NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

REPORT 1161

AVERAGE SKIN-FRICTION DRAG COEFFICIENTS FROM TANK TESTS OF A PARABOLIC BODY OF REVOLUTION (NACA RM-10)

By ELMO J. MOTTARD and J. DAN LOPOSER

1954

REPORT 1161

AVERAGE SKIN–FRICITION DRAG COEFFICIENTS FROM TANK TESTS OF A PARABOLIC BODY OF REVOLUTION (NACA RM–10)

By ELMO J. MOTTARD and J. DAN LOPOSER

Langley Aeronautical Laboratory
Langley Field, Va.
National Advisory Committee for Aeronautics

Headquarters, 1512 H Street NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President, and serve as such without compensation.

JEROME C. HUNSAKER, SC. D., Massachusetts Institute of Technology, Chairman

DETELY W. BRONK, PH. D., President, Rockefeller Institute for Medical Research, Vice Chairman

JOSEPH P. ADAMS, LL. D., member, Civil Aeronautics Board.
ALLEN V. ASTIN, PH. D., Director, National Bureau of Standards.
PRESTON R. BASSETT, M. A., President, Sperry Gyroscope Co., Inc.
LEONARD CARMICHAEL, PH. D., Secretary, Smithsonian Institution.
JAMES H. DOOLITTLE, SC. D., Vice President, Shell Oil Co.
LLOYD HARRISON, Rear Admiral, United States Navy, Deputy and Assistant Chief of the Bureau of Aeronautics.
RONALD M. HAZEN, B. S., Director of Engineering, Allison Division, General Motors Corp.

RALPH A. OFSTIE, Vice Admiral, United States Navy, Deputy Chief of Naval Operations (Air).
DONALD L. PUTT, Lieutenant General, United States Air Force, Deputy Chief of Staff (Development).
DONALD A. QUARLES, D. Eng., Assistant Secretary of Defense (Research and Development).
ARTHUR E. RAYMOND, SC. D., Vice President—Engineering, Douglas Aircraft Co., Inc.
FRANCIS W. REICHELDERFER, SC. D., Chief, United States Weather Bureau.
OSWALD RYAN, LL. D., member, Civil Aeronautics Board.
NATHAN P. TWINING, General, United States Air Force, Chief of Staff.

HUGH L. DRYDEN, PH. D., Director
JOHN W. CROWLEY, JR., B. S., Associate Director for Research

EDWARD H. CHAMBERLIN, Executive Officer

HENRY J. E. REID, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.
SMITH J. DEFRANCE, D. Eng., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.

EDWARD R. SHARP, SC. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight.
REPORT 1161

AVERAGE SKIN-FRICTION DRAG COEFFICIENTS FROM TANK TESTS OF A PARABOLIC BODY OF REVOLUTION (NACA RM-10)†

By ELMO J. MOTTARD and J. DAN LOPOSER

SUMMARY

Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA RM-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4×10^6 to 70×10^6. The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

INTRODUCTION

Skin-friction-drag data obtained at high Reynolds numbers in subsonic flow is, at the present time, confined mainly to the results of tests of flat plates. Skin-friction data obtained at high Reynolds numbers from tank tests of a body of revolution would be useful both hydrodynamically and aerodynamically. Such data would make it possible in many instances to estimate the error incurred by using flat-plate data in calculating the skin-friction drag of curved surfaces, such as ship hulls and submerged bodies. The data could be obtained at Reynolds numbers ordinarily obtained in air with supersonic flow and could therefore be used in conjunction with the results of tests of missiles in the same Reynolds number range in order to help evaluate the effect of Mach number on the skin-friction coefficient.

Because of the need for skin-friction coefficients for a curved body at high Reynolds numbers in subsonic flow, skin-friction coefficients were obtained on a parabolic body of revolution (NACA RM-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4×10^6 to 70×10^6 (4.9 fps to 78 fps). The skin-friction coefficients were obtained from measurements of the total pressure through the boundary layer by the use of the boundary-layer momentum theorem. Measurements were made at the 69.4 percent station (based on the length of the basic shape) at three radial positions around the model. In the transition range of Reynolds number (from 1.1×10^6 to 8.9×10^6), a dye was injected into the boundary layer and the flow was observed on the upper surface of the model.

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>skin area from nose to measuring station, sq ft</td>
</tr>
<tr>
<td>C_f</td>
<td>average skin-friction drag coefficient</td>
</tr>
<tr>
<td>δ</td>
<td>boundary-layer thickness, ft</td>
</tr>
<tr>
<td>Δp</td>
<td>static pressure on body minus static pressure in free stream</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity, $32.2 , \text{ft/sec}^2$</td>
</tr>
<tr>
<td>h</td>
<td>depth below water surface, ft</td>
</tr>
<tr>
<td>μ</td>
<td>absolute viscosity, slugs/ft-sec</td>
</tr>
<tr>
<td>p</td>
<td>static pressure, lb/sq ft</td>
</tr>
<tr>
<td>p_T</td>
<td>total pressure inside boundary layer, lb/sq ft</td>
</tr>
<tr>
<td>p_Ta</td>
<td>total pressure just outside boundary layer, lb/sq ft</td>
</tr>
<tr>
<td>q</td>
<td>free-stream dynamic pressure, lb/sq ft</td>
</tr>
<tr>
<td>R</td>
<td>Reynolds number based on axial distance from nose to measuring station</td>
</tr>
<tr>
<td>r</td>
<td>radial distance from body axis, ft</td>
</tr>
<tr>
<td>r_w</td>
<td>radial distance from body axis to skin, ft</td>
</tr>
<tr>
<td>ρ</td>
<td>density, slugs/cu ft</td>
</tr>
<tr>
<td>s</td>
<td>distance along surface from nose, ft</td>
</tr>
<tr>
<td>t</td>
<td>time, sec</td>
</tr>
<tr>
<td>τ_w</td>
<td>wall shearing stress, lb/sq ft</td>
</tr>
<tr>
<td>τ_w</td>
<td>average wall shearing stress, lb/sq ft</td>
</tr>
<tr>
<td>ν</td>
<td>velocity inside boundary layer, fps</td>
</tr>
<tr>
<td>U_s</td>
<td>velocity just outside boundary layer, fps</td>
</tr>
<tr>
<td>V</td>
<td>free-stream velocity, fps</td>
</tr>
<tr>
<td>x</td>
<td>axial distance from nose, ft</td>
</tr>
<tr>
<td>y</td>
<td>distance normal to skin, ft</td>
</tr>
<tr>
<td>max</td>
<td>maximum value</td>
</tr>
</tbody>
</table>

Subscript:

- max maximum value

ANALYSIS

Average skin-friction drag coefficients were obtained from rake surveys of the total pressure through the boundary layer and calculated values of the pressure distribution. The average skin-friction coefficient ahead of a measurement station is

$$C_f = \frac{\tau_w}{q} = \frac{2\pi}{qA} \int_0^x \tau_w \, dx$$

Momentum theory is used to evaluate the integral $\int_0^x \tau_w \, dx$.
from which the average skin-friction coefficient is obtained. The momentum equation for the boundary layer on the surface of a body of revolution is, from reference 1,

\[\int_0^s \rho \frac{\partial u}{\partial t} dy + \oint \int_0^s \rho u \frac{\partial u}{\partial y} dy - \int_0^s \rho u dy = -\frac{\partial p}{\partial s} \int_0^s r dy - \mu \frac{\partial u}{\partial y} \bigg|_{y=0} \quad (2) \]

The last term of the equation may be replaced by \(\tau_{w_r} \), inasmuch as \(\left(\frac{\partial u}{\partial y} \right)_{y=0} \) is the shearing stress at the wall. For steady flow, the first term drops out; for incompressible flow, the density \(\rho \) is constant. If the body is assumed to be moving at sufficient depth below the surface so that the effect of the surface on the flow is negligible

\[-\frac{\partial p}{\partial s} = \rho U_2 \frac{d U_3}{d s} \quad (3) \]

Using equation (3) and the formula for differentiating a product gives

\[-\frac{\partial p}{\partial s} \int_0^s r dy = \rho \frac{d}{ds} \int_0^s U_2 r dy - \rho U_3 \frac{d}{ds} \int_0^s U_2 r dy \]

Equation (2) may then be written

\[\tau_{w_r} = -\rho \frac{d}{ds} \int_0^s (U_2^2 - u^2) r dy - \rho U_3 \frac{d}{ds} \int_0^s (U_2^2 - u^2) r dy \quad (4) \]

For a slender body such as the NACA RM-10, negligible error is introduced by assuming \(ds = dx \) and \(r = r + y \). Making these substitutions, using the formula for differentiating a product, and integrating with respect to \(x \) gives

\[\int_0^s \tau_{w_r} dx = \rho r U_2 \int_0^s \left[\left(\frac{u}{U_2} \right)^2 - \left(\frac{u}{U_3} \right)^2 \right] dx + \rho U_4 \int_0^s \left(\frac{u}{U_2} \right)^2 dx + \rho \int_0^s \left[\frac{d U_3}{d x} - \lambda \right] \frac{d x}{dx} \]

Evaluation of the first and second integrals on the righthand side of equation (5) requires that the velocities through and just outside the boundary layer be known. These velocities were obtained from measurements of the total pressures. The relation between the pressures and velocities is given by

\[\frac{1}{2} \rho u^2 = p - \rho gh - \frac{\Delta p}{q} \frac{V^2}{2} \quad (6) \]

where \(\Delta p \) is the static pressure on the body minus the static pressure in the free stream. The value of \(\Delta p/q \) at the measurement station was obtained from reference 2, which gives the calculated pressure distribution for the NACA RM-10 body shape in an incompressible fluid of infinite extent.

The first and second terms on the right-hand side of equation (5) represent the total momentum loss in the boundary layer as measured by the rake. The third and fourth terms on the right-hand side account for the momentum change in the boundary layer due to pressure gradient. A linear variation of \(\int_0^s \left(1 - \frac{u}{U_2} \right) dy \) with \(x \) was assumed in order to evaluate the importance of the third term. The third term was found to contribute less than 1 percent of the total and was therefore neglected. The fourth term was likewise neglected since it contributed even less than did the third term.

In the computations made in order to obtain the skin-friction coefficients, equations (6) were used to evaluate the terms on the right-hand side of equation (5), which was integrated graphically in order to obtain the value of

\[\int_0^s \tau_{w_r} dx \]

required for the solution of equation (1).

MODEL AND APPARATUS

The tests discussed herein were made in the Langley tank no. 1 which is described in reference 3. The model and towing support are shown in figures 1 and 2.

The model was spun in sections from 2S aluminum and assembled with flush rivets. The surface was polished after assembly. During the course of the tests, the surface roughness was of the order of 25 microinches root mean square. The model was supported from the carriage at a depth at the center line of 2 feet below the water surface.

The towing support was a welded framework of hollow steel struts, 12 percent thick, welded to a steel pipe which extended into the model. The strut section was selected because of its high incipient cavitation speed. The towing support was connected to the towing carriage by a welded framework of steel tubing. The model was electrically insulated from the towing support to prevent galvanic corrosion.

The total pressures in and just outside the boundary layer were measured by means of three rakes equally spaced around the body, 10.41 feet from the nose. Each rake had six total-pressure tubes, two of which were outside the boundary layer. The supporting strut for the tubes had a circular-arc section with a thickness ratio of 10.7 percent. The configuration of the rakes and their locations on the model are shown in figures 3 and 4. Because of the large range of total pressure measured over the Reynolds number range of the tests, three types of instrumentation were necessary. At the high Reynolds numbers (36×10^6 to 70×10^6), a diaphragm type of recording instrument was used; in the intermediate range of Reynolds number (9.4×10^6 to 45×10^6), a mercury manometer was used; for the low-speed range (4.4×10^6 to 12×10^6), a water manometer was used. In the low-speed range, the height of the wave above the rake station was recorded by wave-measuring devices, one located directly above the center line of the model and one located 13½ inches from the center line. After the rake surveys were completed, two flush orifices were installed 2 inches from the nose from which dye could be ejected for observation of the boundary layer.
AVERAGE SKIN-FRICTION DRAG COEFFICIENTS FROM TANK TESTS OF A PARABOLIC BODY OF REVOLUTION

Figure 1.—General arrangement of model and apparatus. (Dimensions are in feet.) Body-profile equation: $r_w = 0.5 - 0.00889(7.5 - x)^2$.

Figure 2.—Model mounted on towing support.
Figure 3.—Arrangement and configuration of total-pressure rakes. (Dimensions are in inches except as noted.)

<table>
<thead>
<tr>
<th>Distance</th>
<th>Rake 1</th>
<th>Rake 2</th>
<th>Rake 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.055</td>
<td>0.050</td>
<td>0.030</td>
</tr>
<tr>
<td>B</td>
<td>0.380</td>
<td>0.360</td>
<td>0.335</td>
</tr>
<tr>
<td>C</td>
<td>0.675</td>
<td>0.655</td>
<td>0.630</td>
</tr>
<tr>
<td>D</td>
<td>1.775</td>
<td>1.760</td>
<td>1.735</td>
</tr>
<tr>
<td>E</td>
<td>3.025</td>
<td>2.510</td>
<td>2.480</td>
</tr>
</tbody>
</table>

Figure 4.—View of model at rake station.
PROCE DURE

The data were taken during the constant-speed interval of
the test run after the pressures had reached an equilibrium
value.

In the low-speed range, the flow was made visible by inject­
ing a thin dye stream into the boundary layer. At Reynolds
numbers where the boundary layer was not completely tur­
bulent, initial turbulence in the tank was minimized by schedu­
ing the runs in order of increasing speed and allowing a
25-minute idle period before each run.

The alignment of the model with the direction of motion
was checked during the test runs and found to be within \(\pm \frac{1}{4} \).''

In order to minimize corrosion of the aluminum skin of the
model by the salt water in which it was tested, the model
was taken out and washed with fresh water at the end of
each day's testing and was polished before again being put
into the water.

RESULTS AND DISCUSSION

Typical velocity profiles are shown in figure 5. The agree­
ment of the results from the two outside tubes shows that
they are both outside the boundary layer. The average skin­
friction coefficients as obtained by the use of equation (5) at
the three radially spaced measurement stations are plotted
against Reynolds number in figure 6. An indication of the
repeatability of the final results can be obtained by compar­
ing data points from runs made at similar Reynolds numbers.

Included in figure 6 is the Schoenherr line which represents
the average value of the skin-friction coefficients from most
of the available flat-plate skin-friction data for fully turbu­
lent flow. (Schoenherr's skin-friction formulation is explained
in refs. 4 and 5.) The agreement between experimental skin­
friction coefficients measured at the three rake stations and
those predicted from the Schoenherr line is good at low and
high Reynolds numbers. At intermediate Reynolds numbers
(corresponding to velocities in the region of the maximum
velocity of propagation of waves in the tank at the test water
level) the skin-friction coefficients differ for the different
rakes with an apparent increase in skin-friction coefficient
with an increase in depth at the measuring station. Such a
trend would occur if the entire boundary layer were being
swept downward by a very slight vertical component of flow,
such as might exist if the surface disturbance which accom­
panied the model had its trough located above the measuring
station. Wave measurements at Reynolds numbers from
\(4.4 \times 10^6 \) to \(12 \times 10^6 \) showed that the trough of the wave was
indeed located above the rake station. The maximum depres­
sion of 1.1 inches at the rake station occurred at a
Reynolds number of \(8.9 \times 10^6 \). Apparently, large errors can
result from only small amounts of cross flow if only one
rake is used on this type of body.

The arithmetic mean of the average skin-friction coeffi­
cients from the three rakes is plotted against Reynolds num­
ber in figure 7. It is seen from this plot that not only the
coefficients at low and high Reynolds numbers agree with
those predicted from the Schoenherr line but also the mean
of the three rather widely different coefficients obtained at
the intermediate Reynolds numbers agrees well with the
Schoenherr line value.

At Reynolds numbers low enough for the laminar region
on the model to extend aft of the dye orifices, the extent of
the laminar region was clearly indicated by the dye stream.
The length of the laminar region at various Reynolds num­
bers is tabulated thus:

<table>
<thead>
<tr>
<th>Reynolds number, (R)</th>
<th>Length of laminar region in percent of total length from nose to rake station, (\tau \times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 \times 10^6</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>(>100)</td>
</tr>
<tr>
<td>4.4</td>
<td>96</td>
</tr>
<tr>
<td>6.6</td>
<td>22</td>
</tr>
<tr>
<td>8.9</td>
<td>(<1.6)</td>
</tr>
</tbody>
</table>
The data plotted in reference 5 indicate the Reynolds number of transition for flat plates in water to be about 3×10^5. In the present investigation, the flow was observed over the upper surface only and the flow on the bottom may have been different because of the wave accompanying the model; a direct comparison with the flat-plate data, therefore, is not possible.

CONCLUDING REMARKS

For a streamline body of revolution with a basic fineness ratio of approximately 15 (NACA RM-10), the average skin-friction drag coefficient for the forward 69 percent of the basic body in incompressible flow was very nearly the same as that for flat plates.

The distribution of the boundary layer around the body was apparently affected by a very small cross component of flow over part of the Reynolds number range.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD, VA., OCTOBER 8, 1952.
REFERENCES

