A

OhTERTO

o |
m i
o !
X
c
]
3.
>
=
<
-
»
=
=

For nle by the Superintendent ‘of Documents, U. S. Govemment Printing Oﬂice, Washington 25,D. C. Yea.rly subscriptinn. 510' foreign, 311 25'
- - Pnce40 cents




Dly3140

REPORT 1164

CONVECTION OF A PATTERN OF VORTICITY
THROUGH A SHOCK WAVE

By H. S. RIBNER

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

T



National Advisory Committee for Aeronautics

Headquarters, 1512 H Street NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study

of the problems of flight (U. S. Code, title 50, sec. 151).

Its membership was increased from 12 to 15 by aect

approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President,

and serve as such without compensation.

JEroME C HunsakEeR, Sc. D., Massachusetts Institute of Technology, Chairman

DerrLEv W. Bronk, PH. D., President, Rockefeller Institute for Medical Research, Vice Chairman

JosEru P. Abpams, LL. D., member, Civil Aeronautics Board.

ALLEN V. AsTIN, PH. D., Director, National Bureau of Standards.

Preston R. Bassert, M. A., President, Sperry Gyroscope Co.,
Inec.

LeoNARD CARMICHAEL, PH. D., Secretary, Smithsonian Insti-
tution.

Ravren 8. Damon, D. Eng., President, Trans World Airlines, Inec.

James H. Doovritrig, Sc. D., Vice President, Shell Oil Co.

Lroyp Harrison, Rear Admiral, United States Navy, Deputy
and Assistant Chief of the Bureau of Aeronautics.

Ronarp M. Hazen, B. S., Director of Engineering, Allison
Division, General Motors Corp.

RarLra A. Orstig, Vice Admiral, United States Navy, Deputy
Chief of Naval Operations (Air).

Donawp L. Purr, Lieutenant General, United States Air Force,
Deputy Chief of Staff (Development).

Donanp A. QuarLes, D. Eng., Assistant Secretary of Defense
(Research and Development).

ArTaur E. Raymonp, Sc. D., Vice President—Engineering,
Douglas Aireraft Co., Inec.

Francis W. REICHELDERFER, Sc. D., Chief, United States
Weather Bureau.

OswaLp Ryan, LL. D., member, Civil Aeronautics Board.

Nathan F. Twining, General, United States Air Force, Chief of
Staff.

Hueu L. DrypEN, Pr. D., Director

JorN W. CrowLey, Jr., B. 8., Associate Director for Research

JoaN F. Victory, LL. D., Ezxecutive Secretary

Epwarp H. CuAMBERLIN, Erecutive Officer

Henry J. E. Remp, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.

Smita J. DeEFrance, D. Eng., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.

Epwarp R. SHarp, Sc, D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

LANGLEY AERONAUTICAL LABORATORY
Langley Field, Va.

AMES AERONAUTICAL LABORATORY
Moffett Field, Calif,

Lewis Frieutr PropPuLsioN LABORATORY
Cleveland Airport, Cleveland, Ohio

Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight

11



REPORT 1164

CONVECTION OF A PATTERN OF VORTICITY THROUGH A SHOCK WAVE'

By H. S. RieNER

SUMMARY

An arbitrary weak spatial distribution of wvorticity can be
represented in terms of plane sinusoidal shear waves of all
orientations and wave lengths (Fourier integral). The analysis
treats the passage of a single representative weak shear wave
through a plane shock and shows refraction and modification of
the shear wave with stmultaneous generation of an acoustically
intense sound wave. Applications to turbulence and to noise
n supersonic wind tunnels are indicated.

INTRODUCTION

Turbulence such as the residual small eddying motion in a
wind-tunnel stream will gradually decay as it is carried along.
The decay process has been the subject of much study in the
face of formidable difficulties. The random character of the
motions has been successfully handled by the methods of
statistics; even with these methods, however, the non-
linearity of the equations governing the intermixing processes
has severely limited the progress attainable without sim-
plifying assumptions.

On the other hand, for relatively sudden changes in
turbulence, such as occur when it passes through a wire-
mesh damping screen, the decay may be negligible and the
changes may follow lincar laws. The linearity is assured if
the turbulence constitutes a sufficiently small perturbation
of the main stream. Recently it has been found that the
problem of such linear changes could be solved completely
by a specialized adaptation of the spectrum concept of the
statistical theory of turbulence.

Several of these linear processes have been treated in this
manner: the damping-screen problem (ref. 1), the passage of
turbulence through a sudden wind-tunnel contraction (ref. 2),
and the passage of turbulence through a series of screens
followed by a sudden contraction (ref. 3). A basic tech-
nique for such problems has been evolved in these papers.

The present paper is motivated by another problem of
the same linear character, namely, the convection of weak
turbulence through a shock wave. Among other circum-
stances, this problem arises in the interpretation of measure-
ments with a hot-wire anemometer in & supersonic stream,
because a detached bow wave stands ahead of the wire.?

1 Supersedes NACA TN 2864, “Convection of a Pattern of Vorticity Through a Shock
Wave’ by H. S. Ribner, 1953.

2 A simple interpretation for all but very small eddies comparable with the scale of the bow
wave is, however, available in the work of Kovasznay (ref. 4).

Such a curved shock is not attractive for theoretical analysis,
but it is not difficult to replace it with an extended plane
shock by use of auxiliary means; attention can thus be
limited to the convection of turbulence through a plane
shock.

The conceptual basis for the treatment of these linear
problems is as follows: An arbitrary weak spatial distribu-
tion of vorticity—and hence a weak turbulent velocity

+ field—can be represented as a superposition or spectrum of

plane sinusoidal shear waves distributed among all orienta-
tions and wave lengths. This is a physical interpretation
of the mathematical formulation as a Fourier integral; ? the
individual shear waves may be identified as Fourier or
spectrum components. When the turbulence wave pattern
is convected through a screen or through a shock wave, the
individual waves are altered without mutual interference if
the waves are suitably weak. Thus the modified field
downstream of the screen or shock can be obtained, in
principle, by superposition of the modified individual waves.
In practice the description of the detailed spatial distribu-
tion of velocity, either initially or finally, is hopeless; the
initial wave distribution is known only statistically (e. g.,
the phase angles are unknown), and statistical changes only
can be calculated. In either case the analysis of the be-
havior of a representative single wave constitutes a pre-
requisite to the determination of the changes in the weak
turbulent field.

In the present paper such an analysis is carried out for a
single shear wave, of arbitrary inclination, convected through
a plane shock. There remains the task of calculating there-
from the changes in the statistical properties of a weak turbu-
lent field convected through a shock. Suitable procedures
have been developed in references 1 and 2; for their applica-
tion the present results, which are formulated in two dimen-
sions, must be reexpressed to bring out the spatial inclination
of the wave in three dimensions. The procedures will re-
quire some modification before the noise field generated by
the interaction can be treated.
mﬁeld so represented may be either rotational or irrotational within the speci-
fied region, even though the “building blocks,” the shear waves, are rotational. In case an
irrotational field is represented, the vorticity of these shear waves, but not the velocity,
mutually cancels within the specified region (which may be multiply connected), leaving a
distribution of vorticity in the external space. The irrotational flow may be regarded as
induced by this external vorticity.

These remarks all refer to a velocity field satisfying the incompressible continuity equation:

a small-perturbation field of vorticity in fluid at rest, or convected by a main stream, will
fulfill this condition.
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Shock

Fraure 1.—Convection of plane oblique sinusoidal shear wave through
shock: original unsteady-flow problem.

This single-wave problem is also treated in reference 5.
The analyses bear little resemblance: In that work a refer-
ence frame is used in which the flow is unsteady, whereas
herein a frame is used in which the flow is steady. Sound
waves are likewise treated in the work cited.

The outline of the present analysis is as follows: The prob-
lem is posed as the calculation of the flow field behind a plane
normal shock wave due to the convection through the shock
of an inclined plane sinusoidal shear wave; the shear wave is
specified to be weak to ensure small perturbations to the
mean flow. This problem, for which the flow is unsteady in
time, is converted into an equivalent steady-flow problem
by transformation to a moving frame of reference. In this
frame the normal shock is replaced by an equivalent oblique
shock.

The analysis is now formulated as a boundary-value prob-
lem for the flow in the region downstream of the shock: The
governing partial differential equation for this small-pertur-
bation rotational flow is derived (extension of Sears’ worlk,
ref. 6); boundary conditions on the velocity components just
behind the shock are obtained from the oblique-shock rela-
tions; and finally the rotation term in the governing equation
is evaluated in terms of gradients of entropy and total
enthalpy, with use of the entropy changes across the shock.
The initially unknown perturbation of the form of the shock
wave is taken into account in the boundary conditions and
rotation term by assuming it to be sinusoidal with initially
undetermined amplitude and phase.

The velocity W (all symbols are defined in appendix A)
downstream of this equivalent oblique shock may be either
subsonic or supersonic depending on the inclination of the
initial plane shear wave; separate solutions of the boundary-
value problem are worked out for the two markedly different
cases. The horizontal shear wave—which is a simple
special case for subsonic W—is given a separate treatment.

The analysis of the velocity field downstream of the shock
is followed by an account of the associated pressure, density,
and temperature fields there and of the distortion of the ini-
tially plane shock. Finally, the acoustic level of the (fluc-
tuating) pressure field is worked out in approximate fashion
for an example applied to a supersonic wind tunnel: A par-
ticular initial intensity of turbulence is assumed and con-
sidered as being concentrated in a single shear wave rather

Ficork 2.—Transformation to equivalent steady-flow problem by
superposition of velocity V.

than distributed throughout a continuous spectrum. The
calculation amountsto an estimate of the noiselevel generated
by the passage of a specified level of turbulence through a
shock wave.

This investigation was conducted at the NACA Lewis
laboratory.

FORMULATION OF BOUNDARY-VALUE PROBLEM

The unsteady-flow problem.—The inclined plane sinu-
soidal shear wave is shown schematically in figure 1. The
flow is viewed in a plane perpendicular to the shock and to
the wave fronts. The wave is supposed to be convected
downstream by the main stream with velocity U, so that it
passes through the normal shock. The passage through the
shock is evidently an unsteady process, since the intercepts
of the inclined lines (the nodes of the sine wave) move down-
ward along the shock front; it will be shown that a disturbance
ripple moves along the shock with the same speed V.

In the general case of a plane oblique sinusoidal shear
wave there will also exist a perturbation velocity component
normal to the plane of the figure. Now the ripples in the
shock front will be two dimensional, and the shock with the
ripples will still be everywhere perpendicular to the plane of
the figure. Thus, the normal velocity component will be
parallel everywhere to the shock and will be unaffected as the
shear wave passes through; the component will have no other
effect. Its invariance established, this normal velocity com-
ponent will be omitted from the analysis.

The equivalent steady-flow problem.—If an observer
moves downward along the shock with a speed V, relative
to him the flow will have an apparent upward velocity com-
ponent V. This scheme of things is shown in figure 2. In
particular, V has been chosen so that the resultant stream
velocity (relative to the moving observer) is alined with the
velocity in the disturbance wave; that is, V=U, tan §. The
observer then sees what appears to be a steady sinusoidal
shear flow passing through an oblique shock wave. Thus, by
the proper choice of a system of moving axes the original
unsteady-flow problem has been converted into an equivalent
steady-flow problem.
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Fiaure 3.—Symbols and coordinate axes.

Governing partial differential equation for rotational
flow.—The task of the analysis is to calculate the flow field
on the downstream side produced by the passage of the sinus-
oidal shear flow through the equivalent oblique shock. It is
to be expected that the shock will be perturbed from its mean
plane and will, in fact, develop a corrugated appearance.
Because of these corrugations, vorticity (rotation) will be
introduced into the downstream flow. This vorticity and all
the downstream velocity perturbations will be weak com-
pared with the stream velocity because the original disturb-
ance wave has been assumed weak. Thus, a small-perturba-
tion, or linearized, treatment of the flow field is permissible.

In reference 6 the governing partial differential equation
for small-perturbation compressible rotational flow has been
derived for isoenergetic flow, that is, for flow of constant
stagnation enthalpy. However, the shear wave under con-
sideration possesses variable stagnation enthalpy; that is,
pressure, density, and temperature are constant upstream of
the shock, but the velocity varies. It has been necessary,
therefore, to obtain a more general governing equation that
applies when both entropy and stagnation enthalpy are
variable. The derivation is given in appendix B.

This governing equation is expressed in terms of coordi-
nates £ and 7, £ being the distance in the main stream direction
and 7 the distance perpendicular thereto. The equation
reads

a-— Wz)wss+¢nn=%—%=—n (1)

where W is the stream velocity in the transformed problem,
W is the corresponding Mach number, I is the stagnation
enthalpy, s is the entropy, T is the temperature, @ is the
vorticity, and ¢ is a perturbation stream function such that
Yn=w=perturbation velocity in ¢ direction

— 2
— (1— W2y =w’=perturbation velocity in 7 direction}

(The stream function is defined differently in ref. 6, as it
involves an entropy term.)
For application of equation (1) in the present problem
reference should be made to figure 3 for the direction of the
20354254
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Fiaure 4.—Geometrical relations across shock, with and without
perturbation ¢ in shock angle.

axes. In this figure W is the resultant stream velocity down-
stream of the shock (in the moving frame of reference), and
the £ and n axes are indicated. The final flow pattern depends
crucially on whether W is subsonic or supersonic; the criterion
depends, in turn, on the Mach number corresponding to U,
and on the wave inclination 6.

Boundary conditions.—The boundary conditions just
downstream of the shock will now be obtained by application
of the shock-wave relations.

By geometry (fig. 4) the stream velocity components
normal and tangential to the undisturbed shock are, respec-
tively,

Us=W, cos @

V=W, sin 9

The shear wave will provide directly a perturbation w, to W,
and will cause indirectly a perturbation o(y) to the shock-
wave angle, of initially undetermined magnitude. The
effect of ¢ is equivalent to an increment in 8. The asso-
ciated perturbations to U, and V are found by obtaining
their respective differentials and replacing dW, by w, and dé
by ¢ therein; the results are

dU,=w, cos §—cW, sin 0§
} (3)

dV=w, sin 6+¢W, cos ¢

The corresponding change in normal velocity U downstream
of the shock is obtained from the normal-shock relation

’Y—l‘l_g
v,_ 2
U

T =1,
1 +L2—*U,12
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By logarithmic differentiation and use of the fact that the
dUA aU A‘)

upstream temperature is constant (Whence =
U, A UA

there is finally obtained
= dUA<1 27 4)

where m=U,/U.
On the downstream side of the shock the velocity perturba-

tions in the directions of £ and #, respectively, are (fig. 4)
w,= (U+dU) cos (p+09)+(V+dV) sin (¢+a)—W} (50)
5a
w,’=— (U+dU) sin (¢+0)+ (V+dV) cos (o+0)

Equations (3) and (4) may be used to evaluate the right-
hand side of equation (5a). A first-order approximate result
is obtained by taking cos ¢= 1, sin s=0 and neglecting ¢ tan ¢
and ¢ cot ¢ In comparison with unity. It will be useful also
to introduce the geometrical relation {7,=W, cos 8, the
definition U,/U=m, and to eliminate # by means of the
oblique-shock relation tan ¢=m tan . The final rearrange

result is
Wo Ya 2 _ A
U= po ? tan <p> <1 2 m) cos o+
( tan ga+7n¢r> sin ¢
, (5)
Wo (% W m ’ tan )(1—2 1™ sin o+
[ m @ (4
(i”i tan go—l—mo) COS ¢—0 Sec ¢
Wy J

These are the desired boundary conditions in a somewhat
general form.

In the present problem the perturbation w, is associated
with an incident sinusoidal shear wave parallel to W, (or to
£4) (figs. 2 and 3). It will be shown later that a refracted
sinusoidal shear wave parallel to W (or to ) will also arise.
A suitable defining equation for w, is

%ze cos kn, 6)
where & is the wave number (2x/k=wave length). The
corresponding argument for the refracted shear wave will
involve » and an altered wave number x. The arguments
of the upstream and downstream waves must match along
the shock front, so that

kna=«n along shock

By geometry (fig. 3), p Egz g- Thus
W4
W€ €08 k7 along shock 7)

Since the disturbance is sinusoidal, the shock inclination «
can likewise be expected to be sinusoidal. For generality a

phase shift can be allowed for, so that ¢ can be assumed to

have the form
c=e{a cos xn+b sin «y) (8

Substitution of these sinusoidal relations into the general
form of the boundary conditions, equations (5), yields, after
rearrangement,

a7
(1—2Lm>
[% (1—2 1—1% m—i—m2> sin go] sin «q

—a (i ) e

m—}—m)sm o—

cos xn-+

- (9)

a(m—1)cos ¢-+2 <1 ————m>sm go]cos kn+

I:_—< +’Y—|—1 >~(S;g;i‘p+b(7n—l)cosw:|sin k|

Equations (9) give, in final form, the conditions imposed
by the shock wave on the components parallel to ¢ and g,
respectively, of the perturbation velocity immediately
behind the shock; the parameters @ and b therein governing
the shock inclination ¢ are undetermined. These equations
constitute the boundary conditions for the perturbation flow
downstream of the shock.

Evaluation of rotation term in governing equation.—Before
equation (1) can be solved, the vorticity term (rotation
term) on the right-hand side must be evaluated for the
region behind the shock. A corresponding term has been
evaluated in reference 7 for the flow behind a normal shock
perturbed by an isoenergetic upstream disturbance. This
work has proved a useful guide, but it has beennecessary to
malke modifications both for the variation in energy (that is,
in total enthalpy 7) and for the inclination of the shock in
the moving frame of reference. The derivation is as
follows:

Downstream of the shock, the enthalpy H and the entropy
s (and hence the vorticity) are constant along streamlines,
and in the linear theory the streamlines are approximated by

lines p=-constant. Thus, %g

and g—i may be evaluated at

the shock and the result will hold downstream thereof if
expressed as & function of n alone (¢ eliminated).
The total enthalpy upstream and at the shock is

HZC,,TA‘*'% (Watwa)?

~c TA+ 1% 2<1+2w“>
Hence, at the shock

OH _ W2 2 (%) along shock (10)
A
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The entropy upstream of the shock is constant by virtue
of the assumption of constant pressure and density there.
The entropy change in crossing the shock is given in terms
of the upstream velocity by (ref. 8, eq. 144):

§—8, == E ln{
A_7_1

F1 (WA+wA)2 cos® (0+ff)'— X

{w~nm2f@ym§w+@+aT}
(v+1)(Wa+w,) cos? (84-0)

Hence; on writing the differential and expanding the result

under the assumption that 7, is constant and w,/W, and ¢
are small, there is obtained
\___Uz 2 ( Wa
66—7 (m—1) (WA—a tan 0) (11a)

and
0s

Uz 2 O [ Wa
Py DmGV
Recall now that the governing equation (1) reads

II T
(1 - W )‘/’EE+ 'I/vm ‘;/”

_ yalong shock
S

—¢ tan 6 .\)
/

where the right-hand side is the rotation term in question.
The factors H, and s, have been evaluated in equations (10)
and (11), respectively; substitution with use of the geometri-
cal relations of figure 3 yields

W4

)

U cos ¢(m—1)2%(%~;—‘—-—-a tan 0) (12)
A

2 COS ¢ O

1 TR _ = _—
(= W)l td=U cos?6 Oy

where the right-hand side is to be evaluated along the shock
(x=0) and expressed as a function of » alone.

In the form (12) the governing equation has not yet been
specialized to a shear flow that is sinusoidal. 'The substi-
tution of equations (7) and (8) for w,/W, and o, respectively,
introduces the sinusoidal character; furthermore, the relation
tan ¢=m tan 6 can be used to eliminate 6; after simplifica-
tion.

A=W s+ dm=UeX

{—x[sec e+2(m—1) cos p+a (m;_1)2 sin so]X

132
sin kn—+«b (mTl) sin ¢ cos K’/]} (13)

Equation (13) is the partial differential equation to be
satisfied by the flow downstream of the shock subject to
the boundary conditions (egs. (9)).

SOLUTION FOR HORIZONTAL WAVE

The governing equation and boundary conditions have
been set up for the general case of an inclined shear wave.
It will be worthwhile to solve first, however, the much
simpler special case of the horizontal shear wave. The

results will illustrate important features of the general case
as well as provide a limiting case of the general solution,
useful as a check.

The horizontal wave is obtained by setting 6=¢=0 in
the earlier equations; as a consequence V—0, W—U, {—z,
n—>y, and x—k. The governing equation reduces to

B ot ¥yy=—kUe(2m—1) sin ky (14)
where ' ' I
g=1—0"

The boundary conditions (egs. (9)) reduce to

. ‘; ﬁ:——(l 2 m) cos ky l
w ” (15)
—U—";= U"E=(m—1)a cos ky—+(m—1)b sin ky

Particular integral and complementary function.—A par-
ticular integral of equation (14) may be obtained by inspec-
tion as

\l/p:(i—e (2m—1) sin ky

To obtain a complete solution there must be added a com-
plementary function satisfying equation (14) with the right-
hand side set equal to zero. The boundary conditions at
x=:0 require that the function possess a sinusoidal variation
with y. Such a solution will also contain an exponential
factor, showing cither amplification or attenuation of the
disturbance with distance x downstream of the shock; the
case of amplification must be ruled out as physically unac-
ceptable. These considerations limit the solution to the
form

kx
ve=Uede Bsinky

where d is a constant of integration.
The complete solution is the sum of ¥» and yc:

y= Ue(

Evaluation of undetermined constants.—The velocity com-
ponents are obtained from equation (16) as

+de f’) sin ky (16)

_kz
u=1y,= Ue (Qm—l—{—kde ﬂ) cos lcyl

5 (17

The undetermined constants a, b, and d are evaluated by
setting r=0 and comparing with the boundary conditions,
equations (15), equating the respective coefficients of sin ky
and cos ky. The results are

p=—p%,=BUckde 5 sin ky

a=0
po— ABM
(v+1)(m—1) : (18)
d am

Tk(y+1)
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Shock
Ficure 5.—Passage of horizontal shear wave through normal shock,
showing perturbation of shock and final amplification of shear
wave.

Velocity components.—Insertion of the value of d into
equations (17) yields the final result for the velocity com-
ponents valid everywhere downstream of the shock

kx
u="Ue [2m—1—‘y4t_i7_n1 e_F:I cos kyz
S allz=0  (19)

Just behind the shock

Up= Ue( 1+2 L m) cos kyl

r=0 (19a)
v,=—BUe +1s1nky S
and far downstream
u,=Ue(2m—1) cos ky '
}zz © (19b)
v,=0

These results and the associated streamline pattern are
exhibited pictorially in figure 5.

These perturbation velocity components downstream of
the shock are to be compared with the corresponding
velocity components in the shear flow upstream of the shock

(cf. eq. (7)):
us=Uye cos ky }

=Uem cos ky
v4=0
The ratio of u_/u4 Is .
w=2—0 (20)

Since m=U,/U>1 in order that a normal shock exist, it
appears from equation (20) that the normal shock always

amplifies the horizontal shear wave, the maximum amplifica-

tion of i i being approached as the initial Mach number
approaches infinity.
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Shock perturbation.—The local inclination of the shock
from the vertical is given by equation (8). With the previ-
ously determined values of ¢ and & (eq. (18)) inserted, and
with ky in place of «», the inclination is

o= —

48em .

GFDm=1) ™

If the local shock displacement in the z-direction relative to
the mean shock plane is called sz(y), then

6z=fa dy

48em

“Fa T Dm— 0

i cos ky

Thus the shock displacement curve is in phase with the
velocity perturbation in the shear wave upstream of the
shock (fig. 5).

SOLUTION WHEN FLOW DOWNSTREAM OF EQUIVALENT
OBLIQUE SHOCK IS SUBSONIC (W<1)

The present case is a generalization from the horizontal
wave just discussed to a wave of arbitrary inclination 6.
The restriction to a subsonic mean velocity W behind the
equivalent oblique shock insures a qualitative similarity of
the flow: the governing equation is elliptic in both cases.
Accordingly, the horizontal-wave result can serve as a guide.

Governing equation and particular integral. —The govern-
ing differential equation (13) may be written in abbreviated
form as

Bu¥eet+¥m=—xUe(A sin kn—B cos n) (22)
where
132
AE[sec e+2(m—1) cos o+a % sin ga:l
B=b (m—1y" siil @ (23)
Bw = _W2

A particular integral is seen to be
vp=Ue (—‘% sin «ky —% cos m]) (24)

Complementary function.——From the result for the hori-
zontal wave the complementary function should be expected
to attenuate exponentially downstream of the shock, and
from physical considerations the attenuation should depend
upon the distance measured normal to the shock front, that
is, upon z rather than, say, ¢&. The functional form that has
the desired attenuation and possesses a sinusoidal behavior
at the shock is

sin
¢C~g—aﬁw(scos ¢—nsin w){or [a(g sin §0+ﬁw2 7 cos ¢)]} (25)
Cos

where £ cos ¢—7 sin ¢ may be recognized as just .
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The arbitrary constant « in equation (25) is determined
by a consideration of the boundary conditions (eq. (9)): the
argument of the cosine must reduce to «y along the shock
front, where =7 tan ¢. This requirement gives a=x« cos ¢/8.
Finally, when constants of integration ¢’ and d’ are included,
the complementary function is written as

xBw .
—~—— €08 ¢ (£ €0s p—7 sin ¢) K c .
ve=Uee & ° " 7" _ {[c’ cos L4 (!,: sin g+

Buncose) [+ & sin £552 ¢ sin ¢+ Bty cos «:)]} 26)

Velocity components with undetermined constants.—The

complete solution for the perturbation stream function is
v=vp+¥¢
This expression (cf. egs. (24) and (26)) contains four arbitrary
parameters ¢ and & (which occur in A and B, respectively,
egs. (23)) and ¢’ and d’, which remain to be determined.
First the corresponding expressions for the velocity compo-
nents will be obtained—they will be needed anyway—and
then the boundary conditions on these velocities at the shock
wave will be applied for the determination of a, b, ¢/, and d’.
The perturbation velocity components in the direction of £
and 5 are w—1y, and w’ = — B,*;, respectively; by differentia-
tion of equations (24) and (26) there results

k cos ¢ (£ sin ¢+ By’ cos qa)

_kB - .
wa__A cos kn-B sin kn 8% & €os ¢ (£ cos g sin “’)I:(c sin ¢+ dBw cos ¢) cos 52
3 ! 2
(—¢By cos p—+d sin @) sin = cos ¢ (£ sin EZTB"’ n coS @)
> 27
kBw 3 2
%’——B‘z 55 008 ¢ (& cos p—n sin ‘p)[(cﬂmz cos op— dB, sin @) cos £ 2 (¢ sin ;;—{— Bu’ 1 COS ¢)+
1 2
(¢Buw sin o+ dB,° cos ¢) sin K C0S ¢ (£ sin §2+ Bu’n cos ¢) J
where ¢’ and d” have been absorbed for convenience into CE+DFA
C=M 3 2
new constants C*+D
o b CF—DE
c=c'kBy, COS ¢ = 1 D? L
(29
d=d’'«B, cos ¢ ce=%D—_F
m
The undertermined constants may now be considered as a, b, b .,
¢, and d. d=— D ]

Conditions along the shock on the downstream side have where -
been designated by the subscript zero; here £ cos p=1 sin ¢, (= —1 +— m> tan ¢— I:(m— 124
and the arguments of the exponential and sine and cosine v
t g i : — .

erms reduce to zero and «», respectively 2(’)7/n+ 11) sin o cos ¢

%:(A—l—% sin ¢+—g—2 Buw cos <p> cos kn -+ )

(B— = Bw COS <p+ 5 sin ga) sin «y
B - (28)

1;}0 =B7%(¢cBs" cos ¢p—d B, sin @) cos kn—+

B~*(cBw sin o+ dB," cos ) sin «y

Evaluation of undetermined constants.—Kquations (28)
must agree identically with the boundary conditions (eqs.
(9)) imposed by the shock wave on w, and w,”. Therefore
the respective coefficients sin «y and cos xy are to be equated;
this yields four simultaneous equations for the four undeter-
mined constants a, b, ¢, and d. In the reduction of the solu-
tion to final form certain alternative forms of the oblique-
shock relations, given in appendix C, have been used. The
results are

20354954 2

EB—’;’ (m—l)[l—i—(m—l)cos?ga]s% Dy (30)

EEQ(I—— m>+2(m )B"’ cos’ ¢

FEg"’ [Z(m—l) sin ¢ cos <p:|

SOLUTION WHEN FLOW DOWNSTREAM OF EQUIVALENT
OBLIQUE SHOCK 1S SUPERSONIC (W>l)

When the mean velocity W behind the equivalent oblique
shock is supersonic, the solution must exhibit Mach waves.
If the cross-stream velocity V of the moving reference frame
is subtracted out, these waves appear to be moving down-
ward (cross-stream) with the velocity V. If another trans-
formation of axes is made so that the reference frame is
“convected” downstream with the stream velocity U, then
the Mach waves can be identified as plane sound waves
moving normal to the wave fronts with sonic velocity. Mach
waves and plane sound waves are, of course, the same
phenomena viewed relative to different frames of reference.

P
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Governing equation and particular integral.—The govern-
ing equation (22) changes from elliptic to hyperbolic when
W exceeds unity (that is, when W is supersomc) The
particular integral is unchanged thereby and is still given
by equation (24). It is found that the final solution yields
5=0 (and hence B=0), and so it is convenient to delete the
B-term at the outset; the particular integral is thus

¢P=U€A sin xq
Complementary function.—The complementary function
satisfying equation (22) must be of the general form

Yo=7(E+Bun) +9(E—Buwn)

where ﬁwE\/ W?—1. The function f represents Mach waves
inclined downward by the Mach angle u from the &-axis and
the function g represents Mach waves inclined upward by the
Mach angle. If attention is restricted to the range of shear-

wave inclinations 0 _<_0§I, then the g-family of Mach waves

can be shown to represent disturbances overtaking the shock
wave from behind. This property is related to the fact that,
for a finite shock strength, the Mach angle is always greater
than the angle between the shock and the £-axis. Since the
disturbances actually originate at the shock wave by virtue
of the passage therethrough of the initial shear wave, such
Mach waves cannot arise, and the g-function must be zero.
In what follows it will suffice to limit the discussion to the

specified range 0 < BS%, since the results for the remaining

range 0 <6< ——% are readily obtained therefrom from sym-

metry considerations.
The function f must reduce to

f~sin kn

along the shock front, where £=» tan ¢, in order to satisfy
the boundary conditions (with =0). A suitable comple-
mentary function is therefore

U 144

Vo= < sl

K(E+ Bw"])
Bot+tan ¢

where ¢’/ is a constant of integration.
The complete solution for the perturbation stream function
is thus

K(E‘i‘ﬁw’?)

Bottang| OV

= :,bp—f—llzc———— I:A sin k¢’ sin —=
This expression contains two arbitrary parameters ¢ (occur-
ring in 4) and ¢’’ which remain to be determined. First the
corresponding expressions for the velocity components will
be obtained, and then the boundary conditions on these
velocities at the shock wave will be applied for the deter-
mination of ¢ and ¢’’.
Velocity components with undetermined constants.—The
perturbation velocity components in the direction of £ and 5

are w=yn and w’ =B, respectively; the expressions are

w ¢ sec ¢ K(E+Buwn)

ﬁ_[A cos k1t g Tan ¢ “°° Buftan o )
(32

w'_ Bucsece  K(EBom)

Ue But+tane But+tan ¢

where the constant ¢’ has been absorbed into a new constant
c=c"" B, cos ¢. The undetermined constants are now a and
c.

Along the shock =7 tan ¢, and the arguments of all cosine
terms reduce to xy; the expressions for the velocity com-
ponents w and w’ become

. ¢ sec ¢
Ue ( T Baitan >C°S n

w,’ ¢ sec
W, __ BuC seC ¢ cos k7

Ue B,ttan ¢

(33)

Evaluation of undetermined constants.—Equations (33)
must agree identically with the boundary conditions (egs.
(9)) imposed by the shock wave on w, and w,”. If the respec-
tive coefficients of sin xy and cos xy are equated, there results
b=0 and two simultaneous equations for ¢ and ¢. Thus, the
initial specification of 5=0 has been justified a posteriori.

The solutions may be written in the form

O’+GF’
E’+GD’
(34)

e=2LDp—F

m

where
gr—1 1 A
C'= m—2{14(m—1) cos? ¢]

+1
D’ =(m—1)[1+(m—1) cos’® ¢
=(m—1) sin ¢ cos ga—(l—i— m) tan ¢ f (35)

F"=2(m—1) sin ¢ cos ¢

B tan ¢
G——‘_— tan
Fottan @ (r—eo) )

where u=cot™'83, is the Mach angle. (The definitions for D’
and #’ herein are unchanged from those included in egs.

(30).)

RESULTS AND DISCUSSION
VELOCITY FIELD

The velocity field downstream of the shock wave, produced
by convection of an oblique sinusoidal shear wave through
the shock, has been calculated; the results are distributed
through the preceding sections. The main results will now
be presented in more compact form, simplified to aid in the
geometrical interpretation. (The special case of the hori-
zontal shear wave was discussed earlier.)

Frames of reference.—The analysis has been carried out
in a special frame of reference in which the flow is steady; all
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Perturbed shock

!

N

.
“--Convected frame

X

L—Steody- flow frame

Ficure 6.—Relative motion of reference frame moving with general
downstream flow (convected frame) and reference frame of analysis
(steady-flow frame). The steady-flow frame moves downward
along the shoek front with a component velocity V and carries the
ripple pattern with it.

formulas will be given relative to this steady-flow frame.
Also of considerable interest is a frame of reference convected
by the mean flow downstream of the shock; this frame is at
rest relative to the general mass of fluid there. The relation
between the two frames is shown in figure 6. Formulas rela-
tive to the steady-flow frame may be converted to apply to
the convected frame by means of the transformations

t—E+ Wi

{n%n
z—x+ Ut
{y%er \4

(36)

The criterion on W.—Although the stream velocity U
downstream of the specified normal shock (fig. 1) is always
subsonic, the nature of the flow depends primarily on the
stream velocity W downstream of the equivalent oblique
shock (figs. 2 and 3), which may be either subsonic or
supersonic. The velocity W may also be interpreted as the
relative velocity of the steady-flow frame of reference and
the convected frame (fig. 6). Two forms of the solution for
all flow quantities thus appear, one for the subsonic range
W<1, the other for the supersonic range W>1. The
dividing line W—=1 is what has been designated “‘the criterion
on W” at the head of this section. Since W depends on the
initial Mach number U, and the inclination 6, the equation
W=1 gives, in effect, a relation between a critical value of
9 and U,. The relation is conveniently expressed in terms
of m=U,/U, which depends on U, (see appendix C):

05,=itan‘1\/wm—_}—) (37)

2m?

30
N

2&: \\
g \\ lgcrl
= 72z
S20 a
- Asymptotes- «
o \
2 N\
£ 15 L 600 6
o tan e
s fan Zg ] |
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2 10 / sheor | 4
3 /, wave 9o
£ 1 §§
S 4 "

Initial
shear
wave
U, [
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Initial Mach number, Uy

[$;]
N

Figure 7.—Upper curve shows variation with initial Mach number
of critical wave inclination for which W is sonic. Lower curve shows
variation of m= U,/U=tan ¢/tan 6 with initial Mach number.

A graph of |6,,| against U, is given in figure 7.
The equations that follow, both for W<1 and for W>1,

are in a form that applies for 0 <8< 3 <whence 0 S¢S§>-

Corresponding relations for—-72E <6<0 (—% <e< 0) can be

obtained by use of the symmetry of the flow with respect to 6
and .t

Resultant velocity, W <1.—Equations (27) may be recast
in the form

=S 08 [y —= tan ¢)+0]+ l
() cos [k(y—= tan ¢) 815 (389)

lwa

w’ . ’
m:ﬁwﬂ(x) sin [x(y —2 tan ¢’)-4,]
where ?

|w,| =W, e=amplitude of sinusoidal velocity w, in initial
shear wave
k,=x cos p=k cos §

§="0 T B, A=4A@, B=B®)

cos 0 vt d +d"‘ ¢ ~ Bl

I(z) =

s,=tan~! (_TB

4 Typographieal errors appearing in Technical Note 2864 (which is superseded by the
present report), namely, in §p (W<1), and in I and ¢’ (W >1), have been corrected. These
errors were not embodied in the numerical calculations and curves of the present report.

5In all the arc tangent designations, the quadrant of the angle is to be determined by the
respective signs of numerator and denominator; for example, s;=tan-1(—B/A) is to be re-
garded as determined by the joint conditions sin é,=— B/ VAIEE?, cos si=A/ VAT B
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T72
¢'=—tan"! g-?z'ﬂ

_1CBp—d ten o

8, =tan dBes+c¢ tan ¢

The functions A and B are given by equations (23) and @, b,
¢, and d are the initially undetermined constants which have
been evaluated in equations (29) and (30).

Resultant velocity, W >1.—Equations (32) may be recast
as follows:

———|;U l=S’ cos k(y—2 tan ¢)+1I cos k(y—z tan SO')l
,wf (38b)
m |=6,,, II cos «,(y—z tan ¢) ‘

A

where
|w,| =W,e=amplitude of sinusoidal velocity w, in initial

shear wave

A4; A=A(a)

kY=« cos ¢=Fk cos 0

cos 8 sin u
=
m  cos (p—p)
¢ =p—u

w=Mach angle=cot™! 3,

The function A4 is still given by equations (23), and ¢ and ¢
are evaluated in equations (34) and (35).

Shear-wave component.—The cosine in the S-term is con-
stant along lines y—a cot p=constant; such lines are inclined
at an angle ¢ with the horizontal and are thus parallel to
the z-axis. Since w is parallel to £ and w’ is parallel to 7, it
is seen that the S-term represents a pure shear flow parallel
to the f-axis. Stated otherwise, this is a rotational flow;
the rotation (or vorticity) is just €, which was evaluated
earlier in terms of gradients of entropy and total enthalpy
(cf. egs. (1) and (13)). The shear flow may be described
also as an incompressible, plane, transverse, sinusoidal wave.

The amplitude and phase of the shear wave are compared
with those of the initial shear wave in figure 8 for an initial
Mach number of 1.5. The amplitude amplification ratio
is S and the angle of phase lead is §;; both are plotted against
the initial wave inclination 6. There is seen to be a small
phase lead in the subsonic range (W<1) and none at all in
the supersonic range (W>1). The amplification is nowhere
less than unity, with a cusp-like peak of 1.73 at the sonic
point W=1.

Pressure-wave component.—The remaining terms in equa-
tions (38a) and (38b), involving the factor II, correspond to
an irrotational velocity field, or potential flow. That is, if

Subsonic W I : Supersonic W { : :
"' TShock '\ |
- 1.8 S
[ 33
©
g |
3 16
c 1 kamplitude
< 2 - \ ) W
“ 3 T i
5 14 ‘9 P
g2 va v
39 !
s 12
Qo .
>
£ >~
e 1 I
o B
Phase-r !
§‘ 10 ] > \\
”g: / i\'
= 5 /’ 1
@ }
[} 7
o /
& o 0 20 30 40 50 60 70 80 90

Inclination of initial wave, 8, deg

Ficure 8.—Amplification and phase shift of velocity in shear wave on
passage through shock. Initial Mach number Uy, 1.5.

the derivation is traced backward, the II-terms are found to
have come from the complementary function, which is a
solution of the governing equation with the vorticity Q set
equal to zero. This part of equations (38a) and (38b)
defines what may be called a pressure wave since there is
associated with it a first-order pressure field: the shear wave
contributes nothing to the pressure.

The pressure wave may be interpreted as a distribution of
sound waves. This interpretation is particularly evident
for the case W >1, where the solution has been obtained in
the form of Mach waves: if a transformation is made from
the present special frame of reference, relative to which the
flow is steady in time, to a frame moving with the general
stream, then the Mach waves will reappear as plane sound
waves moving normal to themselves with sonic speed.

The same transformation results in somewhat more com-
plication when W <(1: the resultant pressure pattern does
not then propagate with the speed of sound, but it can be
represented (as can any two-dimentional irrotational gas-
flow field) as a superposition of cylindrical sound waves
which individually propagate with sonic speed. The associ-
ated velocity pattern in this case exhibits the following
features, which are brought out by an examination of equa-
tions (38a): The radius vector in a graph of w’ against w
(hodograph) moves in an ellipse when z is held fixed and y
varied; the major and minor axes are Ilw,| and B,II|w,|,
respectively. At xz=0 the phase angle relative to the inci-
dent shear wave is §,. On the other hand the argument of
the cosine and sine is constant along lines y—x tan 6’= con-
stant; these are lines inclined at an angle 6’ to the horizontal.
Along such lines the perturbation velocity (w, w’) remains
constant in direction but attenuates exponentially with x;
— Bk @

62

the exponent is
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Fraure 9.—Amplitude and phase of velocity components in pressure
wave generated by passage of shear wave through shock. Initial
Mach number v,;, 1.5. Parallel lines in inset figure are lines of
constant phase.

For the case W>>1, the velocity pattern associated with
the pressure wave is much simpler (eqs. (38b)). The per-
turbation velocity vector (w, w’) is constant along lines
y-x tan ¢’ =constant and is, in fact, normal to such lines.
In this case ¢’=¢—Mach angle, and these arc just the
Mach lines (or envelopes of the sound waves); they are
inclined downward by the Mach angle u relative to the
¢=axis. It will be noted that the definitions of &', the
inclination angle of the lines of constant phase, agree at
W=1, although expressed differently for W< 1 and for W >1.

The amplitude and phase of the w and w’ components of
the velocity in the pressure wave are compared with the
amplitude of the initial shear wave in figure 9 for an initial
Mach number of 1.5. The amplitude amplification ratios
are IT and B,II, respectively; II, 8,11, and a phase angle (lead)
8, are plotted in the curves against the initial wave inclina-
tion 6. In the subsonic range (W<1) II and B,II attenuate
exponentially with z and only the values for =0 are plotted.
The phase lead varies from 180° to zero in this subsonic
range and remains zero throughout the supersonic range
(W>1). A rather striking feature is the relatively small
perturbation velocity in the supersonic range. Thus,
although the incident shear wave can give rise to a simple
sound wave upon passing into the shock wave, the particle
velocity in this sound wave amounts for most cases to 10
percent or less of the velocity in the initial shear wave for

UA - 1 5
PRESSURE FIELD
It is shown in appendix B that the perturbation pressure is

related to the velocity according to equation (B11); in the
present notation this becomes

sp=—pWw,

or ,
w_ ‘72& B11)
P w

Here w, is that component of the perturbation velocity
associated with the pressure wave and directed parallel to
W (that is, along the %-axis). Equation (B11‘) may be
recognized as the linearized Bernoulli equation as limited to
the velocity in the pressure wave.

Upon substituting for W and W and using for w, equations
(38a) and (38b) with the S-terms omitted, there results

8p_ |lwa  2ymllsecy
p Us (y+1)m—(v—1

) cos [, (y—= tan ") +5,] (39)

where §, is to be taken as zero in the supersonic range.of W.
This result for the perturbation pressure is proportional to
II sec ¢; I has been plotted in figure 9, together with §,, as a
function of wave inclination 6 for W,=1.5.

DENSITY FIELD

The density perturbation is related to the velocity and
entropy perturbations according to equation (B12) of appen-
dix B; in the present notation this is

op G Wa_ 08

; T (B12)

The term in w, is the contribution of the pressure wave.
This term differs from ép/p (eq. (B11’)) by a simple factor 1/y,
so that the contribution is obtained at once from equation
(39).

The term in s is the contribution of the shear wave. The
entropy perturbation és has not been given explicitly before,
but it can be obtained from equation (11a) by use of geomet-
rical relations and the known result for ¢ (see following sec-
tion). Upon evaluation, the term in ds is found to be

_08_ |wa| 2(m—1)*cos 6
Cp UA ’)’+1_ m—1
vy—1

[(@ tan 6—1) cos «kq -+

b tan 8 sin xy] (40)
TEMPERATURE FIELD

The temperature perturbation follows at once from the
pressure and density perturbations according to the equation
of state; the appropriate small perturbation form of the
equation is

8T _sp_dp
T p »
SHOCK-WAVE PERTURBATION

The local perturbation in the shock inclination angle may
be written (cf. eq. (8))

c=¢(a cos x,y+b sin xy)

where @ and b are evaluated in equations (29) for W< 1 and
equations (34) for W >1 (b=0 for W >1).

The local shock deflection éx from the plane =0 is obtained
by integration of the slope o:

ox =f ocdy
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Ficure 10.—Amplitude and phase of ripples developggi in shock by
passage of shear wave. Initial Mach number Uy, 1.5.

The result may be put in the form

(41)

a’Fb?
% €08 (&Y + Ssnock)

6:13:"10,4[

where Sgnocx="tan™! }‘Z—) is the phase angle and A=2#/k is

the wave length of the initial shear wave.

For a given wave length the factor va®+- b? is proportional
to the amplitude of this sinusoidal corrugation in the shock
wave; ya?+ b? is plotted against the initial wave inclination 8
in figure 10. The phase angle 6.4 is also plotted: the
shock-wave corrugation is in phase with the initial shear
wave (8p.—0) when the initial wave is horizontal (6=0).
The shock corrugation progressively lags the initial shear
wave as 0 is increased until the sonic condition W=1 is
reached; at this point the lag is 90°, and this value is main-
tained throughout the range W_>>1 as 0 is increased to 90°
(vertical initial shear wave). At 6=90° the amplitude
factor 4/a®+ b? has fallen to zero: a vertical sinusoidal shear
wave passing by convection through a vertical shock wave
causes no perturbation of the shock form or position.

INTENSITY OF SOUND FIELD

The analysis implies that the interaction of turbulence with
a shock wave does not give rise to any great amplification of
the fluctuation energy, but it does provide a transformation
from a relatively quiet form (initial turbulence) to a relatively
noisy form (final turbulence plus sound field). On an
acoustic scale the level of the noise generated is found to be

relatively high.® It will suffice for an order-of-magnitude
estimate to replace the turbulent field by a single plane wave,
or Fourier component, with the same kinetic-energy density.
Roughly this implies that the root-mean-square turbulent
velocity is to be identified with 0.707|w,].

The sound pressure is proportional to Il sec ¢, where II is
plotted in figure 9. The relatively high values indicated
for the subsonic range attenuate rapidly with distance z
downstream of the shock; when x appreciably exceeds several
wave lengths, the values are negligible compared with those
in the supersonic range. A rough average over all wave
inclinations 4, assuming the subsonic range contributes
nothing, gives |II sec ¢ 220.082; this value will be used in the
noise estimate.

The noise level in decibels relative to the standard reference
level 8p,=2X 10" atmospheres is given by

op
db=201
g 5

8

op p)
=201lo (———
g P oD,

where the 8p’s are root-mean-square values.
(39)

(42)
By equation

5p rms_|w,| V2 ym
P Us (v+1)m—(y—

As an example the noise level generated by the turbulence
passing through a normal shock in a representative super-
sonic wind tunnel will be estimated. A root-mean-square
velocity of turbulence of 1 foot per second is assumed to exist
in the test section where the mean speed is 1400 feet per
second and the Mach number is 1.5 (U,=1.5). Thus
0.707|w,| and U, are taken to be 1 and 1400 feet per second,
respectively. A summary of these and the remaining para-
meters of the example is

(43)

T3 | II sec o |

| M sec | =0.082
0.707 |w4 =1 foot per second
U,=1400 feet per second
m=1.862 (~Us=1.5)
y=14
p=0.670 atmosphere (~1 atm. reservoir pressure)
8p,=2X10"1° atmospheres

The estimate based on equation (43) gives a pressure
perturbation dép rms/p=7.50X107°% and by equation (42)
the corresponding sound pressure level is 108 decibels. This
represents very intense noise, reaching a level which can
damage the ear on continued exposure (ref. 9). This noise

6 This is more a testimony to the great sensitivity of the ear than to the energy content of the

noise; thus the ear-splitting noise in the vicinity of a jet engine (say, 140 decibels) is produced
by pressure fluctuations of =4=0.003 of an atmosphere.
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Shock
Ficurke 11.—Construction for translation 1V to render cither of two
sound-wave patterns stationary in a main stream Uy.

estimate i1s thought to be conservative, corresponding to a
supersonic wind tunnel with a relatively low level of turbu-
lence. It appears probable that many tunnels will consid-
erably exceed thislevel.

GENERALIZATION TO OBLIQUE SHOCKS

The analysis refers to low through a normal shock, but the
results are easily generalized for oblique shocks. In the
oblique-shock case the component of the upstream velocity
normal to the shock plays the role of U,; the component par-
allel to the shock is ignored in formulating the equivalent
steady-flow problem. A formal approach is to retain the
present definitions wherein U, is the actual upstream veloc-
ity (taken horizontal) and 6 and ¢ are referred to the horizon-
tal; the oblique shock is assumed inclined by some angle «
measured clockwise from the vertical. Then the present
formulas will be generalized to apply to the oblique shock if
the following transformations are made:

Us—Uy cos a
0—0+4«
p—ota

RELATED PROBLEMS

The sound field produced downstream by the convection
of turbulence through a shock has been discussed. Also of
interest are sound fields incident upon a shock in the absence
of turbulence. The elementary sound disturbance is the
plane sinusoidal wave: a longitudinal wave. The passage of
such a wave through a shock, which is an unsteady-flow
problem, can again be converted to an equivalent steady-

flow problem by transformation to a reference frame moving
with a suitable velocity parallel to the shock front; in this
frame the sound-wave pattern will appear as a stationary
Mach wave pattern. A diagrammatic construction is shown
in figure 11. Note that either of two sound patterns of
uniquely related inclinations may be rendered stationary by
a given choice of V; the two patterns may be identified with
the two families of Mach waves in a stream of supersonic
velocity W. .

The equations for the boundary conditions at the shock
and the vorticity behind the shock will be modified from
those for the present case of the shear wave, but the general
character of the solution will be unchanged. Thus, a shear
wave as well as a sound wave will appear downstream of the
shock. The discussion will be carried no further here: the
solution has been obtained in reference 5 by the unsteady-
flow method.

The interaction of a sinusoidal Mach wave pattern with a
normal shock constitutes a simple special case: here the
velocity V of the moving reference frame may be taken to
be zero. 'This problem has been solved in general terms by
Adams (ref. 7); he limited his discussion, however, to the
vicinity immediately downstream of the shock. The char-
acter of the flow further downstream can be inferred from the
parallel that exists between this problem and the problem
herein of the horizontal shear wave: in both cases V is zero.
The asymptotic flow far downstream is therefore a horizontal
sinusoidal shear wave. Near the shock the wave is modified
by transverse and axial compounents (with associated pres-
sure perturbations) which attenuate exponentially with dis-
tance downstream of the shock (cf. fig. 5).

According to these considerations, sinusoidal corrugations
in a wind-tunnel wall, or a plate, upstream of a plane shock
wave will generate a horizontal sinusoidal shear flow. Such
a shear flow might have applications in special experimental
work.

CONCLUDING REMARKS

The effects produced by the convection of an inclined
plane sinusoidal shear wave through a normal shock have
been analyzed. Such a wave may be interpreted as a single
spectrum component of a turbulent field; that is, the turbu-
lent field can be represented as a superposition of such shear
waves of all orientations and wave lengths (Fourier integral).

When the turbulence is convected through a shock, the
individual waves do not mutually interfere if, as specified
herein, the intensity is sufficiently low: thus the modified
field downstream of the shock can be obtained in principle
by superposition of the modified individual waves. In prac-
tice the initial wave distribution is known only statistically,
and statistical changes only can be calculated. In either
case the present analysis of the behavior of a representative
individual wave constitutes a prerequisite to the determina-
tion of the changes in the weak turbulent field.

It is found that a sinusoidal shear wave of arbitrary in-
clination as it passes into the shock gives rise downstream
to a shear wave of altered inclination and altered amplitude.
In addition, there is generated a ‘“‘pressure wave’’: an addi-
tional velocity field with associated pressure disturbances
that can be recognized as sound waves.
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The analysis is made in a frame of reference moving with
a certain velocity W referred to axes at rest relative to the
general mass of fluid downstream of the shock: W is the
vector sum of the reversed downstream velocity and the
cross-stream speed of the ripple pattern in the shock wave.
The results depend crucially on whether W is subsonic or
supersonic: when W is subsonic both the shear wave and
pressure wave are shifted in phase relative to the initial
shear wave, and the pressure wave shows an exponential at-
tenuation downstream of the shock; when W is supersonic
there are no phase shifts, and the pressure wave takes the
form of a plane, undamped, sinusoidal sound wave.

A weak initial shear wave is found to produce a surpris-
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ingly intense pressure wave or sound field downstream of the
shock, as measured in acoustic terms. This implies that the
convection of relatively low-intensity turbulence through a
shock will generate a very intense noise field in the down-
stream region. In an example the noise pressure level gen-
erated by turbulence in a representative supersonic wind
tunnel was estimated to be of the order of 108 decibels.

Lewis Fricar ProrpuLsioN LABORATORY
NATIONAL ADVIsORY COMMITTEE FOR AERONAUTICS
CLEVELAND, Ouro, September 26, 1952

APPENDIX A
SYMBOLS
The following symbols are used in this report: w, that part of w associated with pressure wave
A function defined in eqs. (23) z,Y rectangular coordinates (fig. 3)
a parameter in shock-wave perturbation (eq. (8)); g= ‘/1—_72
also speed of sound o
B function defined in eqs. (23) Bo= {‘/_1_;_ w -I/I_7<1
b parameter in shock-wave perturbation (eq. (8)) \/ W'—1 W>1
C function defined in eqs. (30) A ratio of specific heats
64 function defined in eqgs. (35) _ 8, phase lead of pressurc wave relative to incident
=¢'’B, cos ¢ for W>1 shear wave
¢ parameter =c¢'kBy cos ¢ for W<1> 85 phase load of refracted shear wave relative to
¢’ constant of integration incident shear wave
¢’ constant of integration € measure of strength of incident shear wave
ep specific heat at constant pressure (lwal/Wa)
D function defined in eqs. (30) 0 inclination of lines of constant phase in incident
D’ function defined in eqs. (35) shear wave (figs. 1, 2, 3, and 4) _
d parameter (=d’ kB, cos ¢) 0., critical value of 8 for which W=1 (function of U,)
a constant of integration K wave number of refracted shear wave
E function defined in eqs. (30) © Mach angle associated with W (sin™! (1/W))
E’ function defined in eqs. (35) £n inclined rectangular coordinates (fig. 3)
F function defined in eqs. (30) I relative amplitude of velocity component w in
F’ function defined in eqs. (35) pressure wave (see egs. (38a) and (38b))
a function defined in eqs. (35) p fluid density
H stagnation enthalpy (per unit mass) a perturbation in local shock angle (fig. 4)
k wave number of shear wave in region A4 (incident @ inclination of lines of constant phase in refracted
shear wave) shear wave
M Mach number (U/a, appendix B) o’ - inclination of lines of constant phase in pressure
m velocity ratio across normal shock (L7,/U) wave
p pressure ¥ perturbation stream function
S relative amplitude of refracted shear wave (see Yo complementary function (component of y)
eqs. (38a) and (38b)) v particular integral (component of )
s entropy (per unit mass) Q vorticity (v.—uy)
T temperature (absolute) Subscripts:
¢ time . . o A region A (upstream of shock)
Uy stream Velomty components in z- and y-directions | evaluated at shock, on downstream side
_ (fig. 3) (equivalent steady-flow problem) z,y, £ n indicate the corresponding partial derivatives
U Mach number associated with U (U/a) on
u,0 perturbation velocity components in z- and y- (e. g., vzza) an exception is x,=x cos p=
directions, respectively (fig. 3) k cos 6
W stream velocity in ¢-direction (resultant of U and ) )
V) (equivalent steady-flow problem) (Unsul?scrlpted velocl.ty components, pressure, and
w Mach number associated with W (W/a) density refer to region downstream of shock.)
w,w’ perturbation velocity components in & and »- Prefix
directions, respectively (fig. 3) 8( ) increment in ( )




CONVECTION OF A PATTERN OF VORTICITY THROUGH A SHOCK WAVE 15

APPENDIX B

LINEAR PERTURBATION THEORY FOR ROTATIONAL FLOW

The generalized governing equation for the stream func-
tion can be obtained by extending Sears’ constant-energy
development (ref. 6) to include the effects of variation of
energy (total enthalpy). A different approach is, however,
employed herein. Equations for the pressure and density
fields are also obtained.

In applying the results of this appendix to the develop-
ments in the main text it is to be noted that the x- and
y-axes herein will go over, respectively, into the & and
n-axes therein; this is a consequence of the difference in
direction of the main stream in the two cases. There is &
corresponding change in the notation for the velocity com-
ponents.

GOYERNING EQUATION

Basie equations.—Consider the steady two-dimensional
adigbatic flow of an inviscid fluid with local velocity »’, ¢,
pressure p, density p, temperature 7, and entropy s. As-
sume only small perturbations from a uniform horizontal
flow such that #'=U--u, v'=v, with «/U, »/U<<1, and
also dp/p, dpfp, ete. <<1. Then the basic flow equations
may be linearized by neglecting quantities of order u/U,
and so forth, in comparison with unity. A convenient form
of these linearized equations is

Continuity: u,+zvy+% %:0 (B1)
State: @P:_‘SLQ__Q‘: (B2)
P PpaA Gy
Energy: 7].));=0 (B3)
—p:=pl U,
Momentum: } ®B4)
—Py= pl7 e,

where D/Dt signifies the Lagrangian operator for differentia-
tion following the fluid motion.

Elimination of density from continuity equation.—The
Lagrangian form of the state equation is, by virtue of the
energy equation,

1 \
=0 (T +w)pe+-vp,]

Upon linearizing, assuming p, and p. to be of comparable
magnitude, this is

The linearized continuity equation (B1) may accordingly be
written
(1 —M3u,+v,=0 (B35)
Formulation of governing equation.—Define a stream fune-
tion ¢ such that

U=y,

v=—01-3M¢, (B6)
Then equation (B5) is identically satisfied by u and »r as
defined in equation (B6). The governing equation for ¢ is
now obtained by expressing the vorticity »,—u, =9 in terms

of ¢:

(1"*‘[2)1!/11'%_5&1/1/:—9 (BT)

A useful expression of the vorticity in terms of gradients of
entropy and total enthalpy is given in reference 10, equation
(8.3), as

Q===
g \.on on

1 /0H T bs)

where ¢ is the resultant veloeity and 0fon indicates differ-
entiation normal to a streamline. In the small-perturbation
flow the streamlines are approximated by the lines y=econ-

stant, so that 0/on=~0/0y; also g=U. Thus
_qL (°H _p0s
“U\oy T oy

The governing equation for ¢, equation (B7), can now be
amplified to read

_H,

(U= Mt gy = — 0T (BS)
This equation and its companion
U=y, 8B6)

v=— (1_3‘[2)‘1’1

constitute the simplified generalization of Sears’ governing
equation for linearized rotational flow (ref. 6, eqs. (12) and
(15)); Sears’ equation is restricted to flows of constant total
enthalpy H.

Equation (B8) exhibits the following very interesting
property: In the small-perturbation velocity field considered here
the effect of the rotation or rorticity Q is independent of how it
arises, whether from a gradient of entropy or a gradient of tfotal
enthalpy, or @ combination of both. And it is only through their
contribution to @ (and perhaps to the boundary conditions) that
variations in entropy and total enthalpy affect the velocity field
at all.
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PRESSURE FIELD

Equations relating the pressure distribution to the velocity
distribution will now be derived: The momentum equations
(B4) may be rewritten in the form:

%‘—!— Uu,=0
(B9)
%—}- Uuy=—-UQ
since Q=r,—u,.

Now let consideration be limited to special types of flow such
that

u=u’'+u"’
} (B10)
r=r
where %/, ¢’ is an irrotational flow (¢v',—u’,=0) and
w’’=u’’(y) is a pure shear flow parallel to » (»/=0)." Then
the vorticity 9 is given by
Q=r,—u,=—u"’,
and
u'’ ;=0
Thus equations (B9) become
B’-’—{— Uu';=0
P
By + 0w, =0
p
These two equations are equivalent to
61) T ot
" +Llu'=0 (B11)

7 Since JI and s are constant along streamlines (ref. 10), this approximates the general
small-perturbation flow to the extent that the lines y=constant approximate streamlines.

which is just the linearized Bernoulli equation in terms u’
alone.

The physical interpretation is this: If the assumed total per-
turbation consists of a plane shear flow (u'’, 0) and a potential
flow (W', ¢'), then there is no pressure perturbation associated
with the shear flow; the entire pressure perturbation arises from
the potential flow and is related to u’ by the ordinary linearized
Bernoulli equation. In other words, the pressure is obtained by
subtracting out the shear-flow velocity and applying the linear-
tzed Bernoulli equation to the remaining veloeity.

DENSITY FIELD

The density distribution can be related to the veloeily and
entropy distributions as follows: The starting point is the
differential equation of state (B2)

Again assume that the flow is a combined potential flow
(u’,2”) and shear flow (¥’/,0).% (Sec eqs. (B10) and after)
Then equation (B11) applies for ép/p, and the density field
is given by

or
4 @
o ___ w38

e (B12)

Thus it s found that the density perturbation depends on the
potential flow via the relocity perturbation u’ and on the shear
flow via the entropy perturbation 8s.

% Since I7 and s are constant along streamlines (ref. 10), this approximates the general
small-perturbation flow to the extent that the lines y=constant approaimate streamlines.

APPENDIX C

VARIANTS OF THE SHOCK RELATIONS

The ratio of the normal velocities before and after the
shock has been defined as m:

m=107/U (cn

Thus by reference 8. equation (114),

1+75 Lre

where U, is the normal Mach number ahead of the shock.
Correspondingly, U is the normal Mach number behind the
shock, and by reference 8, equation (112),

—1 =2
I+ T
(z‘ = — ’y—:\l‘

77 2
=20

(C3)

From equations (('2) and (C3) it can be shown that

>

2

o~
4

FGFnm—D 8
and —_
W(;A;_;;i_i_—:m —1 (C5)
1+75=T .7
where .
g=1-0"

The equality of {ransverse velocity components across an
oblique-shock wave requires, in the present notation, that

U, tan 8= tan ¢
Then, with the definition (C1),
(C6)

Equations (C'2) and (C6) together allow ¢ to be determined
in terms of @ and T,.

m tan d=tan ¢
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