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AERODYNAMIC CHARACTERISTICS AT HIGH SPEEDS OF RELATED FULL-SCALE
PROPELLERS HAVING DIFFERENT BLADE-SECTION CAMBERS'

By Jurtan D. Maynarp and Leranp B, SaLrers, Jr.

SUMMARY

Wind-tunnel tests of a full-scale two-blade NACA 10—
(10)(08)-03 (high camber) propeller have been made for a range
of blade angles from 20° to 55° at airspeeds up to 500 miles per
hour. The results of these tests have been compared with results

from previous tests of the NACA 10—(3)(08)-03 (low camber)

and NACA 10—(5)(08)-03 (medium camber) propellers to evalu-
ate the effects of blade-section camber on propeller aerodynamic
characteristics.

Mazximum propeller efficiency for cruise and high-speed con-
ditions of operation at suberitical Mach numbers is indicated

for blades having a design [ift coefficient (design camber) at the

0.7 radius of 0.45 to 0.60, provided NACA 16-series sections
are used. Although blades with higher design lift coefficients
have a lower maximum efficiency, they have a more extensive
range of thrust coefficients for efficient operation. At the design
operating condition the high-camber propeller produced 80 per-
cent more thrust and absorbed 83 percent more power than the
low-camber propeller.  Because of its high power-absorption
qualities the propeller with a high design lift coefficient is much
more efficient for take-off and climb conditions of operation than
propellers with low design lift coefficients.  The blade-section
design lift coefficient of the NACA 16-series airfoils may be in-
creased up to a value of 1.0 at the 0.7 radius with the attainment
of maximum propeller efficiencies as high as 90 percent if the
helical tip Mach number is kept below 0.85.

At helical tip Mach numbers wp to 1.14 the maximwm effi-
cieney at the design blade angle of 45° is higher for the low-

systematic variations in blade width, thickness ratio, shank
form, blade airfoil section, and design lift coefficient or
camber. All the blades were designed to operate with a
minimum induced-energy loss when the blade angle at the
0.7 radius is 45° and the blade is operating at an advance
ratio of 2.1.

The first results of the full-scale propeller tests are given in
references 1 and 2, which present the aerodynamic character-
istics of the NACA 10-(3)(08)-03 and NACA 10-(5)(08)-03
propellers. This report presents the aerodynamic character-
istics of the NACA 10—(10)(08)-03 propeller and completes
the investigation of related propellers differing in blade-
section design lift coefficient or camber. The purpose of the
present report is to make a comparison of the performance
data for the NACA 10-(10)(08)-03 propeller with the data
contained in references 1 and 2 to afford an evaluation of
the effects of blade-section camber on propeller aerodynamic
characteristics. A comparison is also made with the results
of model-propeller tests presented in reference 3.

The selection of blade-section camber is of increasing
importance in the design of propellers for high speeds
because of the penalties in take-off and climb performance
incurred by a reduction in camber to obtain higher critical
Mach numbers for the blade sections. Limitations of the
testing equipment prevent a complete and thorough analysis
of the problem. The brief analysis presented herein includes
only the primary effects of camber on propeller performance.

: : : SYMBOLS
camber and mediwm-camber propellers than for the high-camber
propeller.  The high-camber propeller, however, is wseful for | b blade width, ft
conditions of operation at which high thrust is required at mod- : - /4
gt s : . (G5 propeller power coeflicient, —;+;

erate speeds.  The critical tip Mach number is lowered by an pr* D’
ierease in blade-section design camber, but the supercritical ; e i

: ; | ; ; @ propeller thrust coefficient, -,
tip Mach number at which recovery of thrust occurs is lower for pn*D
the high-camber propeller than for the low-camber propeller. ¢ blade-section lift coeflicient

¢y, blade-section design lift coefficient
INTRODUCTION !
D propeller diameter, ft
A general investigation of the aerodynamic characteristics | / blade-section maximum thickness, ft

of a series of full-scale 10-foot-diameter propellers is being | J propeller advance ratio, V/nD
made in the Langley 16-foot high-speed tunnel. The M air-stream Mach number

yurpose of the investigation is to determine the combined : : Wy
i : s S M, helical tip Mach number, M 1+(~)
influence of propeller-design parameters and compressibility 7
upon propeller performance. The blade designs embody n propeller rotational speed, rps

I Supersedes declassified NACA Research Memorandum LSE06 by Julian D. Maynard and Leland B. Salters, Jr., 1948,
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JE power absorbed by propeller, ft-1b/sec
Ap difference between local pressure at point on airfoil
surface and static pressure in undisturbed stream,
Ib/sq ft
q dynamic pressure, 1b/sq ft
Ap/g  pressure coefficient
I¢ propeller thrust, 1b
V airspeed, fps
7 fraction of propeller tip radius
a angle of attack, deg
B blade angle at any radius, deg
Bosse  blade angle at 0.75 tip radius, deg
n propeller efficiency, JJ if’
=
p mass density of air, slugs/cu ft
APPARATUS

PROPELLER DYNAMOMETER

The dynamometer used to test the propellers is powered
by two 1000-horsepower electric motors arranged in tandem
and coupled for the present tests to allow the power of both
motors to be expended through a single propeller. A
variable-frequency power supply affords an accurate speed
control from 300 to 2100 rpm with a permissible overspeed
up to 2280 rpm. Photographs of the dynamometer are
shown in figures 1 and 2, and a diagram showing the impor-
tant dimensions of the propeller dynamometer and its
location with respect to the Langley 16-foot-tunnel test
section is shown in figure 3. A detailed description of all
the test apparatus and the methods of measuring thrust and
torque is presented in reference 1. The fairing profile was
calculated from a distribution of sources and sinks to pro-
duce a body of revolution with uniform axial velocity in the
plane of the propeller. This axial-velocity distribution has
been checked experimentally and found to be uniform within
I percent. The gap between the propeller blade and the
spinner surface at the juncture of the propeller blade and
spinner is very small (fig. 1) but is not sealed.

PROPELLER BLADES

The NACA design numbers are descriptive of the shape,
size, and acrodynamic characteristics of the blades used in
this investigation. The digits of the first group of numbers
represent the propeller diameter in feet; the number in the
first parentheses is ten times the basic design lift coeflicient
at the 0.7 radius; the number in the second parentheses is
the thickness ratio (in hundredths) at the 0.7 radius; and
the digits in the third group give the solidity of one blade
(in hundredths or thousandths for two or three digits, re-
spectively) expressed as the ratio of the blade chord at the
0.7 radius to the circumference of the circle having a radius
0.7 of the propeller-tip radius.

The blades used in the investigation of blade-section cam-
ber are the NACA 10-(3)(08)-03 (low camber), NACA
10-(5)(08)-03 (medium camber), and NACA 10-(10)(08)-03
(high camber). These blades are identical except for the
difference in blade-section design lift coefficient or camber
and a slight difference in pitch distribution as shown in
figure 4, which gives the blade-form curves. Figure 5 is a

photograph of a typical set of the test blades. The NACA
16-series blade sections (ref. 4) were used, and efficient air-
foil sections extend to the spinner which has a diameter
21.7 percent of the diameter of a 10-foot propeller.

Figure 6 shows the blade section and theoretical pressure
distribution at the 0.7 radius for each blade design. The
theoretical pressure distributions were computed for a lift
coeflicient of 0.5 by the method described in reference 5.
The angle of attack (shown in fig. 6) corresponding to this
lift coefficient is different for each blade design and gives
some indication of changes in airfoil characteristics caused
by the different cambers. Obviously, the high peak pres-
sures caused by operating these airfoils at lift coefficients
for which they were not designed would be expected to lower
the critical Mach number and seriously affect efficient opera-
tion at high speeds.

TESTS AND REDUCTION OF DATA

Thrust, torque, and rotational speed were measured
during tests at fixed blade angles of 20°, 25°, 30°, 35°, 40°,
45°, 50° and 55° at the three-quarter blade (45-inch)
radius. A constant rotational speed was used for most of the

D
changing the tunnel airspeed, which could be varied from
about 60 to 500 miles per hour. The range of blade angles
covered at the various rotational speeds used in the tests
of the NACA 10-(10)(08)-03 propeller is shown in table I.
Similar information, together with ficure numbers, is also
shown in table I for the NACA 10-(3)(08)-03 and NACA
10-(5)(08)-03 propellers as taken from references 1 and 2.
At the higher blade angles, the complete range of advance
ratio could not be covered at the higher rotational speeds

tests, and a range of advance ratio (Jz > was covered by
oo :

TABLE I

RANGE OF BLADE ANGLE AND ROTATIONAL SPEED FOR

NACA PROPELLER TESTS

[_{nl:r |
Figure \'l':f""'ll ‘ Blade angle at 0.75 radius, Bose, deg
rpm ‘
NACA 10-(10) (08)-03 propeller
7| 1140 20 | 25 30 | 35 10 45 50 55
8 1350 20 | 25 30 | 35 10 15 50
9 | 1500 | 15
10 1600 20) ‘ 25 30 | 35 10 15
11 2000 20 25 30 35
[T 2160 | 20 | 25 30
[ 13 Varied ‘ 45
| | |
NACA 10-(5) (08)-03 propeller (figs. cited are from ref. 2)
8 1140 35 40 45 | 50 55
9 | 1350 | 20 25 | 30 j 35 0 | 45 50
10 1500 | 45 | |
‘ 11 1600 20 25 30 | 35 40 | 45 |
12 1800 20 25 30 | 35 40 |
13 2000 20 25 30 35 |
14 2100 20 25 30
15 2160 20 25 30 |
16 Varied ‘ [ 45
‘ \ . I 1
[ NACA 10-(3) (08)-03 propeller (figs. cited are from ref. 1)
|
| | | o .
19 1140 | | |30 35 40 45 50 55
20 1350 | 20 25 30 35 40 45 50
21 | 1500 | [ 45 |
|22 | 1600 | 20 25 30 35 10 45 |
| 23 | 2000 20 25 30 35 ‘
24 2160 20 D51 NIIRNE30 | ‘
25 Varied ‘ ‘ | ‘ 45
\ | | ! _ |
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because of power limitations. In order to obtain propeller
characteristics at maximum tunnel airspeeds, a blade angle
(45°) was chosen for which the peak-efficiency operating
condition could be attained when the tunnel airspeed was
at or near the maximum and the dynamometer was operating
at its maximum power and rotational speed. For these
tests, at a blade angle of 45° the rotational speed was varied
to obtain data from the peak-efficiency condition to the zero-
torque operating condition.

The test data have been corrected for tunnel-wall inter-
ference and for forces acting on the spinner by the methods
described in reference 1 and are presented in the form of the
usual thrust and power coefficients and propeller efficiency.
Propeller thrust, as used herein, is defined as the shaft
tension caused by the spinner-to-tip part of the blades
rotating in the air stream. Tests were frequently repeated
during the test program, and the results obtained agreed
with the results presented within 1 percent. For purposes of
comparison, therefore, the data are considered accurate to
within 1 percent, and the faired envelopes are believed to be
accurate to within much closer limits.

RESULTS AND DISCUSSION

CHARACTERISTICS OF THE NACA 10-(10) (08)-03 PROPELLER

Faired curves of thrust coefficient, power coefficient, and
propeller efficiency plotted against advance ratio are pre-
sented in figures 7 to 13 for the two-blade NACA 10—
(10)(08)-03 propeller. Test points are shown in the figures
for thrust and power coefficients. The variation of air-
stream Mach number and helical tip Mach number with
advance ratio is shown in the figures for the propeller
efficiency.

The envelope curves of propeller efficiency at the different
test rotational speeds are shown in figure 14 for the two-
blade NACA 10-(10)(08)-03 propeller. The curves for
this propeller show high efficiencies at the lower rotational
speeds where the adverse effects of compressibility are small.
At a rotational speed of 1140 rpm, the envelope efficiency is
above 0.90 for a range of advance ratio from 1.6 to 3.2. At
the higher rotational speeds the envelope efficiencies become
less, and at 2160 rpm the maximum efficiency reached is
about 0.75 at an advance ratio of 0.9.

In figure 15 the envelope efficiency of the two-blade NACA
10-(10)(08)-03 propeller at a rotational speed of 1350 rpm
is compared with the optimum efficiency of a two-blade
propeller with the Betz minimum induced-energy-loss
loading. The curve of optimum efficiency was calculated
by a method neglecting all profile-drag losses (ref. 6) for a
two-blade propeller operating at the same values of power
coefficient as were obtained with the NACA 10-(10)(08)-03
propeller. The curves in figure 15 indicate that the induced
losses amount to about 6 percent and the profile-drag
losses amount to about 3 percent at the advance ratio of
2.1 to 2.2 for which the propeller was designed. The highest
efficiency (approximately 0.91) reflects the importance of
designing for a minimum induced-energy-loss loading and of
using efficient airfoil sections from the spinner surface to the
propeller tip.

Results from tests of the full-scale propeller are compared
in figure 16 with results from the tests of a model propeller
(NACA 4-(10)(08)-03) presented in reference 3. This
comparison shows that, over a range of advance ratio from
0.8 to 2.1, the difference in envelope efficiency for the model
and full-scale propellers is 1 percent or less and is perhaps
within the limits of experimental accuracy of the two sets of
data.

EFFECT OF CAMBER ON PROPELLER EFFICIENCY, POWER, AND THRUST

The envelope efficiencies of the NACA 10-(3)(08)-03 (low
camber), NACA 10-(5)(08)-03 (medium camber), and
NACA 10-(10)(08)-03 (high camber) propellers are com-
pared in figure 17 for a rotational speed of 1350 rpm. Com-
parisons at other rotational speeds are similar (except at the
highest speeds) and are therefore not shown. The curves in
figure 17 show that the medium-camber propeller has the
highest envelope efficiency over most of the range of advance
ratio, and the high-camber propeller has the lowest envelope
efliciency over the entire range of advance ratio. The
medium-camber propeller is 2% to 3 percent more efficient
than the low-camber propeller near the design value of ad-
vance ratio, and the high-camber propeller is 1% to 2 percent
less efficient than the low-camber propeller near the design
value of advance ratio.

A comparison of the three propellers based solely on en-
velope efficiency may be misleading, however, because of
their different power-absorption qualities. As pointed out
in reference 3, the primary effect of using propeller blades of
increased design camber (increased design lift coefficient) is
to increase the power absorbed by the blades as well as to
increase the thrust. This increase in thrust and power is
illustrated in figure 18 which shows the thrust and power co-
efficients of the three propellers at a blade angle of 45° and a
rotational speed of 1350 rpm. At this rotational speed and
an advance ratio (2.2) near the design value, the medium-
camber propeller absorbs 30 percent more power and pro-
duces 33 percent more thrust than the low-camber propeller.
For the same operating condition the high-camber propeller
absorbs 83 percent more power and produces 80 percent
more thrust than the low-camber propeller. These large
increases in power absorption and thrust for the high-camber
propeller are produced with no increase in propeller weight
and with efficiency losses compared with the medium-camber
and low-camber propellers of only 4 and 1% percent, respec-
tively.

The fact that the medium-camber propeller is more effi-
cient than either the low-camber or high-camber propellers
indicates the possibility of a propeller with an optimum de-
sign camber. Figure 19 shows the variation of the thrust
and power coefficients and the efficiency of the test propellers
with the design lift coefficient at the 0.7 radius. For a rota-
tional speed of 1350 rpm and a design blade angle of 45° (fig.
19(a)) maximum efficiency is indicated for blades having a
design lift coefficient at the 0.7 radius of 0.45 to 0.60, pro-
vided NACA 16-series sections are used. However, for cases
in which high power absorption is desired it may be necessary
to use higher design lift coefficients. The adverse effects of
compressibility, which must also be kept in mind, are indi-
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cated by the curves in figure 19(a) for operation at a constant
rotational speed of 1600 rpm.

For conditions of operation in which the blade sections are
likely to be stalled, the use of highly cambered blade sections
is very efficacious. Figure 19(b) shows the effect of design
lift coefficient on the propeller characteristics for operation
at a blade angle of 35°, a rotational speed of 1140 rpm, and
an advance ratio of 1.1.  For this climb condition of opera-
tion, the medium-camber propeller absorbs 5.4 percent more
power, produces 10 percent more thrust, and is about 4 per-
cent more efficient than the low-camber propeller.  The
high-camber propeller absorbs 24 percent more power, pro-
duces 31 percent more thrust, and is 5 percent more efficient
than the low-camber propeller.  For the condition of opera-
tion shown in figure 19(b), the highest efficiency is indicated
for blades having a design lift coefficient at the 0.7 radius of
0.75 to 0.95, provided NACA 16-series sections are used.
The curves in figure 19 indicate the importance of choosing
the correct blade-section camber to meet operational re-
quirements.

A consideration of the theoretical pressure distributions
shown in figure 6 indicates that maximum efficiency for
operation at a given lift coefficient should occur when the
section has a design lift coefficient equal to the operating
lift coefficient. This fact is shown to be true by a single-
station analysis of camber effects presented in reference 3
and explains the increase in efficiency with increase in design
camber for conditions of operation such as take-off and
climb where high lift coefficients are necessary. Figure 20
shows the variation of efficiency with thrust coefficient for
the test propellers at a rotational speed of 1140 rpm and a
blade angle of 45°. These curves show the range of thrust
cocfficient for efficient operation for each of the blade designs.
Although the high-camber propeller has a lower maximum
efficiency, it has an extensive range of thrust coeflicients for
efficient operation. This result may be explained by the
fact that blade sections with high design camber can operate
at high lift coefficients at much lower angles of attack than
blade sections with low design camber; thus stalled conditions
may be eliminated.
camber must operate at high angles of attack to produce
high thrust coefficients and may become stalled; the profile-
drag losses are thus increased.

The blade sections with low design

EFFECT OF CAMBER ON CONSTANT-POWER PROPELLER OPERATION

Airplane propellers often operate over an extensive range
of advance ratio at constant rotational speed and torque.
Since blade-section design camber affects the power-absorp-
tion qualities of a propeller, the data have been analyzed at
several values of constant-power coefficient for a rotational
speed of 1140 rpm. The results of this analysis, presented
in figure 21, provide a better comparison of the efficiency of
the three test propellers than one based on advance ratio
alone. For constant values of the power coefficient from
0.1 to 0.2 the medium-camber propeller is the most efficient
for the greatest range of advance ratio. However, at low
values of advance ratio corresponding to take-off and climb,
the high-camber propeller is the most efficient, particularly
at the higher power coefficients.  For a power coefficient of

0.15 (0.075 per blade) and an advance ratio of 1.1 (fig. 21(b)),
the high-camber propeller has an efficiency of 83.5 percent.
The corresponding efficiency for the medium-camber pro-
peller is only 76.5 percent.

In general, the high-camber propeller is more efficient
than the medium-camber propeller up to values of advance
ratio approximately 10 times the value of the power coeffi-
cient, and this result is in agreement with results obtained
in the model tests of reference 3. The medium-camber
propeller is more efficient than the low-camber propeller up
to an advance ratio of 3.4 for a power coefficient of 0.1
(fig. 21(a)), but the efficiency of the higher cambered pro-
peller is reduced at high advance ratios. These results
show that a compromise must be made in the selection of
blade-section design camber to obtain the highest overall
efficiency. A blade-section design lift coefficient between
0.5 and 1.0 is indicated, but the adverse effects of com-
pressibility encountered at high speeds may demand a lower
camber.

EFFECT OF COMPRESSIBILITY ON PROPELLER CHARACTERISTICS

The familiar loss in maximum efficiency due to compressi-
bility is shown in figure 22 for the three test propellers at a
blade angle of 45°. The medium-camber propeller is the
most efficient up to a helical tip Mach number of 0.9.  From
a helical tip Mach number of 0.9 to 1.14 the efficiency of
both the low-camber and medium-camber propellers drops
from 0.92 to approximately 0.72. The high-camber pro-
peller has the lowest efficiency over the entire range of helical
tip Mach numbers; its efficiency drops from 0.90 to 0.73
over a range of helical tip Mach number from 0.85 to 1.03.
This low efficiency of the high-camber propeller prevents
its use for efficient high-speed operation.

Since the lower efficiency of the high-camber propeller
might be due in part to the higher power absorbed, a com-
parison based on equal power absorption was made. This
comparison is shown in figure 23 for a power coeflicient of
0.13 and illustrates again the superiority of the low-camber
and medium-camber propellers for high helical tip speeds.
The power coefficient for maximum efficiency of the high-
camber propeller is considerably higher than 0.13, however,
and the comparison made in figure 23 favors the low-camber
and medium-camber propellers. If a higher power coeffi-
cient had been chosen for this comparison, the low-camber
and medium-camber propellers would have to operate at
high angles of attack, which tends to cause earlier and more
extensive compressibility losses. Because of the power limi-
tations previously mentioned, a comparison could not be
made at high helical tip speeds for constant-power coefficients
higher than 0.13. However, a consideration of the curves
in figures 10(¢) and 19(a) for a rotational speed of 1600 rpm
indicates that a propeller having a design lift coefficient (at
the 0.7 radius) of 0.8 might have a high efficiency at fairly
high Mach numbers. The interpolated values show that
such a propeller could operate at a helical tip Mach number
of about 0.94 (air-stream Mach number of 0.54) with a
thrust coefficient of 0.069, a power coefficient of 0.169, and
an efficiency of 0.90.  This result shows that the large power-
absorbing qualities of high-camber propellers make them
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useful for conditions of operation at which high thrust is
required at moderate speeds.

An examination of the thrust and power coefficients of
propellers operating when the effects of compressibility are
present should provide a better understanding of the problem.
In figure 24 the thrust and power coefficients for maximum
efficiency are plotted against helical tip Mach number for
the three test propellers at a blade angle of 45°. Although
the scarcity of data prevents a definite establishment of the
critical Mach numbers, the curves in figure 24 were drawn
to illustrate the trends indicated by the data. The curves
are somewhat similar to plots of the variation of airfoil lift
coefficient with Mach number for constant angles of attack
and show that inereases in thrust and power coefficient occur
just before the critical Mach number is reached. After the
critical Mach number is reached, there is a marked decrease
in both thrust and power coefficients up to a helical tip
Mach number of approximately 1.0. At this helical tip
Mach number near 1.0 the thrust and power coefficients
begin to increase again. It is interesting to note that, al-
though the curves in figure 24 show that the critical tip
Mach number is lowered by an increase in blade-section
design camber, the Mach number at which recovery of thrust
oceurs is lower for the high-camber propeller than for the
low-camber propeller.

The increases in thrust and power coefficients which occur
before the critical Mach number is reached may be utilized
to improve take-off characteristics, because for this condition
of operation a large portion of the blade operates at relatively
high Mach numbers even at low forward speeds. However,
increasing the blade-section design camber is a more effec-
tive means of improving both the take-off and climb char-
acteristics of propellers. The results (fig. 22) show that
the blade-section design lift coefficient may be increased up
to a value of 1.0 at the 0.7 radius with the attainment of
maximum propeller efficiencies as high as 90 percent if the
helical tip Mach number is kept below 0.85. It should be
kept in mind, however, that these results apply only to pro-
pellers having a minimum induced-energy-loss loading
with efficient airfoil sections extending inboard to the spinner
surface.

CONCLUSIONS

Wind-tunnel tests of a full-scale two-blade NACA 10—
(10)(08)-03 (high camber) propeller have been made for a
range of blade angles from 20° to 55° at airspeeds up to
500 miles per hour. The results of these tests and com-
parisons with results obtained from previous tests of the
NACA 10-(3)(08)-03 (low camber) and NACA 10—(5)(08)—
03 (medium camber) propellers led to the following con-
clusions:

1. Increasing the blade-section camber is a very effective
means of increasing the thrust and power coefficients of a
propeller. At a rotational speed of 1350 rpm near the de-
sign condition of operation (blade angle at 0.75 radius equal
to 45° and advance ratio equal to 2.2) the medium-camber
propeller absorbed 30 percent more power and produced 33
percent more thrust than the low-camber propeller. For

the same operating condition, the high-camber propeller
absorbed 83 percent more power and produced 80 percent
more thrust than the low-camber propeller.

2. For cruise and high-speed conditions of operation at
suberitical Mach numbers, maximum propeller efficiency is
indicated for blades having a design lift coefficient (design
camber) at the 0.7 radius of 0.45 to 0.60, provided NACA
16-series sections are used. Although blades with higher
design lift coefficients have a lower maximum efficiency,
they have a more extensive range of thrust coefficients
for efficient operation.

3. For take-off and climb conditions of operation at low
advance ratios and Mach numbers, the propeller with a high
design lift coefficient is much more efficient than the pro-
peller with lower design lift coefficients. For a power co-
efficient of 0.15 (0.075 per blade) and an advance ratio of
1.1, the high-camber propeller has an efficiency of 83.5
percent. The corresponding efficiency for the medium-
camber propeller is only 76.5 percent.

4. The blade-section design lift coefficient of the NACA
16-series airfoils may be increased up to a value of 1.0 at the
0.7 radius with the attainment of maximum propeller ef-
ficiencies as high as 90 percent if the helical tip Mach number
is kept below 0.85.

5. At helical tip Mach numbers up to 1.14 the maximum
efficiency at the design blade angle of 45° is higher for the
low-camber and medium-camber propellers than for the high-
camber propeller. The high-camber propeller, however, is
useful for conditions of operation at which high thrust is
required at moderate speeds.

6. The critical tip Mach number is lowered by an increase
in blade-section design camber, but the supercritical tip
Mach number at which recovery of thrust occurs is lower
for the high-camber propeller than for the low-camber
propeller.

LANGLEY AERONAUTICAL LLABORATORY
Narronan Apvisory COMMITTEE FOR AERONAUTICS
LancLey Frewo, Va., May 6, 1948.
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Ficure 1.—Propeller dynamometer in test section with tunnel open.
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Blode -section design lift coefficient at 0.7 radius
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Ficure 19.—The effect of blade-section design lift coefficient on thrust, power, and efficiency.
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constant rotational speed of 1140 rpm. [= /
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5 —————— NACA 10-(5)(08)-03
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e — NACA 10-(10X08)-03 Helical tip Mach number, My
l ‘ ‘ l I l ‘ \ Fraure 24.—The effect of compressibility on the thrust and power
-54 5 6 7 8 9 10 1l 1.2 1.3 coefficients for maximum efficiency of propellers having different

Helical tip Mach number, A/

Fraure 22.—The effect of compressibility on the maximum efficiency
of propellers having different design lift coeflicients. Bo.sr=45°.

design lift coefficients.  Bo.zzae=45°.
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