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LINEARIZED LIFTING-SURFACE AND LIFTING-LINE EVALUATIONS OF SIDEWASH BEHIND
ROLLING TRIANGULAR WINGS AT SUPERSONIC SPEEDS'

By Percy J. BossirT

SUMMARY

The lifting-surface sidewash behind rolling triangular wings
has been derived for a range of supersonic Mach numbers for
which the wing leading edges remain swept behind the Mach
cone emanating from the wing aper. Variations of the side-
wash with longitudinal distance in the vertical plane of sym-
metry are presented in graphical form.

An approzimate expression for the sidewash has been devel-
oped by means of an approach using a horseshoe-vortex approri-
mate-lifting-line theory. By use of this approximate erpres-
sion, sidewash may be computed for wings of arbitrary plan
form and span loading. A comparison of the sidewash com-
puted by lifting-surface and lifting-line expressions for the
triangular wing showed good agreement except in the vicinity of
the trailing edge when the leading edge approached the sonic
condition.

Aun illustrative calculation has been made of the force induced
by the wing sidewash on a vertical tail located in various longi-
tudinal positions.

INTRODUCTION

In order to make reliable estimates of the total forces and
moments acting on an aircraft, accurate evaluations are
required of the loadings on the individual isolated compo-
nents and of the interference effects between components.
Although considerable effort has been expended in recent
years to supply much of this needed information for the
supersonic speed range, many important problems remain.
Among these is the induced effect of the wing flow field or,
more precisely, the wing sidewash on the vertical tail. The
only specific numerical results of this nature obtained to
date have been for the angle-of-attack motion. In the
vertical plane of symmetry for this case, however, the side-
wash is zero and tail surfaces located in this plane are un-
affected. This is not the situation for the rolling, yawing,
and sideslipping motions where the sidewash in the vertical
plane of symmetry is finite and the load induced on the
vertical tail can be appreciable. Evaluation of the sidewash
for these motions would, therefore, be important in the
prediction of the lateral stability of supersonic aireraft.

The present report presents the derivation of the sidewash
behind steady rolling, triangular wings with subsonic leading
edges. Both lifting-surface and lifting-line methods, pre-
viously applied primarily to determine downwash, are utilized

1 Supersedes NACA Technical Note 3609 by Percy J. Bobbitt, 1956.

and comparisons are made of the sidewash computed by the
two methods in order to give an indication of the worth of the
more easily obtainable lifting-line results. The lifting-
surface sidewash is determined by using the doublet-distri-
bution method of reference 1, and the lifting-line values
are obtained by use of the lifting-line approach given in
reference 2.

An illustrative calculation using the derived sidewash is
made of the force induced on a half-delta tail operating
behind a rolling triangular wing, and this force is contrasted
to the force that would act on the tail if it were rolling in
the undisturbed stream.

The material presented in this report was submitted to
the University of Virginia as a thesis in partial fulfillment of
the requirements for the degree of Master of Science in
Aeronautical Engineering.

SYMBOLS

The positive directions of forces, moments, and velocities
are shown in figure 1.
%, 9, 2 Cartesian coordinates of field point
T U2 Cartesian coordinates of doublet or line-vortex
position
perturbation velocities along z-, y-, and z-axis,

u, v, W
respectively
A wing aspect ratio, 6%/S
b wing span
4 > Yawing moment
G, vawing-moment coefficient, ———&————
120,
O, =|. pb
D)~
2V ‘pa()
Side force
. - . .
Oy side-force coefficient, ——5—
(IAS
PCY'
y. Ll
¢ Xy ‘a,pﬁ
« v 3
‘ 2‘ p—0
c wing root chord
d distance from wing trailing edge to a point
downstream
h displacement of vortex sheet below wing trailing
edge
hy, hs limits of y;-integration
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Ficure 1.—Triangular wing oriented with respect to body system of
axes used in analysis and associated symbol data.

) variable index used in summations and as
subscript
k constant

L Na—ny =g
! B0z,

i :\7(‘1'—(7) —B 2
1,0 00(3

kl.O,:\"‘l_kl,Og

k,:———?%
N

0
ICQ.O-:T—#—'_&
V(@—c)—p%*

ks o' = V1i—k,, o2

M free-stream Mach number, V/Velocity of sound
in free stream

m slope of lifting line

/£ static pressure

AP=P;—F;

P angular velocity of roll, radians/sec

q free-stream dynamic pressure, %PV ?

S wing area

AUs=y— Uy

% free-stream velocity

vp sidewash induced by doublets distributed over

plan form

l Ow sidewash induced by doublets distributed over
wake
X=z—x
X,=x—u;
X _4Y-,;
TP
/r _:I:
) c
T,
-)71,0:?
Y=y—1
Yi=y—y.
Y — Y
LIED
Y
LD
z
~0— /2
@ angle of attack, radians
B=+/M?2—1
r circulation at any spanwise station
€ angle of downwash measured in zz-plane, be-

tween trailing vortex sheet and axis parallel

to free-stream direction, radians
_gb2
Bo=R .
A angle through which vortex sheet rotates in
moving from wing trailing edge to a point

which is d distance downstream

<=% for triangular WingS>

p density of free-stream air
¢ perturbation velocity potential
A¢s:¢u_¢l

AOOC— 1

Bz 2o
E complete elliptic integral of second kind with
modulus £, 1‘—/digfds
0 '\/1—82

156 complete elliptic integral of first kind with modu-

"L
IUS ]f,J /_i’sw
0 1—k%**y/1—¢?

E@t k) incomplete elliptic integral of second kind with
- ds
argument ¢ and modulus k,f _—
° 0 /1—k%*y1—¢
F(tk) incomplete elliptic integral of first kind with
t 1—F2s? d
argument ¢ and modulus k,J 1/—_9&9
0 \fl-—sz
o= V602?222 (1—06,°)
T 1—0o?
_2770—‘90\"/‘1’02—*— 20°(1—00%)
fo= :
1—0q¢

6(kss, 52 )=+ En0— OF(eot~1 L b )
20 Z 20

sz qE(COt—l %7 kz, o,)

2o
o
=

00% F/(B )_76()7277 F,(O))
02 T 1—6 "

G(B(,) =
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i Y

=560

L.E. leading edge

(R trailing edge

Fos sign denoting finite part of integral
Subseripts:

D conditions in region D (fig. 2)

i conditions in region E (fig. 2)

l pertaining to lower side of surface
P plan form

S conditions on surface of discontinuity (at z;=0)
u pertaining to upper side of surface
w wake

The subscripts 1,2, 1,0, and 2,0 on the elliptic functions /£
and K indicate the modulus of the elliptic function; that is,

KlzK(g) lc1>
Ez,ozzz’(g, kz,o)

ANALYSIS
GENERAL REMARKS

The problem to be considered herein is that of determining
the perturbation sidewash velocity behind a rolling triangular
wing for a range of supersonic Mach numbers for which the
leading edges of the wing are subsonic. The analysis is
based on an application of linearized supersonic-flow theory
and, hence, the results obtained will be valid within the
limitations of linear theory.

In the analysis which follows, several assumptions are
made concerning the trailing vortex sheet. These assump-
tions are that the vortex sheet must remain flat behind the
wing and that the rotation of the vortex sheet is small enough
to be neglected. In addition, the nonrestrictive stipulation
is made that the rolling wings be at zero angle of attack.
Further discussion of these points will be found in the section
entitled “Results and Discussion.”

In flight, a steady rolling motion will usually be maintained
by differentially deflected ailerons that create a sidewash
opposed to the wing sidewash. Calculation of aileron side-
wash, which may be of the same order of magnitude as the
wing sidewash, will not be considered in the present report.

BOUNDARY CONDITIONS

The boundary conditions for the proposed problem may
be prescribed on the z=0 plane and are similar to those given
for the angle-of-attack motion in reference 1.

The downwash boundary condition on the rolling wing is

w=(PY)p—0

In order to analyze the quasi-steady rolling problem by use
of steady-flow theory, the rolling wing is considered fixed in
approximately the z=0 plane but twisted linearly in the
spanwise direction. Only small linear twists are allowable,
however, in order not to violate the assumptions of small-
perturbation linearized theory; hence, the rate of roll is
necessarily small (approaching zero).

Pressures on the wing and pressure differences across the
wing surface are finite and, for a great variety of plan
forms, have already been obtained. (See, for example,
refs. 3 and 4.) Off the wing and in the plane of the wing,
the pressure, and hence the pressure difference, must be zere.

In the 2=0 plane, the local pressure difference is directly
proportional to the streamwise component of the perturba-
tion velocity and is given simply as

AP(w,y1) 2 A (1,1)
R N e T (1)
q
By consideration of the l'olatio'nship between the perturba-
tion velocity potential and the streamwise velocity com-
ponent; that is,

a A‘b\('rly l/l)

0171 Aus ('1 ly:’/l) (2)

an expression giving the jump in velocity potential across the
zy-plane in terms of the local pressure difference may be
written as

Y[ aPg) g )

L.E. Go

Apy(x1,y1)=

Since, from equations (1) and (2),

AP(II,JA):E 0 Ay (_'"172/1) (4)
q %4 o1y

and since ¢y(z1,y:) is an odd function in z, it is clear that,
beyond the trailing edge, A¢, must be independent of
to satisfy the zero-pressure condition in the wake. The
integration indicated in equation (3) should, therefore, be
made from the wing leading edge to the trailing edge to
obtain A¢, in the wake.

SOLUTION TO BOUNDARY-VALUE PROBLEM
The linearized partial-differential equation which the per-

turbation velocity potential must satisfy in supersonic flow is

%% J% 0% =
B j*“*qi**q 0 (6)
Q" oy o02E
For the problem being considered herein, the solution to
equation (5) may be written as

: ”~ 11‘/1)([’17([.11 ey
o5 (L—ll) _:B (./ Jl) 2 &

I’Lm form

I‘ 7 A, (1) (111(/1/1 ®)
JJ [@—2)*—B(y—y)*—B%2°]"*

b(x,y,2)=—

6.’

')7I'

| Wake

This expression represents the potential in space due to a
distribution of doublets in the zy-plane with strengths that
are governed by the potential jump across the z=0 plane.

The symbol | indicates that the finite parts of the
infinite integrals are to be taken when they appear
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APPLICATION TO TRIANGULAR WINGS

The loading over a rolling delta wing with subsonic lead-
ing edges has been found in reference 4 to be

2 4pr,6,* .
= @es— L li,éy)lf,; @)
q VB*G(6,) v 0% — By,
where
oy 2—6y® ’ - 6y’ AL
600 20 B/ 00— s /00|
and

E’ (6o )f]’ (*J V1—6y’ >

I"/(en): FY <77;) v 1 —602>

From equations (3) and (7) the potential jump across the
wing surface is
Aoy (2, al/\): [Iﬁllx ’\/eoz\lﬁziﬁizyix2 (8)
and in the wake
Ay(y)=HBy1+ 05— By 9)
where
H=p s (10
G (0) )
The velocity potential in space may now be written as the
sum of the two expressions (see eq. (6))

é *_‘ZIIBZF r ﬁ]/meoh —B J]zd'rl dy, 1)
e ) (@) — TG
and
- ~116  Byibo*c’—B 8o2c2— B> yr(lfl dy, .
Pw="— [‘f [(1'_1'1) —B*y— ?/1) —B227)? e (£

As previously stated, the primary purpose of this report is
the determination of the velocity perturbated behind the
wing parallel to the y-axis (or the sidewash). This flow
velocity may be obtained by taking the partial derivative of
the velocity potential with respect to y, or

¢

l':a—y

With
¢:¢P+ bw

the sidewash in the zz-plane from equations (11) and (12)
will be given by the sum of

3
Vp—
y—0

B 2HB* d
==

ff Byl\{m?:ﬁ%/lid-rl dy,
[((x—2.)’— By —yr)*—B*2]*”

| Plan form

(13)

and

l‘;p-—(od)” >
oY Jy—0

~ o f f By —Byide, dyy
¥—0 27[' ay \.\l.\ (.I"I"l) _B (J 1/1)2‘5222]3/2

(14)

Subsequently it will be convenient for computational
purposes to derive expressions for the sidewash which have
been nondimensionalized by pb/2 so that

v Up Uw

pbi2 pb2 " pb/2

When ﬁbi/T? is written in a slightly different, though equiva-
lent, form

/A

b2V

it can be recognized that the nondimensional sidewash
parameter may be defined as the induced angle of sidewash
per unit wing-tip helix angle pb/2V.

The rest of this section is devoted to the evaluation of
equations (13) and (14) at points in the following two
regions of the zz-plane (see fig. 2):

(1) The region lying between the Mach lines emanating
from the wing trailing edge and the line of intersection of
the two cones from the trailing-edge tips.

(2) The region which extends from the line of intersec-
tion of the two cones from the trailing-edge tips downstream
to infinity.

These two regions are denoted, as in reference 1, by E and
D, respectively. The contributions of the doublets dis-
tributed over the plan form and the wake to the sidewash
in regions E and D are considered separately.

Sidewash due to doublets distributed on plan form in
region D.—In region D the sidewash contributed by the
doublets distributed on the plan form is

0,7
m: 1“ 0 7’"[1;8 o) J JT ) 67/1 \0() £y j@/} (1J1 d.l'l
oy yo0\ 27 Oy o, [(x— 2, — B (y—y)*—B**
(15)

to facilitate the integrations involved in deter-
mining vp p, it is convenient to carry out the differentiation
and limiting processes first. This procedure gives

In order

041y
32HPB: [ i
Up p— B (l.l’l
™ 0 0
When the following substitutions are made,

D) 6'.’!/12
S§T=

—eozd‘lz

—B* 571 (l./l
B‘!.J,]a/’

By® Vbo*x,®

[(@—2,) =By *—
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Line of intersection of
wing-tip Mach cones

2

. .

/ //Region E
o 7
. x

|

T ¢ e B |

Region D

Fraure 2.—Regions behind a triangular wing.

vp, p becomes
§24/1—s%ds

(1_k2282)5/2 (17)

UP, D

Sl B e kfd.mj"
0

o B0y

which, by the use of partial fractions, may be written in the
more amenable form

¢ ko, l: j ,,(ZS +

5 Gor; VI—82y/1—k%s?

@k, im

(l—k,a)f 1—k 22 )J,,] (18)

The integrals in equation (18) may be reduced to standard
elliptic forms by use of the Jacobian transformation, s=sn u
(refs. 5 and 6), and readily integrated to give

ZE B (e
l’p']):TBJ 00.E1 <'—()Ko ]“ Eg)d.l'l (19)

By replacing H by its equivalent and nondimensionalizing
z1, 2, and z, equation (19) becomes

3zHp?

Up, p=

= oR +2“’“

Vp,p_ 220 ks 7 ) :
I)b/‘) G(ao)ﬂ'f 60.11 5 x 3 E (1.1'1 0 (20)

where
2— Bo%x,” 90 Z1,0°
e e
()= B (10_ %1, 0)°—0%2

Sidewash due to doublets distributed on plan form in
region E.—The portion of the wing area over which the
integration in equation (13) is to be performed is different
for each position of the field point in region E. This fact is
evidenced by the appearance of the field-point coordinates

, ¥, and z in the limits of integration. It is expedient in
determining vp, 5 to follow the same procedure used in deter-
mining vp, p (differentiating before integrating). This is
allowable since it can be shown that the expression for the
potential ¢p » can be differentiated with respect to y without
regard to the variable limits when the evaluation of the
derivative is made at y=0.

Differentiating ¢p » with respect to ¥ and then setting ¥
equal to zero yields

0(}51
. dy
,Ssl-lﬁff f —yi'dy
vp,e———— | dx 2 gz st

T 0 l:(x J‘l) y‘{l

N @—m)?—p2 11) — g2 y '90 o dy

,S/Hﬁf J’ ﬁﬂ gl

TN, 959 5/2
[g,,d'%ziﬁj _y12:|
(21)

where

D \/002;132—'—6222(1 —'902)
J= —a
1—#6q

The y-integration in the first double integral of equation
(21) is identical to the y,-integration in equation (16); hence,
only the second term of equation (21) remains to be con-
sidered.

In the integration

SEoeS A e
,/7(1 Il) 3—pz2 ylz\/oTzl"—ylzdy

GEy

0 (1—1,) -

let
6* 11
ki 2t2=1,2
g Y1

where

Gt i

0022,

fey2=

This substitution results in the expression

142 /7272
B G (22)
bkt o (1=

which, except for the use of the finite-part concept, may be
integrated in a manner similar to that used for equation (17).
Performing the integration in expression (22) allows vpp
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(eq. (21)) to be written as Equation (23) for vp, » does not lend itself readily to numerical
calculations because, at the point z,=f, &, and £, become equal

. _ zHB* (Y dxy i (;) e +Ztkg{ 5 ) L to 1 and give rise to first-order infinities in the integrands.

Y PO N U T X e Appendix A shows how this difficulty is eliminated by a

parts integration of the terms containing the singularities.
2HB* (*° du, —2k2 . After the singularities have been treated and the z,-2-, and
Kl—i- — E, (23) v - . . : ‘
T J; Oexy /{1 1—ky? z-lengths nondimensionalized, equation (23) becomes

(:oth“[ = 0")1”’+I°:l
22, {ff" ([-1'1 0 Ta(—2K S (11'1 0 —KH‘I} J:f” ) 0o+ 1'0 24201 —6,%)

l)b/ ~ G0, o o210 fo Oo%0 ki ) PR e e
tanh™! l:kj( 9(7)2)1'1 n—f"»l':jl
|:00(L7 K,) ]Csz\I’o Zy,0 ] dx 777730\ 10’ +20°(1—6y) [K - Kz, n):] .
ke fo1. o Zy,0— To 8o/ Zo> 1207 (1 —€ (1_00 — .
M coth™! ,Joh A = E'“ = tanh ! ( 0() )+, } (24)
26+ £17()3+2()2(1 —003) By \'.170"+202(1 _002) N -1"0'+Z(,2(1 _002) ™ - — - (1 _00 )

where
=0 1 . 979 _ A 9\
To— 00+ 2> +202(1—6,%)

fl): = 602

Numerical caleulations may be made by using equation (24) for all values of 6, except ;=1 where f, becomes indeterminate
and the arc hyperbolic functions become infinite. The indeterminacy when evaluated yields

I 2 7] 2.402
Lo —Uo <
(Foromi— 2>

Thus, an integration by parts of the singular terms of equation (23) similar to that made to obtain equation (24), using now
(f0)s,-1 and expressions for &, and k, in which 6, has been set equal to 1, yields

VpE__ 220 U(]Il 0y, - ({Il 0 o (G 2 2 E:_If_z_lfaKz(Jio—fl.o)
[7[7/E wp(ao {f o ek Ty Ty, oltl 2 (= K1+Ll)+9 _ION o A )I: ks TT],O :Idl:l'0+
f log, (220;,0—20*+20%) |:K1 z Kl)(lo_xl'o?:l dzy0— & O‘l_‘ T Vi, log, (2xo—x¢*+20%)+
)J(\ ]L L1 0 ‘)J'o
MZ% log, (x 0-—.;02)} (25)

The integrations in equation (25) may be handled by numerical methods.

Sidewash due to doublets distributed in wake in region D.——In region D, equation (14) takes the form

: Hp? 0 L (EB =tz dx 1{ ;
bw,,):/zm{—~~?5§f Byl\ﬁo(- 522/1-(1’1/,] [(I_‘ll)i '6’2“_‘1/1 62~2]J/'J (26)

y—0

Carrying out the differentiation and then the first integration for y=0 gives

C

00 e —
v _5}1(-”—¢7)f b 362?/12\“/00202—32?/12 (x—c)*B%y,° \ 0o* C —3 ?/1
W,D——

T 2) o= =By —F2T" 4+ 27 6~ —FYr

— PR d(By) 27)

By making the variable substitution

D= e
2=
B
and defining
902(32 2
szkﬁ.’,()

(x—c)’—B%2
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equation (27) reduces to
3H(z—c)00°c’ks, of
Vw, D= (

§ \1——\2 ds

: &
0 ) VTl

,"_BZ,..S

H(z—c)*0ocks, &f‘ s2y1—s? ds (28)
2,3
Y OV

The expression for vy, given by equation (28) may be
integrated (see appendix B) to yield a closed-form solution

for vy ». The nondimensional equation for 1;;/;
w.p__ ol s
pb/2 1rG 00) [ + (K, 0— E, 0)F<cot , ks, 0)
22°+1 Ky, oks, o(20—1)20
oo
g e v Zoz-f‘l Bo(20°+1)

(29)

Sidewash due to doublets distributed in wake of region
E.—In region E the derivation of the sidewash is similar to
that of region D and yields

Vw.e__ '1'0_1) Kx ()9040\/70 +1
pb/2 1r00G(00) [ To—l +

(KI'Q_EI,O)F (COL_l Ej&) /Cl_(),)'_'
20

_ (22’ +1)80

2K1,020
V21 (2—1)

1{101’<Con—

(30)

where
. (x—ec)’—p%22

k"OZZT
Sidewash at z-axis.—In the zy-plane (plane of the wake),
only the doublets distributod in the wake contribute to the

sidewash. b/2 (25)
for —m approach zero as z, approaches zero, whereas equa-
tions (29) and (30) give

Yw,p_ Vw,E__ 1 (31)

b2~ pb2~ G(6,)

This result is identical with that which would be obtained
by use of the formula obtained in reference 7 by considering
the properties of vortex sheets. This formula, for y=17,=0, 1s

sl e Iy d_I‘> 39
pb/2 (1'7 0) 0 )—2 ]lb_ dyl V=0 (';-’)
2
where
'=(A¢y)re (33)

Sidewash at 2= « (Trefftz plane).—As 2z approaches
infinity, the contribution of the doublets distributed on the
plan form to the sidewash goes to zero and the total side-
wash is given by

418784—57——2

<;Pg/g)ﬁm <pb/2 e G(eo) <1/j__: Lo ) (34)

Equation (34) could also have been determined more di-
rectly by using the formula

( > [ J-r)/z Azﬁx(J:TE‘yl)dy]] (35)
25/2 /s u—»O 27"f7b/2 a?/ —b/2 (?/_?/1)2+22 3

which may be obtained from equation (26) by performing
the first integration and then setting r equal to infinity.

LIFTING-LINE SIDEWASH

The lifting-surface method by which the sidewash behind
a rolling delta wing was derived in the previous section is
applicable to wings of arbitrary plan form; however, the
integrations which would be required before the potential
or one of the perturbation velocities could be obtained in a
calculable form are extremely difficult to evaluate. It is of
importance, therefore, to develop some approximate ex-
pressions which may be easily evaluated either analytically
or numerically. References 2 and 8 indicate that a lifting
line and a lifting line approximated by supersonic horseshoe
vortices can be used as good approximations to lifting-
surface solutions for most downwash problems. It would
seem that a comparison of the sidewash behind the rolling
delta wing calculated by the lifting-surface method with that
calculated by an approximate method might give some
indication of the usefulness of the “approximate” approach
for sidewash problems.

References 2 and 8 together represent a fairly thorough
study of the lifting-line and approximate lifting-line methods,
especially with regard to downwash calculations, and show
that the swept lifting lines will probably give the best
results for swept and triangular wings. The potential due
to a yawed lifting line may be obtained from the errata of
reference 2 as

P= L) tan ™! :\mh_
i o e s
m m iy

hy dT L, 2 X2 22
jwj (Jl) tan \—:—Z—E )dyl (.;b)

dy, .
m

m
where the equation of the lifting line is

y1+k

T1=—
m

and the circulation I' is defined by equation (33) as the
potential jump across the suxfu( e evaluated at the trailing

When (y'

edge. (See fig. 3.) l 1s zero, equation (36)
1
becomes
2 X—p(Y?
¢—2£tan } BE I_; il (37)
; Wl
m m |
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which might be considered as the potential in space (at a point x, y, z) of a finite yawed vortex of constant strength.
A number of finite yawed vortices distributed along a line can be used to approximate the potential in space of a lifting
line with any prescribed lift distribution.

From equation (37), the sidewash due to a yawed vortex is readily obtained by taking the derivative with respect to y.
The following result is obtained:

2y 2o s b
55 QX —Y— %) — 2 X (X*— %) ‘
OGN ) L — N\l 38)
: Oy 2n) o s 22 ¢
! e e e R ]
mm ,,,

When m approaches infinity, equation (38) becomes the sidewash for a rectangular horseshoe vortex and agrees with the
equations given in references 9 and 10.
Since the loading on a rolling wing is antisymmetrical, the induced sidewash from each panel is in the same direction
and equal in the y=0 plane. For this reason it is necessary to calculate the sidewash only from one panel and double it.
Equation (38) can be utilized to formulate an approximate expression for the sidewash due to a series of constant-strength
yawed horseshoe vortices spaced along aline so as to represent as closely as possible the span load distribution due to rolling.
This expression is

L X2 i) X (X =)

Y

_i I'(Yit)—T(¥io1)
n;2>2+Zz(XZQ__Bzyiz_B?ZZ):'

i=0 411"

(39)

m

P e Pl 2
V’Xiz—ABQer_ﬁ?Z?[( ¥ X— 2

yi+k

where Y, =y—vy;, X;=zr—z;, and z,=" =

» the subseript 7 takes on all integral values from 0 to n. Equation (39) in non-

dimensional form is

v

L@is) TG 20X 00 (0% 2 2y 2 a2, 8) 0 (T2 2
v __ 3 [p(b/2>2 p(b/2)2][ m QXY =B —2 X (X ﬁw)]
] < - 2 2N 2 [—
BRI X — B — 2202[(1’,-,0)(,-—:—&07) +zo2(X,-2—5?Yi,02—62202):|

(40)

2
0
m m

In the application of equation (40) to the calculation of sidewash, some care should be exercised that the forecone from
the field point under consideration does not intersect the lifting line at a point close to the corner of a yawed horseshoe vortex.
When the forecone intersects the lifting line near a corner located within the forecone, the expression under the radical in
the denominator of equation (40) becomes small and the sidewash becomes large. (See sketch 1.) A zero value for the
square root and an infinite value for the sidewash result when the forecone intersects the corner. The abruptness of the
infinity varies with the distance of the field point from the corner. Note that when z= «, the infinity no longer exists.
The preferable field-point locations have forecones intersecting the lifting line as shown in sketch 2. The closeness of the

I i

. g '

“Intersection of forecones from o ices
field points with vortex sheet railing vortices

Sketch 1 ! Sketch 2
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(0,0)

ol

X X

Figure 3.—Finite yawed vortex used to approximate a swept lifting line.

forecone to the corner when the corner is outside the Mach
cone is obviously of no consequence because only line
vortices within the forecone from the field point contribute
to the sidewash at the point.

RESULTS AND DISCUSSION
EXACT SIDEWASH

The exact linearized nondimensional sidewash has been cal-
culated for values of 6,0 1.00,0.75, 0.50,0.40, and 0.30; values
of z, from 1.2 to 2.4; and values of z, from 0 to 0.6 except
where these values are ahead of region E. Variations of the

sidewash parameter 272//2%/ with z, for 7 values of z, from 0 to
0.6 and for the 6,’s given are presented in figure 4. Cross
plots of figure 4 which show the variation of the sidewash
parameter with z, for 7 values of z, from 1.2 to 2.4 are given
as figure 5.

In order to depict the effect of Mach number and leading-
edge sweep, variations of the sidewash parameter with z,
for values of 6, of 1.00, 0.75, 0.50, and 0.30 have been plotted
for three longitudinal locations: 2,=1.6, 2,=2.0, and z,=
(fig. 6). (It should be noted at this point that an increase
in 6, may be interpreted as either an increase in Mach num-
ber for a fixed leading-edge slope or an increase in the wing
semiapex angle for a specific Mach number.) The major
difference to be noted in the effects of changing 6, is that,
when the longitudinal station is ahead of the line of inter~
section of the Mach cones from the trailing-edge tips, an
increase in 6, causes an increase in the sidewash at the higher
values of z,, whereas the sidewash at a station remaining
behind the intersection line during an increase in 6, experi-
ences a decrease in sidewash at all values of z, which are un-
affected by the localized infinity at the intersection Iine.
By way of illustration it can be seen at station z,=1.6 that
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Frcure 4.—Longitudinal variation of nondimensional sidewash param-

-

pb/2V
of 20 and 0().

eter in zgz-plane behind triangular wing for a number of values

when 6, is increased from 0.75 to 1.00 the sidewash increases
for values of z, greater than 0.2; for values of 6, of 0.3 and
0.5, when 2,=1.6 is behind the intersection line, the effect
of increasing 6, is to decrease the sidewash at all values of
zo except at z,=0.6. This point is affected by the infinity at
the intersection line.

APPROXIMATE SIDEWASH

From the nature of the analytical and numerical imtegra-
tions required to obtain the exact sidewash for triangular
wings, it is apparent that for wings with more complex
potential-jump expressions the derivation of exact sidewash
would be a difficult task. Herein lies the merit of the ap-
proximate lifting-line method (eq. (40)) which is not en-
cumbered by the complexity of the wing-loading expression.
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Ficure 5.—Continued.
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The approximate method is, however, hindered to the extent
that an area distribution of loading is assumed concentrated
on one or several lines. The penalty that this assumption
imposes on the quality of the results cannot be ascertained
in every case. For the triangular wing treated herein, com-
parisons may be made between the results from the lifting-
line and the lifting-surface methods, and perhaps some indi-
cation may be obtained as to the regions wherein the approx-
mmate method may or may not give reliable values.

By use of equation (40), approximate lifting-line calcula-
tions of the sidewash have been made for 6,—=1.00 and 0.40,
values of z, from 1.2 to 2.4, and values of z, from 0.1 to 0.6.
Sidewash values for z,=0 were obtained from equation (32).
A comparison of the sidewash calculated by the lifting-line
and lifting-surface methods has been made in figure 7, and
the agreement is shown to be good everywhere except at the
high values of z, close behind the trailing edge for 6,=1.00.
The agreement in this region is considerably better at
0,—0.40 (fig. 7(b)) and indicates that as 6, is decreased
from 1.00 the approximate calculations will become more
reliable at locations close behind the trailing edge.

Seventeen yawed' horseshoe vortices were used to approxi-
mate the lifting line, with the concentration of vortices
ereater near the tip because of the rapid change in the span
loading in this region. The lifting line used in the ap-
proximate calculations consisted of a pair of straight lines
connecting the midpoint of the root chord to the tips.
Additional computations of the sidewash have been made
using lifting lines composed of straight lines connecting the
tips with the ¢/4 point and connecting the tips with the 3¢/4
point but the agreement with the exact sidewash was not so
good as that evidenced in figure 7.

It is of interest that the spanwise center of loading of the
loading distributed along the lifting line connecting the ¢/2
point with the tips (the lifting line yielding the best agree-
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Freure 7.—Comparison of lifting-line and lifting-surface sidewash for
6,=1.00 and 0.40. Circles represent points calculated by lifting-
line method.

ment with the lifting-surface results) was located longitudi-
nally closer to the actual wing center of loading at 3¢/4 than
it was when the loading was distributed on the other two
lifting lines.

The wing loading in the examples just discussed was dis-
tributed on one lifting line. Sidewash obtained by distribut-
ing the wing loading on more than one lifting line would
probably show better agreement with the exact results in
region K, because some effect of the longitudinal distribution
of loading over the wing could then be realized.

EXAMPLE OF FLOW-FIELD EFFECT ON VERTICAL TAIL

The effect of the induced sidewash velocity behind a
rolling wing on the forces and moments contributed by a
vertical tail can best be illustrated by analyzing a specific
wing-tail configuration. The pertinent geometric char-
acteristics of the wing-tail model are (see fig. 8):
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A free-stream Mach number of 1.6 (=1.25) has been chosen.
The wing leading edge for this Mach number is sonic (§,=1)
and the vertical-tail leading edge is supersonic. Induced
side-force and yawing moments for a number of longitudinal
positions of the vertical tail have been determined by
numerical integrations in a manner similar to that used in
reference 11 to obtain the contribution of horizontal tails
with supersonic leading edges to the lift and pitching moment.
In making the numerical integrations, sidewash curves (figs.
4 and 5) were used which had the infinity at the tip-cone
intersection line faired through. Isolated vertical-tail forces
and moments have been computed from the formulas given
in reference 12.

Figure 9 shows in stability-derivative form the variation
of the induced, isolated, and total forces and moments with
the longitudinal location of the vertical tail. For the
example configuration chosen, the induced forces and
moments are greater than the “isolated” forces and give rise
to a positive OYP coefficient and a negative C"p. Obviously,
from the sidewash curves, if the vertical tail were moved
away from the z-axis, the induced force would be reduced.
The isolated forces and moments, on the other hand, would
increase and the total (*yp and total (‘,,p would become

negative and positive, respectively.
ASSUMPTIONS AND LIMITATIONS

In some cases, the assumptions made in the analysis, by
necessity or for convenience, to allow the determination of
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Fraure 8.—Wing-tail model used to illustrate effect of wing sidewash
on a vertical tail.
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vertical tail.

the sidewash behind triangular wings by linearized super-
sonic flow theory limit the application of the results. Some
discussion of these assumptions and limitations may be
useful.

The validity of the assumption of a flat vortex sheet for
wings with very low aspect ratios is questionable, but, in
the absence of experimental and theoretical information
directly concerned with the vortex sheet behind rolling
wings, no definite statement can be made as to the effects
that wing aspect ratio, roll velocity, and distance behind
the trailing edge will have on the rolling-up of the vortex
sheet. It may be possible, as suggested in reference 13, to
get some indication of these effects from the data published
in references 14 and 15 concerning the rolling-up of the vortex
sheet behind wings at an angle of attack.

The vortex sheet has been assumed not to rotate. The
angle (in degrees) through which the vortex sheet would
rotate in moving from the wing trailing edge to a point d
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distance downstream is given by
180 pd

A= L

TV

180 pb ( d )
T 2V \b/2

Substitution into this formula of values of pb/2V usually
encountered and of distance d up to two semispans will
generally yield rotation angles small enough to be neglected.

The sidewash expressions derived in the analysis for rolling
wings at zero angle of attack are also applicable for finite
angles of attack because angle-of-attack loadings are sym-
metrical and do not contribute to the sidewash in the zz-
plane. The displacement of the assumed flat vortex sheet
from its zero angle-of-attack position, however, must be
accounted for; that is, the sidewash given for a point z,z=0"
for the zero angle-of-attack case represents the sidewash at
the vortex sheet when the wing is at an angle of attack. At
a distance d behind the trailing edge, the displacement of
the vortex sheet below the trailing edge may be found

(see sketch 3) from
d
lzzf tan edz
T. B,

Wing
a\a\r a )
| —— 1
—
Vortex sheet- S
Tralling edge

Wing chord extended
Sketeh 3

Values of tan e for a triangular wing are given in reference 2.

CONCLUDING REMARKS

The variation of sidewash with longitudinal distance in
the vertical plane of symmetry behind rolling triangular
wings traveling at supersonic speeds has been derived by
linearized lifting-surface and lifting-line methods. The
range of supersonic Mach numbers for which the lifting-
surface results are valid is limited by the condition that the
wing leading edges must be subsonic. The variations of
lifting-surface sidewash are presented in graphical form for
a number of values of 6,, a Mach number—Ileading-edge-
sweep parameter. Sidewash calculated from the lifting-line
formula has been compared with the lifting-surface sidewash
for values of 6, of 0.40 and 1.00. This comparison shows
very good agreement of the lifting-line results with lifting-
surface results except at the higher vertical distances close
behind the trailing edge for 6,=1.00. The curves for
0,=0.40 reveal that, as 6, is decreased from 1.00, the agree-
ment close behind the trailing edge improves.

An illustrative calculation of the sidewash-induced force
on a half-delta vertical tail operating behind a triangular
wing indicates that the induced force acts in opposition and
is comparable in magnitude to the damping force created
on the isolated rolling tail. In order to determine the total
force which would act on the vertical tail of a steady-rolling
aircraft in flight, an additional force induced by the aileron
sidewash should be calculated. This force may be of the
same order of magnitude as, and opposed to, the force
induced on the tail by the wing sidewash. No attempt has
been made in the present report to evaluate aileron sidewash.

LANGLEY AERONAUTICAL [LABORATORY,
NarioNAL Abpvisory COMMITTEE FOR AERONAUTICS,
LancLeEy Fieup, Va., October 21, 1955.
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APPENDIX A

TREATMENT OF SINGULARITIES IN vp z AS GIVEN BY EQUATION (20)

In order to isolate the “infinite’” terms, equation (23) may
be written as

zHp? d 2 d. - K,
e I 2 A e

Sday 1
; goﬁ‘l Kt E)—

&d - E
Ly 1
7 B0y 1—lc12] s

Terms (1) and (@) are integrable by numerical methods,
whereas terms (2) and @) contain a first-order infinity at the
limit ,=f (when o,=f, ky;=k,=1).

Consider term (2) in equation (Al)

b=
o B0y 1—ky?

If %, is replaced by its equivalent (see symbols), term (2)
becomes

: 2 By —a,)P—p%? (A2)
o (x—x1)2—6222 21. 9 42V “1
s
Assume expression (A2) to be of the formf u dv, where
0

u=Ey|@—a,y—F2*

and
dv= d
(x—,)>—B%2%—b%x,®
Then,
1 ot ==tz

—_— s —————C0 _—
V0o’z* B2 (1—0,7) Vor*z* B2 (1—6,)

0o(Eo—K)  Koko(x—1y)

duz kz GO.TI

and a parts integration of expression (A2) gives

— (1 =02, +-2 !’_
\ 002Z2+ﬁ2 2(1_002)

VO5Ze? 221 —06%) o
coth™! !l 0P i
J.f Ngo TZ+32~2(1—902) l:eo(Eo KO) Kszkz(l' Tl):l da
1
0

V8222452241 —6,%) Oy,

(A3)
Substituting for £, its equivalent i term (@) of equation

(A1) results in
— ; 62, ) d,
ff 0o%x > —(x—1x,)%+B2%22 (A4)

With
=00,
and
—dux,
O0o°xy:— (x—2y)* - B%2?

dv=

a parts integration of expression (A4) yields
Oy, I, anhsl = (1 5 )11+1
VOo*x*+-6°2%(1—6,%) Vb, '12+52"2(1 —902)|f

NG —(1—0)zit= [ _(By—K,) (z— frx):l
tanh—! 2
jf iz V028222 (1—06,%) 901'1k1 a1

c

(A5)

The nonintegral term in expression (A5) may be written in
slightly different form as

El\"(x_fl)z_ﬁz? tanh-1 ;—(1_002)1"1+J’
k622> +6%2% (1—6y) V852> +-B22* (1—67) s

(A6)

Inasmuch as when z,=f, ky=Fk.=1, it is clear that the evaluation of the integrated term in expression (A5) (equivalent
to expression (A6)) at the limit .I‘l—f will cancel the integrated term of expression (A3) evaluated at this same limit.

The complete expression for vp » is now seen to be

s ~Hﬁ {f dz, f@_l
) 00 1k2 2K0+Ea)+ 2 00171

—I -+

coth“[ f(__ﬁ)xli_]
_f/ 9021'24_62"2(1—002)
0 Vor'z* 48722 (1—6,?)

—(1 =621+

tanh ™! |:
[oO(EZ—Kz)_szQ(z—wl) e f : N
i 4

kg 001131

wz BZNz = T

602> +-B22%(1 —002)] [ K y—

Vo +B7Z(1—67)

E—K)@—a)] ..
o1k ] g

boc o tanh ! [0 =900 £ 4] (A7)

5\/002x2+52 2(1_ ,2)

Vogai B (1—07) | Vo' -BZ 16y

V0o’z®+8%2%(1—6,)

This equation in nondimensional form is presented in the analysis of the report as equation (24).
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APPENDIX B
EVALUATION OF vw,p
The contribution of the doublets distributed in the wake to the sidewash in region D is given by equation (28)as
s2/1—s2ds

3H (x—c)8*c*ka, 0 §2+/1—s%ds 11(1—0)30(,0]('2 o

w,p= 3 f ‘"'z'iz - g2z? f 22 2 (B
2 0,°c ; fy%c ST
i <1+ 0232 2> V1=, % (14—%32 s?> (1 —Fey, o822
which by use of partial fractions can also be written
. m(,—c)aa%,n N J1—8ds "—f Vi—stds | _
o ™ 0 (1+a%s) 1=k, o’ (1403 Tk,
H@—claks’| o (! V1—s2ds 1 T 1—s?ds tds I? 1 J1—¢? ds B2)
mhz* (@02 o (1-a?)V1—Fp 28 @ +kao’Jo (1+a2s?)2 41—, 2t (@ ks oD% o (L—hy, %% 5
For ease in writing, ?j—; has been replaced by a in equation (B2). Consider first the integral
1 1—s2ds
Y S (1\ (B3)

0 (14a®s?)~/1—k,, o*s*

If the variable transformation s=sin 6 is made, expression (B3) becomes

w/2 ) ~2 L]
o (1-+a®sin? 0)y1—Fks o sin® 0

The evaluation of expression (B4) is given by formula (9), table 61 of reference 16 as

1—\ ds \v(l'+1 ;
— = G (ks o, a B5
J eI ayatha " S
where
G (s, 0, a'):[g‘*‘ (Ko, 0— Ey, ) F(cot™! Uukz,ol)—KZ. o(cot™! Gvkz,o,)] (B6)

Expression (B4) could also have been integrated without recourse to tables with the aid of reference 17 (pp. 134 to
136). The integration of expression (B3)

' Jl—s'ds

0 (a1t 08"

may be performed by using the relationship (see p. 13 of ref. 17 and p. 79 of ref. 18):

L V1—s?ds V1—s? ds o d V1—sids =
7 o 2.9 T 7. 2.9 2 = (Bl)
0 (14222 1—ks, 0% (14-a2s?) v 1—ky, o26? @) (14-a%)y1—Fs, o>
From equations (B5) and (B6), equation (B7) becomes
: V1—s?ds \a a*+1 & d [ \a a*+1
— — = ks 0, @)+ a*5— =G (kz, 0, @) BS
f (142 V1—ks i’s* @@+ o t A avarthse )
Carrying out the differentiation in equation (B8) results in
L TR @i @1 i
f ‘ 1 P \ d\ =T \/’(1; + G(kl 0y (I) ?‘(]I;_I_z 3/g+ ] G(kQ,O;a)+
0 (14a2s%)2/1—ky o8>  ava+ks, o (@*+ks,0%) a(@+1)(@+Fs, )

1 a1 [ \/a Fh’_ Kso—Eio ]
2 \;l +kz 0 (az+1)3 \ (a2+1)((1 +IL2 02)
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The remaining integration needed to evaluate vy, (eq. (B2)) is
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1 /1—s2ds
0 (l_kZ, 0282)3/2

This integration may be reduced to standard elliptic forms by the transformation s=sn u and integrated to give

1 V1—s’ds K, ,—E,
J; (A—Tep 252 2'](;.2 2 = (B10)
The sidewash vy, is now completely defined by equations (B2), (B5), (B9), and (B10) as
3H(xz—c)Bks, 0 { aya?+1 1 v ‘a +1 Vaitks 2 K, o—Es }
Vw, p= : ‘ Q(kes, o, K. e e —
e 2 N Ly s B el WAL R Y e ] (LY I e O o
H(T"C)%kz 0 {l: —+va*+1 8 3aya*+1 1 @ K, 3(H,0—Ks,0)
(@ +F5,0%)° 7 2(0°+F5,0°)°" " 2ay/a2 1 (a2 ks, o2)* (ka0 a)_2(a2—f—1)(a2—f—k2_ D) 20tk )P (B
Considerable simplification of equation (B11) may be accomplished by combining terms and noting that
z—c)’k z—c)’ks, °a’
2—{—]('2 ( 52) 20 ( 022622,0
and
_HBO()C 2+a a(z_c)kg,o
L |:a\/a,2—|— Glks.0,0)— Boc(a®+1) 2'0:| B2
‘ Replacing @ by its nondimensional equivalent
_toe_1
52 20
and H by its equivalent and then nondimensionalizing z by ¢ and vy, » by pb/2 gives
Vw,p__ 2 2202+1 ( l _Iiz,okz.o(l'o—l)zo :
pb/2 WG(&()) l:\ ‘402_{—1 kz, 0y 2 00(202+1) (Bl-g)

(510

9.

. Jahnke, Eugene, and Emde, Fritz: Tables of Functions.

. Mirels,

Equation (B13) is identical with equation (29) of the analysis,

: 1 .
function G(kz,o, 2—> has been written out.
0

with the exception that, in the analysis, the
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