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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM NO. 1185 

SYSTEMATIC INVESTIGATIONS OF THE INFLUENCE OF 

THE SHAPE OF THE PROFILE UPON THE POSITION 

OF THE TRANSITION POINT* 

By K. Bus smann and A. Ulrich 

The position of the beginningof transition 
laminar/ turbulent as a function of the thiclrness and the 
camber of the profile at various Reynolds numbers and 
lift coefficients was investigated fOr a series of 
Joukoweky profiles. The calculation of the boundary 
layer was carried out according to the Pohihausen 
method which may be continued by a simplified stability 
ca1cu1tion according to H. Schlichting (4). A list 
of tables is given which permits the reading off of 
the position of the transition point on suction and 
pressure side for each Joukoweky profile. 

OUTLINES. 

I. Statement of the problem 

II. Extent of the investigation 

III. The calculation of the potential velocity and the 
practical application of the boundary layer and •	 -	 stability calculations.: 

(a) Potential flow 
(b) Boundary. layer and stability calculation 

•	 •*"Systematische Untersuchungeniher den Elnfiuss 
der Pofilform auf die Lage des Umschlagspunktes.t! 
Zentrale f wissenschaftijches Berichtswesen der 
..Luftfahrtforschung des Generalluftzeugmeisters (am) 
Berlin—Adlershof, Technische Berichte und Vorabdrucke 
aus Jahrbuch 1943 derdeutschen Luftfah±tforschung, 
Band 10 (1943), Heft 9, Sept. 15, 1943, ,IA 010, pp . 1-19.
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IV. Results:	 .	 ..	 .	 ... 

(a) Influence of the ca—value and of the 
Reynolds . . number 

(b) Influence of the camber of the profile f/t 
(c) Influence of the thickness of the 

profile d/t 
(d) List or. tables for the separation and 

instability points for all Joukowsky profiles 
(e) Mean.value of the laminar —flow distance of 

suction and pressure side for all Jbukowsky 
profiles 

	

V. Sim'mary .	 ...	 .	 .	 - 

VI. References	 . 

SYMBOLS	 . 

x,y	 . rectangular coordinates in the plane 

s profile contour length starting from 
the nose of the profile 

-	 t wing chord 

,tv • length of the profile contour from. 
nose to trailing edge (different for 
pressure and suction side) 

U0 velocity of. incoming, flow 

U(s)	 . potential velocity at the profile 

boundary layer thickness according to 
Pohlhausen Pk 

6* displacement thickness of the boundary 
layer 

= --f.
nondimensional boundary layer thickness 

t	 dIJ' 
= z1	 - ---

.	 . 
form parameter of the boundary—layer 0. profiles according to Bohihausen PZI
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..4orm parameter according to. 
- '	 . .••;. .PohflisenP6' 

ffX), g(?	 . 'uniVersalfunctions'.of the boundary— 
\ I,	 \I' /j 	 .. layer calculation . 

5crjt	
.:	 pqsitio'n of the instability point, 

measured along thecontour Of . the. 
note of th,e profile  

5 p5	 .' position 'of the—separation point 
according to PG method 

I. STATEI€NT OF' T}tE PPOBLiFM 

The position of the transition point laminar/turbulent 
in the frictional boundary layer is of decisive Importance' 
for the problem of the theretica1 calculation of the 
profile drag of on airfoil since the friction drag 
depends on it to high degree. The position of the 
transit-i on point on the airfoil is largely dependent 
on the pressure distribution along the contour 'of the 
profile and therefore, on the shape Of the airfoil 
section and on the lift coefficient. A way of theoretical 
calculation of 'the start of transition (instability 
point) that is, the point downstream from which the 
boundary layer Is unstable, was recently indicated 
by H. Schlichting tl,3,k) and J. Pretsch (2). 

According to present conceptions the turbulence 
observed in tests develops from an unstable condition 
by a mechanism of excitation as yet little known; 	 ,. 
therefore, the experimental transition point is alas 
to be expected a little further back than . the theoretical 
Instability point. 

Knowledge of the., theoretical instability point is, 
nevertheiess, important for the researchon profiles, 
in particular for the drag problem, Recently a report 

'An extract of this report was given in a lecture 
of the first—named au

t
hor at the Lilienthal meeting 

for the discussion of boundary—layer problems in 
Gttingen on October 28 and 29, 1941.
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was madeabout airfoil sections which, due to 'a position 
very far back of the instability d .transition point, 
have surprisingly small drag coefficients (laminar 
profiles). Thus.far no systematical investigations of. 
the influence of the shape of the profile upon the 
position of , the transition point have been made either 
experimentally or theoretically. The. following calcu-
lation of the., theoretical instability point is, 
therefore, given for the first time in a sufficiently 
large range of CaV'alUCS and. Reynolds numbers to 
achieve a greater systematization of airfoil sections. 
In order to keep. the extent of calculations within 
tolerable limits only the two most important profile 
parameters, thickness and camber were varied. A rather 
convenient and accurate mode of calculation of the 
potential flow for the profiles is important fork these 
investigations and the selection of a series of 
Joucowsky profiles was, therefore,natural. It was 
not adviable to take for instance the MACA series as 
a basis; the calculation of the poteiitilflow for 
such profiles according to the methods at present 
available does not achieve the accuracy which is 
required here. 

II. EXTENT OFTflE INVETIGATI0N 

A series of ordinary Joukowsky profiles of the 
relative thicknesses a/t = 0, 0.05, 0.10, 0 .15, 0.20, 
0.25 and the relative cambers f/t = 0, 0.02, 0.0k, 
0.08 were taken as a basis. (See fig. 1.) For,instance, 
J 415 stands for the Joukowsky profile of camber 
f/t = 0.04 and the thickness d/t = 0.15. The cregion 
which was examined IS 0a = 0 to 1 and the Re-urnber 

'Ut" 	 8 range Re _	 10 to 10 • The complete calculations 

were carried out only for the following profiles: 000, 
005, 0 15, 025, 215, koo, 415, k2 5, 8007 815, and 825. 
The results for the remaining.profiles could be obtained 
by interoolatjon. Thus it was possible to obtain a 
result with tolerble loss of time in spite of the very 
extensive program ('four parameters); a certain amount 
of accuracy had to be neglected since the interpolation 
sometimes was carried out over three points.
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III. THE CALCULATION OP T}tE POTENTIAL VELOCITY 

AND THE PRACTICAL APPLICATION :OF THE BOuNDARY 

LAYER. AND STABILITY cALCULATIONS 

(a) The' ' Potential- Flow 	 .1.. 

The calculation of. the potential veldcity with its.. 
first and second derivatives along the profile contour 
forms the basis fora  boundary layer and stability 
calculation. The potential flow about a Jbukowsky 
profIle is obtained by conformal mapping of the flow 
about a circular cylinder. (See fig, 2.). 

A short list of the most important symbols and. : 
formulas for the profi•1 contour and for the velocity 
distribution follows: 

•	 ;•.	
z=xIy

Coordinates in the complex plane 

mapping function:
2 

cir1ë K-4mean camber line of the profile 
circle K —3cambered profile 

a	 radius of the unit circle in the z—piane. 
R	 radius of the oircl.e to be mapped in the z—plane 

t	 wing chord 

tT	 length of the profile contour from nose to 
trailing LOfC (c.ferent for' suction nd 
pressure side)	 . •. 

X0 y0	 coordinates of the center of the circle to 
be mapped in the zpiane (circle K)
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o, yl 	 center coodina.té of the mapping circle of the mean camber line of th profile (circle Ki1.) 

p	 varying angular' dordina'te of the conformal 
transformation 

-	 zero lift direction. (See fig. 2'.) 

a	 angle of attack of the airfoil referred to 
the theoretical' . chord 

ag 	 geometrical angle of attack referred, to the 
• :bitangent (See fig. 2.) 

Profile nose: p =r.+ 

Trailing edge: p =-

xo • 	 ••.,	 '	 •	 -' 
= thickness parameter;k =1

See table I. 
Yl
 4= camber parameter 

1	 : 

	

= arc cos '-	 -' = are sin -	 - 
•	 1

\Jl+Ei 

The profile parameters E	 •	 and • can be found 

in table 1. 

Profile contour: 

_E 

E (IkF+ 4	 Cos

1	

'T "H (1) 

+	 sin )(l

-] J
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N k2(1 + 22+ 6 12 + 2kl + Ek2cE1 Co	 + Ek5i 

t	 1+k,+ 
=2+	 k + E 

Nose radius P/t: 

For symmetrical profiles the equation' 

p	 262 

1+26 +1162	 (2) 

is valid exactly. This formula may with a good approxi-
mation also be applied to cambered profiles. The 
numerical values in table 1 show that the flose radius 
of the Joukowsky profiles is only little larger than 
for the NACA profile faniiy according to NACA report 460 
for which PI  = 

Velocity distribution: 
-	 C 

lim 

	

UO 
= 2	 in ((P —a). +sin (a + ) J P1(p) (3) 

Stagnation points: Back p - 

Front p=7r++2a.. 

N 	 (!)- 

- i.)2+)fk2(4.+	 2	 2



8	 NACA TM No. 1185 

Velocity at the trailing.: edge: 

urn	

UM

a + 
)	 r	 -	 (5) 

Are length:

(dC11	 2 +( CP	

(6) 

s as a function of cp is. to be ascertained from (6) by 
graphical integration or can be seen directly in an 
enlarged presentation of the profile contour (t = lm). 

Velocity gradient: 

idU 
u 0 d(p	 j ;17

(q —a) 

+	 72ifl (p — a) + sin (a 

+	
+	

sin cp) 

N1 = (N	 1)2 A 

B = N1 N' - N Pi - 1) N 1 + 2kl +	 A cos 

N'	 +	 + 4 k Cos 
T)

(7)
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The first derivative of the potential velocity with 
dU1 

respect to the are length	 - was calculated 

numerically from equations (6) and	 and from that 

(graphically the second derivative dUm. 
ds2 

Relation between Ca and a: 

Ca	 8ir -sin (a + 

R	 kf + , 6 1^2 
-_.

	
--- compare tables 1 and 2, 

3 + 2 6 1. + 

(b) Boundary—Layer and. Stability Calculation 

After calculation of, the potential velocity with 
its first and second derivatives along the profile 
contour thee is a boundary—layer and stability calcu-
lation to be made for each profile. The boundary—layer 
calculation according to- Pbhlhausen (5) was based upon 
the differential equai:'oi for the boundary layer thick-
ness in the shape indicatc;d by Howarth (6).  

Cl.Zh 
____	

T(s7E)	 :--ti---.+ z 24  (?)u'	 (8). 

21n the meantime a simpler form of the Fohihausen 
equation was indicated by H. Holstein and T. Bohlen (10) 
where the momentum thickness appears as independent 
variable. For this method the sbcond derivative U" 
is unnecessary; the integration procedure is thus 
simplified considerably,
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The .follo*in : siiñbo1s stand for 

t	 2 d 2-1T 

	

UfT, U 	 , UTL ff_ _' , 0 

o	 od  

pil = boundary layer thickness 
ac &ordin&. to Poh1hauén pL1, 

±

O2J 
-	

'	 'U	 •t 

TJ?	 fom parameter according to Pohihausen 

^.(A: p) and universai nmctions 

2,	 ^(2 ^i\ 22 
(X) =

27	 r,\ 
o	 oO

2? 

717

-
0	 ' 

(3o  

	

tnitai conditions: 0	 , 

At the stagnation point	 ' 0	

0 

X •7.O2 

that is.,

- Xo - 
____ 

40 z;_tYr_	
0
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Besides,	 .. 

- 5.391	 (10) 

The isocline method was selected for the solution of 
the differential equation. The particular advantage of 
this method, is that not, only the .initial value z 0 is 

known ,.but that' the initial inclination at the. stag- 
nation poInt z 0 1 also can be'determined. The latter 

value is obtained by exact performance of the limiting lImiting 

process urn	 . in (8) (H2wazth(6)). Withz 0 ' known 

U-30	 .. 
the .Integral curve' passing through the initial value z40 
is easily found which otherwise Is not immediately 
p'ossible because of the s.ngularity of the Pohihausen 
equatiOn at the stagnation point. 

For the profiles of the thickness d/t = 0, thatis, 
for the fist plate and the circular-arc profiles, the case 
where the flow does not enter abruptly (a = o) is 
exceptional since there exists no true stagnation 
point: the velocity at the leading edge has 'a finite 
value different from 0. The Initial value of the 
thickness. of the boundary layer Is here zero, that Th, 
at the leading.-edge there is: 	 •.

(11) 

I Profile Ca not abrupt 
flow entrance 

0. 0 

200	 ' ,25 

00 ..	 . 

800	 . 1
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The velocity near the leading edge of circular-arc 
profiles takes the same course as V: 

Urn U00 + C VS + • • . 

that is, U1 becomes with	 infinite like l/; 
the velocity has a perpendicular tangentwhich always 
• occurs when the •pontou of.•.the profile shows a sudden 
• change in curvature as it doeshere .(v. Koppenfels (8)). 

near the leading edge for a circular-arc profile 
behaves like	 for the flat plate, that is; zk goes 
iii a linear relation to ,, s toward 0 .. 3

Taking these 
facts into considëratiö±i 'there results at the leading 
edge:

70' •Zt=!9.	 12 0	 .	 kô. 

It has proved advantageous to calculate the liie 
elements z 4 directly from the equation (8) by means 

of a,plotting of the curves. 	 and	 (See 

fig. 3.) This method is superior to the calculation of 
the line elements by means of the often used nomograms 
of Mangler (7) with respect to accuracy and its equal with 
respect to loss of time. Generally it will be sufficient 
to determine the line elements for each value of the 
abscissa s/t at two ordinate values only. 

The boundary—layer calculation yields for each 
profile for a givn..c value the nondlmensional 
boundary layer thicknessand the form parameter ? 

as a function of the length of the arc s 'along the 
contour. The distribution of velocity u(y) in the 
laminar boundary layer is then obtained from: 

3
For the flat plate. z =3.O3 •s/t (according to 

Pohihausen (5)).
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= F 1 	 +	 ( 13)
 UM 

with 

	

•=a	
+

(1)4) 

- 
tL ) 
 . 1 1CL	 'i2 

)4	 6 .	 . 2	
- PT 

The results of the boundary-layer calculation for 
the profiles J 800 and . . J 025 have been plotted as 
examples .in figures Ii —and 5: the form parameter Xpt; 
and the .nondiiens1ona1 displacament thick- .. 

/ut - .	 ness -- V' with . 6 	 for the dis p lace-
ment thickness. 

The following relation exists between the displace-
ment thickñes and the boundary layer thickness according 
to Pbh:lh'ausen:	 •	 .	 . 

-	 . . 

The , displacement tiicknessof the fiat olate in longi-
tudinal' flow (Xpj,. ' = o) is re presented gra'hicaliy 

in figures ): .nd 5 for comaris on. Mae following equations 
are valid:	 -

(16) 
t 

PLCLt •	 t	 y	 .	 -.
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• The profile J Boo (fig. !).. shows clearly that 
the displacement thickness .for accelerat,ed flow (suction 
side) is, smaller thanthe d'isplac?ment thickness of the 
flat plate whereas it is. larger for retarded. flow 
(pressure side). (Compare also fig. 16.) 

From the boundary-layer calculation there result 
also the laminar separation pQint-s., According to 
the'four-term method of Pühausen s.earation occurs 
at -12, according to the si;-term method (see 

below) 'at	 = -10 corresondin to	 = -9.6. 

Flow hotoraphs 'have been taken ,n a •Lip.pisch 
smoke tunnel for apart Of 'the. calculated profile of -	 -	 .	

s	
Uot 

models of 50-centimeter wing chord and atRe-numbers '5 
of about .2 x.. 10, The r.oInts of separation have been 
ascertained from the flow graphs (figs. 6 to 11,' appendix). 
Figure 12 shows the exzperi.menthl and theoretical separation 
points f or- various profiles fOr comparison. Compare 
also table 3. The agreement is rather good. 

After	
I-

has been ascertained a.' a function of 
i 

the 1enth of the arc s there results the i::istabilit.y, 
point ' (s/t) ..	 from a stabi1ty calculation 
•	 ..•• 
(H. c ic1±ng ():)) based..on the six-term meth6d of 
Fohihausen. The P6-method is based on a one-parameter 
group (parameter-A O of boundary-layer profiles 
which can be represented by polynoriiais of the sixth degree. 
An invstigation of stability' was carried out for a 
number of these boüñd.ary-'layOr profiles in ()4); first, 

•	 • 
the critical Re-number of the boundary iayr ''t.—;3) 

crit. 
as a"function' :of . '?	 was obtained. The, critical 

	

( U 1ö4 \	 ••	 . 

Re-number of the laminar J..ayer (' 	 )	 as a function 

-	 •	 •	 :	 •	 • •	 ' crit. 

Of	 . (fin'.' i) j., s then immediately known .1so 

because of a universal relation betvieen	 and


indicated in (t4.).
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Once X(s/t) has been acertainad from the 
boundary-layer ca1clat1on .accdrding to Pohlhaisen 'S 

IUm&\ 
method a critical ie--iumber 'L-	 )	 may. be 

coordinated to each point of the profile by means of 
figure 15. Moreover the Re-nurnber of the boundary 

layer -	 can be calculated for each pint.ôf the 
i)	 U.t 

profile at a certain	 : 

•	 ___	 m	 \!-	 (17) •	
••..	 ,	 =ç \lzLi bpL \J u 

The location- of t.he instability point is then given by 

I-----	 _.8.\ 
U	 /U ö"\ 

M	

)Crit. 1)  

IV. RESULTS 

(a) influence of the c a-Value and the Re-nunberinfluence  

Theresuits of the stability calculation, that is the 
position of the theoretical instability point (43

crit. 
for the sample profiles J 800 and J 025 are plotted 
in figures J LL and 15 against Ca with the Re-number 

LTt 
asDarameter and furthermore against .-- with the 

c-valueas psrarieter. The characteristic course of the 
curves, is the same for all 'profiles; the following 
statients crc aiIa: the instabili t y point trav€ls, 
with lnsreas2ng Ca at a constant Re-number, forward
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on the: suction side, backward on the pressure side; 
the instability point tr-aveis forward on both suction. 
and pressure side with increaing Re-number at a' 
fixed ca_value. j This behavior is domorstra ,ted very 
clearly in figures 6 and 17 which represent the = 
velocity distributions for the top .profiles T800 and 
J 025 for the various Ca-values with instability and 
separation points. One can see in particular ,that the 

- instability points of the suction side for Re-numbers 
Not 

from io 5 to loT lie near the velocity maximum; 

mostly the position of the ''instability point for Re, = 1O6 
agrees well with the location of the velocity maximum. 
The pressure side of J . 800 in the case where the flow 
does not enter abruptly ( C a = I) is an exception 
among the above mentioned examples, since the flow from 
the leading edge to the center of the profile is con 
siderably increased so thit no relative velocity 
maximum exists • Measurements concerning the dependency 
of the transition point on the c a-value were taken. 
by A. Silvorsteir. and J. V. Becker (9). Thes'e tests 
showed (as a result) the same dependency of the 
transition point UpOil the lift coefficient as the 
present theoretical investigations. 

(b) Influence of the Camber of the Profile 

The influence of the camber upon the position of 
the instability point can he described as follows 
the instability point travels with increasing cembr, 
atconst:ant thickness; for all Ca_ValueS and Renumbers 
backward on the suctIon side, forward on the pressure 
side. This influence of the camber can be understood 
from the feet that - the stagnation point and therefore 
the region of the accelerated stabilizing flow trave], 
with increasing camber, 'backward on the suction side 
wh&reas because of the flow around the noe .e Qf the 
profile a region of considerably retarded destabilizing 
flow origlElatas. immediately behind the nose on the 
pressure side.. Figure iB ropresents as an example the 
results for profiles of the th1cKnes d/t 	 0415, 
with variable camber It for c = 0.25'' and again 
the Re-number as parameter. The urves for all thick-
nesses and all c a-values have the same characteristics.
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• 	
•. (c) Influence of, the 'Profile 'Thic1tness, 

The dependency of the instability point on the 
thickness cannot be described in such general terms 
as the influence of the camber since this influence 
depends in 'the fol1owng'way on the c value: A 

•	 •. •-rain. Ca not abrut flow entrance. , tha t.	 the 

Ca value that corresponds, to the not abrupt entering. 

of the flo	 (a	 0) for the circular arc profile 
with the given camber, is coordinated to each. valuépf 
the camber: 

fl t. The curys. ( s/t ) Cr$t versus d/t. 

at 'a constant fjt show on principle tw6 'diffeient'. 
types (fig. 19)' 

"'I. With increasing thickness, the curves 

versus d/t start rroin a finite value and have a 
flat minimum: '	 .• 

On the suction side for Ca	 Ca for not abrupt 
flow changes.	 .•	

. .^	 . On the pressur e side for Ca — Ca for not abrupt. 
•	 , flow changes.	 .	 . 

iii. The curves (s/t)t versus a/t rise starting 
from 0 with increasing thickness; hence, the transttion 
point riioves backward as follows: 

On" the suction side for Ca > Ca for not ahiupt 
- flow' changes. 

On the pressure side for Ca < Ca for not abrupt 
flow. changes. 

ThresuJ:ts for the smrnetrical profiles at C a 'F 0.5 
are ' represented as an exar.p1e in figure 20. For the 
.syrnrietrical profiles Ca for not abrupt flow changes	 0, 

•.'... ,that i3, the dependency : of the :instability point on the 
•	

,., thickness d/t 'for all ' c 8 > 0 is of type II on the	 • 

auction side, of type I.on tlae, pressure side., 

The flat r.n1Iaun1 ii curves of type I does, a. a some 
•	 cases, not exist at high.-n thers.(Re'"1O7.o 108), 

'versus •-a/t " rises' f'Om"thé finite and (s/t)crjt  
value	 d/t	 '0 ".''.	

'	 • 	 ' '	

• ": ,,
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(d) List of Tables' for the' Sepaxation and Instability 

Point in all Joukowst .cy Profiles 

The total result of 'the boundary-layer and. 
stability calculations is représentéd by a graph of the. 
curves (.s/t)Ap 6	 const. and. (s/t. ) ft . = con st., respec-

tively, in a system of axes thickness 'd/t - 
(See figs. 21 to 3Q. : ) A Drofile corres'Donds to each .oint 
of the p1ane	 In particular, tne 7rnmetrical profiles 
are coordinated to the toints of the d/t-axis, the 
circu1r areprofiles to.the.pointso'f the f/t-axis, 
and the flat plate corresponds to the zero point... 
Lift coefficient arid Re-number are considered as 
parameters,. One has therewith a catalogue of Joukowsky 
prbfiles that, make , it possib1e read off, for every 

profile in the region 	 d/t	 0.25;. Of/t	 0/03, 

the position of the se paration oints.for 0	 c 
(figs. 21 and 22) and­ the. position of the irstailitj 

point for: 0	 Ca	 1 and 105	 Re	 10. ...Figures 23 to 30 
represent the curves (5/tent = const. for he 

Ut 

Ut	 3 Reynolds numbers from Re	 101' to 10 at 

the . ca ValUes ' Ca	 0, 0.25, 0.5, and 1 for suction.. 
and pressure side. For instance the values indicated . 
in the following table for profiles of the camber .. f/t.	 0.02, 

and the thickness d/t	 0,10 to ' O.15 at Re 106 and

are taken from these re presentations. ' (See page' 19. ) 

The most remarkable matter 'in.his gra phical repre-
seritation is the location of the curve (s/t)Ap 6	 9,. and 

(S/t)crit .0, respectively, at the various . ca-values. 

The position of this ZCrQ curve in the catalogue, for the 
instability points will be discussed; the same is valid, . 
for the searatjon points	 .(s/t)cnit.	 can 9]r.


appear for the flat plate and the circular-arc profiles 
on the suction side for 'Ca > Ca for not abrupt flow 

changes, on the oressure sIde f or 0a < a for not
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The curve (s/-)	 = 0 always 
abrupt flow changes 	 .	 crit. 
coincides with the fit-axis; it forms a part of 
the f/t-'axis which. is determined by the actual c a- value. 

Therefore rio point (s/t) 	 = 0 exists on the suction 

crit. 

side for c	 0 since c	 >0 a	 a for not abrupt flow changes 
for all circular-arc profiles. For the pressure side, 
on the other hand, (s/t) = 0 on the whole f/.t-axis, 

cr1 t. 
There follows in the seine ay for Ca	 0.25 
that (s/t).	 = 0 for 0 = f/t < 0.02 on the suction 
side and for f/t > 0.02 on the pressure side. Pressure 
and suction side, therefor€, alw.ays comp ler1ent each 
other. The point which corresponds to the circular-arc 
profile with c = c a	 a for not abrupt flow changes 
(for instance J L00 at Ca =0.5, compare figs. 2 to 0), 
that is, the end point of th distance (s/t)	 0
en t. 
is a singular point in. the following sense 	 The point 
itself" assumes a certaii value (s/t 	 (different 

crit, 
for pressure and suctioi side), but	 infinite number 
of curves (s/t)	 =const. which are crowding 

crit. 
together •asymp to tic ally . toward (s/t)crjt	 0 run 
into it. It is true, these relations for the very thin 
profiles give only qualitative results from the present 
investigations. An additiOnal series of thin profiles 
would have to be inve s tigated In order to make more 
accurate statements nossibie. . However, only profiles 
with thicknesses dft > 005 which can:be analyzed 
quantitatively, are of practical interest. 

For Ca = 0 1 (s/tY 1	 is the same on suction and 
pressure side for the symmetrical profiles. Therefore 
the curves (s/t)	 = const. for thiction and pressure


cnit.. 
side would adjoin at C a = 0 in a joint representation 
of the suction and pressure side where for the pressure 
side the measure of the camber is directed downward. 
For values C a ^- 0 also the curves (s/t) crit. = const.
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have continuatións which correspond to the 
curves (s/t)	 const, for the rressure and c.rit.	 - 
suction side, -respectively, at the appertaining c a-value 
with inverted sign. 

(e) Mean Value of the LamInar-Flow Distance on 

Suction and Presuie Side for all Joukowsicy Profiles 

In vIew of the development of laminar profiles 
the mean value of the laminar-flow distnce on suction 
and pressure side is int.erestln. Figures 31 and 32 show the curves mean value (sit ')	 const. in 

CP1 L. 
the d/t, f;'b-Plane for various lIft coef fie Ients and 

-	 6 th	 o-nenies	 101 and 10 7 
[Cr

0.5 jt. 
Is 	 + a 	 Generally -the kcrit. suctor	 crit, preseure 
fol-I.owin- conclusll.ons are vali.d	 The profiles with the smallest mean value (1t) for a certain c -value erlu.	 a 
lie near the circular-arc profile to which this value 
Is coordinated as c  

a for not abrupt flow changes. 
This profile will be for ca = 0 the flat plate, 
for C a	 0.25 the profile J 200

10 for Ca = 06 the 

profile JO0 and finally for C a	 1 the profile j 800. 
lit. 

There seens to be an excer)tionai ease at Re 0	 10 
U 

and c = 0.5 (fig. 31) which can be explained as 
fol1ows The circular-,arc profile for which at the considered c a-value the flow enters "not abruptly" 
(for instance J 1oo at c. = 0.5) is a sinpular point 
Lathe yt-, d/t-c1iagram Approaching thisproflie 

-axis from two different sid-e one obtains 
two different limit values (s/L-1) crit.1 since once only 
tiiC suction side and once only the-pressure side 
cotr1butos to the mean value. Only for the sthgular 
point itself suction and •oressure side contribute so 
that this profile has a higher (/t)	 than. the 

crit.
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profiles on the f/t-axis:iear it. 1± one 'now considers 
the curves mean value (s/t)' 	 ='const. for alues crit.

	 f. or 
higher than the two, limit values (range I). These 
curves enclose the singular point and end at two points 
on the -f/t-axis. The remaining smaller mean 

values (/t)	 generally, cover only a small region 
cr.it, 

near the singular point '(iange II) where, with the 
present investigations as a 'basis* 	 accurate 
statements are not possible.. Only for the. 

Uot 
case - = 10 6 and c . = .0,5 the range II comprises' 

a 

all profiles of the series considered here s !Lnc6 on the 
pressure side the profile	 Loo at C a. =0.5 and 

Re = 10 6 has no' transition Doint 	 (s/t)	 = 1 and

crit. 

therefore the point c/t = 0.011.. ob1ains a high mean 
value (s/t)	 > 0.5. For this' case there are closed 

crit, 
curves (/tY conet. and there exists a -profile(J 115) 

with the smallest mean value 	 (/t) •	
= 0.155 at 

Re=  	
cri .	 , 

Moreover, the following results are obtained from 
figures 31 and 2: All Joukowsky profiles have small 
mean values (s/t)	 ; for instance, the mean values, 

cIi. 

for practically important profiles with the camber 	
-'


f/t = 0.02 and the thickness d/t = 0.10 to 0.20 at 

Re-numbers of 106 to io7 are between 0,08 and 0.2. 
Those mean values are only to a small degree dependent 
on the lift coefficient; for instan9e, the mean values 
for the profile J 215 "'at Re = 10 0 and at lift coef-
ficients Ca = 0 to 1 are between 0.16 and 0.175. 

V • SUMMARY 

A series of Joukowsky profiles with thick- tr 
nesses d/ 4- =	 0.25 and cambars f/t = . 0 to 0.08 
was investigated with respec. t to the position of the 
instability point for various lift coefficients and 
Re-numbers. The following resuitwas obtained: With
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increasin' Re-number ., 	 InstabilIty point moves 
forward on suction and pressure sides with increasina: 
ca-value-it moves forward on the s"ction 'side, backward 
on the pressure side. The position of the' instability 
point as a function of t];iickne.,ss,'and camber of the 
profile is represeited n the '.'hape of a irphica1 
list of tables 'which permits the- readin off of the 
position of the instability' point on suction , and pressure 
side as well as of the mean value of the laminar-f low 
distance on suet ion and prs sure side for' ech profile 
of the series.  

Translated by Mary L, Mailer"'  
National Advisory 
Coirujttee for teronautics 

C
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TABLE 2 

THE ORETICAL ANGLE OF ATTACK	 a	 (DEGREE) 

Profile 

Ca

000 .005 010 015 020 025 

O 0 0 0 0 0 0 
.25 2. 2.2 2.]. 2.05 2.0 1.9
.5 ^ : 2 ^:l

^.0 
 .O

9.2 4 2 7.6 

C 200 205 210 215 220 225 

O -2.3 -2.3 -2.3 -2.3 -2.3 -2.
4 .25 

. 5
0 
2.3

-.1 
2.].

-.2 
1.9

-.25 
1.8

-.3 1.7 
5.1 

-.1. 
1 6.9 6. .6.2 5.9 

Ca 400 405 410 415 420 14.25 

0 -4.,6 -4,6 -4,6 -4,6 -4. 6 -4.6 
.25 -2.3 -2.4 -2. 

-2 L.
-2.55 -2.6 -.2. 

• 5 
1

0 
4.6

- .2 
4.2 3.9

- .5 
3.5

ft * 7 
3.3

-. 
3.1 

Ca 800 805 810 815. 820 825 

O -9.2 -9.2 -9.2 -9.2 -9.2 -9.2 
.25 -6.9 -7.0 -7.1 -7.2 -7.25 -7. 
05 -4.6 -4.9 -5.0 -5.2 -5 . 5 -5. 

1 0 -.5. -.8 -1.1 -1.4 -1.
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TABLE 3 
LAMINAR SEPARATION POINTS; COMPARISON 

OF TEST AND CALCULATION 

S = Suction side,	 D = Pressure side 

Ca 0 0.25 0.5 0.75 1 

S 0.929. 0 .891 0.835 0 0 
Theor. D 0 o 

J 14.00 S .92 .88 .83 .75 0	 .	 -. 
Exper. DO 0 

Thei,r. S .8925 .86 .8275
0

•755 
D 0 0 0 

3800
S .88 .814 .80 .76 .73 Exper. •D 0 0 0 0 

Theor. p997 .6596 
D .997 

3005
S .70 .28 .10 0015 

Exper. 1)  

Theor. S
D

.14025 

.14025 .1.3 45
.o8 
.1491

.252 

.592 
3 025

Exper. S .145 
.145

.142 

.1485
.385 
.514.

.36 

.60
:g2 

8 D 

S .686 .630 .570 .1476 
The or. D .200 .283 .377 .14914 

314.15
S 095 .86 .73 .65 .6 

Exper. D .19 .29 .31 .33 .14 

•77 .685 .6148 •59Li. 
Theor. D .OLi.27 .0562 . 0 9314 .19214 

3 815
S .86 .78 .71 .67 .63 

Exper. D .o6 .075 .10 .12 .i6
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000	 200	 we 

	

005	 205	 405 	 805 
_	

- - =—-

	

010	 210	 410	 810 

	

020	 2?0 

	

E-	 - c1IiiTL 

	

•	 E- cI 22S 	 c1i 
Figure 1.- Joukowsky profiles: thickness d/t = 0 to 0.25; camber 

f/t = 0 to 0.08. Profile number: for instance, J 415 stands for


	

•	 the Joukowsky profile with f/t = 0.04 and d/t = 0.15. 

•	 'l•	 j*irj 
I—	

t. 
Zero lift-axis 

Of 

• 	 _ 

	

TbeO!eC 	 — 

:^ ^d c h ^Of Id' ^ 
Profile Parameter:	 (thickness par. 

ve	 = 1 (camber par.) 

Figure 2.- Explanatory sketch to the Joukowsky transformation (schem.tic).
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0 -2 -' -6 -8 -ID -12

Stagnation point 

A-0
	 r/AJl(AJ 

SOOS IIAJ 

0 

02 

Figure 3.- Auxiliary function f(X p4 ) . and g(X p4) for the boundary-layer 

calculation.
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Suction aide	 gp = jaainer separation point, according to P4 

	

pressure aide	 pp5	 .aainar separation points according to P6 

w	 k---tt- -- fl7 
I I	 I	 I	 I	 I	 1	 I fr4l1tRP6 

brupt" entering 
is flow 

Figure 4.- Profile J 800, boundary-layer calculatin: form parameter X p, 
and displacement thickness 

RIP 
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A

, 1 mom * MEN ME 
INS U. 

Suction side	 RP4 — Laminar separation points according to P4 

r-	 Pressure side APg Laminar separation points according to P6 

te 
0 

-_, 

Mill

01 02	 0	 0.4	 05	 05	 01 

Figure 5.- Profile J 025, boundary-layer ca].cualtion: form parameter 
*-1IUt 

and displacement thickness 
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ao	 C,, 

—4,6	 0 

—2,3	 0,25 
0	 0,50) 
2,3	 0,75 
4,6	 1,00 

Figure 6. Profile J 400A smoke tunnel 
photographs (Re = 2. 10°). 

*) not abrupt entering.

ao	 C. d"., 

—9,2	 0 
—6,9	 0,25 
—4,6	 0,50 
—2,3	 0,75 

0	 1,00) 

Figure 7. Profile J 800, smoke tunnel 

photographs (Re = 2. 10). Laminar 
separation points see Fig. 12. 
*) not abrupt entering.
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6

0	 () 
2,2	 0,25 
4,4	 0,54) 
0,6	 0,75 

1,00 

Figure 8. Profile J 005, smoke tunnel 

photographs (Re	 2.10).

0	 0 
1,9	 0,25 
3,8	 0,10 
5.7	 0,75 
7,65	 1	 1,0) 

Figure 9. Profile J 025, smoke tunnel 

photographs (Re = 2.10). Laminar 
separation points see Fig. 12.
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-

Coth,,r. 

	

-4,6	 -8,1	 0 

	

-2,5	 -6,3	 0,25 

	

-4,2	 0,50 

	

1,45	 -2,2	 0,75 

	

3,5	 1	 -0,2	 1,00 

Figure 10. Profile J 415, smoke tunnel 

photographs (Re =- 2.10). Definitions 
of oc and OC g see Fig. 2.

-9,2 -11,3 0 
-7,2 - 9,3 0,25 
-5,7 - 7,25 0,50 
-3,2 - 5,25 0,75 

-1,1 - 3,25 1,00

Figure 11. Profile J 815, smoke tunnel 

photographs (Re = 2.10. Laminar 
separation points see Fig. 12. 
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15) = Suction side - Theoretical 
(Di = pressure side —0--- Experimental 

Ut,	 IL	 Ia	 I 

Figure 12.- Laminar separation points A P 6 versus Ca comparison of test 
and calculation for the profiles J 800, J 025, and J 815. 
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------- IIIII1lIIIIP! ----u--------r.------
•••• ••* 

1UlUUIiIlUI ENE MOMEMEMIMM 
ENE MUMMINEM 
•••iinuwi•••• •u•uuuuuu•i•i 
uIIIIu!iIuuIu1 
------------

iiiIi!-IIIII 
iIIui..Iu..

Figure 13. Universal relation between the critical Reynolds number ( 	 crit. 
and the form parameter X 
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"Not abrupt 	 entering 
of the	 flow 
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Figure 14.- Profile J 800: Result of the stability calculation, (f)crjt versus 
Uot and c. 
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0.25	 05	 0.15	 10 
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Suction side ----- pressure side 

Figure 15.- Profile J 025: Result of the stability calculation, 	 versus 
Uot  

and Ca. 
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points 

tering 

' Not abrupt" entering. 
O f the flow 

-	 0	 0.2	 44	 0	 08 

Figure 16.- Profile J 800: Velocity distribution with instability and separation 
-	 Uot 

points at various Re 
=	

and Ca - values. 
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Figure 17.- Profile J 05: Velocity distribution with instability and separation 
U  

points at various Re = ° and c - values. 
U

	

Profile	 I	 ''' 10 ID	 1Jfr I	 - 

- w hui1 i Pressure side--- _	 /W1VJJ5
Re-

__ffJ7j5 \ V
Alz 

rn' lo t os	 0.1 

fog 

\111^	

LW) 0.04 0.06 408  
rn;0. 

Figure 18.- Influence of the camber upon the position of the instability point for 
profiles of the thickness d/t = 0.15 with ca = 0.25. A = laminar separation 
point; M = maximum velocity; S = stagnation point. 
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Figure 19.- Characteristics curves about the Influence of the thicknsss of 
profile upon the position of the instability point. Suction side: 
Ca < Ca for not abrupt flow changes; suction side: Ca> Ca for not 
abrupt now changes; pressure side: Ca Ca for not abrupt flow changes; 
pressure side: Ca <Ca for not abrupt flow Changes 

profile 000

I en•I
 co.zs =01 

10' 

10' 

IIiIIIjjjIjjIIIIiiiiii 	
025 ____________too 

Figure 20.- Influence of the thickness of the profile upon the position of the 
instability point for symmetrical profiles with Ca = 0.25. A = laminar 
separation point; M = maximum velocity; S = stagnation point.
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Figure 21.- Position of the laminar separation point (s/t)Ap 6 as a function 
of the thickness of the profile d/t and the camber of the profile f/t; suction	 - 
side.
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Figure 22.- Position of the laminar separation point (s/t)Ap 6 as a function 
of the thickness of the profile d/t and the camber of the profile f/t; pressure 
side.
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Figure 23.- Position of the instability point (S/t)crit as a function of the 

thickness of the profile d/t and the camber of the profile f/t; suction 
side; Re = i05 
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Figure 24.- Position of the instability point (s/t) crit. as a function of the 
thickness' of the profile d/t and the camber of the profile f/t; pressure 
side; Re =



-1-	 I-OifL I	 I If 
005	 0'	 a1502	 025 0 

Ca05 .	 _flt

t-°5	 45	 L4 
005	 4!	 515	 02	 0250 

CD= 10 

M4M 

fk

1-0
0.06 

008 

0.02 

d

48
	

NACA TM No. 1185 

1k
	

Ca =0	 Ca025 

a 

I

Mg 

MEM-^ 

-U- a.. 
505	 0.!	 Sf5	 02	 425 0	 0.05	 at	 015	 02	 025 
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Figure 26.- Position of the instability point (s/tcrjt as a function of the 
thickness of the profile d/t and the camber of the profile f/t .; pressure
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Figure 27.- Position of the instability point (s/t)crjt as a function of the 
thickness of the profile d/t and the camber of the profile f/t; suction 
side; Re = 10
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Figure 28.- Position of the instability point (5/t)rit as a function of the 
thickness of the profile d/t and the camber of the profile f/t; pressure 
side; Re = i07
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Figure 29.- Position of the instability point (sIt) crit as a function of the 

thickness of the profile d/t and the camber of ' the profile f/t; suction 
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Figure 30.- Position of the instability point (s/t)crjt as a function of the 

thickness of the profile d/t and the camber of the profile f/t; pressure 

side;	 Re = 108
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Figure 31.- Mean position of the instability point (/t) crit. for pressure and 

suction side at Re = io6 . ()crit.= 1/2 (crit. suet. side + 5crit. pressure 
side)
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side).
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