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THEORETICAL INVESTIGATION OF FLUTTER OF TWO-DIMENSIONAL FLAT PANELS WITH
ONE SURFACE EXPOSED TO SUPERSONIC POTENTIAL FLOW !

By HererT C. NELsoNn and HerBerT J. CUNNINGHAM

SUMMARY

A Rayleigh type analysis involving chosen modes of the
panel as degrees of freedom is used to treat the flutter of a two-
dimensional flat panel supported at its leading and trailing
edges and subjected to a wmiddle-plane tensile force.  The
panel has a supersonic stream passing over its upper surface
and still air below.  The aerodynamic forces due to the super-
sonie stream are obtained from the theory for linearized
two-dimensional unsteady flow and the forces due to the still
air are obtained from acoustical theory,

In order to study the effect of inereasing the number of modes
in the analysis, two and then four modes are employed.  The
modes wsed are the first four natural modes of the panel in a
vacunum with no tensile foree acting. The analysis includes
these variables: Mach number, structural damping, tensile

Jorce, density of the still air, and edge firity (clamped and

pinned). For certain combinations of these variables, stability
boundaries are obtained which can be used to determine the
panel thickness required to prevent flutter for any panel material
and altitude.

In contrast to some previous panel-flutter investigations.
the results of the present analysis show that sufficiently thick
panels are flutter free for the Mach numbers treated and suggest
that this is true throughout the supersonic speed range.

A comparison of results from the present theory for flat
panels and from a criterion developed by R. PP. Isaacs for the
static stability of buckled panels is made with a few experimental
results on flat and buckled panels clamped at leading and
trailing edges.

INTRODUCTION

The flutter of thin metal plates or panels, such as com-
pose the covering or skin of missiles and other eraft intended
for high-speed flight, has recently become of increased con-
cern, Such panels may be initially flat or curved and may
be small or fairly large in aspect ratio. In addition, they
may be prestressed and will probably become warped in
flight by aerodynamic heating. If one or more of the
panels on a particular configuration are vibrating, the
basic structure supporting them can usually be considered
rigid. The fixity at the edges of the panels ranges between
clamped and pinned, depending on the construction. Some
preliminary experimentation and analytical work suggests
that this type of instability is of concern only at supersonic
speeds.

The problem of panel flutter embraces so many possible
factors as to discourage general treatment, and previous
papers on the subject (for example, refs. 1 to 7) have em-
ployed various simplifying assumptions in order to obtain
specifie solutions to what might perhaps be considered
different phases of the problem. 1In all the references cited,
the main assumption made is that a panel and the flow over
it are two-dimensional. Other assumptions common to
the reference papers are that small-deflection plate theory
and linearized flow theory may be used.

References 1 (o 4 examine the ease of a panel buckled by a
constant shortening and held at its leading and trailing edges,
with a supersonie stream over its upper surface and no per-
turbation pressures on its lower surface. In
steady-state air forces and in reference 2 quasi-stationary air
forees, which include the first order of the frequency of oseil-
lation, are used. Both these references consider the dynamic
stability of the buckled pancl.  Reference 3 and the more ex-
haustive reference 4 examine the static stability of the
buckled panel and propose that motion (Autter) is the result
when static equilibrium is not possible. Reference 5 and a
section of reference 2 treat the case of a flat panel pinned at
its leading and trailing edges.  Reference 5 uses exact linear-
ized unsteady acrodynamic forees and therefore, in contrast
to reference 2, imposes no limitations on the order of the fre-
quency.  In references 1, 2, and 5 a gencralized-coordinate
approach involving chosen modes of the panel as degrees of
freedom is emploved. Reference 6, on the other hand, indi-
cates how the problem of a vibrating membrane in a super-
sonie stream can be treated by means of Laplace transforms
and suggests that similar treatment can be given to the plate
problem. Reference 7 treats the case of a two-dimensional
panel on many equally spaced simple supports with compres-
sible air flowing over the upper surface and dead air below
the panel, and the results indicate that the possible panel
instabilities are divergence for subsonic flow and flutter for
supersonic flow. Some questionable features of the results
obtained in references 2, 5, and 7 are examined in the section
entitled “Results and Discussion” in the present report.

A Rayleigh type flutter analysis is developed herein by
means of Galerkin’s process for a two-dimensional flat panel
held in some manner at its leading and trailing edges and
acted on by a middle-plane or axial force (which, in the case
of tension, introduces a restoring force similar to that for the
membrane). The upper surface of the pancl is subjected to

reference 1

1 Supersedes NACA Technical Note 3465 by Herbert C. Nelson and Herbert J. Cunningham, 1055,
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a supersonic stream and the lower surface to an unconfined
mass of stationary compressible air. The normal modes of
the panel with no middle-plane force acting are used as de-
grees of frecedom in the analysis. As in reference 5, exacl
linearized unsteady aerodynamic forces are employed. In
the reference paper the integrals yielding these forces are
evaluated analytically. In the present report these integrals
are evaluated numerically.

Numerical results are presented in order to examine some
effects of including two and then four modes in the analysis
and to determine effeets of Mach number, density of the
supersonic stream, pancl mass and stiffness, edge fixity (to
some oxtent), structural damping, axial load, and density of
the still air below the panel.  In appendix A an alternative
solution by means of Laplace transforms is developed for the
plate problem just deseribed.  No numerical results are ob-
tained by this method, however,

A comparison of results from the theory presented herein
for flat pancls and from a criterion of reference 3 for the statie
stability of buckled panels is made with a few experimental
results for flat and buckled panels elamped at the leading
and trailing edges.

SYMBOLS

a speed of sound in undisturbed medium

Ay B, O structural and acrodynamic integrals de-
fined after equation (13)

¢ pancl chord

. Es

D local flexural stiflness, 1201 =77

K Young’s modulus of elasticity of panel
material

N tension parameter, F/e2m gon®

\ functions defined in equation (24)

F external force per unit width acting in
midplane of pauel (tensile force posi-
tive)

& structural damping coefficient

Gon matrix clements defined in equation (13)

I (u) Hankel function of second kind, of zero

order, (notation of ref. 18)
acrodynamic integrals defined after equa-
tion (23)

III]IH]"HI‘ ]IIIII

J, (), Y, () Bessel functions of order p of first and
sccond kind, respectively, (notation of
ref. 18)

k reduced frequency, cw/207

ke, stifilness parameter (reduced first natural
frequency), cw /207

K, cigenvalues defin~d after equations (16)
and (17) and given for first four panel

_ modes 1a table T

L{u), L(w) aerodynamic functions defined after cqua-

— tion (21)

L (u) acrodynamic functions defined after equa-

tion (B16)

ma panel mass per unit surface area, o7
M Mach number, Ula
NN, coefficients in mode-shape equations (16)

and (17), given for first four panel
modes in table 1

pla,) net perturbation pressure, positive down-
ward

P () pressure coefficient associated with mode
shape Z,, defined in equation (20)

PP upper- and lower-surface contributions to
perturbation pressure, respectively

PosPo pressures in undisturbed supersonic stream

and still-air region, respectively
components of p,(r) defined after equa-
tion (22)

P ()T (), Do)

q U R,
q ynamic pressure, o pl

8 cocfficients of equations (28) and (B15)
tabulated in appendix B for first four
modes of panel with elamped edges

/ time
{ velocity of supersonice stream
RN coordinates defined in figure 1
z(rt) vertical displacement of panel
Z(r) flutter mode shape
Z.(r) nth natural mode shape for panel vibrating
in vacuo
7 panel-air mass ratio, m,/pc
v Poisson’s ratio
PiPo densities in undisturbed supersonic stream
and still-air region, respectively
a density of panel material
T local thickness of panel
¢ disturbance-velocity potential
w frequency of oscillation
Wy frequency associated with mode shape 7,
w frequency parameter, 2k A1%/3?
2
Q frequencey ratio squared (%) » except in
2
flutter calculations where Qz(%) (1+1g)
[] square matrix '
{} column matrix
Subseripts:
2w upper-surface contribution
[ lower-surface contribution

Primes denote differentiation with respect to the argument.
>

ANALYSIS

STATEMENT OF PROBLEM

A thin isotropic, two-dimensional plate (beam) of con-
stant thickness, as shown in figure 1, is considered herein.
The plate is undergoing simple harmonic motion and is
acted on by a middle-plane or axial force F (tension or
compression); its upper surface is subjected to a supersonie
stream of velocity U/, pressure p., and density p, and iis
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Finure 1.—Sketeh of flexible two-dimensional panel.

lower surface is subjected to still air with pressure p, and
density py,.  The differential equation of motion for the
plate may be written as

Jar 2. 2.

D g_;l_l—m’" g{;-—df‘g‘r}—}-(pm—1)(.)—1—])(.r,t)=0 (1)
where, in the present case, the vertical displacement of the
plate z(r,f) may be expressed as Z(r)e™! w is the cireular
frequency of oscillation, p(r,f) is the net perturbation pres-
sure (positive downward) arising from the motion of the
plate, m, is the plate mass per unit surface arvea, and the
local flexural stiffness D is given by £7%/12(1—»?). For the
case where p(z,0)=0, equation (1) may be obtained, with
appropriate changes in notation, from reference 8.

In the remaining development the constant-pressure
term p.—p, of equation (1) is considered to be zero. This
in no way affects the generality of the results for the oscil-
lating plate, sinee inclusion of the constant-pressure term
as nonzero would result only in adding a particular solution
which represents a statie vertical deflection.  In addition,
the coordinate » of equation (1) is divided by the plate
chord ¢ and henceforth is emploved in this nondimensional

sense.  Thus, equation (1) multiplied by ¢=%' hecomes
D, o, I ;
(7 A"”—w'm,l/x—c—z A”%‘])(-",I)('_,wl:() (2)

where the primes denote differentiation with respect to
the argument .

In order to obtain a specific solution of cquation (2),
four boundary conditions are required. The plate is con-
sidered to be held at its leading and trailing edges as shown
in figure 1, and this assumption leads to the conditions for
pinned cdges:

Z0)=Z2M=7Z"0)=2"(1)=0 3)
and for clamped edges:

Z(0) = Z(1) =Z'(0) = Z'(1) =0 )
In a later section of the analysis the boundaryv-value prob-

lems, as exemplified by cquations (2) and (3) or (2) and
(4), are solved by Galerkin’s method. Also considered in

appendix A are the solutions to these problems by means
of Laplace transforms.

NET PERTURBATION PRESSURE p(x,t)

The net pressure p(x,t), as mentioned previously, arises
from the oscillatory motion of the plate. It is this pressure
which damps, or in the case of flutter sustains, the oscillation.
The pressure on the upper surface is obtained from the
theory for linearized unsteady suporsonic flow and the
pressure on the lower surface from acoustical theory. The
perturbation pressure in terms of the pressures p, on the
upper surface and p, on the lower surface is

1‘('177['):1)14—1)1 (5}
where
o D¢L, U 0¢, .
Pu=p E; —C_ b.l,‘) (b)
and
0
Pe=po Od;l (7

From reference 9 the velocity potential for the upper surface
can be obtained in the form

Tt I .. /" Z
¢11:C€764>r0 [LwA(E)"l—( d

T dE e‘i“’"_f)Jol:Al(.I‘—f)]dS (8)
where

kAL ) ¢
‘6,_,7— B=~ M2—1 o= ;—"r

W=

Based on reference 10, the velocity potential for the lower
surface can be obtained, as shown in appendix B, in the form

it (M1
b==%" [ @1 har e Q)

where [1,®r) is the Hankel funetion of the secend kind,
of zero order.

SOLUTION BY GALERKIN’S METHOD

Outline of method.—The boundary-value problems con-
sidered carlier (egs. (2) and (3) for the pinned-edge plate
and equations (2) and (4) for the clamped-edge plate) are
now solved by means of Galerkin’s method. (A detailed
account of Galerkin’s method may be found in ref. 11.) As
a first step, the Autter mode shape Z(z) is approximated by
a linear combination of the form

2 =e20:Za() (10)

where the coeflicients @, may represent complex amplitudes
and where the funetions Z,(r) are the mode shapes for the
plate vibrating in a vacuum without an axial foree /¥ acting.
The funetion Z; is the fundamental mode shape associated
with the Jowest natural frequency oy, and the remaining
functions Z., Zs, . . . Zy are consccutively the higher modes
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shapes. The shapes Z, satisfy the pinned-edge or clamped-
edge boundary conditions (Z, replacing Z in egs. (3) and (4))
and the differential equation

g Zn””_wnz"n’AZn:() (1 1 )

where o, is the frequency of oscillation for which Z, is the
mode shape.

The remainder of the Galerkin process for solving the
aforementioned boundaryv-value problems consists of deter-
mining the coefficients @, of equation (10) in the following
manner: Substitule equation (10) into equation (2), replace

D N . .
the tel‘lnch,,”” by w,*m,Z, in accordance with equation

(11), multiply by one of the mode shapes Z,, integrate the
result from r=0 to =1, and cquate to zero. When = is
made 1, 2, . . . N in succession, N lincar cquations arce
obtained which determine the unknowns a,. These equa-
tions can be written in the form

Gll Glz PR Guv a, 3 O\
Ggl G_g PN GgN [t 0

- (12)
Gni Grs - - Gyn] Lax OJ

The matrix elements arve given by

GIII n = l‘l’ { AIILII - SZ [(Z:’l>-Alll n +.fB7" ﬂ] } - ( 7Ill n ( l 3)

where
m, .
M= /1111 n :J Z m/J n dx
peC 0
w\2 g
o=(2)  Bu—| 2z
W 0
F .
f: c‘zm:‘ W 2 ( Ym n= j(' Zm pn (T) d-l'

and where p,(x) is the pressure p(x,t), obtained from equa-
tions (5) to (9) with Z replaced by Z, multiplied by
e~ pecw?.  In equation (13) w, and w, are the first and the
mth natural frequency, respectively, of the plate with no
axial force acting.

Flutter determinant.—The flutter condition or condition
of bharmonic vibration, which is given by the nontrivial
solution for the coeflicients a,, is obtained from equation (12)
by setting the determinant of the matrix G, equal to zero.

Thus the flutter condition may be expressed in the form
G G ... Gy

Got Gy ... Goy
=0 (14)

Gy Gyz ... Gy

Remarks on alternative procedure.—The procedure from
equation (11) to equation (13) is, in general, not the most
accurate that could be followed for values of F other than
zero. A generally more accurate procedure would be to use,
mstead of equation (11), the differential equation for the
panel with tension:

Yy 2 y, 14' 7
ﬁ_j A,,N”*wn"mvléll_? Z,'=0 (15)

When equation (15) is solved, subject to the appropriate
boundary conditions, the frequencies w, are found to be
functions of F for both pinned and clamped edges, but the
mode shapes Z, do not vary with F for pinned edges. The
use of equation (15) rather than equation (11) would mean
that in equation (13) the term fB,,, would not appear and
the frequencies and mode shapes would be those that satisfy
equation (15).

Equation (11) rather than equation (15) has been used
herein for the following reasons: For pinned-edge panels
there is no difference in the mode shapes or in the final
numerical flutter results; for clamped-edge panels the deter-
mination of the values of Z, and w, that satisfy equation
(15) is laborious and must be carried out for every desired
value of /. Elimination of the term fB,, from the matrix
clements, through use of equation (15), does not compensate
for the labor of determining the natural frequencies and mode
shapes as functions of /. The differences in final numerical
flutter results for the clamped-edge panel approach zero as
the number of modes in the analysis is increased and are
expected to be small even when only a few modes are used.

EVALUATION OF TERMS IN FLUTTER DETERMINANT

Structural integrals A,,, and B,,, and frequencies w,.—
Consideration will now be given to the evaluation of the
mode-shape integrals and frequencies in the elements of
equation (15). The mode shapes Z, and associated natural
frequencies w, obtained from equation (12) are:

For the pinned-edge plate,

Z,=N,sin K,r
D~ (16)
7;1"46-4

Wy 21{712
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where K, is obtained from the frequency equation
sin K,=0
For the clamped-edge plate,

Zn Ni[cos K,x— cosh Kna:—}—Nz (s1n K,z—sinh K,r)]

(17)
wnanz—J r
m 4C

where K, is obtained from the frequency equation

cos K, cosh K,=1

In equations (16) and (17) the factor N, is used to produce
unit deflection at the center of the plate (x=0.5) for modes
that are symmetric about the center and at the point of
maximum deflection between the leading edge (x=0) and
the center of the plate for modes that are antisymmetric
about the center. The factor N, in equation (17) is estab-
lished by the boundary condition requiring zero deflection
at =1 and 1s expressed by

No— cos K,—cosh K,
? sin K,—sinh K,

(18)

The quantities w;, wy/wi, A, and B, required in equa-
tion (14) can be determined directly from equations (16) or
(17). First, however, values must be established for N; and
K, in the case of the pinned-edge plate and for Ny, N,, and
K, in the case of the clamped-edge plate. Table I includes
values of all these quantities for the first four modes of
vibration.

The values for A,,, shown in table I are zero when m=n
because of the orthogonality of the mode shapes Z, of equa-
tions (16) and (17). For the pinned-edge case the slopes

ma=5([ [~ Z,L<e>+;k ‘ZZE

—2 ([ 7/ dZn

TABLE 1.—MODE-SHAPE FACTORS, EIGENVALUES,
FREQUENCY RATIOS, AND STRUCTURAL INTEGRALS
FOR FIRST FOUR NORMAL MODES

(a) Pinned-edge plate »

Mode, 2 Ny N2 K, @afwr Ann Bnn
1 1 | . x 1 0.5 0. 5x*
2 1 2n 4 .B 2. 0x2
3 ) 3w 9 .5 4. 5w?
4 ) Y 4r 16 5 8. 0x?
8 Amn=Bmn=1 (m#=n)
(b) Clamped-edge plate b: ¢
Mode, N N K, wnfwr Ann Bun
n
1 —0. 629699 —0. 98250 4. 730 1 0. 396 4.88
2 —. 66260 —1. 000778 7. 853204625 2. 7566 . 440 21.2
3 . 7109645 —. 99997 10. 99560784 5. 404 . 506 49.8
4 —. 66120074 —l 00000145 14. 13716549 8. 933 L4382 76. 4
b App=0 {m==n)

Riz= B3 =4.362
gﬁ:rB ;;;—-n;B()dm (m#=n)
¢ The significant figures shown were used to avoid small-difference errors in mode shapes
Z,' of the mode shapes ave also orthogonal and, conscquently,
B, is zero when m#n. For the clamped-edge case, even
though the slopes Z,” are not orthogonal, the integrand of
B,,, is autisymmetric about xr=0.5 when m and n are not
both even or both odd and, consequently, B, is zero when
m#=n except for By, B, B, and By (for the first four
modes).
Aerodynamic integrals Cmn—The remaining term in the
elements of equation (14) that requires evaluation is the
integral

g
Cy ,,=J Znpu(x)ds (19)

0
As mentioned previously, p,(r) is the pressure p(r,t), obtained

from equations (5) to (9) with Z replaced by Z,, multiplied
by e~/pcw?. The quantity p,(x) is therefore given by

e=iBE=D J, [2% (.E—-E)]df‘l'

o[ B e ] }>+

2 B— fo Z,L(g)I{0<2>(2kM|x-g|)dg:|l (20)

where the contributions from the upper and lower surfaces of the plate are designated by subscripts « and [, respectively.
Upon elimination of the derivatives in the integrands of the upper-surface contribution through integration by parts,
performance of the indicated differentiation of the second integral, and extraction of the singularity at &=z in the
Hankel function of the lower-surface contribution, equation (20) may be written in the form

9 M?*—

n=3| [ Ziore—pie+ 2 204 20w | +2[ [ 2@Te—pde+t [ 2,0 tog. GeMa—ehdr |, @)
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where

M242 ] . 2M @
L(’LL)T— -— '*2‘64—" J(] <;7 u>+'L '—6_4' Jl <]%u>+

‘7‘12 "—" —iwu
564 Jz <1‘—{ u):l €

I—,'.'u)Z; JM‘ZA"AIW!)—{—; YO(QkAI|u|)—~7|rlogv (M |ul)

&~

J2(0)) =74 I) vy=0.577216 (KEulet’s constant)
T —

The quantities JJ, and Y, are the Bessel functions of order
p, of the first and second kind, respeetively.
For convenience p,(r) is considered in three parts, namely,
Pu(@)= D)+ P (1) + Pol) (22)
where

iME=2

> (=1 77 - 1 ME=2 Ry
Pay=y[ [z ta—pe+g Mo 2o g 20|

— 'l —
Po=" | z(oTa—pde

Pon=re ! j " 7, log, (RMe—E|)d
p TJo

Hence, equation (19) may be put in the form

Cm n= dmn +_I—m n +—7-mn (23)

where

*1

[mn :J Zm])ﬂ (.T')([.T
0

- 1 i

]m//:J Z,,,])n (.I')({J'
(.

El 'l p—
[/!Hl:J Z",l),, (.1')(].['
0

The first integral 7, represents the effect of the supersonic
stream passing over the upper surface of the plate; the other
two integrals represent the effect of the still air below the
plate.

Before further development of the method of the present
report for determining (%,,, the aerodynamic treatments of
references 1, 2, and 5, which deal with the pinned-edge
plate, will be examined. These references consider only the
effects of the supersonic stream, the air below the plate
being treated, in essence, as massless; that is, py/p is taken to

be zero and the integrals I,, and I, are omitted. In
references 1 and 2 the aerodynamic effects are accounted for
as if the integral 7, has been expanded as a power series in
the frequency of oscillation; reference 1 retains only the
steady-state or zero-order frequency term and reference 2
adds the first-order frequencey term. In reference 5, on the
other hand, the integral 7, is evaluated exactly with regard
to the frequency. This is possible because the modal
functions Z, for the pinned-edge plate are sine waves (see
eq. (16)) so that /,,, can be obtained in terms of the functions
(sometimes called Schwarz functions)

Y
rxm,b)zhxﬂ-.. f u,*(/"'“J(,(:[l)r/u (A=0,1) (24)

where
M

a==0>
w

and b has the four values
= +m
b—w—{—{ 1 }7r
A similar result could be obtained for the clamped-edge

plate by approximating the modal functions Z, (see eq. (17))
by a finite sine series

R
Z, = >, sin rrx
r=1

For either piuned or clamped edges, the arguments a and b
of the Schwarz functions f, would range from large positive
to large negative values. particularly for the higher modes,
and would thus require extensive tabulation of f; and fi.
The exact expression for the pressure term p,(r) is employed
in the present report but, beeause the necessary tables of fy and

Jiare not available, for convenience, a numerical method of

integration is used to evaluate p,(r) and the acrodynamic

integrals /,,,, I, and I,, of equation (23).
The numerical method is based on the following integration
rules for parabolic arcs:

A

[ ortr=25 tsute)+syter—yeg (25w
f-:a y(rydr= % [—y(r)-+8y(r2)+5y(ry)] (25b)

where ry=ur,+Ar and r;=ur,+Ar. The range of integration
in equation (19), 0=xr=1, is, for convenience, divided into
an even number of equal segments.  From the standpoint
of acceuracy the number of segments needed depends on the
number of nodes in the highest mode and on the value of
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® for which p,(z) is evaluated. For the numerical applications of the present report, 10 segments were found to be
adequate, and the methed of integration is illustrated for this number of segments in the equations to follow.

The use of 10 segments would, in general, require the determination of p,(z) in equation (19) at 11 points on the plate.
However, the integrand of C,, at x=0 and x=1 is zero since the mode shapes Z,, are zero at these points, and therefore
p.(z) need be evaluated at only the 9 interior points (equally spaced between x=0 and z=1). The

P,, P, and P, of equation (22) for these points may be arranged in matrix form as follows:
q y

E -

([ P,(.1) 8L(0) —L(—.1) ) 0 0 0
P.(.2) 18L(.1) 7L(O) —L(—.1) 0 ] 0
P,(.3) 13L(.2) 12L(1) 7L@O) —L(—.1) 0 0
P.(4) ) 13L(.3) 12L(.2) 12L(1) 7LO) —L(—.1) 0
< P,(.5) >=1—2—® 18L(4) 12L(.3) 12L(.2) 12L(.1) 7L(O) —L(—.1)
P,(.6) 18L(.5) 12L(.4) 12L(.3) 11L(.2) 15L(.1) 4L(0)
P.(.7) 13L(.6) 12L(.5) 12L(.4) 11L(.3) 14L(.2) 12L(.1)
P.(.8) 13L(7) 12L(.6) 12L(.5) 11L(.4) 14L(.3) 11L(.2)
L Pa(9) J | 13L(.8) 12L(.7) 12L(6) 11L(5) 14L(4) 11L(.3)
(7.1 (7D
Z.(.2) Z.(2)
Za(.3) 7,(.3)
are oy | Zn( D) 7y (4)
L({Wz{k_ﬁaﬂﬁ Z4(.5) }"'4’/325{ Z0(5)
Z.(.6) 7./(.6)
Z.(T) 20T
Z.(.8) 7. (.8)
L Z.(9) L Za"(.9)
(.1 (o) T(1) L2 L3) L4 L5 L)
P.(2) L(n IO I(H L2 L3 L4 L5
Pn(.3) T2y T TO L) L2 L(3) L4
P,(.4) T8 T2y T(1) Loy L. L2 L3
4 P.(5) &:%02% L4 I(3) L(2 L) L©O I(1) L2
P..6) () T(4 T3 L2 L1 Lo Ll
P T(6) I(5 IL(4) L3 L2 L(1) L
P.(.8) I L) L5 L4 L(3) L2 L(1)
L Pa(.9) | T(8) L(7) IL(6 L(5 L4 L3 L2
(Pl [T LD LD LD LD LoD Li(D)
P.(.2) L(2) L2 L(2 L2 L2 L2 L2
P.(.3) Li(3) Li(3) L3 L(3) Li(3) Ls(:3) Li(:3)
Bo(4) Li(4) L4 L4 L4 L4 L4 Li(4)
JPD (oo | Li(5) La(B) La(8) L5 L(5) Lo(.5) Ia(5)
—E,,(.G) 4 1_41(-6) éz(.ﬁ) I_Ja(ﬁ) L4(.6) és(.G) I_Je(-6) 127(-6)
P(7) L7 L) L7 L7 L7 L(7T) L7
Pn(.8) Li(.8) L8 ILs(.8) L«(8 ILi(.8 L(.8) Li(.8)
P.(9) L:i(9) L9 Li(9) Li(.9) Li(.9) Le(.9) Li(.9
4 J "

- —

0
0
0
0
0

0
5L(0)

13L(.1)
12L(.2)

LD
L(.6)
L(.5)
L(4)
L(.3)
L(2)
LD
L)
L(1)

I;s(~1)
Ls(.2)
Ly(.3)
Ls(.4)
Ly(.5)
Ly(.6)
Ly(.7)
Iu(.8)
Lx(.9)

oo oo o

0

5L(0)

13L(.1)

L8]

§7&))
L6
L(.5)
L(4)
L3)
L2
L1

o |

L)
L2
L.(3)
Lo(4)
L.(5)
L(.6)
Lo
L.(®)
Lo(.9)

(o= =l = i o I = N = B = B = 1

S5LO)_| L

127,(.2)
127,(.3)
117,(.4)
< 147.(.5)
117,(.6)
1272,07)
127,(.8)
L 137.(.9)

§10(~ 1 )_ (s
Em(ﬂ) 82
_f_zm(-?)) 83
zno(-‘l) 84
1210(-5) S5
zlo(f’) Sg
_Z_m(-7) 87
zm(-s) g
ZIO(-Q) Sg

r

( 137,(.1) )

\. 810

values of the terms

Zal 1))
Z.(.3)
Zn(.4)
Za(5) P+
Zu(.6)
Za(T)
Z.(.8)
7a(.9)

(26)

- (27)

> (28)

J

where L(u) and L(u) are defined after equation (21) and I__,,(u) and s, are defined in appendix B (eqs. (B16) and (B15)).

391986—57 2
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The rows of the square matrix in equation (26), down to the
row pertaining to P,(.5), were obtained by applying the
integration rule given by equation (25a). In the remaining
rows the contributions from the region 2>>0.5 were obtained
by applying equation (25b). In equation (27) the inte-
grating factors multiplying Z, in the column matrix were
obtained by using equation (25a) between x=0 and =0.5
and equation (25b) between =0.5 and 2=1.0. In appendix

B the singular integral P.(x) presented after equation (22)

is evaluated and the form of P, leading to equation (28) is
derived.

Equations (26), (27), and (28) are summed in accordance
with equation (22) to obtain the column matrix {p,,(x)}.
By use of this column matrix and the integration rules of
equation (25), the aerodynamic term (7, is obtained In
the form

Cnn=r35 (130 DZn(D)H120,(DZ( 2+ 12, B Z(3)+

119u(4) Zn(4)F-149 (-5) Z,(.5) +11p4(.6) Zn(-6) +-
12p,(-NZn(-7)+12D(-8) Z(-8)+13ps(-9)Zn(-9)] (29)

where the integrating factors 13, 12, . . . 12, 13 were ob-
tained in the same manner as those in equation (27). By
means of equation (29), C\,, can be evaluated for a given edge
fixity and for particular values of M, k, and po/p.

SOLUTION OF FLUTTER DETERMINANT

As previously stated, the conditions for flutter are de-
termined from the nontrivial solutions of equation (14).
Since equation (14) is complex, it may be solved directly for
one complex unknown or two real unknowns. For a specific
edge fixity the variables (see eq. (13)) in equation (14) are
1/u (the inverse of u is preferred because u becomes infinite
for p=0), Q, f, M, k, and po/p. It is convenient to interpret
the © of equation (13) as the complex quantity (w/w)*(1+17g)
rather than (w;/w)?, where ¢ may be regarded as a structural
damping coefficient. (For this use of g, see, for example,
refs. 12 and 13.) Each of the various quantities on which
equation (14) is dependent was varied to some extent, as
will be discussed in the next section. A particular calcula-
tion was performed by setting values for 1/u, M, k, f, and
po/p and solving for @.  Then, because it was one of the more
easily varied parameters, 1/u was changed and again Q was
solved for. This procedure was continued until curves of
1/u and (R.P.Q)"2 plotted against g passed through g=0.
The value for k& was then changed and the procedure re-
peated. After sufficient variation of 1/u and k, curves
could be established of 1/u against 2k,=2k(R.P.Q)Y% for
particular values of the other parameters M, g, f, and po/p.

RESULTS AND DISCUSSION

In the preceding sections a method of flutter analysis has
been developed for a two-dimensional flat panel or plate held
at its leading and trailing edges. The variables in the

analysis are the number of modes or degrees of freedom the
panel is assumed to have, Mach number (greater than 1.0),
1/u, 2k, =2k(R.P.Q)Y% g, f, p/o, and edge fixity. The
analysis conveniently yields stability boundaries in terms of
1/u and 2k,, which are used as the coordinates of most of the
figures presented. These two parameters are given in terms
of the properties of the panel and supersonic stream by

1_rpe

,u._o' T

o= KT \/ 2 (30
U J2aa—») ¢ Vo g

where ¢ is panel density, ¢ is dynamic pressure, and K is the
first-mode eigenvalue given in table I for clamped and pinned
edges. Inasmuch as the various parameters in the analysis
contain implicitly the panel properties (E, o, », and 7/c),
axial force F, air density, and speed of sound, the effects of
varying these implicit properties can be obtained only by
cross-plotting.

Some effects of the number of modes used in the analysis
are studied by using two and then four modes of the clamped-
edge panel with selected values of A, g, f, and py/p. In
addition, M, g, f, and py/p are varied in order to study their
effects. To a lesser extent the pinned-edge panel is investi-
gated for comparison with certain clamped-edge results.

The following table lists the conditions for which stability
boundaries are given:

Mach Degrees Density
number, of Structural damping Tension param- ratio,
M freedom coefficient, g eter, f ol
|
‘ Clamped edge
| I 0 0
' 2 0 -
‘ 0,0.1,0.5, 1.0 1.0
1.3 - — I
0, 0.005, 0.025, 0.03, 0.05 0 0
4
0 0,0.1,0.5,1.0 0
V2 2 0, 0.002, 0.00375, 0.05 0 0
2 0 0 0
1. 56
4 0 0 0
Pinned edge
V2 2 0, 0.003, 0.00475, 0.05 0 0

The results are first grouped according to Mach number
and are later summarized and compared.

RESULTS FOR MACH NUMBER OF 1.3

Effects of two and four modes.—Figure 2 gives the results
for the clamped-edge panel for the simple case of two degrees
of freedom (first and second modes) with g=f=p)/p=0.
The abscissa is the stiffness parameter w,¢/U=2k; and the
ordinate is the mass ratio 1/u. An ordinate of zero repre-
sents the limiting case of p=0, or, in other words, the plate
is vibrating in a vacuum. The two solid curves are the first-
and second-mode stability boundaries as indicated. It was
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20 LS iy studied by including the first four normal modes, and the
\\" Pl |ee,2?es / results are shown as the solid curves of figure 3. The dashed
\ curves are the results for two modes from figure 2. With the
\ ’f =0.425 f addition of the third and fourth modes, the first-mode bound-
16 \\ |st—mode ary is moved very slightly to the left (except where it crosses
\\ N boundary_. // the abscissa) and is still the “critical” or decisive stability
\ boundary separating the stable from the unstable region.
' \ \ / The second-mode boundary is also only moderately affected.
12 A Within the already unstable region there now exist third-
Unstable ! .
()] \ /425 \ mode and fourth-mode boundaries which are closely anal-
\ 743 )
N ogous in appearance and character to the first- and second-
. ‘ / N \ Stable mode boundaries, respectively. The unstable region is
= 08 0 divided by three of the boundaries, into regions of different
. nstable \ | . “1s s qs .
g '3'8f 2 o degrees of instability as indicated by the numbers in paren-
2 / T<_ \/\ increasing theses ranging from (1) to (4). (The points at which the
P i T
7] 7 _\?
2 04 7 2 \}~\ 24 4th-mode |  ode bound:
- b%arfgggf \ / boundory,__/\ ""3d—mode|boundory /
Unstable
.IOG/ / \ o /
0 20 Unstabl = I
nsiaole
n / (@) / ©) / \ / /
\\ ’ / / Isg—mgde J j
oundary .-
-04 .318 16 |
— B |
\ _>2d-mode //
12 / \” % boundary
-G8 2 g 3 8 10 / \
Stiffness parameter, w c/U \ /
Figure 2.—Stability boundaries from a two-mode analysis for / / (3) \ \
clamped-cdge panels. M=1.3; g=7=2=0. \i 08 | :
P >
- / Stable
g
E ’ - "\ T
established by application of the Nyquist eriterion (see, for @ / / \I {2)
example, ref. 14) as well as by interpretation of structural- 2 04 - — - J\-
damping results that the region to the right of the first mode /
boundary is stable, whereas the region to the left is unstable; Unetoby S W* A Bl
furthermore, the region within the second-mode boundary is n?40) il
doubly unstable as indicated (unstable with regard to both 0 ;
boundaries). Values of the reduced frequency % are indi- | / /
cated along both curves. The points at which the curves F 7
cross the abscissa correspond to vibration in a pure normal \ \ ’ / /
mode (flutter at the limiting condition of p=0). -.04 N
It can be seen from equations (30), by taking the product ﬁL_/
of 1/u and 2k,, that a specified panel material, air density,
and speed of sound are represented by a hyperbola such as \
the dashed curve of figure 2 with the panel thickness-chord -08 ‘N
. . . . . . Four modes
ratio 7/c increasing to the right. The intersection of the Two modes
hyperbola with the stability boundary fixes the value of 7/¢
for neutral stability. Thicker panels are stable and thinner
panels are unstable. (The particular hyperbola shown is for -12 . . 5 5 -

aluminum panels in air with standard sea-level properties.
For denser panels or less dense air, the hyperbola would be
below the one shown.)

Some effects of the number of modes in the analysis were

Stiffness parameter, w,¢/U
Ficure 3.—Stability boundaries from two-mode and four-mode

analyses for clamped-edge panels. M=1.3; g= f=;—';—°=0.
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various boundaries cross the abscissa have the same signifi-
cance as before.) These results indicate that two modes
give a decisive stability boundary which is a close approxima-
tion to that for a large number of modes, at least for the con-
ditions g=f=py/p=0 and M=1.3.

Effects of structural damping coefficient g.—Figures 4 (a)
and 4 (b) show the first-mode and second-mode boundaries
(from a four-mode analysis) for various values of g (taken
to be the same for all modes). Third- and fourth-mode
boundaries are affected by g in a manner similar to that of
the first and second modes, respectively, and are not shown.
The second-mode boundary of figure 4 (b) vanishes com-
pletely when g becomes slightly greater than 0.025, and for
all positive values of g it remains in the unstable region to the
left of the first-mode boundary. Included in figure 4 is the
dashed hyperbola from figure 2. Since the thickness-chord
ratio 7/e decreases to the left in the figure, the abscissas of
the intersections of the hyperbola with the stability bound-
aries in figure 4 (a) show the proportional reduction in
thickness required to prevent flutter as g increases.

Effects of tension.—Tension has a marked effect on the

15 T l | |
\ “Aluminum panels ot sea level

A
\ Unstable / / /
\

10 ¥
\
\
\ \
ol
S \ |
— \ ‘ . Stable
) A I
= N\
e
3 \/ ‘ ;
s ™

~N
j
05 : >

0 2 4 6 8 10
Stiffness parameter, w) ¢/
(a) First-mode boundary.
Ficure 4.—First-mode and second-mode stability boundaries from
a four-mode analysis for clamped-edge panels for various values of

structural damping coefficient g. M=1.3; f=%°=0,

stability boundaries, as shown in figures 5 (a) and 5 (b).
Figure 5 (a) shows the pertinent segments of the first-,
second-, third-, and fourth-mode stability boundaries for
£=0 and for the three values 0.1, 0.5, and 1.0 of the tension
parameter f. As f increases, all the boundaries move to the
left, and the thickness required to prevent flutter is de-
creased. Furthermore, as f increases, the first-mode bound-
ary moves to the left more rapidly than the higher mode
boundaries so that the rightmost boundary, separating
stable from unstable regions, i1s one of the higher mode
boundaries. For example, for f=1.0 in figure 5 (a), the
third-mode boundary is farthest to the right. This trend is
not surprising since application of tension to the clamped-
edge plate causes the largest percentage increase in the first
natural frequency, the next largest in the second natural
frequency, and so on. Thus, it appears that the inclusion
of only two modes in a flutter analysis may not be sufficient
when the plate is subjected to tension. Inasmuch as the
stiffness parameter 2k, and the tension parameter f are both

.25

Val
\
/ \

o
\
S

// 025
/
/ /

Unstable
(2)

Mass ratio, |/p

L | (b)

0 A 2 3 4 5 6 .7
Stiffness parameter, w,c/U

(b) Second-mode boundary.
Fiaure 4.—Concluded.
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075 i , | /
l‘,: . / ! l ,l' / Stable
050 Unstable l ' l|I l | / , I ;
I
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2 o L [
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E.IOO =10 5 A
¢ | BRIy
Hi
! ','l ! / ;, ' '] ,'i Stable
050 netople ’/’ I’ ' , I/ Boundaries
/ 7 L ,.’, / ,/ L First mode
ossl iy T e mose”
uu/ ! / 7 ———— Fourth mode
4t L f=10 5 1 ;
(b) | | ’» { ,

e} A 2 3 4 5 6 g
Stiffness  parameter, wlc/U

(a) g=0.
(b) £=0.005.
Figure 5.—Stability boundaries from a four-mode analysis for
clamped-edge panels for three values of the tension parameter f.

M=1.3; 2=0.
p

based on the first natural frequency of the panel without
tension, the shift of the boundaries is due solely to the
tensile force F.

Figure 5 (b) shows segments of the first-, second-, third-,
and fourth-mode boundaries with f=0.1, 0.5, and 1.0 for
£=0.005. By comparing figures 5 (b) and 5 (a) it can be
seen that g has a marked effect for the smaller values of f but
its effect diminishes as f increases.

Effects of still air below panel—The one remaining pa-
rameter to be considered at M=1.3 is py/p, the ratio of the
density of the still air below the panel to the density of the
supersonic stream above. In the preceding results this
ratio was zero. The effect of increasing po/p to 1.0 will now
be examined. For the sake of simplicity and convenience,
only a two-mode analysis is made. Effects of structural
damping and tension are also included.

Figure 6 (a) shows first- and second-mode boundaries for
po/o=1 as solid curves and, for comparison, the dashed
boundaries for p/p=0 from figure 2. Just as with the other
results, the points where the boundaries cross the abscissa

391986—57——3

correspond to pure-mode resonance in a vacuum. At these
crossings the imaginary part of C,, passes through zero.
This imaginary part is a measure of aerodynamic damping.
In the previous calculations C,, consisted only of I,,,

whereas, for py/p=1.0, C,, also contains I,,+1I,, (see eq.
(23)). By comparison of the solid and dashed curves on
figure 6 (a) it can be seen that, as a consequence, the first-
mode boundary has moved to the left by about 20 percent
but the second-mode boundary has changed relatively little.

Such an effect of still air might be expected since, for the
same maximum panel amplitude, a first-mode vibration
radiates into the still-air region a greater amount of energy
per cycle than does a second-mode vibration. (With regard
to the radiation of sound from a piston in a plane wall,
specifically for the case of a piston with nonrigid face, p. 336
of ref. 15 gives the result that, at frequencies which are
small compared with the ratio of the speed of sound to 2=
times the piston radius, the pressure on the piston is approxi-
mately uniform and nearly proportional to the average
velocity of the piston. Since the average velocity of the
second mode and all other antisymmetric modes is zero, the
pressure due to these modes is nearly zero and, accordingly,
almost no work is being done on the still air.) From the
fact that net energy can never pass from the still air into the
panel, it does not follow, however, that the still air neces-
sarily has a stabilizing effect in all cases. Conceivably, the
still air could act to modify the flutter mode so that more
energy would be extracted from the supersonic stream, and
thus contribute toward an instability. Apparently such is
the case in figure 6 (a), where the solid second-mode curve
is above the dashed second-mode curve. The fact that
dissipation of energy into the still air is not necessarily
stabilizing should not be surprising, inasmuch as another
means of energy dissipation, structural damping, is usually
stabilizing but sometimes destabilizing.

As can be observed in figure 6 (a), the first-mode boundary
has moved to the left of the second-mode boundary in the
region of small mass ratio; in this region the second-mode
boundary becomes critical.

Figure 6 (b) shows the effects of structural damping on the
first-mode boundarv, which for g=0 is shown more com-
pletely in figure 6 (a). Curves are included for g=0, 0.005,
0.03, and 0.05. For values of g larger than about 0.025 the
second-mode boundary vanishes as it did previously with
po/p=0 in figure 4 (b), and only the first-mode boundary
remains. The dashed hyperbola for aluminum at sea level
is included in figure 6 (b), and it can be seen that a plate with
zero structural damping would have to be about 30 percent
thicker than one with g=0.05 in order to prevent flutter.

Figure 7 shows the effects of the tension parameter f for
po/p=1 and g=0. Both first- and second-mode boundaries
are shown for f=0, 0.1, 0.5, and 1.0. In this case, just as
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(a) First-mode and second-mode boundaries for g=0.
(b) First-mode boundary for various values of g.
FIGURE 6.—Stability boundaries from a two-mode analysis for

M:1.3;f=0;§9:0

clamped-edge panels for various values of g.
and 1.0.

with py/p=0, tension causes a marked reduction in the thick-
ness required to prevent flutter. Furthermore, if more than
two modes had been included, tension would have resulted
in a higher mode boundary farther to the right than the
curves shown for the higher values of f.

RESULTS FOR MACH NUMBER OF .2

Clamped-edge panels.—Figure 8 (a) shows the stability
boundaries obtained from a two-mode analysis for clamped-
edge panels at M=+/2 with f=po/p=0 for various values of g.
Included in the figure is the dashed hyperbola appropriate
to this Mach number for aluminum panels in sea-level air.
From a comparison of figure 2 and the curves of figure 8 (a)

" ! | L
| R k L
1 1na / L
R L ]
e L ]
£ LU [ 1l
e | | 1T i |

o T | ] stame
. ] ]
HARIENIE /
IRV

0 A 2 3 4 5 6 7
Stiffness parameter, wIC‘/U
Ficure 7.—Stability boundaries from a two-mode analysis for

clamped-edge panels for various values of f. M=1.3;¢=0; £=1,0,
P

for g=0, the first-mode boundary of figure 2 appears to have
moved into the positive mass-ratio region and the second-
mode boundary appears to be moving toward the negative
mass-ratio region. Such is the case, but, inasmuch as the
flutter frequencies on the upper boundary of figure 8 (a) are
about midway between the first and second natural fre-
quencies, this boundary can now be referred to only loosely
as a ‘‘first-mode” boundary. The lower boundary is still
readily identified as a second-mode boundary and the inter-
section with the abscissa corresponds to vibration in a pure
second mode.

In contrast to the situation at A/=1.3, the second-mode
boundary for g==0 is now decisive for panels represented by
the dashed hyperbola. Values of thickness to the right of the
second-mode boundary are stable and, in addition, a small
range of thickness values is stable between the upper and
second-mode boundaries.

The curves in figure 8 (a) for positive values of g show that
the region of instability within the second-mode boundary
is reduced for small values of g (as for M=1.3) and vanishes
when g is slightly greater than 0.00375, but that small values
of ¢ increase the region of instability associated with the
upper boundary. This effect of g on the upper boundary is
in marked contrast to its effect on the first-mode boundary
at M=1.3. (See fig. 4 (a).) The differing effects of strue-
tural damping at M=1.3, M=+/2, and M=1.56 are con-
sidered further in the section on ‘“Variations With Mach
Number.”

Pinned-edge panels.—In order to indicate effects of edge
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fixity, boundaries are shown in figure 8 (b) for conditions
identical to those of figure 8 (a) except that the edges are
pinned rather than clamped. The boundaries for g=0,
which are given incompletely in reference 5 and thereby lead
to the conclusion that only a small range of panel thickness
is stable at M=+/2, have been extended to higher frequencies
with the result that sufficiently thick panels are also found
to be stable. The effect of structural damping on both
boundaries in figure 8 (b) is very similar to that in figure 8 (a).
The dashed hyperbola appropriate to pinned-edge aluminum
panels in sea-level air is included in the figure. The hyper-
bolas of figures 8 (a) and 8 (b) are located differently because
of the different values for the first-mode eigenvalue K, of
equation (30) for pinned and clamped edges. (See table I.)
From the intersection of the dashed hyperbolas with the
stability boundaries in the two figures, it can be determined
that a pinned-edge panel must be somewhat thicker than a
clamped-edge panel in order to be flutter free but not nearly
as thick as might be expected from a simple comparison of
the first natural frequencies. Values of the reduced fre-
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quency k are indicated along each of the boundaries of
figure 8.

Based on what occurred at M=1.3 (see fig. 3), there is the
possibility that for g=0 the fourth-mode boundary from a
four-mode analysis would alter the stability picture in both
figures 8 (2) and 8 (b) in the relatively unimportant narrow
range of stability between the boundaries shown for g=0.
This minor effect of the fourth-mode boundary is expected
to disappear for values of g greater than about 0.005 and,
therefore, a four-mode analysis was not made for this Mach
number.

RESULTS FOR MACH NUMBER OF 1.56

Effects of two and four modes.—As in the case of M=1.3,
stability boundaries were obtained first for two and then for
four degrees of freedom with g=f=po/p=0. These bound-
aries appear in figure 9 as dashed curves for two modes and
solid curves for four modes. Values of the reduced frequency
k are indicated along the boundaries. The stable region is
again to the right, and on the left the degree of instability
is indicated in parentheses for the four-mode analysis.

The two-mode results in figure 9 continue the trend noted
in the preceding section from comparison of the curves of
figure 2 and those of figure 8 (a) for g=0. The second-mode
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boundary has moved entirely into the negative mass-ratio
region. The upper boundary has moved higher in the posi-
tive mass-ratio region, and the flutter frequencies along it,
which in figure 8 (a) were midway between the first and
second natural frequencies, are now closer to the second.
For this reason the upper boundary, which was loosely identi-
fied as a “first-mode’” boundary in the discussion of figure
8 (a), will now be referred to as a “second-mode’” boundary.

A further point of difference between the results at M=1.3
and M=1.56 is that the addition of the third and fourth
modes at AM=1.56 shifts the decisive stability boundary to
the left by about 10 percent, whereas at M=1.3 the shift is
insignificant. (Compare figs. 3 and 9.) Although this shift
indicates that the two-mode result is not well converged, the
two-mode boundary is conservative; that is, it requires a
greater thickness to prevent flutter. (As with two modes,
when four modes are used, half of the stability boundaries fall
in the negative mass-ratio region.)

Effects of structural damping coefficient §.—No curves are
shown to indicate effects of structural damping at a Mach
number of 1.56, the reason being that, for moderate values
of the coefficient g, ranging at least up to 0.05, the stability
boundaries fall virtually on top of those for g=0. The major
effect of structural damping is a moderate change in flutter
frequency.

Effects of tension and of still air below panel.—Eftects of
tension have not been determined, but tension is expected
to have essentially the same favorable stiffening effect at all
Mach numbers as at M=1.3. The effect of still air behind
the panel has also not been determined, but this effect is
expected to be less than at A/=1.3 for two reasons: First, the
air beneath the panel acts primarily as an energy absorber
and one means of energy absorption, structural damping,
has been found ineffective in shifting the stability boundaries.
Second, on the decisive boundary the flutter mode appears to
be predominantly the second natural panel mode, and it was
found that at AM=1.3 the second-mode boundary is changed
only slightly by increasing po/p from 0 to 1.

VARIATIONS WITH MACH NUMBER

The foregoing results have been presented for particular
Mach numbers. In an effort to clarify some of the anom-
alies that have been noted in these results, figures 10 to 12
are presented. Figure 10 shows the panel thickness-chord
ratio required to prevent flutter as a function of M for
clamped-edge panels with g=f=p/p=0. The curves apply
to aluminum panels in standard sea-level air. The values
at M=1.3, V2, and 1.56 were obtained from figures 2 and
8 (a) and the two-mode results of figure 9. The shape of the
curves between these known points is estimated. The
stable region is above or to the right of the shaded boundaries.

The boundary which is labeled ‘“first-mode” on one end
and “second-mode’”’ on the other has flutter frequencies
which progress from slightly above the first natural frequency
to somewhat below the second natural frequency as the
Mach number is increased. (See previous discussions con-
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Frevre 10.—Minimum panel thickness ratio /¢ required to prevent
flutter as a function of Mach number for clamped-edge aluminum
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cerning figs. 2, 8 (a),and 9.) The boundary labeled “second-
mode”’ has flutter frequencies slightly below the second
natural frequency throughout.

Figure 10 shows the second-mode stability boundary to
be decisive in the Mach number range from slightly above
1.30 to slightly above 2. As the structural damping g
is increased from zero, the second-mode boundary shrinks
to the left leaving the ‘“first-mode’”’—*‘second-mode’’ bound-
ary decisive throughout the range of M shown. For example,
for a value of g slightly greater than 0.0038 the second-mode
boundary does not exist at M=+/2 (see fig. 8 (a)), and for
a value of g slightly greater than 0.025 it does not exist at
M=1.3 (see fig. 4 ().

These effects of g on the second-mode boundary are
illustrated in figure 11, which contains cross plots of g
against 7/c obtained from the intersections of the dashed
hyvperbolas (for aluminum panels in sea-level air) with the
boundaries for constant g such as shown in figures 4, 8 (a),
and 9. Figure 11 also shows that an increase in g from
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zero would cause the ‘“first-mode’’—*‘second-mode’’ bound-
ary of figure 10 to drop markedly at AM=1.3, rise slightly
at M=+/2, and remain essentially unchanged at M=1.56.
The ratios of flutter frequency to the first natural frequency
wfw; are indicated for each of the crossings and tend to
show more clearly the connection between figures 10 and 11.
(Values of w/w; near ws/w;, which is approximately 2.76, are
associated with ‘the second-mode boundary and wvalues
between 1.0 and 2.05 are associated with the “first-mode’”—
“second-mode’’ boundary.) A complete understanding of
the manner in which the curves change characier and position
with Mach number, particularly between AM=1.3 and
M=+/2, requires more calculation than presented herein.

Figure 12, which has the same ordinates as figure 10, is
presented for the purpose of summarizing some effects of
all the parameters investigated. The results shown are
based on two modes, except in the case of tension where only
four-mode results are known. The results again apply to
aluminum panels in sea-level air. The figure shows as a
solid curve the shaded boundary from figure 10 for clamped-
edge panels and as a short-dash curve the effect on this
boundary of increasing g from 0 to 0.05. The third (long-
dash) curve is for pinned-edge panels with g=0, the value
al M=2 having been obtained from reference 2.  The points
at M=+/2 were obtained from figure 8 (b) and the upper
(second-mode) curve was patterned after that for clamped-
edge panels. As a matter of interest, points are included
in figure 12 at M=1.3 for clamped-edge panels and indicate
the effects of tension (f=0.5) and of still air below the panel
(po/p=1.0) for g=0 and g=0.05.

Some effects of the various parameters can be assessed
from figure 12. The overall result is that 7/c is highest in
the low supersonic Mach number range and suggests that
this range is the more critical from a design standpoint.
Structural damping is scen to have a large favorable effect
near and below AM=y2. Although rather influential at
M=1.3, the still air below the panel is expected to have less
effect at M=+/2 and 1.56. Tension, which is seen to have a
large favorable effect at M=1.3, is expected to be similarly
effective for all Mach numbers. In this connection, it might
be mentioned that one means of producing tension is by a
static-pressure difference between the upper and lower panel
surfaces, particularly for the case where the panel leading
and trailing edges are prevented from moving toward each
other. A comparison of the results for the edge fixities,
pinned and clamped, is of interest because the edge fixity of
actual panels falls somewhere between.

COMPARISON WITH OTHER THEORETICAL WORK

In reference 2 the conclusion is reached that all panels,
regardless of thickness, are unstable for supersonic Mach
numbers less than /2. This result and the more plausible
results of reference 2 for M >2 are based on air forces
expanded to the first power of the frequency of oscillation.
In reference 5 the necessity of including higher order fre-
quency terms for Mach numbers near /2 is pointed out, and
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stability boundaries, based on exact linearized unsteady air
forces, are presented for M=+2 and M=2. One bound-
ary is obtained at M=2 which agrees well with the com-
parable result from reference 2, whereas two boundaries are
obtained at M=+2. The boundaries at M=+2, because
they are not carried high enough in frequency, are interpreted
in reference 5 as showing that stability is possible only for a
small range of panel thickness at this Mach number. The
results of reference 2 for M<(,/2 are not questioned in
reference 5.

In the present report, stability boundaries are computed
for M=+/2 and for Mach numbers above and below this
value (namely, M=1.3 and M=1.56). In view of the find-
ings of references 2 and 5, perhaps the most noteworthy
result of the present investigation is that, for the Mach
numbers treated and probably throughout the supersonic
range, sufficiently thick panels are stable.

In references 2 and 5 and the present report, M=+/2
appears as a transitional value. The transition is evidenced
herein by the contrasting behavior of the stability boundaries
at M=13 and M=1.56. Some understanding of why a
Mach number of /2 is transitional can be had by examining
WM?*—2)

2kg?
(26), being the entire first-order frequency contribution to
the damping, is dominant at low frequencies. This term
appears to control the slope, at low frequencies, of the
eventually decisive stability boundary and changes sign as M
passes through /2. When M <42, the slope is negative for
low frequencies, but as the frequency increases the slope
eventually becomes positive because of the higher order
frequency effects (for exawmple, in fig. 2). Because only
first-order frequency effects are included, in essence only the
beginning portions of the stability boundaries for M< 42 are
obtained in reference 2, and, as a consequence, the conclusion
is reached that all panels are unstable below this Mach
number. For M >.2 the slope of the decisive stability
boundary starts out positive and becomes more so as the
frequency increases. (See fig. 9.) If aspect ratio were
included in the present treatment (by considering three-
dimensional rather than two-dimensional panels), a reduction
in aspect ratio would probably tend to eliminate the initial
negative slope of the eventually decisive stability boundary
for M< /2 and increase the initial positive slope for M >+/2.
This effect of aspect ratio is expected because, in general, a
reduction in aspect ratio results in an increase in aerodynamic
damping with a consequent enlargement of regions of
stability.

In reference 7, which treats a different problem (namely, an
infinite two-dimensional panel on equally spaced supports),
the result was also obtained that somewhere in the supersonic
Mach number range a panel will flutter regardless of its
thickness. The conclusion was reached that stability is not
possible at supersonic Mach numbers less than about 1.25
and that at higher Mach numbers a sufficient increase in
thickness will always render a stable panel unstable. How-
ever, it was observed that over a large portion of the pre-
dicted region of instability the flutter was of an extremely

matrix equation (26). The term {Z.} of equation

mild character, since a large number of oscillations were
required to double the amplitude. With the hope of elimi-
nating the large region of mild instability, small amounts of
viscous damping were included. Contrary to expectations,
thick panels remained unstable for the example given at
M=18.

As part of the viscous-damping investigation, the results
were interpreted so as to determine regions of stability and
instability. Asshown in figure 10 of reference 7, an apparent
conflict with the results of Nyquist diagrams was found.
(The Nyquist diagram concept is used in general in reference
7 for determining stability.) This conflict is based on the
assumption that most investigators interpret structural-
damping results according to the concept that removal of
damping tends to destabilize. This assumption is incorrect,
however, and no such simple criterion holds true for inter-
preting structural-damping results. A feature to be noted
in the example chosen in reference 7 to illustrate the apparent.
conflict is the existence of infinite singularities in the air forces
at the end points of the boundaries (g=0, 0.01, and 0.03) on
the right in figure 9 of the reference (designated type B loci
therein). By way of explanation, such singularities occur in
the linearized-flow treatment because a traveling wave of
panel deflection is moving at a speed corresponding to M=1
relative to the air above or below the panel.

In this analysis the question of stability was investigated
by means of both the structural-damping concept and the
Nyquist diagram concept. The structural-damping results
in every case agreed with the Nyquist diagram results.
Incidentally, in using the Nyquist concept, knowledge of the
aerodynamic forces for all frequencies from minus infinity
to plus infinity is required. Thus, the concept is not appli-
cable, in general, when the air forces are approximated by a
few terms of a power-series expansion in the frequency of
oscillation.

COMPARISON WITH EXPERIMENT

A few experimental results on the flutter of flat and buckled
panels are available for comparison with the theory of the
present report for flat panels and that of reference 3 for
buckled panels. Reference 16 gives experimental results
at M =1.3 for panels 11.62 inches long in the stream direction
and 8 inches wide that were held by clamping the leading and
trailing edges. In figure 13, the results of reference 16 at
M=1.3, together with data more recently obtained in the
Langley supersonic flutter apparatus on both flat and
buckled pancls at other Mach numbers, are compared with
theory. The results are presented in terms of the thickness-
chord ratio 7/c needed to prevent flutter of aluminum-alloy
panels at an altitude of 25,000 feet as a function of Mach
number. These points were obtained from tests of panels
of different thicknesses (see, for example, ref. 16) and repre-
sent the thinnest panels which did not flutter. (Where
necessary, experimental data were adjusted to a pressure al-
titude of 25,000 feet with the relation r/e=(7/c) (g/q.)".
The subscript » refers to the experimental conditions.)

In figure 13, the solid curve is the flutter boundary for
flat panels obtained from the present theory and the square
symbols are the corresponding experimental results. The
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dashed curve is the static-stability boundary for buckled
panels, proposed as a flutter boundary in reference 3, and the
circles are the associated experimental results. The theo-
retical curves are seen to increase rather sharply near Mach
number 1.0. For buckled panels the increase is due to the
usc of steady-state linearized air forces which become infinite
at M=1. For flat panels the increase is thought to be
associated with a change in flutter mode and decreased aero-
dvnamic damping. The curve for flat pancls would have
a finite ordinate at M=1.0.

As can be seen from figure 13, buckled panels have been
fluttered up to a Mach number of 3. Flat panels were not
fluttered over the same range because buckled panels ap-
peared to be more susceptible to flutter, in gencral, and dur-
ing a test it was difficult to prevent the thin, flat panecls
from buckling due to heating. (A temperaturc rise of 5°
to 10° F was sufficient to induce buckling in many panels.)

The agreement between theory and experiment for both
flat and buckled panels is surprisingly good, inasmuch as the
experiments were made on panels with a width-length ratio
of 0.69, whereas the theories are for two-dimensional panels.

CONCLUDING REMARKS

A Rayleigh type analysis involving chosen modes of the
panel as degrees of freedom has been used to treat the flutter
of a two-dimensional flat panel supported at its leading and
trailing edges and subjected to a middle-plane tensile force.
The panel had a supersonic stream passing over its upper
surface and still air below. The aerodynamic forces due to
the supersonic stream were obtained from the theory for
linearized two-dimensional unsteady flow and the forces due
to the still air were obtained from acoustical theory. The
still air beneath the panel was treated on the assumption
that the still-air reservoir extended to infinity. Accordingly,
once acoustic energy was radiated into this region, none of
it was ever reflected. Such a situation is, of course, not the
same as for a panel on a closed body but represents a first

approximation for many practical cases.

In order to study the effect of increasing the number of
modes in the analysis, two and then four modes were em-
ployed. The modes used were the first four natural modes
of the panel in a vacuum with no tensile force acting. The
analysis included the variables: Mach number M, structural
damping, tensile force, density of the still air, and edge
fixity (clamped and pinned). For certain combinations of
these variables, stability boundaries were obtained which
can be used to determine the panel thickness required to
prevent flutter for any panel material and altitude.

In contrast to some previous panel flutter investigations,
the present results show that sufficiently thick panels are
flutter free for the Mach numbers treated and suggest that
this is true throughout the supersonic speed range. The
low supersonic Mach numbers were found to be most critical
from a design standpoint in the range examined (from
M=1.3 to M=2.0). Tension was shown at M=1.3 to have
a marked favorable effect (also expected at all Mach num-
bers) in reducing the thickness required to prevent flutter,
and it was pointed out that one means of producing tension
is by a static pressure difference between the upper and
lower surfaces of the panel. Small amounts of structural
damping were found to have a pronounced beneficial effect
near and below M =+/2 and essentially no effect at M=1.56.
In the neighborhood of M=2 a small change in either
Mach number or structural damping was found to cause an
abrupt change in the thickness required to prevent flutter.
At M=+/2 a pinned-edge panel must be somewhat thicker
than a clamped-edge panel in order to be flutter free: Still
air below the panel was taken into account only at A/=1.3
and was shown to have a moderate beneficial effect. For
M>/2 the still air is expected to have little effect because
for this Mach number range the flutter mode is predomi-
nantly the second natural mode, which radiates very little
cnergy into the still air.

The theories of the present report for flat panels and of
Isaacs for buckled panels were compared with a few experi-
mental results on panels clamped at leading and trailing
edges over the Mach number range 1.2 to 3.0. The agree-
ment was surprisingly good inasmuch as the experiments
were made on panels with a width-length ratio of 0.69,
while the theories are for two-dimensional panels. Over
the Mach number range of the experiments it was found
that buckled panels had to be thicker than flat panels in
order not to flutter. The effect of restraining flat or buckled
panels on all four edges has not been investigated. Such
restraint together with variation of width-length ratio will
probably have a significant effect on the thickness required
to prevent flutter. Another factor which requires investi-
gation is built-in curvature of the panel in the streamwise
or cross-stream direction.

LANGLEY AERONAUTICAL LLABORATORY,
NaTioNAL ADviSORY COMMITTEE FOR AERONAUTICS,
Lancrey Fieup, Va., April 20, 1955.
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APPENDIX A
SOLUTION BY MEANS OF LAPLACE TRANSFORMS

In a recent paper (ref. 6), a procedure is outlined for obtaining by means of Laplace transforms the exact solution
for the flutter of a two-dimensional membrane which is subjected to a supersonic stream on one side and stagnant
air on the other. This solution is called exact, inasmuch as the equation of motion for the system is solved directly
without any limitation being imposed on the mode shape or frequency of flutter. Reference 6 also mentions that pure
bending of a plate and the more general case in which plate bending and membrane stretching are combined could be treated
in the same manner. The present report treats the latter case; namely, the flutter of a panel (plate) acted on by a middle-
plane or axial force, such as tension, or compression less than the buckling load. In the body of the report this problem is
solved by the generalized-coordinate approach, and the coordinates used are the normal modes of the panel with no axial force
acting. In this appendix, for the sake of completeness, the solution to the same problem is derived by means of Laplace
transforms to the point where numerical calculations can be made. The feasibility of applying the Laplace transform solution

is examined, but no numerical results are obtained.
The intergrodifferential equation to be solved is given by equation (2) which, upon substitution of the expression for

p(x,f) obtained from equations (5) to (9), may be written as

D 1107 2. F ' vaz 17 . ’ ) pO . L

i 2 et ma L5 2 3 2k | w, () Llr— S)d£+d wu (O r—5dE |—5 —| 2k . wz(é)lr(w—é)déj =0 (AD)
or alternativelv as

D7~~ wm, Z—5 7//+PL { I:wu(o)I f)+f I(r— 9(61{“2’“) w,,(g)df:l—~— erf w,(f)ll(z—s)déj}#

where

w(r)=2Z"(x)+12kZ(x)
wy(x)=12k Z(x)

L(n)=eJ, (A% x)
L(x)=H,®(2kM|z])
Dividing equation (A2) by mw® yields

wZ!" 52— W{ [0+ | Te—0) (G iz ) w45 2] ik [ oo 16— ds]}— (A3)

o= <“"> =5 @

W
=fQ
mAC (.01 > f

The quantity w; in the formulas for « and § is the first natural frequency of the plate vibrating in a vacuum with no axial force
F acting and K, is the associated eigenvalue. (See table 1.) In the case of the membrane, w;, would be the first natural fre-
2

quency of the membrane, o would be zero (D is negligible for the membrane), and f would be Cr) .

where

Applying the Laplace transform
L{Z@)) =Z(s)— f e~ Z(@)dx
0
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to equation (A3) (using in the process pairs 4 and 7, p. 294, ref. 17) yields the transformed problem in the form

a(s4Z—s3zo—s2zl—szg——zg)-é(s2Z_—.s'20 2)—Z - 5 [(32+¢4Ics —4k)7— (s+12k)z0) Iu(s)—}-?' P9 grer, IZ(E)I,(z—g)dg =0
4k B 0
(A4)

where -2y=Z(0), 2,=2(0), 2,=2""(0), 2,=2"""(0), and I,(s) is the Laplace transform of I,(x). The Laplace transform in
equation (A4) involving py/p as o multiplier is the contribution of the perturbation pressure on the lower surface of the panel.
Unfortunately, this transform does not appear to be obtainable here where the deflection Z is unknown. In the body of the
report the effect of including the air below the panel is found to be moderate at a Mach number of 1.3 and reasons are given
why this effect is expected to be even smaller at the higher Mach numbers investigated. In view of these facts and in view of
the difficulty of handling the lower-surface term in equation (A4), this term will be omitted in the rest of this appendix—that
is, treated as if py, were zervo.

Equation (A4) can therefore be reduced to
[(eusd— 82~ 1)+ e(s+i2k) T ()] Z(s) =522, +8 25+ 25)— 2, (A5)
where e=1/4k*uf and z, has been dropped because it is zero for the present boundary-value problems.  Thus the integro-

differential equation (A1) has been reduced to the algebraic equation (A5).
Now by means of pair 11, p. 294, and pair 53, p. 298, of reference 17 there is obtained

T+ +(y) | (A6)

Therefore, from equation (A5), after some algebraic manipulation

_M(s)
T Q6)

N (s)

where

(s)= (asi— ' —1)? [(s+ ia)=’+(;%>2:|—eﬂ(s+ i2%k)?
M(8)=(as*—65*—1) I:(s+7'5)'-’+<%>2] [a(s?z)+ 822+ 25)— 62

N == stizhy (s mr(yy) |lesta bzt a—szi

In polynomial form the quantities @, M, and N are

10
Q(S)=}_Z(‘)qrs”’" (A8)
8 n 6
M(s)==2,2m, V5423 3m, DT+ 2,2 Jm, st (A9)
7=0 r=0 r=0

[ 3 4
N(®)=22_nM8""+ 22 0, D>+ 2,2 0, Ost77 (A10)
r=0 r=0

r=0
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The coefficients of the various series are given in the following table:

" ¢ m,® @ m,® n, v n,® n,®
0 o? a? o o? — ae —ae — e
1 200 200 200 wa? — 20 ae (1 4 = 2 ) —lZwae(l—}— > — l?&)ae(l—}— E2—)
M M2 M?
O ) T Oy W i (TR N O T
2 (Zaé o? 1],, 2064 o “ ad - o /\I ad+ o M de - ae i 5+Al° Ve 5+ \[,, @ s o+ﬂ[’~'
_ - L . . 2 i . e
3 ‘ i4oad Hoad \ 12w {20 2e [w(S <l I 1‘[”)4 2e 1”4] [ET3 s iHae T
i et T N DO S ) U S o
P o 2p - fea par B po - /)’~w~ o P < [ ):I o pha o pha
b @ 2atad g, | el Badfy, | malad ), “O SR T e L M2 ¢ qp s
R T . R Wﬁfw; [ R
5 i25(5'—2a) b 26(8—a) — 2&a —26a — o "y 0
’ e (7—2a) B s (p—a) g gat piat
61 26—e?— (82— 2a) * A §— (8 —a) i YD @ i ; de A7
7 i(4@b — 8k2e) ! 208 0
T
8| 1—25 e + 24k 7 ’\
9| i2at3zwe) |
T \ T ! L—i‘E_ B
42
| 10‘ \I°+16]\6> ‘ i
: |

The exact inverse transform of equation (A7) requires the determination of the roots of Q(s) (eq. (A8)). Since @(s)is a
tenth-order polynomial, its roots can be solved only applonmatelv for specific values of the coefficients ¢,. An alternative
procedure is to expand the quantity [@(s)]™" in a Maclaurin’s series (a pr ocedure used in ref. 18), with the result that it may
be expressed in the form

1 1 <&
ORG 2N (A11)

m|iﬁ

where
(I_oT 0=

10

QOTnZ_ZIQTTn—r (n;l)

and T with a negative subscript is to be interpreted as zero.
When the series expansion for [Q(s)]™" (eq. (A11)) is substituted into equation (A7), the transform Z(s) becomes the sum

of infinite series with terms of the two distinct types
4‘1
N”I

and

where m is a positive integer.  The inverse Taplace transform of the first type of term is (see pair 3, p. 295 of ref. 17)

Apn!
{ ”’} (m—1)! (A12)

and of the second is (sce pair 7, p. 294 of ref. 17)

: B o5 I3 r
L =, By o (A13)

where 7, (r) is defined following equation (A2).
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Upon substituting equations (A9), (A10), and (A11) into equation (A7) and using equations (A12) and (A13) to obtain
the inverse transform of the resultant expression, Z(z) is given by

Z(-’U)=h1(93)21+k2(93)22+h3(97)23 (A14)
where

hy (@)= EZM_*_iZ(’: Tyn, " W T (£)d
I(x n=0 1=0 (’I’b+1‘+1)' n=0 r= 0(”‘1"7"’}‘3)' f (t E) E (E

© 7 T m (Z)xn—i-r+2 w© 5
h2(m)= Z n 7 nnf

24 2 (o) +§J:20(n41+4)'f (=g L (B dg

f,,m,“”x"“ +3 o 4 nnr

WO 2 e TR B, e ok

In deriving equation (A14) only one boundary condition—namely, zy=Z(0)=0—has been used thus far. In order to
obtain the solution for a plate restrained in a particular manner, it is necessary to impose three additional boundary conditions.
These additional conditions for the plate with pinned and clamped edges are given in cquations (3) and (4), respectively.
By their use, one of the terms of equation (A14) is eliminated and two homogencous cquations in the two remaining unknown
z;’s are obtained. The borderline condition of harmonic oscillation, or the point at which flutter occurs, is obtained by setting
the determinant of the coefficients of these equations equal to zero.  Thus, the flutter determinant for the pinned-edge plate is

hi(1) ha(1)

= (A15)
hy'? (1) hy'’ (1)
and for the clamped-edge plate is
ha (1) hs(1)
= (A16)
hy (1) A1)
where the determinant elements are given by
o X Tym T, t .
J = nor 2t EAVES RS
m=3 35 e s s T [a—eren e
T, = T,m &0 Tyn *
// — )] T ’ nor —E\ntr41
QETIRID SRS 25 2 EMITS b 2 YorLc J a—erer e
* T.,m n
) n T ntr __g\ntr44
=3 B G S Bt )0 e
PPN A 2 2 ultr ovebrda
MO-B BB R oo
o & T,m 4 T,n ! ]
/. = ath! L ’ __p\nFr+s
13(1) "ZQO rz_::)(n_‘_, |+"Lv‘_l TZ”(H+I 1 5)' j;(l E) [u@)df
i & o Tom,® = & Tn,  pmertd
=3 30 e e S s e [ L@
144 — b Tll]nf 2 4 Tnnr . n+r
OB R Gt B R et J, 40RO
Kach of the preceding elements contains integrals of the form
1
1@t~ [ a—pr 1 A17)
which ean be written in terms of the Schwarz functions £(M,%) (sce ref. 9 or eq. (24)) as
—1)*m!
Im(A[ w) E (m A)’R' f)\(M)‘:) (A18)
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where

fie j PLL(OdE

Examination of the series in the elements of equations (A15) and (A16) reveals that N of equation (A18) ranges at least
between 0 and »+7 and at most between 0 and n+9. In order to obtain accuracy to four significant figures, at least the
first cight terms of cach series and the consequent ranging of X between 0 and 16 are probably required. Inasmuch as the
Schwarz functions f, have been tabulated for only the first few values of N\, the use of equation (A18) would require the deter-
mination of a rather extensive series of fi’s.  An alternative and perhaps more efficient procedure would be to evaluate
directly the integrals 7,, as given in equation (A17) rather than to resort to the expanded form in equation (A18).

Attention will now be given to the solution of the determinantal equations (A15) and (A16). A method of solution for
paramcters that were sought in the generalized-coordinate approach of the body of the report (that is, 1/p and
2k =2k (R.1°.2)"%) will be outlined here.

The elements of equations (A15) and (A16) are complex functions of the five parameters M, k, @ (with g=0), /, and 1/u.
The most difficult parts of these clements to evaluate are the integrals generically represented by /£, in equation (A17), which
are functions of the parameters A and k. Therefore, a convenient method of solution would be to fix the parameters M
and & and preferably f and vary the remaining parameters € and 1/p in the left-hand side (hereinafter referred to as A) of
cquation (A15) or of equation (A16). By varying € and 1/u over sufficiently broad ranges, an indefinitely large number of
combinations of @ and 1/p which cause A to vanish could be found. Each combination would define & point on separate sta-
bility boundaries, such as those shown in figure 3. Each boundary could then be determined as completely as desired by
varying k over a sufficient range and repeating for cach chosen value of £ the process of finding combinations of 2 and 1/u
which cause A to vanish.

As can be surmised, the numerical calculations would be extremely lengthy even apart from two other questions which
arise; namely, which is the stable side of each boundary, and has the critical boundary been found which separates stable
and unstable regions and thereby defines the thinnest panel that is stable? In the present report, therefore, the stability
boundaries shown in figures 2 to 9 were calculated exclusively on the basis of the generalized-coordinate or modal approach.
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APPENDIX B

VELOCITY POTENTIAL ¢, AND RELATED INTEGRAL f’-,,

VELOCITY POTENTIAL ¢,

The velocity potential ¢; given in equation (9), which ap-
plies to the lower surface of the two-dimensional panel
shown in figure 1, will now be derived. The system consists
of a panel of width ¢, which is part of an otherwise rigid
surface of infinite extent, oscillating harmonically with
stationary air extending to infinity below. Thus, over
the panel the normal velocity on the lower surface is
wi=1w/ @2)e’"*, while over the rest of the plane w,=0.

According to reference 10 the solution to this problem can
be obtained from

LW

e i ]
¢>=—21r”w,‘ [ as (B1)

where w; 18 the given normal velocity at the clement of area
dS of the plane and ¢ is the velocity potential at a point /2
which is at a distance » from dS.  From equation (B1) the
velocity potential at the surface of the panel may be obtained,
in terms of the coordinates of figure 1, as

—1 w(l £)+e

7w€
=5 Z —_— 2
¢ J (E)(ISJ_QO Ny ?/ (B2)

Upon making the substitution y={r—¢| cosh 9, the integral
with respeet to » in equation (B2) may be written in the
form

z 1/(: £y S| cosh 0
T(a—§)— j e /_J —1;1— cos a0 (B3
oy (=2 )

By means of equation (11) on page 180 of reference 19,
equation (B3) becomes

[(r =)= — inH (g |.r—£!> (B4)
Substitution of equation (B4) into equation (B2) yields

‘i’z:—

o (21—t ) @z (B5)

If the coordinates r and £ are nondimensionalized by dividing
by the panel chord ¢, the form for ¢, given in equation (9)
is obtained.

INTEGRAL P,

The third term on the right-hand side of equation (22),
namely,

Pin=t J Z,(®) log, (kM |r—¢))ds (B6)

contains the singularity of the Hankel function in equation
(20).

As a first step in the evaluation of the improper integral
in equation (B6), let

£=% (1—cos )
(B7)
=-]2— (1—cosy)
and

Z,(&)= Z S, sin m¢ (B8)

m=

where
;

2} T
S,=" J Z,(0)sin medg
T Ju

In terms of equations (B7) and (BR), equation (B6) becomes

P Po 1
()= > 2n 1Y) (B9
where
](¢)~Z S,,, sm ¢ sin mg“lm/p< - |cos ¢ —cos J/l)(lg‘ (B10)
m= 0

Taking the derivative of cquation (B10) with respect to
¥ and making use of reference 20 to evaluate the resulting
improper integrals yields

dl 1 ™ cos (m—1)¢—cos (m+1)¢
({‘// 2 ,,,2" "S'" cos {—cos ¥ sin g dg
=5 Z Sm [Sln(m Ql)\[’_Sln (’n + 1)¢] (Bl 1)

Integration of ecquation (B11) gives

’<‘”=§{$Sl cos2y- 358, [ St Dy_cos(m

R

(B12)

The integration constant K in equation (B12) is determined
by setting ¢ equal to /2 in equations (B10) and (B12) and
cquating the two resultant cxpressions. By so doing, it is
found that

kM

K:%’ St log, = (B13)

By means of equations (B12) and (B13), equation (B9)
bhecomes

P ()= ”"1{(1 ,,ekM lc s21//)Sl

cos (m-+1)¢_ cos (m
m-+1

Zs[

1)"’]} (B14)
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The mode shapes Z, in equation (B6) are now approxi- | The form given in equation (B16) was used to obtain equa-
mated by the finite sine series tion (28). Of interest is the fact that only L, depends on k
o and M. The term P, is therefore comparatively simple to
ZA(8)=2 s, sinrx (B15) | include in equation (22).
=1 The coeflicients s, in equations (B15) and (B16) for the first
The constants S, in equation (B14) are obtained from the four n}odes of the plate with clamped edges are given in the
expression following equation (BS8), with the result that following table:
equation (B14) can be written as
Lo Mode 1 Mode 2 Mode 3 Mode 4
P ()= 2SS L@)s, B
0. 66613 —0.32017
p 4= (B16) p i 0.64119 o ()8;/ 0.4§890
. N —0. 2050 —0, 50R6T
where " 0 —0. 40861 b 0. 27852
— M ™ 0. 034764 - 0. 61134 o
8 LOURS1S —0. 6152
Ly(r)=log. 4 +3 cos 24 - 0. 001315 U o iwne K
< ' 0 —0, 003411 0. 25500
% 0, 00396 0 0, 021697
_ 1 | X0 0 0. 02858 0 —0, 028044
T,(r)=-——~ cos (r+1)¢—-"= cos (r—1 r=2 T s e e e s e e
)=y 008 GF DY 15 cos (=Y (r22)
and, as in equation (B7), T]le‘vooﬂ'l(-mnls S0 for the second and fqm'th modes were
obtained by forcing the slope of Z,, as given by equation
R (B15), to be zero at ¢=0 (that is, at =0). A similar table
r=5(1—cosy) . . .
2 can be easily calculated for the pinned-edge plate.
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