turbulence decay equa­

Lion, and the Taylor relation (~~)2 = 2 ~:, the first of these 
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(b) L,= 0.23. 

FIG URE l8.- Determination of A, and L,; ~I= 5. 1, llf = J inch , and 

U = 25.5 feeL per~second . 

condit ion can. be written in the form 

= (!!..) [~ (~)2J 1 /2 T- - R 2 + "\ ~l 
U A " , 

(7 5) 

From the ' chwarz inequali ty, e sent ially Lhe nece it.\' that 
Lhe magnitude of any cOlTelation coefficient _beJ e s th an or 
equal to unity, 

OV lOv,< ' ,(OV)'(OV)' UtUj~ ~=UtUj.,.. ~ 
u Xj U Xj u X j U Xj 

(76) 

wh el'e the prime in) hi expression denotes roo t-mean- quare 
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value. For i otropic turbul ence, equa,tion (76) can be 
written 

(77) 

Thu , the second condition in equ ation (26) will be sati -

fl ed if 
v' 

2. 7 = « 1 
U 

(7 ) 

Bo th T and v' (fJ for the How tudied are pre euled in 
table 1. It i clear that for the e How instantaneou x and t 
partial derivatives may be taken proportional with reasonable 
confidence. 
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Fra u RE 20 .- D eterminat ion of A. and L.; ~j= 6. 1, .ilI=i inch, and 

U = 25.6 feet per econd . 

;?v- CORRELATION 

The Eu] rian measure of tran vel' turbulen t h ea, L tran -
por t i compu ted from the mean temperature distribution . 
The dimen ionle form, .,Jv/eJJ, i given for two typica,l cross 
sect ion in figure 36 a,nd 37. 

The mea, Ul'emen ts of Vi /V and of .,J' (80 permit calcula-

lion of the correlation coefficien t B{) ,= ~ v " and this i also .,J v 

given in flgure 36 and 37. 
For the convenient and reasonably accurate a sumption 

of Gaus ian mean temperature di tribu tion, the COlT pond­
ing turbulent-heat- tran fer coefficien t kT follow from equa­
l ion (64) . It was found to be independ en t of y , and typical 
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(a) A, = 0.22. 
(b) £ , = 0 .22 . 

F I Gl.' R E 21.- D eterrnination of A, and £ , ; ~j= l72.3, Jr= ~ inch , an d 

V = 25.6 feet per second. 

curves of kT/k are given in figure 38 . The data for kT at 
three diffel'ent speeds bchind the I-inch grid are roughly 
collap cd together tlU'ough division of kr by pcpv' L~, as 
uggested by equation (660.), an a ymptotic resul t, for 

nond eC'aying turbulence (fig. 39). 

DISCUSSION 

LAGRANGIAN VARIABLES 

Even a cu r 01")T examination of the technique used in this 
inves tiga tion for the determination of Lagrangian correla­
tion hows that , as physical measurement go, this method 
is a " bad" one, largely because of the inherent doubl e 
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[i'IG L RE 22.- Determination of A, a nd L,; ~j= 172.3, 111 =i in ch, and 

U = 25 .6 feet pel' second. 

differentiation between measured variable and de ired 
information. 

Figure 13 to 22 sugge t an uncertainty in value of A" 
and L~ a largo a ± 20 percent, in spite of moderately good 
precision in the measurement of individual temperatlll'e 
distributions such as the lower curve in figure 3. 

As mentioned earlier, the values of Vi f[J computed from 
initial wake pread are consistently higher than tho e 
meas ured with the ho t-wire anemomeLer (reference 1 ). 
The arne relative result was encountered during a brief 
inve tigation following that reported in reference 1. Up 
to the pre ent time there has been no ati factory explana­
tion of the discrepancy. A tentative hypothesis which would 
a t leas t account for it direc tion may be ba ed upon a human 
weakne s in the visual averaging of the reading of a fluctua­
tion pointel' ; there eems to be a tendency to choo e an 



DIFF SIO OF HEAT FROM A LI E SOURCE IN ISO'l' ROPIC T RBU LENCE 21 

.6 

.5 

.4 

y ', in. 

.3 

.2 

.1 

1.0 

.8 

R",/ .6 

.4 

.2 

o 

0 

. 2 

o o 

o 

o 

o 
o 

o 

0 

. 20 30 40 
6x, in. 

.4 .6 
'1, in. 

(a) Spread of heat from a lin e sou rce. 
(b) Co rrela t ion func t ion R •. 

0 

0 

(0) 

50 

1.4 

FIGURE 23.- pread of heat from a lin e so urce and CO lT la t ion fun ction 

R. [or M = l in ch , U= 8.5 feet per second , and ~=43.4. 

"average" more 01' les halfway between the extreme of the 
needle travel. Thus a pointer motion with very skew prob­
ability den ity (greater than 0) would tend to be" averaged" 
at Loo high a value. The Lhermocouple voltage in one of 
these thermal wake traver e has ju t thi character (fig. 11). 
H ence a visual averaging might yield too high a wake wid th. 
If till effect is nonnegligible, it i advisable to employ some 
e1 ctrical means of averaging for kew ignals, for example, 
the fluxmet l' and bucking circuit de cribed in reference 10. 

In view of the consid erable uncertain ty in A. as well as 
that in A and v' the poor degree of agreement between 
experiment and theory hown in figure 33 is understandable. 
ince the two und etermined constants in the theoretical 

1'e ul t have been evaluated from sets of experiments com­
pletely independ ent of the present ones, this agreem en t can 
be viewed a an affirmative re ul 

ince orne . ort of Lagrangian ale should be a significan t 
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FIG URE 24.-Spread of heat from a line source and correJat iOl fun ction 
- x R. for .i\lJ= l inch , U = 25.6 feet per econd, and M=43.4 . 

length in turbulen t heat and mas transport, a demon trated 
in th e analytical ecLion of this repor t, an effor t ha been 
made to find some sy tematic variation in Lhe value of L •. 
Figme 34 might be con trued to indicate a monotonic 
decrea e of L.IL with increasing values of RL . It is inter­
e ting to note that a decrease wa also ob erved for the 
ratio of mixing length to tube rad ius by N iJmrad e (reference 
30) in fully developed turbulent t ube flows. In order to 
determine whether these two rate of deerea e with increasing 
R eynold number are of the same order of magni t ude, an 
estimate ha been made of the magnitudes of RL correspond­
ing to Nikurad e' re uIts given in figure 28 and 29 of 
reference 30. Bo th cale-to-diameter ratio and average 
turbulent level for various R eynolds n umbers were esti­
mated with the help of Laufer 's data on turbulent channel 
flow (reference 31) at various R eynolds number . The 
absolute level (i . e., the ordinate cale) of th e resulting lmaxlL 
against RL curve was adjusted to give the most reasonable­
looking fit with the L.IL data. This i the dashed line in 
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figure 34 and it how at least a qualitative resemblance. 
It i likely, hO\\'eveI', that L~/L is not a uniqu funclion of 

R L . 

Of cour e not all of the scatleI' in figures 34 and 35 (involv­
ing L~) can be attributed to simple lack of experimental 
preClSlOD. ome i evidence of the fact that the Taylor 
po lulate of Lagrangian correlation function being uniquely 
a function of TJ is C'ertainly not very closely lrue. Fur ther­
morl', table I dol' show rathl'], y tematic variations of L~ 
in some of the thrl'l'-poinl groups. :\1ost noticeably, there 
i a regular clecrea e in L~ " 'itll increasing xo(JJ (01' perhap 
with de('reasing v' (U) for each of the three grids . 

TEMPERATURF,.FL CTUATIO N FIELD 

Fairly close behind a lin e heat SOll rce in turbulent flow, 
the random pulse nature of the temperature fluctuations at a 
fixed point has been establi h ed b)' the 0 cillogram in rdl'r­
enc(' 10. Thi is confi rmed b.\- the fir t two oscillogram in 
figure 11 , wi th their highl.\' skew probability den itie at 
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F WL"RE 26.- pread of hea t from a lin e source and correlation function 
1 - x n, fo r 11£=2 inch , U= 25.6 feet per second, and l1I=-13A. 

t::,. x/M = lO. On of the objective of the p resent inve ti­
gation was to find out whether thi distin tly pul cd char­
acter persisted far downstream 01' whether molecular heat 
condu ction become increasingly effective in mearing ou t 
the pul es, until they arc no longer distinguishable a uch . 
The third oscillogram ancl probability den i t.\' in figure 11 
(l:1x/l\;J= 70) docs how a decidecl trend away from the pul e­
type ignal. Th e molecular broadening of tbe laminar wake 
(corresponding to the pulses) decrea e the rclative pacing 
of the pul e in tJ (t) at any point in th "turbulent wake" 
region. This is a recluction in relative length of the fla t 
(tJ = O) ba e lines between pul es, giving greater tatistical 
ymmetr)' in tJ (t) abou t it mean, that is, reducing the kew­

ness of P (tJ) . 
A simple analysi will show the exi tcnce of an as.vrnptotic 
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b eh avior of molecular-condu t ion frect in a nondecaying 
turbul nce. For a nondecaying flo-w turbulence and very 
large values of t ( ""'xl U ) the m ean- quare wake spread duo 
to turbulent motion i 

(79) 

On th e other h and, an approach to molecular diffusion 
through T aylor's concept of " continuou movem ent " gives, 
for any macroscopic di tancc downstream, the m ean- quare 
thermal wakc width, 

(80) 

",l1('re A i the mean free path and c i the root-mean- quare 
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- d XO R. for i\1= 1 in ch, U= 25.6 feet p r econd, an 111 = 6.1. 

molccular velocity. 
From equations (79) and ( 0) 

Y tn ' ~ (~ ~)1/2 
Y' ~ L . v' 

( 1) 

For a typical ca 0 , tak:e L = l centimeter , v' = 10 centi­
m eter per econd, A= 6 X IO- 6 centimeter, and c= 5X 104 

Y' 
centimeters per second. Then Y~ "", o.17 . Forpeople ac us-

tomed to thinking of molecular tran port a n egligibly small 
in turbulent flow (e. g. , in sh ear flow), thi ratio will appear 
quite large. Th value of krlk plotted in figure 38 also 
how that at th ese low turbulence lev 1 the molecular 

the rmal conductivity i not neee saril)' n egligible compared 
with the turbulent tran port. 
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The temperature-fiu tuation-l evel di tribution tJl /S acro 
the wake (fig. ]0 (a) and 10 (b)) how the amc character 
a that m easured at much high er turbulence level in a jet 
(reference 10), with somewhat lower minimum values, which 
arc attributable to the lo""cr tu rbulence level. A rough 
evaluation of the behavior of the statistical variable in this 
turbulent thelma] wake is obtainable b:r recalling that it 
('ons i ts of a randomly "waving" laminar thermal wake. If 
{) (t) is crudely represcn ted by a randomly spaced eq uence 
of iden tical rectangular pulse with height tJo, ,,"idth j, and 
average spacing, , it is easily scen that 

tJ' _(8 )1 /2 
=-- .-1 
e J 

(82) 

( 3) 

Thi permits {)I/S to vary between 0 and CD as s/j travels the 
permissible range from 1 to 00 . Since points nearer the edge 

.35 

.30 

.25 

.20 

Y', in. 

.15 

.10 

.05 

o 

1.0 

.8 

R .6 
." 

.4 

.2 

o 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

00 

5 

o 

10 15 

o 

20 
6x,in. 

o 

25 

o 0 

30 

\ >-." 

.2 .5 .6 
,), in. 

(a) pread of heat from a line ource. 
(b) Correlatioll fun ction R •. 

o 

(0) 

35 40 

(b) 

.7 .8 

FI GU RE 30.- pread of heat from a line so urce and correla tion function 
1 - x. R. for 111£="4 inch, U=25.6 feet per econd, and M=86.1. 

of the turbulent thelmal wake have higher value of sf.j, the 
behavior of eq uation ( 3) is con i tent with the experimental 
di tribution. If the anal.v is were repeated with triangular 
pulses, for example, the quan itative e t imate would doubt-

les be more r ealistic. The higher values of (tJ'/S)min en­

countered at high [' value of Vi /U are an indication that 
for a given width of laminar thermal wake, the higher value 
of V' /U lead to a higher minimum value of s/j. 

The clo ely Gaus ian hape of 8/80 again t y ha already 
been pointed out. If 

be introduced , there re ult 

iJ' {tJo [1 y2 ] }1/2 
8 = 8

0 
exp "2 (Y /f -1 ( 4) 
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FIG UUE 31.- pread of heat from a line ource anel corre lation function 
1 - X O 

R. for 1IJ=2 inch, V= 25.6 feet p r second, and 111=172.3. 

and 
1J' [ 1 y2 ] {lJ o r [1 y2 ] }1/2 eo = exp -"2 (Y' )2 e exp "2 (Y ? -1 ( 5) 

Both of these expre sion have behavior con istcnt with th~ 
experiment . 

The form of dimen ionless tran verse t urbulent-heat­
tran fer rate 1JvleaU can be deduced for small values of t.x 
(such that R~ "'" 1) with till pulse repre entation of 1J(t) . In 
this picture, 1Jv is the correlation between a continuous ran­
dom variable v and a random pulse signal 1J which" fire " 
every time the continuou variable pa es through a specifi c 
value 

Therefore 
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R. for JIJ=i inch, U = 25.6 feet per second, and ~=172.3. 

where 

- U ­lJ v=_ 0y 
t. x 

( 6) 

and 0 arc fun ction of y. With Gaussian 8 (y ) , 

(87) 

The di.rect comparison between tills crude picture and the 
experimental result will be confined to the correlation 0-

efficient R,," = 1Jv 11J' v' . Till is of particular in tere t in view 
of the urprisingly high experimental values. Wi th equa­
tion (85) and the fact that v'j7]=Y' /t.x, there re ul ts 

(8 ) 

Tills contains Lhe undetermined constant 1Jo/e o, which can 
be obtained from any one of everal experimental result. 
Figure 36 include one plot of equation ( 8) with tJolSo de-
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termined from equaLion ( 4) and the experimental value of 
(l?' /"8) min and one plot with 13 0 /"8 deLermined b.y matching 
equation (8 ) ,,·ith the experimental re ult at y/r' = L.4. 

It is also surpri ing to finel that the experimental (R".)mar 
at large yalues of l1X i even larger than that at small value 
of l1x. Thi may he du e to a ('on idefable expl' rimenta1 
eITor ; the re i tance-thermom ete r voltage ignal is much 
lOlyer here. Unforlunately no relat ion corre ponding to 
equation ( 8) ha been deduced for large va lue's of l1X, 

where R~ is essentially zero. 
The criteria for Taylor' hypoLhe i of the in te rchange-

U
O d' °d " ability of in Lantaneous pace ox an time ot ('nYaLrn's 

(assumed b)' him to Iepend onl~' upon turbulence level) 
have been expressed in equations (75) and (7 ) a functions 
of tu rbulence level R~ and A/A~. If A/A~ is replaced b." its 
lheoretica'! expre sion (equation (34» in terms of R~, 
equation (75) becomes 
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Frr.U R E 36.- H ca(-t rans rcr correlation acro s t he rmal wake, computed 

from measured mean temperature d ist ribution. V = 25.6 feet per 
econd, .1[= 1 inch, x o=43.4 inches, and ~.t=l O. 5 inches . 
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v' (25 29)1/
2 

= R 2+ -R «1 
[ x A 

( 9) 

For e timate of mo t flow the fir t term in the parenth se 
~an be neglected; value of Ex Ie s than 5 or 10 are rare. 

ince equation (34) ha now been roughly verified by 
experiment, equation (9) and (78) may serve as approxi­
mate criteria for the validity of Taylor' hypothesi. 

In the limit of R X-70 when equation (35) replace equation 
(34), there follows a simpler criterion to replace equation (75) : 

4 (VI) Rx = «1 (90) 

SUMMARY OF RESULTS 

The following re ult were obtained from the investiga­
tion of the diffusion of heat from a line source in i otropic 
t urbulence. 
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1. The thermal wake behind a heated wire seL perpendic­
ular to a flowing isotropic turbulence (at sufficiently low 
wire Reynolds numbel') on ist of a randomly "waving" 
thin, laminar, thermal wake who e variation in lateral posi­
tion give what may be called the turbulent thermal wake. 
At a fixed point not too far behind the wire the in tantane­
ous temperature difference rJ(t) is a random pul e function, 
and the nature of the turbulent hcat lran fer can be deduced 
on thi basis. Farther downstream the distinct pul e nature 
tends to disappear. 

2. The mean transVNse temperature eli tribution!! (y) 
80 

appears to be Gau sian within the experimenlal precision 
for all distance behind tbe wire. 

3. An Eulerian analysis of Lhis LU l'bulent-beaL-Lransfer 
problem permits computation of the turbulent-heaL-lransfer 
coefficient kT which i e entially con tant with re prct to 
the dis Lance in the direction of the mea ured diffu ion y for 
Lhese boundary conditions. It i found that at 101\' turbu­
lence level (approximaLely equal to 1 to 2 percent) the 
molecular heat transport is not vanishingly small compared 
with the turbulent heat tran port. 

4. AlLhou<Yh Taylor' postulate that Lagrangian cOLTpla­
tion in decaying turbulence can be made similar by intro-

duction of an ind ependent variable "'= 1t v' (t)dt (wh~['f) t is 

t ime and v'is the root-mean-square in tantn,neous vAloc­
ity fluctuation in the y-direction) eems to br. an ovcl'Rim­
plification, it has been applied here for convenience in the 
reduction of data. A simple comparison of Eulerian ilnd 
Lagrangian analyses for diffusion in nonclecaying turbulrnce 
hows that for large value of the distance from the heat 
ource L':.x the Lagrangian scale L~ enters the expre ion for 

kT' the turbulent-heat-transfer coefficient, much likr the 
pmpirical mL\.ing length in the old turbulent transport the­
ories. Therefore some properly modified generalization of 
Taylor' ",-postulate should prove useful. 

5. A cOl'l'ection and generalization of Hei enberg's t beo­
retical expl'e sion for Lhe ratio of Eulerian to Lagran<Yian 
microscale f../A~ a a function only of the turbulencr Rpy­
nolds number based on microscale R)., has been made and 
seems to Ilgree roughly with experiment. I t must be noted 
that since A~ depends only upon a transformation d",=v'dt, 
and not upon the integral postulate stated above, its valid­
ity i noL impaired by any failure of the integral po tulate 

6. Taylor's hypothe is for the interchangeability of space 
and time derivatives at low turbulence levels ha been ex­
pre sed in terms of criteria which depend upon turbulence 
level, Reynolds number, and A/A~. Applied to th e flows 
tudied here it how that in these ca es such a tran forma­

tion is pOl'mis ible. By substitution of lhe theoretical ex-

pression for: (R)., ), a lightly simpler and rougher criterion 
~ 

is derived, depending only upon tLlrbulence level and R).,. 

THE JOHN HOPKIN rIVEH I1'Y, 

BALTIMORE, ;'In ., June 5, 1951. 
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TABLE I 

RE LTS FOR LA ,JUNGIAN AXD EULERIA:\f 
ALES AXD :VnCROSCALE 

I 
v'IV M h A, L L , 

(In. ) x.IM (per- (in .) (In.) (in .) (in .) A,IA L,IL R, RL T 
cent) 

-------------------------
1 43. 4 2. 0 0.41 0.36 0.28 0.43 0.88 1.54 36 25 0.0228 
1 43.4 2. 0 .23 .34 .28 .33 1.48 1. 18 61 74 .0136 
1 43.4 2.0 . 19 . 27 .28 .33 1.42 1.18 74 110 .0150 

-- -- 1.!8 -----
I 43.4 2.0 0.23 0.34 0.28 0.33 i:~ 61 74 0. 0136 
~ 43.4 2.0 . 165 .245 , 15 .34 2. 3 43.5 40 ,0136 
l4 43. 4 2. 0 . 12 .12 .08 .21 1. 00 2.6 32 21 . 0202 

---------- ------ - ---- --- --- ----

1 6.1 1.5 0.34 0.22 0.39 0.23 0.65 0.59 67 77 0.0225 
~ 6 1 1.4 . 23 . 235 .20 .25 1. 02 1. 25 42.5 37 .01 

14 86. 1 1. 3 . 17 . 11 . 10 .19 .65 1.9 29 17 .0203 
---- ------ ------------ -----

~~ 43. 4 2. 0 0. 165 0.245 0.15 0. 34 1. 48 2.3 43.5 40 0.0136 
86. 1 1.4 .23 .235 . 20 .25 1.02 1. 25 42.5 37 .013 

172. 3 1. 05 .35 .22 .30 . 22 .63 .73 49 42 .0164 
---------------------- - -- -

l4 43. 4 2. 0 0. 12 0. 12 0.08 0.21 1.00 2.6 32 21 0.0202 
86. 1 1.3 . 17 . 11 . 10 . J9 . 65 1.9 29 17 .0203 

172.3 .95 . 24 .1 7 .15 .1 3 .71 . 87 30 19 .0137 
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