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REPORT 1262

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF TUNNEL WALLS
ON THE FORCES ON AN OSCILLATING AIRFOIL IN TWO-DIMENSIONAL
SUBSONIC COMPRESSIBLE FLOW !

By Harry L. Runvan, Doxarp S. Woorston, and A. GERALD RAINEY

SUMMARY

This report presents a theoretical and experimental investi-
gation of the effect of wind-tunnel walls on the air forces on an
oscillating wing in  two-dimensional subsonic compressible
flow. A method of solving an integral equation which relates
the downwash on a wing to the unknown loading is given, and
some comparisons are made between the theoretical results and
the experimental results. A resonance condition, which was
predicted by theory in a previous report (NACA Rep. 1150),
is shown experimentally to exist. In addition, application of
the analysis is made to @ number of examples in order to illus-
trate the influence of walls due to variations in frequency of
oscillation, Mach number, and ratio of tunnel height to wing
semichord.

INTRODUCTION

In the evaluation of results obtained by measurement of
the forces on a wing in a wind tunnel, the question of the
effect of the tunnel walls arises. In the case of steady flow
the problem has been extensively investigated and, in gen-
eral, relatively simple factors have been determined which
can be used to modify measurements of the forces on a wing
in a tunnel to correspond to free-air conditions. However,
the corresponding problem of the effect of walls on an os-
cillating airfoil has received relatively little attention, par-
ticularly in the case of compressible flow. The present
report concerns the wall effects in the oscillating case and
treats the problem in two-dimensional subsonic compressible
flow.

In incompressible flow, theoretical treatments of wall
effects on oscillating wings have been made by several in-
vestigators and reported in references 1, 2, and 3. These
investigators have shown generally that the tunnel-wall
effects are a maximum for some small values of the reduced
frequency and that the wall effects become negligible as the
reduced frequency is increased. Extension of the theoretical
treatment of the problem to include the effects of compressi-
bility of the fluid has been reported in reference 4. In this

reference, it is shown that, in addition to the large effect
noted at low values of the reduced frequency, under certain
conditions, large effects of the walls may be encountered at
higher values of the reduced frequency. These effects are
due to an acoustic resonant phenomenon which occurs when
a disturbance from the oscillating wing is reflected from the
tunnel wall back to the wing with such a phase relationship
that it reinforces a succeeding disturbance.

In reference 4, the problem was expressed as an integral
equation which relates the known downwash distribution
over the airfoil to the unknown lift distribution. One pur-
pose of the present report is to discuss further the integral
equation and to demonstrate a method of solving it. A
second purpose is to present some results showing wall effects
salculated by this procedure and, in some cases, to compare
the calculated results with experimental results. This phase
of the investigation is given in three parts: (1) A comparison
between analytically and experimentally determined values
for the lift and moment on a wing oscillating in pitch at
several subsonic Mach numbers; (2) an analytical study of
the effects of a variation in Mach number for a constant ratio
of tunnel height to wing semichord; and (3) an analytical
study of the effects of a variation in the ratio of tunnel height
to wing semichord. Portions of this material have been
reported previously in reference 5 and are included in the
present report in order to provide a more extensive and
unified presentation.

As a check, the integral equation for the downwash on a
wing oscillating between walls in a compressible medium is
reduced to the zero-frequency condition and is given in the
appendix. The resulting expression is in agreement with
steady-state results.

The calculation procedure and the results contained in this
report are of significance for such problems as the experi-
mental measurement of the forces on an oscillating airfoil,
the determination of wing-flutter characteristics in wind
tunnels, and also in certain possible types of flutter of airfoils
in cascade.

1 Supersedes NACA Technical Note 3416 by Harry L. Runyan, Donald S. Woolston, and A. Gerald Rainey, 1955.
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SYMBOLS

velocity of sound, ft/sec

coefficients in series expression for
lift (lislril)uti(m (eq. (16)), where
n=0 152

wing 501111(11()1‘(1, 1

displacement of
translation, ft

height of tunnel, ft

height of tunnel referred to wing
semichord

Hankel functions of the second kind

reduced-frequency parameter, bw/U/

kernel of integral equation

lift distribution, Ib/ft/unit span

aerodynamic lift force per unit span
due to pitch

aerodynamic lift force per unit span
due to translation

aerodynamic moment per unit span
due to pitch

acrodynamic moment per
due to translation

Mach number, Ula

wing in  vertical

unit span

whernein— 1123 S0

stream velocity in chordwise direc-
tion, ft/sec

vertical induced  velocity
dicular to chora), ft/sec

axis of rotation measured from mid-
chord, positive rearward, based on
semichord

Cartesian coordinates

(perpen-

angular displacement of wing in
pitch, radians

fluid density, slugs/cu ft
phase angle between lift force and
position of pitching wing, deg
phase angle between lift force and
position of translating wing, deg
phase angle between moment and
position of pitching wing, deg
phase angle between moment and
position of translating wing, deg
circular frequency of
radians/sec
circular  frequency at

oscillation,

]'(‘S()]l?l]’.(‘("
radians/sec

Ap pressure difference between upper
and lower surface, 1b/sq ft

Primed quantities refer to a wing in free air.

ANALYTICAL INVESTIGATION

This section is concerned with the development of a method
for sol’vinw the intezral equation, originally derived in refer-
ence 4, which relates the downwash to the loading on an
oscilln‘lmg wing. The basic integral equation and its kernel
is given by equations (1) and (2). Reduction of the kernel
is made in equations (3) to (10). Alternative series expres-
sions for the kernel which are suitable for numerical computa-
tion are given by equations (11) to (15). The loading on the
wing is given by equation (16), the downwash expression by
equations (18) and (19), and finally the lift and moment
expressions by equations (20).

THE INTEGRAL EQUATION AND ITS KERNEL FUNCTION

The integral equation.—The integral equation of reference
4 for the vertical velocity or downwash of an oscillating airfoil
between plane walls may be written as

w(.l-):;‘;”g J : Lzo)[K(M, 2)+ K (M, z,H)] da, (1)

where w(z) is the known vertical velocity (or known motion
of the winz) and L(x) is the unknown lift distribution or the
local strength of a distribution of oscillating pressure doublets.
The functions within the brackets comprise the kernel fune-
tion of the intezral equation and appear formally as
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K(M,z)= 4m lylj}(}( J_m e s H (\f_y \E+5J>/€
(2a)
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Bl\ y—0 — n=1

i
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The first function K(M, z) corresponds to the kernel for the
free-air condition as given by Possio (ref. 6). The second
function K(M, z, I1), containing the infinite summation, is
the additional part of the kernel arising from the effect
of the walls. Physically, a kernel function represents the
contribution to the vertical velocity at a field point due to a
pulsating pressure doublet of unit strength located at any
other point in the field. For the particular case represented
by equations (2), the kernel function gives the vertical veloc-
ity in the plane of a wing located in the center of the tunnel.
The expression K (M, z) gives the downwash of a doublet in
che plane of the wing, whereas the expression K (M, z, H)
gives the downwash due to the system of images which mathe-
natically represents the walls.

Reduction of the kernel function—The integrals contained
in the expressions for the kernel function in equations (2) are
inproper because they have an infinite limit and also be-
cause, at certain points, the integrands become singular.
This seciion is concerned with the reduction of these integrals
to a form more amenable to computation.
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By making use of the fact that the Hankel functions in equations (2) satisfy the identity
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The integrals of equation (4) that contain partial derivatives of Hankel functions can be integrated twice by parts to
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The last integral of equation (5) may be written in two parts
as
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The first integral on the right-hand side of equation (6) will
be left temporarily in integral form and will be treated in the
following section. (See evaluation of S; following eq. (13).)
The second integral on the right-hand side of equation (6)
has not been integrated in closed form; however, in wind-
tunnel problems it can be handled conveniently by approxi-
mate methods. (An alternative means of treating this inte-
eral, which avoids the approximation but is somewhat more
tedious, will be indicated in the discussion following eq.
14(c).) A practical assumption which is often made in the
analysis of the effect of wind-tunnel walls is that the tunnel
height is considered large compared with the wing semichord.
With this assumption the argument of the Hankel funection in
equation (6) can be written as (in the limit as y—0)

Mk v Mk ‘—* M
5 VETBmHy =" pnl (B H>+1~» H

,- £
provided that BnH<<1'
This approximation implies that the airfoil images, and,

particularly the closest image n=1, are a sufficient distance
from the airfoil so that the actual distance ~/&-+g2(nf)?

may be replaced by the vertical distance gnfl of the image
above the airfoil. Of course, this approximation does not
hold for Mach numbers close to or equal to unity. With this
approximation, the second integral of equation (6) can be
expressed as
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and these equations may be used to express equation (4) as

1
w(z)= :(’bvz f—1 L(xo) [K(M,z)+ K(M,z, H)] dx, (8)
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in which use has been made of

kM k Mz

M= 63 :B—_,E v= 62
Ro=|z— x| R,= +/(x—x0)*+ B nH)?
Equation (8), together with the definition of equations (9)
and (10), permits the determination of the effect of tunnel
walls on a lift distribution L(#,) for a given downwash distri-
bution w(z). The integral equation for the case of no tunnel
walls checks the results of Possio (ref. 6).  For the case with
walls and for the limiting steady-flow case of zero frequency,
it is possible to obtain a mathematical check with some
existing results; this check is shown in the appendix.

Alternative series expressions for kernel.—Although the
form of the kernel K(M,z,I1), given by equation (10), could
be used for caleulation, alternative series which are more
highly convergent may be used and are given in this section.

The kernel K(M,z II) is the sum of four infinite series
which can be written as

KM, z, H):ﬁ;; (OS,+CrSo+CiSs-C,8) (1)

where the S,’s denote the indicated infinite summations of
equation (10) and the (7,’s the respective multipliers.

Series S; and S, of equation (11) may be put in a more
rapidly convergent form according to Infeld, Smith, and
Chien (ref. 7). When the variables p and e are introduced,

where
])*JHJI
2mB
and
e
=

the series S, and S, can be written as
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where Euler’s constant v=0.577215.

Series S may be evaluated by utilizing the expression for
S: (eq. (12)) and integrating the resulting expression to
| € 5 5
obtain
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it is of interest to note that series S; may be employed in
an alternative means of integrating equation (7). For
application to wind-tunnel problems, where the ratio of
tunnel height to wing semichord is small, or in application
to cascade problems, the approximation employed in integrat-
ing equation (7) becomes less valid. It is possible to avoid
the use of the approximation by writing the integral of
equation (7) in a form which is identical to that of equations
(14a) and (14b) with the exception of the upper limit. The
integral containing the Hankel function can be evaluated
by employing the tables of Schwarz (ref. ). The second
integral, containing only an exponential term, can be in-
tegrated in closed form, as was done to obtain equation (14c¢).

Series Sy may be evaluated in a direct manner by employ-
ing tables of the Hankel function and by using for large
values of the argument the approximation

5 9 —i(um,tx)

Ve (“)(:u[‘)n = / = 4 ( v 5
1 ) N ¢ (15)

With the aid of series Sy, S,, Ss, and S, the kernel K(M,z H)

may be evaluated.

METHOD OF SOLUTION

A method of using equation (8) to determine the aero-
dynamic forces on a wing oscillating in the presence of plane
walls is now discussed.  The method under consideration is
one of collocation similar to that used by Possio (ref. 6)
and Frazer (ref. 9) for the case of no walls. The approach
involves the assumption of an appropriate series expression
for the lift distribution, substitution of this series in the
integral equation for the downwash, and calculation of the
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downwash at arbitrarily selected points on the chord (con-
trol points). Thus equation (8) is reduced to a set of simul-
taneous equations, the unknowns of which are the coefficients
of the assumed expression for the loading.

Expression for the loading.—The expression which is
assumed for the lift distribution is a trigonometric series
expansion which satisfies the Kutta condition at the trailing
edge and which has the proper type of singularity at the
leading edge. 'This expression is

L
(ég)——‘l ot— Z}An sin nfo=L(6,) (16)
PD 2 n=1
where 2,=—cos 6, and the A,’s are unknown coeflicients

to be determined in accordance with the downwash w(z),
which is known from the motion of the wing. It is desir-
able to rewrite equation (8) in terms of the variable 6,
as follows:

DT [ f "L(eo)K<M,z)sineodeoJrJ'”Lwo)K(M,z,H)sinoodeo]
0 0
(17)

The first integral on the right-hand side of equation (17)
is the integral expression first derived by Possio (ref. 6) for
the condition of no walls. Tts solution has been treated by
several investigators (see, for example, ref. 9) and will not
be discussed herein. It can be expressed entirely in terms
of the unknown coefficients A, of equation (16). The sec-
ond integral of equation (17) may be evaluated by the use
of equations (12), (13), (14), and (15).

Determination of the aerodynamic forces.—The integrals
of equation (17) are determined for a selected number of
control points and equated to the expression for the down-
wash. The expression relating the downwash to the motion
of a wing translating (h) and pitching (@) about an axis
located at w, is

w(z)=h+Ua+tb(z—z,)d (18)

or, with the assumption of harmonic motion,

w(x)

[7 —H1+zk(r I,)]e (19)

Equation (19) is used to calculate w(z) for values of = ap-
propriate to each of the selected control points. A set of
simultaneous equations can then be written, the number of
which corresponds to the number of control points employed
and (conveniently) to the number of terms retained in the
series for L(6;). The unknown coefficients may now be
determined by solving these simultaneous equations. The
total lift and moment about the midchord are given in terms
of the coefficients A, through the relations

= 1
wobU? 2 <‘1°+§ *)]
)[;) < 10—*_ 412))

(20)

Effect of the number of control points considered.—An
investigation was made of the number of terms of the series for
the lift distribution (eq. (16)) and thus of the number of
control points required to obtain satisfactory accuracy.
Calculations were performed for a particular case by in-
creasing the number of control points and the number of
terms of the loading series until the solutions were in reason-
able agreement. For the case considered, three terms of
the series for the lift and three control points at the quarter-,

half-, and three-quarter-chord positions gave satisfactory
results. The consideration of two additional control points

at the leading and trailing edges, together with two addi-
tional terms of the lift series, made no significant change in
the results. For high values of the reduced-frequency
parameter k, the use of additional control points might be
necessary.

The procedure just discussed involves consideration of a
continuous distribution of pressure doublets over the chord.
Calculations requiring much less computing can be made by
considering the chordwise loading to be concentrated in a
single doublet located at the quarter chord and by satisfying
the downwash at the three-quarter chord. In the case of
the lift, this approach has been found to give fairly good
agreement with the results of the more elaborate calcula-
tions except in the vicinity of the resonant frequency.

THE ANALYTICALLY INDICATED RESONANCE PHENOMENON

Two-dimensional tunnel.—By examination of equations
(12) and (13), it may be seen that the series S; and S, become
infinite when

4p’=(2n—1)*
or where

Q%I:wﬁ(i)n—l)

(n=172=3 ) (21)
At these critical values of the frequency parameter, the
expression for the kernel K(M,z M) (eq. (11)) becomes
infinite for all values of 2. Physically, this condition
represents a resonance in the tunnel involving a transverse
oscillation of the moving air between the walls.

The fundamental or smallest critical values of wi/a
corresponding to n=1 in (‘(lll(ltl()ll (21) are shown plotted as
functions of Mach number M in figure 1. Equation (21)
and figure 1 show that finite values of the critical frequency
exist for the condition M=0, U=0, and e¢#*=. These
conditions correspond to a compressible fluid at zero velocity
As the Mach number is increased, the
rapidly and becomes

in the tunnel.
critical-frequency parameter decreases
zero at a Mach number of unity.

As indicated by equation (1), the product of the lift and
the kernel function must remain equal to the vertical
velocity over the wing; this velocity is defined by the motion
of the wing and remains finite. The product of the lift and
the kernel function can remain finite only if the lift ap-
proaches zero as the kernel becomes infinite. This condition
in the tunnel is analogous to the well-known case of a simple
undamped-spring-mass system for which, at the resonant
frequency, theory predicts an infinite deflection of the mass
occurring even with a forcing funection of small amplitude.
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TUNNEL-WALL EFFECTS IN TWO-DIMENSIONAL UNSTEADY SUBSONIC FLOW

Circular tunnel.- A resonance can also be demonstrated for
the infinite circular tunnel. The nature of the boundary-
value problem, for this case, makes it possible to separate
variables; therefore, the governing partial-differential equa-
tion can be reduced to Bessel’s equation. (See, for instance,
ref. 10.) The resonant frequencies are then found as the
roots of the equation

g %):0 n=0,1,2, . . .)
or

wl)

S0 P

where o/, represents the Bessel function of the first kind, D
is the tunnel diameter, and p, is the root of the equation

S (pn) =0

Values for p, for the first several modes are p,=1.84, 3.05,
and 4.17. Note that, for a circular tunnel having a diameter
equal to the height of a plane tunnel, the fundamental
frequency is 3.68/7=1.17 higher than resonant frequency
in the plane tunnel discussed in this report.

EXPERIMENTAL INVESTIGATION

WIND TUNNEL

The experimental part of the investigation of the effect
of tunnel walls on the forces acting on an oscillating airfoil
was conducted in the Langley 2- by 4-foot flutter research
tunnel. For these tests, a rectangular test section having
dimensions of 2 feet by 3.8 feet was used. This tunnel is of
the closed-throat, single-return type and employs either
air or Freon-12 as a testing medium at pressures from 1
atmosphere down to about s atmosphere.

It has been shown previously that the resonant frequency
varies directly as the speed of sound. Inasmuch as Freon-12
has a speed of sound equal to about one-half that of air, the
experiments to be discussed were conducted in Freon-12
so that the resonant frequency could be surveyed within
he frequency limitations of the equipment.

MODEL AND OSCILLATING MECHANISM

Figure 2 is a schematic drawing of the test section with
the model and oscillating mechanism installed. The model
had a chord of 1 foot and an NACA 65-010 airfoil section;
it completely spanned the 2-foot dimension of the test
section. The gaps between the model and the tunnel wall
were sealed by end plates which rotated with the model.
The model, driven symmetrically from both ends, was
oscillated in piteh about the midchord by a direct-drive
eccentric-cam system powered by an induction motor with
variable frequency supply.

INSTRUMENTATION

The lift and moment on the wing were obtained by
electrical integration of the outputs of 12 model 49-TP

378599—56——2

~J

Drive column

Drive motor —/ !
Eccentric cam

Bearing 7 L-87584
Frcure 2.—Schematic drawing of test section with model and oseil-
lating mechanism installed.

NACA miniature electrical pressure gages. The pressure
gages, which are described in considerable detail in reference
11, were located at the center of the span at 2.5, 5, 10, 15,
20, 30, 40, 50, 60, 70, 80, and 90 percent of the chord. Each
gage was arranged to indicate the difference in pressure
between orifices on the upper and lower surfaces. Electrical
integration techniques used in these experiments are dis-
cussed m reference 12. The so-called square-wave method
of weighting was used; that is, the pressure indicated by
cach gage was assumed to represent the pressure acting
over a portion of the chord extending one-half the distance
to the next gage both forward and rearward. For example,
the fraction of the chord assigned to the first gage was 3.75
percent and to the sixth gage was 10 percent. Some of the
implications of this method of integration will be discussed
in a subsequent section.

The angular displacement at the midspan position was
indicated by resistance-wire strain gages attached to a
torque rod running through the center of the hollow wing.
One end of the torque rod was fixed to the center of the
wing and the other end was fixed to the tunnel wall.

A schematic diagram of the instrumentation is shown in
figure 3. The magnitude of the vector representing the fun-
damental component of lift or moment and angular displace-
ment was indicated on an alternating-current vacuum-tube
voltmeter attached to the output of a variable-frequency,
narrow-pass-band filter. In essence, the filter performed
the function of a Fourier analysis in that both random com-
ponents and higher harmonics were removed from the signal.
In order to measure the phase angle between lift or moment
and the angular displacement, the output of the filter was
fed into a pulse-shaping circuit designed to convert the sinus-
oidal signals into pulses corresponding in time to the “cross-
over’’ points of the original signal. The pulses were then fed
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Balance

box Integrator

"Tare' switch-——~__ | |
p
AW Lo ] |
l____!}(
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pass-band pgjs?sr-rggnd
filter filter
y Vacuum- Vacuum-
S R b ——
volt- volT=
meter meter ‘L /\J
Pulse~ || [Eafor |#4] Pulse-
shaping shaping
circuit circuit

L]

Electronic
chronograph Stop

d} and w

' UrE 3.—Schematie diagram of instrumentation.

into an electronic chronograph that accurately indicated the
time interval between the leading pulse which started the
chronograph and the lagging pulse which stopped it.  The
ratio of this time interval to the period of oscillation, when
multiplied by 360°, yvields the phase angle in degrees.  The
period and frequency of oscillation were determined by start-
ing and stopping the chronograph with the angular-dis-
placement signal.  In order to minimize the effects of small
differences in components between the two circuits, a “tare”
switch was provided which fed a single signal (the angular
displacement) through both circuits.  The resulting phase
angle represented the phase shift introduced by the filters
and pulse-shaping circuits.

TEST CONDITIONS

The Mach numberof the tests was varied from M =0.35 to
M=0.7 and the Reynolds number was held constant at about
5%10% by varying the density. The frequency of oscilla-
tion was varied from 0 to 60 cycles per second, and the mag-
nitude of angular displacement was about 1.2° except for
some lift data at 3/=0.71 which was obtained at an angular
displacement of about 2.4°.

DISCUSSION OF RESULTS

The theory and caleulation procedure and the experimental
technique discussed previously for the determination of the

forces acting on a wing oscillating between walls have been [

applied to a number of specific examples. The investigation
has been divided into three parts: (1) A comparison is
made of analytical and experimental results obtained for
the lift and moment on a pitching wing for several subsonic
Mach numbers, (2) theoretical vesults for the effects of a
variation in Mach number at constant tunnel height are
civen for a pitching wing and also for a wing undergoing
vertical translation, and (3) theoretical results for the effects
of a variation in the ratio of tunnel height to wing semichord
are presented for particular values of Mach number.

COMPARISON OF THEORY AND EXPERIMENT

In figure 4 a comparison is made of analytical and experi-
mental results for a wing oscillating in piteh about its mid-
chord. Figures 4 (a), 4 (b), 4 (¢), and 4 (d) apply, respec-
tively, to Mach numbers of 0.35, 0.5, 0.6, and 0.7. The
results apply to a ratio of tunnel height to wing semichord
I of 7.60.

The plots on the left-hand side of ecach figure show the
magnitudes of the forces and moments as a function of the
frequency of oscillation, whereas those on the right-hand
side show the corresponding phase angles. The magnitudes
are presented as ordinates in the form of ratios [L./L."| and
M, /M., In these ratios, the quantities L, and M, are,
respectively, the lift force and the moment on a wing in a
tunnel; L,” and M," are the theoretical lift and the theoreti-
cal moment on a wing in free air. The effect of the tunnel
walls appears, therefore, as a deviation from unity of the
ratios |L./L. | and [M,/ M. | when L, and M, are the theo-
retically derived forces and moments. When L, and M,
represent the experimental forces and moments, the devia-
tion from unity may not be completely attributed to the
effect of tunnel walls because such factors as airfoil thick-
ness and viscosity may cause deviation from the elementary
theory. The abscissa in the figures is the ratio of the fre-
quency of the pitching oscillation to a frequency calculated
for the resonant condition.

Excellent agreement between theory and experiment is
obtained for the phase angles, in most cases, for both the
lift and the moment. Quantitatively, however, the agree-
ment between theory and experiment for the magnitudes
of the forces is not as good, although very similar trends
are demonstrated; in most cases, a systematic difference
appears.  Some possible sources of the differences between
theory and experiment are discussed in the following section.

Examination of figure 4 reveals that the theory predicted
the resonant frequency very well.  In all cases, the mini-
mum lift and moment were found to lie very close to the
analytically indicated resonant frequency. Theoretically,
the lift and moment reduce to zero at the resonant condition.
Under actual conditions, such as finite tunnel length, trans-
mission of energy through the walls, nonlinearities at higher
amplitudes, and turbulence in the flow that gives rise to
damping, pure resonance is unobtainable. However, it
may be seen by examining figure 4 (d) that the lift and
moment were reduced to 20 percent of the values away
from resonance.
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REMARKS ON SOME DIFFERENCES BETWEEN THEORY AND EXPERIMENT

In this section, some limitations and possible reasons for
differences between theory and experiment are listed and
discussed.

In the comparison between theory and experiment shown
in figure 4, an almost constant difference of 10 to 15 percent
between the magnitudes is to be noted, whereas the phase
angles are in good agreement. Of the several possible
reasons for these differences between theory and experiment,
perhaps the more important ones are airfoil thickness,
Reynolds number, finite tunnel length, transmission of
energy through walls, dissipation of the pressure waves due
to turbulence, and integration procedures. The effect of
all these possibilities is not known for the oscillatory case.
In the steady-state case, however, it is known that the
effect of increasing thickness is to increase the slope of the
lift curve.

In the considerations of the avalytical integration, a
collocation scheme was used to solve the integral equation.
In general, the three collocation points used were found to be
satisfactory as pointed out previously.

Twelve pressure cells were used for the experimental
integration of the forces. A stepwise integration pro-
cedure was employed; that is, the pressure as record-
ed by the pressure cell was multiplied by an area of
the wing over which it is assumed that the cell will give
an average pressure. This procedure gives good results
except possibly at the leading edge where the pressure varia-
tion is very great. Theoretically the pressure approaches
. : - 1 ; o
infinity at the leading edge (zls = > and experimentally it is

\ .1'
found to be very large. As a matter of fact, if a theoretical

L . ; 0 1—zx
distribution of pressure is assumed to be cot 5=\ e as
T

shown in the following sketeh and this curve is integrated

10

.
8%
(5=
=X

n
[

1
o |
5

in the same manner as the experimental curve was inte-
erated (that is, by calculating the ordinate at the same
value of the abscissa at which the pressure cells were located

for the experiment), it is found that the areca as determined
by the approximate method is 8 percent less than the arca

; : : (18 :
as determined by integrating cot 5 in closed form. It is

apparent that the neglected area (shaded) can be appreciable.
In the actual experiment, in which a fairly thick airfoil was
used, the neglected area would probably be smaller but
could perhaps contribute to the almost constant difference
in magnitudes of lift and moment between the theoretical
and experimental results. The effect of this integration
difference on the phase angles, which have been shown
to be in good agreement, would not be as pronounced.

EFFECT OF A VARIATION IN MACH NUMBER AT CONSTANT TUNNEL

HEIGHT

An analytical investigation has been made of the effects of a
variation in° Mach number at constant tunnel height on the
forces on an oscillating wing. Some of the results of the
previous section are employed together with results of
additional calculations. The magnitudes and associated
phase angles of both the lift force and the moment have been
determined for a pitching wing and also for a wing under-
going vertical translation. Calculations have been made
for a constant value of the height-semichord ratio 77 of
7.60 and for Mach numbers of 0.3, 0.5, 0.7, and 0.8. Re-
sults of the calculations are shown in figures 5 and 6 for the
lift and in figures 7 and 8 for the moment.

The magnitudes of the forces and moments are presented,
as in the previous section, in the form of ratios: |L./L.],
MM, |, |Li/Li'|, and [M,/M,;’|. The phase angles re-
lated to these ratios are presented as a difterence petween a
wing in a tunnel and a wing in free air. The magnitudes
and phase angles are plotted against a frequency parameter

wll/a, where w is the circular frequency of oscillation of the

wing, 71 is the height of the tunnel, and a is the velocity of
sound. At a particular value of the frequency parameter, a
progressively larger effect of the walls is indicated as the
Mach number increases. At all Mach numbers, the lift
is reduced to zero at the resonant frequency. The dip in
the curves against frequency ratio, which appears to be
characteristic of the low Mach number cases, gradually
disappears as the Mach number is increased. As in the
case of the magnitude of the lift, the effect of the walls on
the phase angle increases as the resonant frequency of the
tunnel is approached and also as the Mach number is
increased.

The magnitude of the moment about the midchord is
shown in figures 7 and 8. The curves have the same shape
as the lift-ratio curves and again decrease to zero at the
resonant condition. The corresponding phase angles are
shown in these figures. Note that in figures 5 to 8 only
slight differences appear between results for pitech and those
for translation.
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EFFECT OF VARIATION IN RATIO OF TUNNEL HEIGHT TO WING SEMICHORD

The effect on the lift-force ratio and on the associated
phase angles of varying the ratio of tunnel height to wing
semichord is illustrated in figure 9. The results presented
in figures 7 and 8 have been based on the consideration of a
distribution of pressure doublets over the chord of the airfoil
and on satisfying the downwash condition at three chordwise
stations.  Results for figure 9 have been obtained by the
simplified procedure of concentrating the loading in a single
doublet at the quarter chord and satisfying the downwash
condition at the three-quarter chord. This approach gives
fairly good agreement with the results of the more elaborate
procedure except near the resonant frequency.

(C'alculations have again been made for an airfoil oscillating
in pitch about its midchord for values of the height-semi-
chord ratio 77 of 7.60, 16, and 32 at M=0.3 and 0.8. In
figure 9 (a) the lift ratio |L./L.| is plotted against the re-
duced-frequency parameter k=bw/{’. Plots for both Mach
numbers are made to the same scale for ecase of comparison.
[t is again apparent that the effect of reducing the Mach
number is to reduce the effect of the tunnel walls and to
raise the value of the critical frequency at which resonance
can occur for a given tunnel. For example, for //=7.60,
at M=0.8, the critical value of £ is 0.30, whereas for M=0.3,

the critical value of k is increased to 1.31. Also, as was to
be expected, increasing the height of the tunnel has a marked
effect in reducing the influence of the tunnel walls for most
of the frequency range. However, the critical frequency
is reduced for increased tunnel height so that in the large
tunnel the range of % below the fundamental resonance
becomes smaller.  This reduction in frequency would seem
to be a disadvantage of the larger tunnels. However, the
second branch of the curve for /=32 at M=0.3 shows that,
for frequencies between the first and second resonant points,
the effect of the walls on the magnitude of the lift is no
greater than for frequencies below first resonance. Note
also that the approach to resonance is quite abrupt; con-
sequently, only a small range of frequencies very close to
resonance would be eritical and tests could then be conducted
between the critical frequencies.

In figure 9 (b) the phase angles, associated with the results
of figure 9 (a), for both the wing in a tunnel and for a wing
in free air are shown as a function of reduced-frequency
parameter & for values of height-semichord ratio /1 of 7.60,
16, and 32 at M=0.3 and 0.8.

At M=0.3, the effect of walls on the phase angle is gener-
ally very small; at M=0.8, the effect is small at low fre-
quencies but increases greatly as the critical value of £ is
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approached. As the resonant frequency is approached, 12 .
results at both Mach numbers show that the phase angle A |
increases in negative value and appears to approach—90°. % ~ == N
As the resonant condition is exceeded, there is a sudden shift 1.0 mE e ==
in phase angle. This change is similar to that found for the , M=0 \ \
: . : . o Reissner ( _ )
oscillation of a simple undamped spring-mass system where H=6.28 \
an abrupt change in phase angle of 180° is found as the — 8
resonant frequency is exceeded. Because of the complexity N \
of the kernel, which involves an infinite series of Hankel T \
functions, the phase angle at resonance has not been z 6 : )
determined. - i i?’éo}
In figure 10, the plot from figure 9 (a) for M=0.3 and - 4
H=7.60 is compared with some results of Reissner (ref. 2) '
for the effect of walls on the lift-force ratio in incompressible
flow. This curve for M =0 significantly duplicates the rather 2
large wall effect at low values of & which is noted for the
M=0.3 result. (At low values of %, the curves for the two
different Mach numbers are almost coincident probably be- o > 4 = 5 O 2
cause of the fact that the slightly lower height semichord ' ' ‘ ‘ b
ratio /7=6.28 used by Reissner counteracts the effect of de- Rediced=frequency iparameter, = g7t

crease in Mach number.) For values of & greater than 0.5,

Frgure 10.—Comparison of lift ratio for M =0 and M=0.3.
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the curves for the two Mach numbers separate; the lift-force
ratio at M=0 approaches unity and exhibits no effects of
resonance because the resonant phenomenon arises only from
the effects of compressibility.

CONCLUDING REMARKS

This report has dealt with the problem of an airfoil oscil-
lating between plane walls in subsonic compressible flow. It
constitutes a continuation of the work initiated in NACA
Report 1150 in that a method of solving the integral equation
is presented and some experimental results are compared
with theory.

The comparison between theory and experiment for the
phase angles between lift force or moment and position is
shown to be very good, whereas the comparison between
theory and experiment for the magnitudes of the lift and
moment is not as good ; however, the trends are all accurately
predicted. In all cases the resonant frequency was accu-
rately predicted. The cause of the apparent discrepancy be-
tween the theoretical and experimental lift and moment may
be attributed to several factors such as dissipation of the
pressure waves due to turbulence of the air flow and trans-
mission of the energy through the tunnel walls.  In addition,

1262—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

the theoretical work was based on the concept of a very thin
wing at infinite Reynolds number, whereas the experiments
were made with a 10-percent-thick wing at a Reynolds num-
ber of approximately 5 < 10°%  The effect of thickness and
Reynelds number have not, as vet, been delineated for the
oscillating case.

As would be expected, it is shown theoretically that the
larger the tunnel the less the effect of the walls.  The critical
frequency, however, is also reduced as the tunnel height is in-
creased, but it i1s shown that tests may be made above the
resonant frequency with no larger tunnel-wall effect than
1s found below the In addition, the range of
influence of the resonant region is greatly reduced so that
only a small range of frequencies need be avoided. Wall
effects are shown theoretically to be more pronounced as the
Mach number is increased and at high Mach numbers are
found to be large even at frequencies well removed from
resonance.

resonance.

LangrLey ArroNavuTIcAL LABORATORY,
Narronarn Apvisory COMMITTEE FOR ABRONAUTICS,
Lanarey Froup, Va., January 12, 1955.



APPENDIX

REDUCTION OF INTEGRAL EQUATION TO THE CASE OF ZERO FREQUENCY

In this appendix, the integral equation for the downwash
for a wing oscillating in a compressible medium in the pres-
ence of wind-tunnel walls is reduced to the zero-frequency
condition.

If equation (1) of the text is written as

wdn

'ﬂf L) 0K (M, 2)+oK(M, 2, H)|dz, (A1)

and the limit taken as »—0, it will be found that all the
terms of wK (M,z) and wK (M ,z,I) vanish except terms involv-
ing H;*2. Thosc terms become infinite; however, as w—0,
the asymptotic expansion for very small values of the
argument may be used. Therefore,

2
III(Z)(ﬂlgrl):~;i“]{

and
—2MaB?(x— o)

w[(z—20)*+B*(nH)]

The vertical induced velocity may then be written as

lim we‘f’2 H,®(uR,) Mz—ay)_
w—0 Iin

Mapb
u)(.z')z-—zwzg,2 » T
ZE(szﬁ&mgm (A2)
or
Mab [ 1
o)==y | L | ———+
67{(.[—‘[0)
W(T—Yo)
23 (—1)" - BI{—— dxo (A3)
(= m (o)’ Y n2w?
T BH

Equation (A3) may be written as
—Mab
w (:17):2—p 1(,'2(}{ L(;ro) [cscll - ):I dxy (A4)

The additional induced velocity due to the presence of
tunnel walls for the steady-state case in compressible flow
is given by equation (40) of reference 13. Equation (A2)

can be reduced to the same form by making the approxima-
tion that the airfoil chord is small compared with the tunnel
height.
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