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EXTRAPOLATION TECHNIQUES APPLIED TO MATRIX METHODS IN
NEUTRON DIFFUSION PROBLEMS 1

By RoBerT R. McCrEADY

SUMMARY

A general matriz method ie developed for the solution of
characteristic-value problems of the type arising in many
physical applications. The scheme employed is eseentially that
of Gauss and Seidel with appropriate modifications needed to
male it applicable to characteristic-value problems. An itera-
tive procedure produces a sequence of estimates to the answer;
and extrapolation techniques, based upon previous behavior of
iterants, are utilized in speeding convergence. Theoretically
sound limils are placed on the magnitude of the extrapolation
that may be tolerated.

This matriz method is applied to the problem of finding
eriticality and neutron fluzes in a nuclear reactor with control
rods. The two-dimensional finite-difference approximation to
the two-group neutron-diffusion equations is treated. Results
Jor this example are indicated.

The calculations were performed on the IBM card-programmed
caleulator,

INTRODUCTION

A general matrix method is developed for the solution of
characteristic-value problems of a type arising in many
physical applications. The method of this paper is essen-
tially that of Gauss and Seidel (vef. 1), which itself is but a
special case of the method of conjugate gradients (ref. 2).
The adaptation of the Gauss-Seidel technique to the charac-
teristic-value problem calls for a means of computing suc-
cessive estimates of the characteristic value as well as the
vector. This calculation is made to rely upon Turner’s
technique (ref. 3) for assigning & meaning to the ratio of two
vectors.

Extrapolation techniques are also employed to speed up
the convergence of the iterative process. One of these is
based on Turner’s original formula (ref. 3), and the other is
& slightly more complicated modification.

The number of iterations required for convergence is not
studied theoretically here as in the ‘“n-step’’ methods, but
the minimization of a suitable form at each step is derived.

The method is applied to two-group neutron-diffusion
equations. The calculations were performed at the NACA
Lewis laboratory.

SYMBOLS

The following symbols are used in this report:

A, B LU

B}
D,EF GJ X
L

55, k

(
At

5

A

.
o, mer

matrices

axial leakage

vectors

grid dimension

indices

thermal multiplication constant

average square slowing down length for
fast neutrons

average square diffusion length for ther-
mal neutrons

number of nuclei per ce

resonance escape probability

radial coordinate

core radius
14>0

—1 u4<0
0 u=0

reflector thickness

weight functions

characteristic value

deviation at 7th point of £th iteration (eq.
(80))

difference X%, —X¢¥

actual damping rate

bulk damping rate

neutron fluxes

Parameter groupings:
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a—-L,fD-I—B, a =L
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AL
Mrgg 0 Lk,
c——i——i—Bi = 1
thy 1ag
Y 1
d= 1. o L
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1 1
f=y+B: J'=7z
I I1

1 Bupersedes NACA TN 35611, “Extrapolation Techniques Applied to Matrix Methods In Neutron Diffuslon Problems,” by Robert R. Mc¢Cready, 1955.
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THE METHOD
MATRIX FORMULATION
Consider the matrix equation
AX=yBX 1)

where A and B are nXn matrices, X is an n-component
vector, and the characteristic value of v is a scalar to be
determined. .A may be separated into the sum of two

triangular matrices L and U, where L contains all the

diagonal elements of the original matrix A.
This separation, which anticipates the Gauss-Seidel
process, is effected in the following manner:

A=L+U (2)
ly=ay j<i; ly=0 j>i (3)
Uy=ay j>i; u,=0 j<i )

If L is & nonsingular matrix (always true if 1,50 for all 7),
equation (1), modified to

L+ U)X=vBX (5)
may be multiplied by L™, giving
(I+LU)X=yL'BX (6)

For a given X, the quantities L'UX and L'BX of
equation (6) may be calculated without the actual formation
of L-'. This fact, which is very helpful for systems con-
taining matrices, arises in the following manner and de-
pends upon the triangular nature of L. Let D be the
vector defined by

D=L"1UX )
Then
LD=UX=C €))
whence
l11d1 =0 (9)

gives d,, since all the ¢; can be computed from U and X in
equation (8). Then
ldi+lody=ca (10)

landy+laadsF-lsds=c5 1n

gives d, and so forth, so that L™ need not be computed in
order to obtain L*UX. The same argument applies
to L™1BX.

gives d;, and
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ITERATIVE SCHEME
Equation (6) may be written
X=yL'BX—L'UX (12)
which may be interpreted as defining the iterative scheme
Xop=ven L' BX,— L'\ UX, (13)

in which v... i3 an estimate to v that can be calculated from
X:. To obtain gy, form the inner product of the vector
sgn L71BX, with each side of equation (6); thus,

. (g0 LTBX, (I4+ L 1)Xy)
M= " (gn L 'BX;, L' BXy)

(14)

" Equations (13) and (14) are the basic equations of the
iterative scheme. Given any X, yrq i8 computed {rom
equation (14) and v,y and X, are placed in (13) to yield
the next iterant X;,;. This process is repeated until X
and ye converge.

Some normalization is necessary in problems of a homo-
geneous nature. The simplest method of normalization is
to adjust a permanently specified coordinate of X; to unity
before beginning each iteration. This is accomplished
by dividing each element of the vector by the specifiod
coordinate.

The ratio defined by equation (14) was chosen for sim-
plicity of caleculation on available punched-card equipment.
That ratio can be compared to the Rayleigh quotient
(for eq. (13))

___(Jh GL‘)
'Y;".I—(Jk, Jh) (15)
where
Jy=L-'BX, (16)
Gk=(I+L—1U)Xk (17)

by noting that each of the relations (14) and (15) constitutes
a weighted sum of local (point by point) values v£2] of vi41-

These local values are defined by
(18)

’ -
Y =1 =e 1

where ¢gf* and j{? are the ¢th components of G and J,
respectively. The weighted average associated with (15) is

7Ik+1=;wt'yﬁ-1 (19)
where
LT
W= - 20
=SGET (20)
m
while the weighted average associated with (14) is
'Yt+1=2iwﬁ}:tll (21)
where '
B (22)
2515871

Equation (15) selects that value of yi;1 which minimizes
the sum of the squares of the residuals of equation (6) when
that quantity is thought of as a function of y;;,. The sum
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of the squares of the residuals is not, of course, the only
quadratic form that is suitable for minimization (ref. 2).
Consider the expression

r=p0e) =3 (B i ssni < | @)

which is zero for X;=X and yzp=v. This generally positive

quantity can be minimized (made closer to its ultimate value
zero) by setting

(Sgn Jk: Gk)

" (sgn T, ) 24

which is equation (14) expressed in terms of J and G.
EXAMPLE

To illustrate the convergence of this method in a special
case, consider the problem of equation (1) with

A=/f3 —1—-1 0O
0 2—1-—-1
0—1
0—1—2 3
and

B=/f0100
0010
1000 (26)
0000

which has the real solution X®"=1.020070, X®=1.329658,
X®=1.000000, X*¥=1.109886; v=0.549429 and two solu-
tions with complex characteristic values. This solution was
found by the ordinary process of solving the characteristic
equation,

This problem was solved in 15 iterations starting with an
initial guess of X,=(10,100,1,1000). The values of suc-
cessive iterants, together with those of v, are listed in the
following ta,ble. The iterants are normalized so that
X =1 at the start of each iteration:

3 - {1) 3] )
E X bs! x¢ Tem
0 10 100 1000
1 Lo23212 | —10.631680
2 sz | Lasssis | lsizrwl | —1.36238
3 : 1566152 | L 188384 —. 097105
1 1182470 | 1.330721 | 1120240 - 828551
b 1008120 | L202707 | Lop7ses . 502807
] 1010639 | L7044 | 1112348 . 638355
7 L0254 | Lmie1s | 10110830 - 547271
8 Loigs72 | L328104 | L 10v368 551853
9 1010503 | L320848 | 1100949 540107
10 1020236 | 1.320788 | 1.100929 519201
1 1020078 | L.320%6 | 1100865 - 549510
L020048 | 1.320680 | 1.109386 L540423
13 Lo20076 | 1.320885 | 1100880 1519422
14 1020071 | 1.320858 | 1109885 - 540432
16 1020070 | 1320858 | 1108886 518430

EXTRAPOLATION TECHNIQUE

If, instead of four components, the iterant vector has many
components, techniques of extrapolation are usually desirable

to speed convergence of the process. The technique em- .

ployed here, which is due to Turner (ref. 3), attempts to

3 —1 (25) .

evaluate a bulk damping rate that describes in an average
way the over-all trend of the individual components of the
iterant vectors.

Assume that each iterant X, is made up of the sum of the
solution X and two error vectors E; and F, satisfying the
damping relations

Ek+1+ TEk (27)
and
Fk+l=_TFt (28)
Then the following relations hold:
X0=X+E0+Fo (29)
=X+41Ey—rF, - (30)
Xo=X+7Ey++*F, 3L
Xy=X+*E—7F, (32)
One may compute
_X a—X>
= X=X, (33)

The “vector division” implied in equation (33) is possible
because, under the initial assumption of error behavior
(egs. (27) and (28)), the vectors X;—X, and X,—X, are
collinear and therefore differ only in length.

If the error vectors are eliminated from equations (30)
and (32), one obtains
X,—2X,

X_lf"

(34)

which gives the answer as a linear combination of the alter-
nate iterants X; and X,.

The preceding analysis suggests that a formuls analogous
to (34) be used to estimate the answer. The difficulty here
is that equation (33) may be meaningless when equations
(29) to (32) do not hold. To circumvent this difficulty, a
method of computing 72 is needed. Toward this end,
define 6,9, by means of

5k(21=X):(-21_X? (35)
and define r* by means of
Zb‘ 9 sgn 8
- T 39
]
The direct analogy to equation (14) will be noticed. Equa-

tion (36) permits computation, in an average way, of the
damping of the error vectors. With 7% available, the extra-

- polated value X’ of X is computed from

X3— 72X, -
1—7 (387

X=——"=
In case the error is damping exactly as assumed in (27) and
(28), equation (36) gives the value indicated by (33), and
equation (37) reduces to (34); that is, X’ becomes the
answer X.
' Since the ideal damping behavior is rarely an actuality, it
is of interest to examine the effect of the preceding process on
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error components.
represented by

Suppose that X, is more adequately
X=X+ B (39)

where F{® has a damping rate (positive or negative) of A,
Then

21'3=X+ij$l‘_,1 A E® (39)
and
X, =X+ ?‘_, MEP (40)
-l

hold. The extrapolation indicated in equation (37) now
yields the following relation between the estimate X’ and
the answer X:
x=x+3 20 g (a1)
=1 1—7

This interpretation is useful, since it indicates the damping
effect upon the errors of three iterations and one extrapo-
lation.

If, for simplicity, one of the errors E® and its damping
rate A; are designated by E and ), respectively, then

R()\’T)=&.f):‘_j__2 (42)_

1—7
gives the damping of this error component as a result of j
iterations and one extrapolation. The ‘“‘extreme’” value of

R (actually that value farthest from zero; i. e., farthest from
maximum damping) may be found by setting

AR jN-1—ri(j—2N
E PN )

This yields

as the equation to be solved for the values of A which are asso-
ciated with the errors that receive the minimum demping
from the process of j iterations and one extrapolation.
Equations (42) and (44) give R.;(r), the extreme value of
R, as a function only of 7 and 3:

1 [/j—2\"”
7 ) (45)

—7ij—2

—947

R, ('r)=1

To find the value of +* so that this function (R..) cannot
exceed the bounds =+1 [i. e., so that the slowest damping
component (and hence all components) cannot increase
through extrapolation], + must be less in absolute value than
the least of the roots of

If only such 7® are used, the convergence of the process
cannot be impaired by the extrapolation.

Suppose now that the previous value of B(\,7) is replaced
by the formula
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—2
)\1—4()\2__,1.2) )\2__.7 j 7.2
1—72 _7—2 g

1— T

ﬁ()\,'r)= (47)

In formula (47), 7>4. The second factor places a zoro
(maximum damping) at just the points of minimum damping,
that is, at the values of A determined by (44). If now
dRJd\ is taken as zero and the limit +1 is placed upon the
resulting R, (%), the limiting safe values of 7* are obtained
by finding the least of the roots of

= 20— D= (= 2P~ [— 2=+ (—4)7]=0
(48)
where r* satisfies

2 U—=D{E—2) ﬂ;;/5j2—12 jt4 (49)

The revised formula (47) has both the effect of ensuring that
no component will be impaired in its damping by the extra-
polation and also that the least rapidly damping component
Teceives a zero contribution in the extrapolation.

Since, as before, for some error component X,

X,=X+NE (50)
X1_9=X+)\’—2E (51)
Xj_4=X+>\j—4E (52)

in which X represents the answer, the specification of (47)
as a damping formula implies

—2(j—1) PN (—2)r N4
F—2G—DrFG—r

where X" is the extrapolated value of X,. If ME, N[, and
NM-4E are eliminated from (53) using the relations (50),
(51), and (52), then

s 31X =2 —DrX, o4 (j—2) 71X,
i—2(—=Dr*+G—2)

Comparison of (42) (with j=3) with (37) on one hand and
of (47) with (54) on the other hand leads to the following
valid rule of thumb to obtain the extrapolated value of X
for a given damping function: Replace the power X' of A
in the damping function by X;; the resuting linear combina-
tion of alternate iterants is the formula for the extrapolated
X. Tt is easily verified that the validity of this arises from
the manner in which the error vectors are assumed to behavo.

The smallest roots of equations (46) and (48) are listod
in the following tables:

x=x4 E (63

X

(54)

Eq. (46) Eq. (48)
] 72 j Pl
4 0. 8284 4 0. 6687
[ . 8841 (] 8745
8 L9233 8 L9213
10 . 9399 10

These are the upper limits of the “safe” values of +* within
the framework of the definition.
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APPLICATION TO REACTOR THEORY
GENERAL REMARKS

Multigroup reactor equations can be solved, in principle,
by the present method. The number of components in the
vector solution, to be discussed in detail later, is approxi-
mately equal to the product of the number of grid points
and the number of groups in the multigroup scheme. An
extreme Increase In the number of these elements lengthens

the problem considerably. The calculations here are per-

formed in accordance with two-group neutron-diffusion
theory.

The two-dimensional reactor with control rods, which is
considered later, is suited to two-group calculations, since
the control rods are particularly effective on the thermal
group, and two-group calculations are good for thermal
nssemblies.

The following illustration is introduced to show the general
principles of the matrix setup in detail. These principles do
not change for the more complicated two-dimensional prob-
lem that is treated later. A relatively simple one-dimensional
problem has been chosen to illustrate the detailed setup and
the consequent matrix.

EXAMPLE OF TWO-GROUP DIFFUSION EQUATIONS

The one-dimensional diffusion equations for a reflected
thermal reactor of slab geometry are (ref. 4)

d2 ,
d—:{-—a or=—"bom (55)
and
d?
ot — ¢ eartde=0 (56)
for the core, and
d? '
E;igf— er=0 (57)
and
T it =0 (58)

for the reflector.

The parameters a’, b, ¢’, d, f/, g, and m are defined in the
list of symbols; v is the characteristic value of the system and
equals 1 for criticality. When v converges to a value other
than unity, the uranium concentration is adjusted and the
process repeated.

The differential equations (55) to (58) are replaced by
finite-difference equations; the operation d%p/ds? is estimated
by means of the approximate formula

d?p
P dxg ¢/+1+¢J—1—2¢: (59)

where the points of the region are numbered in order as grid
points of a finite-difference net, and % is the distance between
successive points. In the following, r. is the core radius,
7et; the complete reactor radius, and point 6 lies on the
interface:

0123456789
0 Te 7':+t
The boundary conditions are that the fast and thermal

fluxes have zero current across the plane of symmetry (x=0).
This condition

e
k" dx x-:-o—O (60)
can be approximated by
a—eo_
T =0 (60a)

for both ¢, and ¢,5. The condition of continuity of currents
at the interface is met by approximating the derivatives in
the expression

d d
—Nerg g (re—0)=—Nury g (r+0) (61)

for both the fast and thermal fluxes. The remaining condi-
tion is that the flux be zero at the outer boundary. If the
fast flux is designated by ¢ and the thermal by y, the system.
becomes:

Equation
J
0 a9 ]
h
1-5 Ll 7 s 1+¢]7:; J al¢j= —’qu,j
6 Yoo %;%_)\mn 401;% 4 ©2)
7 %+262_2¢7_fl¢7=0
8 %‘ﬁ\ ;f’qu:O which incorporates ¢,=0

o

for the fast-balance equations and, for the thermals:
Equation

0 ¥1—¢=0 h
1_5 ¢i+l+¢}:;l—2”bt'—cl'¢/¢+a¢t=0
Yo Yr—¥
6 Ner, 30 =N, o S [ ©3)
7 ¢8+% A —g"Yrtme=0
g ¥ Ws_g,¢ +mes=0 which incorporates ;=0

P
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The variables ¢ to ¢; and ¥, to ¥; may now be written as X, to
X; and X, to X;, respectively. The matrix formulation of

these equations is presented in figure 1. The following
symbols have been introduced: .
w=1/k* (64
A,=2h*+a (65)
Fy=2{k"4-f (66)
Cr=2/h*+c (67)
@G=2/k*+g (68)
p=ter (69)
ktl’,]‘].
S=X"' th0 (70)
>‘tr. thl
Fr o 1ol [ T fxol
5% 6 LY b X
b*%h o b A2
5% h £} i 3
»%b Xa -b X4
Wb X -6 Xs
LKA | - Xg
bl X7 X7
ha o] Xa
41 gl 7 X
qd hab o X0
d bah X X
d 4G 4h b ot
d 4G4 A3 | Xi3
7 G h Xial i
Sks4 | {xg X
m 4G Xe el
n i b ) b

Figure 1.—Matrix formulation of equations (62) and (83).
RECAPITULATION

To review the general application of the method to two-
group reactor equations, consider the following broad out-
line of this process:

(1) Write the two-group equations with the parameter v
introduced as a multiplier of the production term of the fast-
balance equeations.

(2) Express the differential equations by their finite-
difference approximations so that they become a linear
algebraic set of the type associated with equation (1).

(3) Perform such iterations and extrapolations as neces-
sary to obtain well-converged values of v and X.

(4) Adjust the uranium concentration and repeat step (3)
using the original answer from (3) for the initial guess Xo.
The concentration should be changed so that v—1.

(5) Repeat (3) and (4) until v converges. If criticality is
desired, change the concentration so that the converged
values of 7—1.

TWO-DIMENSIONAL REACTOR WITH CONTROL RODS

GEOMETRY OF REACTOR

The reactor (see fig. 2) is cylindrical and water-reflected
with a core composed of aluminum, water, and uranium,
which are assumed to be homogeneously mixed. The
height of the reactor is 70 centimeters, the outside radius 50
centimeters, and the core radius 32 centimeters. Nine
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cadmium control rods are inserted in the core; one, a cylin-
drical rod of 2-centimeter radius, is centered along the axis
of the reactor. The remaining eight rods are equally spaced
on a radius of 24 centimeters and are shaped so as to be
bounded by coordinate surfaces. Each of these rods extends
over a radial distance of 4 centimeters and subtends a central
angle of 9°,

The symmetry of this assembly is an important factor in
making solution of the reactor problem feasible. The flux
in the 45° sector indicated in figure 2 is adequate to represent
the flux in the entire reactor; in fact, additional symmetry
within the sector implies that only half the sector need be
considered. The three-dimensional problem is made two-
dimensional (computation-wise) by estimating the neutron
leakage in the axial direction due to the finite height of the
reactor. This is based upon an axial cosine distribution
similar to the bare pile solution (eq. (75)).

COMPOSITION AND NUCLEAR PARAMETERS

The core volume is proportioned between the water
(density, 1 g/ce) and aluminum by assuming a volume ratio
of aluminum to water of 0.76. The nuclear diffusion con-
stants for the core and reflector are listed in the following
tables. The subscripts 0, 1, and 2 refer to the core, reflector,
and rod regions of the reactor, respectively:

Fast Thermal
Zone| Ij N Zone| L A P K
0] & | am 0] 3411 | 0815 | 05 1.675
1| 33 | 343 1] 83 .43 s |
2 | .. | L35 L

Parameters for the rod regions are unnecessary because of
the simplified treatment of the rod, in which the thermal
neutron flux is assumed to vanish on the rod boundary and
the radial and axial leakages are assumed to balance in the
absence of fast-neutron absorption processes. The thermal
parameters in the preceding table are those associated with
an atom ratio of N¥/N* of 350; these, of course, change for
different uranium concentrations.

Ficure 2.—Two-dimensional reactor.
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Fiaure 3.—224° Sector of reactor.

EQUATIONS AND BOUNDARY CONDITIONS

The two-group equations (ref. 4) for the core are taken to
be .

A Air, o 1
\% GDIO—('L—Q_i-Bz) er="—Y )" 2 o 7o T, o (71)

and
View—(7r=+B1) ot 222 ppo - on=0  (72)
1AD %ho z t Xtr,mo {2 L?}‘O 70

All the parameters of equations (71) and (72) are the ordinary
nuclear ones, except the arbitrarily inserted v, which is a
measure of the criticality and is equal to 1 for a critical
assembly.

In the reflector the two-group diffusion equations take the
form

Von—(Z5+B1) en=0 (73)

1 Ner 1
Vgsam—(m‘l'B 5) €0m+)\;':l P i on=0 (74)

while the fast-diffusion equation for the rods is taken to be
Viers—Biop= (75)

Any change in rod boundary conditions would not affect the
general principles of the numerical scheme. As will be seen
from the boundary conditions, the thermal neutrons do not
require a diffusion equation within the rods. The region
considered in the problem is & 22%° sector (of the circle of
fig. 2), one side of which passes through the center of one of
the outlying rods. This is illustrated in figure 3. The
symmetry of the over-all reactor implies that the normal
derivatives of the flux across the surfaces A and 5 are zero.
This implies that the flux at all points of the circle of figure 2
can be found by solution for the flux only in the sector
indicated in figure 3. The condition of continuity of fluxes
and cwrents is involved at the core-reflector interface, in-
dicated by C in figure 3. The vanishing of the fast and
thermal flux at the outer boundary (D) is also required. The
thermal flux is taken as zero on the edge of the control rod,
and the continuity of the fast flux and current is considered
to hold on the core-rod interfaces. The details of the
mathematical formulation of these conditions are deferred
until the general discussion of the difference equatiops.

FINITE-DIFFERENCE EQUATIONS

In order to write the reactor equations as finite-difference
approximations, the sector of figure 3 is divided into a grid
net of points, The flux is determined by solution of the
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Radius,
cm
o A
i ::;}/ 9 _..-—" Center control rod
2 o
a e
6 oot * P
e
8 Gt ¢ 2o
w B
10 &7 2%794 o
4
R I
23 ‘?
14 = X@*‘ﬁ 2\
9_65 -~-Reactor core
o W2 ?56
e o W™ \o
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100 ¢ ot
'/ v 3‘5 Py G
Centmlrod——--_f—“ 2 <N
= 2>
9 ] i Q\
26 o /" 25’ T
g
)
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225 228 o _-—-Core-reflector
e o 8 o W interface
30 g9 220 = 3
74 . 18 5 ‘ 2%
32 e Zia 219 2
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36 200 ebe ® X >
T X 82 % % o L &
38 55t X 1de Wi o ° % e * \.a
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40 fb moe s Ee 0w e\,
a0 2o 2 X%
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42 iy #“ '?5 e ! o 2 5\969 o ‘-;_\ 7%\
es] ga 25 28 W& % w0 R0\
44 g2l & 18a 165 ‘\e a ‘\%r ‘\.53 ) \9 0
12 31 9= %, W
46 81 182 \b 154 6. ‘IAB 31 1A @g}f)}po
&
48 |4|d 1%41 342 133 a4 e (e
w2s s

Fieure 4.—Reactor grid points.

linear algebraic system of equations that results from writing
the finite-difference approximation to the fast- and thermal-
diffusion equations at each point. The grid arrangement
used in the present problems is indicated in figure 4. The
thermal flux (components 1 to 139 of the vector solution) has
the following breakdown into groups of components: reflector
(1 to 73), core-reflector interface (74 to 79), core (80 to
139). The fast flux (140 to 291) has the following break-
down: reflector (140 to 212), core-reflector interface (213 to
218), core (219 to 284), control rods (231, 232, 237, 238, 243,
244 and 285 to 291).

The number of components associated with the thermal
and fast fluxes, respectively, differs because of the assign-
ment of boundary conditions at the control rods, which
brings the fast flux into a larger area of definition.
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For two-dimensional cylindrical geometry, the operation
of the form v?pis givenpby

V2_62 (10,08

or* ' r or ' 0f*

(76)

This form is to be replaced by a difference operation that
relates each point to its four nearest neighbors. If the point
in question is designated by the subseript zero and the others

are
1

by
4-he0-hs-2 71 6>
by

3
where &, and % are the grid widths in the r and ¢ directions,

respectively, then at =g, the following approximation ig
used:

V2‘°=(%‘¢+271]7,) @ +(hl3_2_:}§> ‘°3+r3_h§ (erto)— (;%—l—%) %0
(77

With this designation (and barring certain exceptional
points to be discussed later), one may move from point to
point on the grid and write equations of neutron balance
for each of the two neutron groups.

The following equations may be taken as typical illustra-
tions:

Thermal-balance equation 93 (see fig. 4):

(o) o s Syt -

2 _2_ 1 ' Aur, g0 L —
<@+hzfﬂ+m+B 3) Kot oo o0 Ty Ke=0 - (78)

Fast-balance equation 234:
1 1 1 1 1
(m%) Xm'l'(h—?—g’:h;) Xm'i—% (Xags+Xazs)—

(iRt 1+ 52) B =132 b g X 10)

In contradistinction to equations (78) and (79), there are
certain special equations that hold at the exceptional points
referred to earlier. These equations result from one or more
of the following conditions:

(1) Continuity of currents at interfaces

(2) Zero flux at the outside boundary

(3) Zero current across planes of symmetry

(4) Change in grid dimensions

Condition (1) is treated by matching & suitable ratio of
normal derivatives from either side of the interface. Kach
of these derivatives is evaluated by a five-point differentia-
tion formula. Condition (2) is treated by writing the
difference approximation to the diffusion equation for points
adjacent to the outside boundary with zero replacing the
flux at the boundary point.
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Condition (3) is accounted for by writing the diffusior
equation of a point on the plane assuming the same flu
at grid points on either side of the plane. For condition (4)
6-wise interpolation formulas are used to define fluxe.
at the points marked X on figure 4, and these are utilized
where needed, in writing diffusion equations in the finer net.
If each equation of the set is written in order and the pro
duction terms are isolated as illustrated in equation (71)
then the matrix equation constructed from the approximatc
finite difference may be written in the form of equation (1).

.The matrix B is singular, largely consisting of zero ele-
ments with an essentially diagonal group of nonzero term.
somewhat off the leading diagonal. The matrix A has ¢
substantial number of nonzero elements crowded quite
close to the leading diagonal. This latter situation is nu
merically desirable, as elements far from the leading diagona
tend to slow the convergence of numerical processes.

If criticality is desired, the concentration of fissionable
material is adjusted, after v and X have converged, and &
whole new set of calculations is run until a new value for
v is reached. This process may be continued until v=1.

The method can also be used to compute reactivity
changes; the calculation time is again shortened consider-
ably if flux distributions are not demanded.

SOLUTIONS OF TWO-DIMENSIONAL PROBLEM

The results of the calculations of the supercritical
(v=0.948) case are shown in figures 5 to 7. Figure 5 give.
the fast flux as a function of » for 6=0°, 9°, and 18°. The
control rods have no substantial effect on the fast flux.
Figure 6 gives the corresponding thermal flux and shows the
localized effect of the control rods. Figure 7 presents iso-
flux contours of the thermal flux. The 0.19 contour in the
reflector and the 0.234 contour in the core represent relative
maximums.

COMMENTS ON APPLICATION OF THE METHOD

A number of numerical quantities may be examined in an
attempt to evaluate the degree of convergence of a system.
One of the most natural of these quantities is the sum of the
squares of the residuals. Another may be formed by con-
sidering the fact that, as the limit is approached, the ratio
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Ficure 5.—Fast-neutron flux for azimuth angles of 0°, 9°, and 18°.
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- 30 ,
Radial-contrdl-rod Azimuth
.7-;'_‘ F bfundunes-. Comg%gfgr e.degangle, dHl—z ]5x+1l-— |X,,+1 (83)
.§."C‘20' d
3% E+1
i< o] =% (84)
E JOF
& ; ' ' ' ! ' ! ' \ . and the maximum |[5§7,] designated by [6)]ms Typical
0 10 29 30 20 30 values of these quantities are as follows:
divs, r,cm .
Froure 6.—Thermal-neutron flux for azimuth angles of 0°, 9°, and 18°- =1.208 7=0.948
Y&%1/Ye+) Must tend toward unity. This means that the B de | TELT | 18l B den | TR | 16 e
deviation defined by
o v, .| 1| ogom fo.000m | o.0000m0 6 |0.3209 { 0.001157 | 0.00018
A,+1=1-—7— (80) 1 | oo | [000007 | oooles 5 | 28| e | o,
k+1 144 .0028 | .000010 . 0000004 31 L0044 [ 000015 . 0000668
185 | 10023 | .000003 |  .000370D 40 | lo020 | 00007 | 0000245

must tend toward zero. The average absolute value of the

deviation, summed over all points of the reactor, is The sums of the squares of the residuals for the two cases
v=1.206 and y=0.948 are as follows:

> 1_’yl(2-l
w | I=1 ’Yk+1
Ak+l - n (81) y=1.208 y=0.048
where 7 is the number of reactor points. k1 zR} k41 ZR}
An ﬂ]us.tmt;lon of the behavior of this quantity is given in m | saxs s | Lo
the following table: 3| e | paxied
144 8.60X10—%¥ 31 L22X107
155 5.37X10* 40 1. 99X10-9
k+1 [ai| 6831 [mas
] 0.02189 0.2138 A
15 . 02661 . 8156 2/
22 . 00254 .0147
31 . 00130 013
40 . 000703 . 0081
49 . 00028 . 0027 t22
1234
The iterants listed are those which just precede the extra- 23
polation process. These are chosen so as to minimize the oo
offect of fluctuations introduced by the extrapolation
technique.
These illustrative valu&s come from the second general

process; that is, after v had converged to 1.2064, the con-
centration (n.nd hence elements of the matrices A and B)
was changed and a new series of iterations begun. This
converged (more rapidly than the first run) to a value of 0.948.

_To estimate the value of uranium concentration needed for
the new run, the equation

1.2064 k4 (old)=Fk, (new) (82)

was used to compute a new k, from which to obtain & new
concentration. This formula is an approximation, since the
influence of & change in concentration upon L%, is appre-
ciable. The better rate of convergence of the second run is
due to the fact that the flux is relatively independent of the
characteristic value, so that the initial estimate for the second

run was a relatively good one. 50

The quantity [Af%,| reflects the convergence of v, which is -22,5° 22.5°
faster than that of the vector X.

In order to determine the degree of convergence of X, 0

consider the quantities Fieure 7.—Contour lines for thermal flux.
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Several general observations can be made about the process:

(1) The number of iterations in this problem starting from
an initial guess to a well-converged value of X was about
150 to 175.

(2) In general, 8 to 10 iterations between extrapolations
seem desirable, as the use of too few iterations does not allow
the establishment of & fairly uniform damping rate.

(3) The extrapolation formula of equation (37) seems best
for rough estimates where error components are being damped
rapidly; that of equation (54) seems to be superior for later
extrapolations where one is closer to the solution.

(4) When computed values of 7* exceed the upper limit,

they may be replaced by the limit from the tables giving -

roots of equations (46) and (48) and then the extrapolation
may be carried out, or two more iterations performed with
72 recomputed until it falls within prescribed limits.

The following table gives the sum of the squares of the
residuals for (a) direct iteration from Xy to X, (b) eight
iterations from Xj, followed by extrapolation with ‘7 safe”
when “r? computed” was too large, then iteration to X,
(c) eight iterations from Xjs; followed by two iterations and

a test until “+* computed” was less than ‘“+* safe,” then
extrapolation followed by iteration to X

Case ZR}

(a; 1.35X10~7
8})) 3:44><10'°

Lewis FrigET ProPULSION LLABORATORY
NaTtioNar Apvisory COMMITTEE FOR ABRONAUTICS
CreveLaND, Onio, May 12, 1965
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