NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

REPORT 1220

CALCULATIONS OF LAMINAR HEAT TRANSFER
AROUND CYLINDERS OF ARBITRARY CROSS SECTION
AND TRANSPIRATION-COOLED WALLS WITH
APPLICATION TO TURBINE BLADE COOLING

By E. R. G. ECKERT and J. N. B. LIVINGOOD

1955

For sale by the Superintendent of Documents, U. S. Government Printing Office, Wa hngtn..aDC Yearly subscription, $10; foreign, $11.25;
single copy price varies according to size - - - = - - - = - e 25 cents




REPORT 1220

CALCULATIONS OF LAMINAR HEAT TRANSFER
AROUND CYLINDERS OF ARBITRARY CROSS SECTION
AND TRANSPIRATION-COOLED WALLS WITH
APPLICATION TO TURBINE BLADE COOLING

By E. R. G. ECKERT and J. N. B. LIVINGOOD

Lewis Flight Propulsion Laboratory
Cleveland, Ohio



National Advisory Committee for Aeronautics

Headquarters, 1612 H Street NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study
of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act

approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President,
and serve as such without compensation.

JeroMmE C. HUNsARER, Sc. D., Massachusetts Institute of Technology, Chairman

LeoNarp CarMIcHAEL, Pu. D., Secretary, Smithsonian Institution, Viee Chairman

Josepu P. Apawms, LL. B, Vice Chairman, Civil Aeronautics
Board.

ArLeN V. AstiN, Pu. D., Director, National Bureau of Standards.

PrestoN R. Bassert, M. A., Vice President, Sperry Rand Corp.

DrerLev W. Bronk, Pu. D., President, Rockefeller Institute for
Medical Research.

TroMas S. Comss, Vice Admiral, United States Navy, Deputy
Chief of Naval Operations (Air).

Freperick C. Crawrorp, Sc. D., Chairman of the Board,
Thompson Produects, Inc.

Rarpu S. Damon, D. Eng., President, Trans World Airlines, Inec.

CARLJ. PrinGgsTAG, Rear Admiral, United States Navy, Assistant
Chief for Field Activities, Bureau of Aeronautics.

Donawp L. Purr, Lieutenant General, United States Air Force,
Deputy Chief of Staff (Development).

DonaLp A. QuarLis, D. Eng., Secretary of the Air Force.

ArtaUrR E. Raymonp, Sc. D., Vice President—Engineering,
Douglas Aircraft Co., Inc.

Francis W. REeicHELDERFER, Sc. D., Chief, United States
Weather Bureau.

Louis S. RorascuiLp, PH. B., Under Secretary of Commerce
for Transportation.

Jamus H. Doouirrig, Sc. D., Vice President, Shell Oil Co. Naruan F. Twining, General, United States Air Force, Chief

of Staff.

Hueu L. Drypen, Pu. D., Director Joun F. Vicrory, LL. D., Execulive Secrelaiy

Joun W. CrowLey, Jr., B. S., Associate Director for Research Epwarp H. CuamBeRLIN, Ezrecutive Officer

Henry J. E. Remp, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.
Syite J. DEFrance, D. Eng., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.
Epwarp R. Suarr, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland, Ohio

Warter C. Wirniams, B. S., Chief, High-Speed Flight Station, Edwards, Calif.

II




REPORT 1220
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CROSS SECTION AND TRANSPIRATION-COOLED WALLS WITH
APPLICATION TO TURBINE BLADE COOLING!

By E. R. G. Ecrkert and J. N. B. LiviNncoon

SUMMARY

An approximate method for the development of flow and
thermal boundary layers in the laminar region on eylinders
with arbitrary cross section and transpiration-cooled walls is
obtained by the use of Karman’s integrated momentum equation
and an analogous heat-flow equation. Incompressible flow
with constant property, values throughout the boundary layer is
assumed. The velocity and temperature profiles within the
boundary layer are approzimated by expressions composed of
trigonometric functions. Shape parameters for these profiles
and functions necessary for the solution of the boundary-layer
equations are presented as graphs so that the calculation for
any specific case is reduced to the solution of two first-order
differential equations.

The method is applied to determine local heat-transfer
coefficients and surface temperatures in the laminar flow region
of the transpiration-cooled turbine blades for a given coolant
flow rate, or to calculate the coolant flow distribution which is
necessary in order to keep the blade temperature uniform along
the surface.

INTRODUCTION

Transpiration cooling is a very effective means for keeping
surfaces that are subject to a hot gas stream at a low tem-
perature. For use of this method, the surface is fabricated
from a porous material and a cooling fluid is blown through
the pores. Along the outside surface the cooling fluid builds
a film that insulates the wall from the hot gas stream. The
transpiration-cooling method may be applied to the cooling
of structural parts in propulsion systems such as gas-turbine
blades, combustion-chamber walls, and rocket nozzles. If
a heated fluid is blown through the porous wall, the same
method may be used to keep the surface temperature of the
wall at a value that is higher than the temperature in the
outside flow. In this way, the method may be applied in
de-icing of wings or other parts of airplanes and in the pro-
pulsion system.

This report presents a method by which the heat transfer
connected with transpiration cooling in two-dimensional
laminar flow around bodies of arbitrary cross section can be
calculated. It considers only the case where the fluid
blown through the porous wall is the same as the one in the
outside flow. Although the particular application con-

sidered in this report is the cooling of turbine blades, the
method itself may be applied to other applications as well.
The procedure by which the calculation may be carried out
for any particular application is described in an appendix
of this report.

The determination of the heat transfer is based on the
calculation of the thermal boundary layer which builds up
around any body in a flow field. This thermal boundary
layer is interconnected with the flow boundary layer for
variable fluid properties dependent on temperature or super-
imposed on the velocity boundary layer when the properties
are independent of temperature. The build-up of the flow
boundary layer is determined by the pressure distribution
around the body under consideration. For the type of
pressure distribution occurring in the aforementioned applica-
tions, only approximate methods of calculation are direct
enough for engineering purposes. For the determination of
the thermal boundary layer in particular, two types of ap-
proach are known.

The first approach was introduced by Kroujiline for the
alculation of heat transfer on solid surfaces and presented
in more detail by Frosling and others (ref. 1). In this meth-
od, the flow boundary layer has to be known before the ther-
mal boundary layer can be calculated.

Usually a method such as that introduced by von Kdrmén
(ref. 2) or Pohlhausen (ref. 3), which fulfills the integrated
momentum equation of the boundary layer, is applied for
the calculation of the flow boundary layer. More recently,
Wieghardt and Walz (vef. 4) have used, in addition to the
momentum equation, an integrated energy equation, and
Tetervin and Lin (ref. 5) have introduced a still more general
integral condition for the boundary layer which may be used
in such calculations. The use of these expressions gives
better agreement with exact calculations and with measure-
ments in special cases, particularly in regions where the pres-
sure increases in flow direction. Since, in the application
considered, the regions of most concern are those where the
pressure decreases, the integrated momentum equation,
which is simplest to handle, will be used. Schlichting (ref.
6) used this equation to calculate the flow boundary layer
on a porous surface through which fluid is sucked in order
to keep the boundary layer laminar or to prevent flow sep-
aration. A paper by Dorodnitzyn (ref. 7) extended the
method to include the effect of Mach number and of variable
property values. However, this extension is developed only
for zero heat transfer. The calculation of the flow boundary

! Supersedes NACA RM E51F22, “Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls With Application to Turbine

Blade Cooling,” by E. R. G. Eckert and John N. B. Livingood, 1951.
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layer in this report will essentially follow Schlichting’s
approach.

After the flow boundary layer is determined, the thermal
boundary layer can be calculated according to the method of
Kroujiline by use of an integrated heat-flow equation. Ve-
locity profiles known from the calculation of the flow bound-
ary layer and temperature profiles within the boundary layer
whose shapes are approximated by a polynomial expression
are introduced into this heat-flow equation and the equation
is solved for the thickness ratio of the thermal boundary
layer to the flow boundary layer (ref. 1). This procedure,
however, becomes quite lengthy, especially when the number
of terms in the polynomial expression for the temperature
profile is increased in order to improve the accuracy of the
approximation. When an attempt was made at the NACA
Lewis laboratory to extend this method, which was previously
used only to determine the heat transfer on solid surfaces, to
transpiration-cooled porous walls, it was found that the
procedure for the solution of the heat-flow equation becomes
much simpler and more direct if the equation is solved for a
thermal boundary-layer thickness termed convection thick-
This will be explained in detail in a later section of
this report. After the method was developed and the cal-
culations were finished, a note by Dienemann (ref. 8) was
found in which the same kind of approach is briefly described.
Dienemann applies the method to calculate heat-transfer
coefficients on solid surfaces and proposes to extend it in
such a way as to account for a temperature variation along
the solid surface and the influence of internal frictional heating
within the boundary layer. He also shows that this method
is superior to other approximations which were compared
by Goland (ref. 9) with an exact solution for a cylinder with
circular cross section. It may be of interest to mention that
Goland obtained the exact solution from the fact that the
differential equation describing the temperature boundary
layer around an infinite cylinder in a flow normal to its axis
and for a fluid with a Prandtl number of 1 has exactly the
same form as the differential equation describing the span-
wise flow within the boundary'layer on a yawed infinite cyl-
inder. Calculations of the heat transfer on a transpiration-
cooled flat plate which included the variation of property
values with temperature were made by Yuan (ref. 10) with
the assumption that the total-temperature profile within the
boundary layer is similar to the velocity profile. This as-
sumption is valid for a Prandtl number of 1 and for no pressure
gradient. The purpose of the present investigation is to
consider the influence of pressure gradients as well as
Prandtl numbers different from unity.

A second approach for obtaining an approximate solution
of the thermal boundary layer was described in reference 1.
It is still simpler than the approach by Kroujiline, since in
this method it is not necessary to calculate the flow boundary
layer prior to the determination of the thermal boundary
layer. This method uses exact solutions of the boundary-
layer equations which are known for a special type of pressure
variation in the flow which is encountered on wedge-shaped
bodies. These velocity profiles and the temperature profiles
are used to approximate the actual profiles for arbitrary
pressure variations. A differential equation is set up
with the condition that the growth of the boundary layer

ness.

at any place on the cylinder with arbitrary cross section
be the same as for the wedge-type flow when the boundary-
layer thickness and the pressure gradient have the same
values in both cases. When this idea is applied to the
momentum thickness of the boundary layer, the resulting
equation is identical with Kdrmén's integrated momentum

equation. When it is applied to the convection thickness of
the thermal boundary layer, the resulting differential

equation fulfills the requirement that the heat transferred
from the surface to the fluid must be found again within the
boundary layer (ref. 11). This method was compared with
exact solutions and experimental values in reference 1 and in
investigations performed at the University of California
(ref. 12), and the agreement obtained was quite satisfactory.
This method can easily be extended to include effects of
variations of the surface temperature and of internal heating
(ref. 11); however, the corresponding exact solutions for the
wedge-type flow must be known. Such solutions, which take
into account the effects of a surface temperature variation
and of internal heating, are presented in references 11 and 13.
The method may also be extended to the transpiration
cooling of porous surfaces as soon as the corresponding exact
solutions for this case are known. A few of these solutions
are presented in reference 14. However, too few solutions
are given for use as a basis for the approximate method.
Brown (ref. 15) has recently made an extensive calculation
to obtain exact solutions in transpiration-cooled porous
surfaces of the wedge-flow type which include the effect of
pressure gradients and of variable property values. The
results of this calculation are now being used to extend the
method mentioned in the preceding paragraph to transpira-
tion cooling.

This paper deals with the method described as the first
type of approach. The method has the advantage of being
applicable to cases for which the corresponding wedge-type
flow and heat transfer are not known.

STATEMENT OF PROBLEM AND SIMPLIFYING
ASSUMPTIONS

This report is a contribution to the problem of determining
the development of the thermal boundary layer and the
heat-transfer coefficients on a body of arbitrary cross section
with porous walls in a two-dimensional flow. Figure 1
shows the cross section of a body of this type. At Reynolds
numbers that are sufficiently high, the flow around the body
may be subdivided into the boundary-layer region, which
surrounds the body with a very small thickness, and the

_ ~-Boundary layer

--Stagnation point

U

Frcure 1.—Sketch of turbine blade indicating notations used.




LAMINAR HEAT TRANSFER AROUND POROUS

potential flow, which determines the pressure distribution
around the body. The highest pressure on the body is found
at the stagnation point. The pressure then decreases in
flow direction along both sides of the body and usually
increases again later. The pressure variation along the
body determines the development of the flow boundary layer
and also whether the boundary layer is laminar or turbulent.
Usually, the laminar part is confined to a region near the nose
of the body. The laminar boundary-layer region is investi-
gated herein. The flow of coolant through the porous
surface may be described by the velocity », with which the
coolant leaves the surface in a normal direction. The ques-
tions which will be answered in this report are (1) what are
the local heat-transfer coefficient and the surface tempera-
ture on any point along the body for any prescribed dis-
tribution of the coolant velocity, and (2) what distribution
of the coolant velocity gives a desired distribution of the
heat-transfer coeflicient and of the surface temperature
around the body. Usually, for example, a constant wall
temperature is most desirable and the problem is to determine
that distribution of the coolant velocity which results in a
constant wall temperature.

A number of simplifications must be introduced in order to
keep the time required for the solution of a special problem
within a tolerable amount. The following assumptions are
made: The flow is two-dimensional and in steady state,
internal frictional heating within the boundary layer can be
neglected, and property values (density, viscosity, and heat
conductivity) may be considered constant. The influence
of temperature gradients along the surface of the body is
neglected. Although this influence may be considerable
(ref. 13), there is no quantitative information available for
transpiration-cooled surfaces that would permit this effect
to be taken into account.

In applying the method to the determination of the tem-
peratures of transpiration-cooled turbine blades, neglecting
internal frictional heating should be admissible; since the
temperature differences within the boundary layer generated
by the cooling process are considerably larger than those
generated by aerodynamic heating. This will be shown in
more detall later. On the other hand, the large temperature
variation in the boundary layer is connected with a con-
siderable variation of the property values. The influence of
this variation on the heat transfer may be approximately
corrected by use of the results in reference 15.

BOUNDARY-LAYER EQUATIONS

In a coordinate system, shown in figure 1, where the z-axis
runs along the surface and the y-direction is normal to the
surface and under the assumptions mentioned in the previous
section, the differential equations describing the velocity and
the temperature within the boundary layer are

ou* ou* op*, o*u*
L OO C DS OAL
U bx*+pv oy bm*+“by*2 )
ou*  ov*
SRS S 9
oz* " oy* ! @

ot ot ot
* — * 2 = :
pC,U o pCRY oyt k : _1/*2 (3)

CYLINDERS OF ARBITRARY CROSS SECTION 3

(All symbols are defined in appendix A.) The equations
have to fulfill the following boundary conditions: At the sur-
face (y=0), the velocity component »* parallel to the surface
is 0, the velocity component »* normal to the surface has a
finite value »,*, and the temperature of the surface is inter-
connected with the velocity »,* by the over-all heat-transfer
process, so that only one of the two values may be prescribed.
At the outer edge of the boundary layer (y= «), the u* com-
ponent of the velocity transforms asymptotically into the
stream volocity [U* and the temperature transforms into the
stream temperature. Since only temperature differences
appear in equation (3), the temperature level does not enter
into the problem. Therefore, all temperatures will be meas-
ured from the temperature in the stream as reference tem-
perature, and ¢ will be interpreted as the temperature differ-
ence from this reference temperature. Consequently, outside
of the boundary layer, {=0.

In a gas stream, it is advantageous to interpret ¢ as the
total temperature difference. In this case, equation (3)
already includes the effect of the frictional heating for a gas
with a Prandtl number of 1. Since for all gases, the Prandtl
number does not deviate much from the value 1, equation
(3) also gives a good approximation to the real conditions for
gases as long as the temperature differences impressed upon
the boundary layer by a cooling process are larger than the
temperature differences created by internal friction.

In order to reduce the number of parameters, the differen-
tial equations will be made dimensionless. For this purpose,
all lengths measured parallel to z are divided by L, the dis-
tance between the stagnation point and the trailing edge of
the body measured along the surface, and all velocities in
this direction are divided by an upstream velocity U7,. All
lengths and all velocities parallel to y are, in addition, multi-
plied by the square root of Reynolds numbers e, based on
the body length L and the upstream velocity (/:

=

i u* Yy = v*
L u=r" y=Y VRe v=2+Re, 4)
Jk U 0

r==  U=,;

L U,

The pressure gradient 0p*/0z*is impressed upon the boundary

layer by the potential flow outside the boundary layer and

can be replaced by the stream velocity gradient by use of
Bernoulli’s equation:

op* dU*

— — /Y* 5
(07 ol ozt ()
In this way, equations (1) to (3) transform into
ou , ou_ ,,oU  d*u
Yor oy 'br+bgﬁ ©)
ou , OV _
ot ot 1 o )
ol oy Proy ®)
The boundary conditions for these equations become
y=0 u=0 v=0,,(x) t=tu(2) 9)
Yy—> u—U t—0 (10

The equations are now integrated over y from y=0 to y= «.
The result of this integration is Kérmédn’s integrated momen-
tum equation
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([If (7w dy+ f(b—u)(lg/ S <a> (11)

and the heat-flow equation

d (° 1 /ot
: e (OU 9
I J; tu dy—tu0w Pr <by>m (12)

In order to simplify these equations, the following charac-
teristic boundary-layer thicknesses are introduced:
(1) The displacement thickness of the flow boundary

layer
P w
6,1—10 <1—-,j) dy (13)

(2) The momentum or impulse thickness of the flow
boundary layer

51-:J0 %<1——> dy (14)

(3) The convection thickness of the thermal boundary

layer
—f 0 — (/1/ (15)

where 6 is the ratio t/t, with the limiting values =1 for
y=0 and =0 for y=». Introducing these boundary-
layer thicknesses and writing dU/dz as U’ transforms equa-
tions (11) and (12) into

o o (O

((/ 50 TT" — U= Oy)w (16)
a (toU8y ) —tul=— ( - (17)
(].l' w tc wPw 07/ ”

VELOCITY AND TEMPERATURE PROFILES

In order to obtain an approximate solution of the last two
equations, approximate expressions for the velocity and
temperature profiles will be introduced. The accuracy of
the results of this calculation will depend on how well the
actual profiles are approximated by the assumed shapes.
The temperature profiles as well as the velocity profiles are
chosen as a one-parameter family. The parameter for each
family is determined in such a way that the assumed profiles
fulfill the exact boundary-layer equations (6) to (8) at the
wall surface:

g_;:)ﬁ ’ aﬁ(ay) (18)

o (55).~ a20> (19)

In addition, the following boundary conditions will be
fulfilled:

=0 u=0 =1 (20)
y—o u—U 6—0 (21)

Originally, polynomial expressions were used to approximate
both the velocity and the temperature profiles. Schlichting,
however, pointed out that better approximations may be
obtained by expressions composed of trigonometric functions
(ref. 6).  The following profiles are used in this report:

Velocity profile.—For A>0, 0<

Oﬂ\

3
U—sm = ——|—A <l—e S—sin — E)
and for %_>_ 1L > (22)
U —-3=
—,:1 —Ae 6
U J

By use of this profile, the following expression is found from
equation (18) for the shape parameter A:

[ '/52—1 )
A ]

(H—( %—~> V0

The velocity profile equation (22) has already been used by
Schlichting (ref. 6). Forasolid flat plate (/=0 and »,=0),
it approximates the Blasius velocity profile very well, and for
[I’=0 and »,=—3/8, transforms into the exact asymp-
totic suction profile as calculated by Schlichting (vef. 6).

(23)

For A<0, ogggl,

8 e B o e y

U—sm 5 6 Asln (1 sin

and for 2 5 =1 < (24)
U
! J

The shape parameter in this case, as obtained from equation
)

(18), 1s

For the solid flat plate, this profile gives the same expression
as equation (22). It will be shown later that the profile
approximates the separation profile as calculated by Hartree
(ref. 16) better than the usual polynomial expression.
Separation occurs at A=—1 and the corresponding profile
has the shape

U . ,TY
U 2
0 sin? S (26)
Temperature profile.—For 0 < ;—/ <1,
t
: =f=1 A il
tw —=1—sIin 2— E~ t \1113 5— *Sl]l ;)‘ 5—
(27
and fm = >1 )
0,
=0

The shape factor for this profile is obtained from equation
(19) as follows:
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—Prv,6,

T+Pr v,6, (28)

A=

In this case, a negative shape factor A, is always connected

with a positive value of »,, whereas for the velocity profile,

the sign of the shape factor depends, in addition, on the
pressure gradient dU/dz.

With these profiles, the different boundary-layer thick-

nesses and the velocity gradient at the wall may be calculated.

,_<1_E> <___ | (29)

%:0.1366+0.03791A—0.00786 AT SASO  (30)

D] )
(G ) w

%= 0.1366—0.01456A—0.02618 A S A0 (33)

du U

The nondimensional temperature gradient at the wall is
de
B).—~5 3 A+a) (35)

The corresponding expressions for the convection thickness
of the thermal boundary layer are presented in appendix B.

TRANSFORMATION OF BOUNDARY-LAYER EQUATIONS
FLOW BOUNDARY LAYER
Multiplication of equation (16) by é,/U/ and a partial differ-
entiation of the first term give
Us, d5’+<2+5d> U’8:2—0,6 —[—] %Z)w (36)
The expression in the parentheses of the second term on the
left-hand side and the term on the right-hand side are func-
tions of the shape parameter A. Therefore, the momentum
equation for the boundary layer may be written in its final
form.
U d6:?)
2 dzx

with the following expressions for the two functions f, and

_f (A)_fl(A)U’ 2+7)w i (37)

f», which are obtained from equations (29) to (34):

0.3634—0.03005A

(N —
Ha) 2+0.1366+0.03791A—0.00786A2 (38)
A>0
fz(A):[g+(3—g)zx](O.1366+O.O3791A—0.00786A2 (39)
B 0.3634—0.1366A
fl(A)_2+0.1366—0.01456A—0.02618A2 (40)
A<0
fz(A)zg (1+A) (0.1366—0.01456 A—0.0261 8 A (41)

These functions are presented in figure 2. All curves have
a break at A=0 because different expressions approximate
the velocity profiles for positive and negative A values.
Equation (37) is a linear first-order differential equation
from which the momentum thickness of the boundary layer

14 16 I8 20

l. 12

A

Figure 2.—Chart for determination of f;, f;, and 8,/6 used in flow boundary-layer differential equation. (An 18- by 10}¢-in. working chart of this
figure may be obtained upon request from NACA Headquarters.)
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Ficure 3.—Chart for determination of shape parameter A for flow boundary-layer calculations.

(A 22- by 15%-in. working chart of this figure

may be obtained upon request from NACA Headquarters.)

can be obtained by integration, as soon as the gradient U’
of the stream velocity [/ and the porous flow characterized
by 2, are known as functions of z. In order to make the
calculations more convenient, the shape parameter A can be
expressed as a function of the two quantities U8 and
Uwai

U’63—2 vabi %
A>0,A= 2 = = = 42)
i b
TORCHRE
L‘vlaiz’_g vu'ai %
AL0,A=——— (43)
l(fs_l +Z 9.6 O
2\05 9 oty

The ratio 8;/6 occurring in these equations is a function of A
(see eqs. (30) and (33) and fig. 2). The functional relation
for A is plotted in figure 3. By use of figures 2 and 3, the
integration procedure for the differential equation (37) be-
comes very simple. The step-by-step procedure for such a
calculation is presented in appendix C.

In order to start the calculation at the stagnation point,
the boundary-layer thickness 8, at this location must be

known. At the stagnation point, the stream velocity U is
zero. Since, on a blunt nose, the increase of the boundary-

layer thickness is never infinite, the term on the right-hand
side of equation (37) has to be zero. This gives the equation

j‘g (A) _'fll(A) [/'”(S i2+ 'Dwai — 0 (44)

However, figure 3 also applies to the conditions at the stag-
From both relations, (782, A, fi, and f, were

nation point.

60—

40

vy YU’

I'icure 4.—Chart for determination of U’s? at stagnation point for
flow boundary-layer calculations.
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each obtained as a function of 2,6; by a trial-and-error
process. These values are presented in table I. The con-
nection between [/’672, A, and 2,6, is also shown in figure 3
as the stagnation line. Table I cannot be used immediately
to start the calculation because the value »,6; is not known.

2
v v
However, the value (C;D’ 1)2 éf,: which contains only known
values, is also a function of 7’52 and is plotted in figure 4.
From this ficure, U7/5 can be determined for a given »,%/U”
t=] 3 =)
and §; can then be obtained from this value.

THERMAL BOUNDARY LAYER

With the help of equations (28) and (35), the heat-flow
equation (17) is transformed into

T 1
Vo d i_ o= 1+§ PrKp,s (1

where K denotes the ratio ,/6. The last term on the right-
hand side accounts for a variation of the temperature along
the surface. A difficulty arises in connection with this term.
It is known from the results of references 11 and 13 that a
temperature gradient dt,/dz also has a pronounced effect on
the shape of the temperature profile. Since no such effect
was included in the assumed profile (eq. (27)), the signifi-
cance of the last term is doubtful. It was therefore neg-
lected herein, restricting this report to cases where the
variation of the surface temperature is kept small either by
internal conduction within the wall or by proper choice of
v, The investigation of the influence of large surface tem-
perature gradients will be left to future work. With this
simplification, equation (45) can be written in its final form

PrEv, \ Usiedty .
7+Pr K@'wé>— (£5)

Vgl AL

Zi(.l‘lf (Dvat,c):vw 3(.P7’K2‘106) (46)

where f; is a function of the product Pr Kr,d, as presented in

figure 5. For a solid wall (»,=0), the equation simplifies to
@ r 1 o
7z U.0=3 &prs 47)

The shape parameter A, may be written in the form

—Pr Kv,o
A= T Pr Rog =
This equation, together with the expressions for 6, ./6

(appendix B), determines a functional relation between
K, 6,./6, A, and Pr »,8, which is presented in figure 6. The
figure presents the ratios 6, /6 for each of three values of the
shape parameter A (—1, 0, and +41). For intermediate
values of A, linear interpolation in the range A=—1 to
A=0, or A=0 to A=1, at a constant value of K may be
used with good accuracy. The heat-flow equation (46)
is again a linear first-order differential equation from which
the thermal convection thickness is obtained by integration
when the stream velocity U, the flow through the porous
surface v,, and the Prandtl number Pr are prescribed, and
the boundary layer thickness 6 and the shape factor of the
flow boundary layer A are known from a preceding solution

428231—57 2

of equation (37). The step-by-step procedure for such a
calculation is explained in appendix C.

In order to start the calculation, the convection thickness
6,. must be known at the stagnation point. A partial
differentiation of the left-hand side of equation (46) gives

dat C+U/5t c—vwfs

At the stagnation point, U is zero, and the boundary-layer
inerease dé,, /dr is not infinite on a blunt-nosed body. This
results in the equation

O b=t (Pr Kvt)
or :
oty Yuef, (Pr Koud) 49)
V0
30

{u{m. m=mmnm:

EEEEE

B

A

A
:

e et
T

it
sma:

==

1 % 4 6 8 10
Pr Kvyd

Figure 5.—Chart for determination of f; used in thermal boundary-
layer differential equation.
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(b) A

F1curEe 6.—Chart for determination of K for thermal boundary-layer calculations.
upon request from NACA Headquarters.)

(a) A = 1.
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This is a relation between the two unknown ratios 4, /6 and
K. A second relation is given by figure 6. From both, the
values §,./6 and K can be determined by a trial-and-error
procedure. The values are presented in table II and
figure 7.

When the thermal convection boundary-layer thickness
is known, the local heat-transfer coefficient follows by a
simple calculation. The equation which defines the local
heat-transfer coefficient A is

This equation gives, for the local Nusselt number based on

the length L,
L > e <ae>
( g/,

Nu—
The introduction of equation (17) for the temperature
gradient leads to the expression

(50)

(51)

P [ d (t C&, c) ]va Br (fg_l) (52)

'\/Reo
Without porous cooling, equation (52) simplifies to
Nu = 1

In many cases, all the heat transferred from the outside
flow to the wall surface is picked up by the cooling fluid on
its flow through the porous wall. In this case, the wall

surface temperature may be calculated by the equation

htw: Pcpvw* (tc_tw) (54)

where #, is the temperature with which the coolant enters
the porous wall. The ratio of the difference in gas temper-
ature minus wall surface temperature to the difference in
gas temperature minus coolant temperature is given by the
expression
t?D

pc,,?),[*

b=

COMPARISON OF ASSUMED VELOCITY AND TEMPERATURE
PROFILES WITH EXACT SOLUTIONS

The accuracy of the method depends on how well the
assumed profiles approximate the actual ones. It is there-
fore necessary to check the accuracy of this approximation
with the results of exact calculations to the extent that these
are available. Such a comparison will be made in this section.

VELOCITY PROFILES

For the solid surface (»,=0), the comparison can be made
with exact solutions, which were obtained by Hartree (ref.
16), for wedge-type flow for which the stream velocity is a
power function of the distance from the stagnation point
(U=Ua™). A set of velocity profiles taken from reference
16 is presented as a family of dashed lines in figure 8, where
the ratio of the velocity « in the boundary layer to the stream
velocity U outside of the boundary layer is plotted over the
dimensionless distance

B
/‘) B

y*  |U*
v2—8 v

=

32 = 20 44 48 52 56 60

FiGure 7.—Chart for determination of 6, ./ and f; at stagnation point for thermal boundary-layer calculations.

.08 12 16 .20 .24 .28

8/’5 /8

(A 17- by 9-in. working chart

of this figure may be obtained upon request from NACA Headquarters.)
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Trigonometric approximation
————— Exact solution o
= =— Po!ynommll approximation

|

2 <) 4 5
z

Ficure 8.—Comparison of approximate velocity profiles for solid
surface with Hartree solutions (ref. 16). v, O.

and the shape parameter 8 is defined by the equation

DY
Bzﬁ:%]- The expression for the dimensionless displace-
: : 5 U
ment thickness is z;=-— —- Therefore,
v2—gV @
B walt
2ii=—— 6;" —
Bz Gt
. S : - U ]
A differentiation of U=U,z" gives U’'=m —= 8 —
T 2— B8 7
Therefore,
Bz=U"s (56)

The value z; as a function of g is presented in reference 1.
Since V'8 is a function of A, according to equations (42)
and (43), equation (56) presents a relation between g and A
from which A may be calculated for any value of 8. The
shape of the approximate velocity profile is determined by
A (eqs. (22) and (24)). In this way, the solid profiles of
figure 8 were determined. They are superimposed on the
exact profiles in such a way that the displacement thickness
is the same in both cases. Figure 8 shows that generally
the agreement between the exact profiles and the approxi-
mation used in this report is satisfactory. Only for the
separation profile (8=—0.1988) are the deviations larger,
but even for this separation profile the approximation by
equation (24) is better than the usual four-term polynomial
approximation, which is shown as a dash-dot line.

For a porous wall, some exact solutions are contained in
reference 14. The notations in this reference are the same
as the ones mentioned in the previous paragraph in connec-
tion with the Hartree solutions. In that report the porous
flow velocity v, is characterized by

o T
x_Lw\/ LU;‘_L“’\/ T

From this and the previous expression for z;
—\2—6 A .'51‘:0,057; (:)7)

The value of z; is presented in reference 14 as a function of
\ for two values of g (0 and 1). Therefore, equation (57)
presents a relation between X and A for a certain value of g.
Equation (5<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>