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REPORT

THREE-DIMENSIONAL TRANSONIC FLOW THEORY
APPLIED TO SLENDER WINGS AND BODIES

By Max. A. HeasLeT and JouN R. SPREITER !

SUMMARY

The present paper re-examines the derivation of the integral
equations for transonic flow around slender wings and bodies of
revolution, giving special attention to conditions resulting from
the presence of shock waves and to the reduction of the relations to
the special forms necessary for the discussion of sonic flow, that
is, flow at free-stream Mach number 1. In the vicinity of the
body, the disturbance field is then shown to consist of a two-
dimensional disturbance field extending laterally and a longi-
tudinal field that depends on the streamwise growth of cross-
section area. This result extends Oswatitseh’s equivalence rule
to lifting cases, provided the angle of attack vs small relative to
the thickness ratio. The correctness of the analysis is checked
by examination of Yoshihara's nwmerical solution for sonic
flow around a slender, circular cone-cylinder and this solution
is checked, in turn, by comparison with experimental results of
Solomon. An example is presented in which the general result
is applied to caleulate pressure and integrated forces on a famaly
of slender, elliptic cone-cylinders.
which permits the ready caleulation of the difference in drag of

An expression 1s derived

two slender bodies having the same longitudinal distribution of

cross-section area. Classes of wings and bodies are described
for which the difference in drag is zero and the Whitcomb area
rule applies.
rectangular plan form are examined and it is shown that theory
and experiment are in good accord.

INTRODUCTION

The equations governing transonic flows are known and
well established by favorable comparisons with experiment
(see ref. 1 for a resumé). The difficulties arising as a result
of the nonlinearity and mixed character of the differential
equation for the potential, however, have prevented the
rapid advancement of the analysis such as has occurred in
recent years with both subsonic and supersonic theory.
This is particularly true for three-dimensional transonic
flows and, as a result, perhaps greater than usual effort has
gone into the determination and utilization of relations
between solutions. The first of these to be advanced was
the transonic similarity rule which pertains to the pressures
and forces on affinely related wings (refs. 2, 3, and 4) and
bodies of revolution (ref. 5). A second relation is the area
rule established empirically by Whitcomb (ref. 6) which

i Supersedes NACA TN 3717 by Max. A. Heaslet and John R. Spreiter.

Experimental data for such a family of wings of

states that “near the speed of sound, the zero-lift drag rise
of thin low-aspect-ratio wing-body combinations is primarily
dependent on the axial distribution of cross-sectional area
normal to the air stream.” A third relation is the equiva-
lence rule of Oswatitsch (refs. 7 and 8) which may be stated
as follows: “The solution for transonic flow around a thin,
nonlifting, low-aspect-ratio wing can be obtained from that
for a nonlifting body of revolution having the same longi-
tudinal distribution of cross-sectional area by superposing
the difference between the two-dimensional harmonic cross-
flow solutions for the two bodies.” The area rule and the
equivalence rule are, obviously, closely related. Further
effort needs to be expended, however, in establishing the
generality and range of validity of these relations and in
exploiting the results in specific applications. The present
paper is concerned with this task.

The problem will be approached through application of
the classical method of singularities. This is one of the
oldest and most fruitful methods for solving partial differ-
ential equations and has reached a high state of development
in linearized compressible-flow theory. There is also a con-
siderable body of literature in which the method is applied
to nonlinear compressible-flow problems by considering the
solution of the linearized equations to be a first approxi-
mation, and iterating to obtain second and higher order
approximations. The results so calculated are good approxi-
mations to pure subsonic flows or to pure supersonic flows,
but it is now generally agreed that the series representation
of the solution does not converge in the transonic range.
Approximate calculations by Oswatitsch (refs. 9 and 10)
have indicated the possibility, however, that the method of
singularities might be applied successfully in the transonic
range if the idea is relinquished that the linear solution is
necessarily the first approximation in the transonic range.
This idea has been pursued further in references 11 through
15 in which a number of improvements are introduced and
the results of numerous specific calculations are shown.
Although the basic equations are derived for three-dimen-
sional flow in the latter references, all applications are to
two-dimensional flows. The values of the free-stream
Mach number, moreover, are restricted to values no greater
than unity.
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The same general approach has been applied to three-
dimensional transonic flow around slender wings and bodies
by Oswatitsch and Keune (ref. 8) and by Harder and
Klunker (ref. 16).

In these applications, the principal aim
is not to determine actual solutions but to derive relations
between solutions for various bodies having the same longi-
tudinal distribution of cross-section area. These two anal-
yses are not entirely satisfactory in a number of particulars,
not the least of which is the omission of all considerations of
shock waves in the body of the analysis. A more important,
although perhaps more subtle, point concerns the treatment
of the cumulative effect of the nonlinear term of the transonic
equation when the free-stream Mach number M is unity.
Harder and Klunker argue that the effect on the induced
flow field is small because the term itself is everywhere small.
Actually, however, the cumulative effect of this term leads
to infinite contributions at M _=1. Oswatitsch and Keune
consider the cumulative effect but circumvent the difficulty
by introducing rather arbitrarily selected values for Mach
number so chosen that the value of unity is never inserted
into the vital integrals. 1t is the initial concern of the
present analysis, therefore, to re-examine the derivation of
the integral equations for transonic flow around slender
wings and bodies of revolution, giving special attention to
conditions resulting from the presence of shock waves and
to the reduction of the relations to the speecial forms neces-
sary for sonic flow. In contrast to references 8 through 15,
which are concerned exelusively with cases in which the
free-stream Mach number is no greater than unity, equations
are also derived herein for the case where the free stream is
supersonic.  These equations are likewise reduced to the
special form associated with sonic flow and the results are
shown to be identical to those which arise from a considera-
tion of flows with a subsonic free-stream velocity.

Following the establishment of the basic integral relations
for transonic flow, special attention is directed toward the
case where the free-stream Mach number is unity. Here,
the integral relations are simpler in character, although still
nonlinear. Application of a convergent interation process
leads to the conclusion that the solution for the potential
has a particularly simple form in the vicinity of the body;
in common with linearized slender-body theory, the dis-
turbance field consists, to a given order of ervor, of a two-
dimensional disturbance field extending laterally and a
longitudinal field that depends on the streamwise growth
of cross-sectional arca. This result extends Oswatitsch’s
equivalence rule to lifting cases, provided the angle of attack
is small relative to the thickness ratio. The correctness of
the analysis is checked by examination of Yoshihara’s numer-
ical solution for sonic flow around a slender, circular, cone-
cylinder given in reference 17, and this solution is checked,
in turn, by comparison with experimental results of Solomon
given in reference 18. The results yield a simple means of
determining the pressure distribution on an entire family of
slender wings and bodies having the same longitudinal dis-
tribution of cross-sectional area when the pressure distribu-
tion is known for any member of the family. Starting with
the known solution for the cireular cone-cylinder, an example
is presented in which the general result is applied to a family

of slender elliptic cone-cylinders.
discussed briefly in reference 1, is examined in detail.

This example, which was
1t is
shown that the lift and the load distribution are the same as
given by linear theory, confirming the ideas advanced in
reference 19.  Contrary to Whitcomb’s area rule, however,
the drag depends significantly on the cross-section shape.
Both the drag and lift of the thin elliptic cone-cylinder are
shown to be in accord with the transonic similarity rules.
A momentum analysis of the sonic drag of slender bodies in
general is then undertaken and an expression is derived which
permits the ready calculation of the difference in drag of
two slender bodies having the same longitudinal distribution
of cross-section area. This result confirms the drag variation
calculated for the elliptic cone-cylinders by integration of
the surface pressures. Several large and significant classes
of wings and bodies are deseribed for which the difference
in drag is zero and the Whitcomb area rule applies without
modification. One of these is a family of affinely related
wings. Experimental data from reference 20 for such a
family of wings of rectangular plan form are examined and
it is shown that theory and experiment are in good accord,
provided the product of aspect ratio and cube root of the
thickness ratio is, in this instance, less than about unity.

The final section of the report has been written so as to be
as self-contained as possible and readers concerned solely
with applications of the theory may find this section sufficient
for their purposes. The initial sections of the report have
been written for readers concerned with a more complete
understanding of the derivation and limitations of the
general theory together with the evaluation of the order
of error incurred in the slender-body approximation.

FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

The basic equations necessary for the discussion of inviseid
transonic flow consist of a set of partial differential equations
relating the velocity components and their gradients at every
point, together with an auxiliary relation for the velocity
jump through a shock wave. For thin wings and slender
bodies inclined at zero or small angles of attack, the differ-
ential equations can be simplified if the shock waves are
assumed sufficiently weak that the flow is irrotational and
isentropie, thereby permitting the introduction of a velocity
potential ®. The further assumption of small disturbances
leads to the use of a perturbation velocity potential ¢ which
in Cartesian coordinates satisfies the following nonlinear
partial differential equation

(1 —'J[m2)¢rz+¢//1/+"ﬁ:z:“[m2 Koin

(*'7 PrPrx (1)
where (7 and M refer to the velocity and Mach number
of the undisturbed flow, v is the ratio of specific heats
(y=1.4 for air), and z, ¥, and z are Cartesian coordinates.
The perturbation velocity vector is given by the gradient of

¢ and has components, u, », and w along the three axes.
Knowledge of methods for obtaining solutions of equation
(1) is meager not only because it is nonlinear, but because it
changes type (elliptic, parabolic, hyperbolic).
of type is an essential feature of transonic flow, since subsonic
flows are represented by elliptic equations and supersonic flows

This change
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by hyperbolic equations. If both typesof flow occurin a single
flow field, it is apparent that the differential equation must
change type. In the present case, the type of the equation is
recognized by the sign of the total coefficient of ¢, as follows

0 elliptic (subsonic)
—( parabolic (sonic) (2)
L< 0 hyperbolic (supersonic)

(1—M_2)—M._ *y+1) ;",L

In most of the investigations of two-dimensional transonic
flows (¢,,=0), the differential equation is transformed into a
linear equation of mixed type (Tricomi equation) by the in-
troduction of the hodograph variables. At the present time,
however, no transformation is known that achieves a corre-
sponding linearization of the three-dimensional equation, and
the investigation of other methods of solution thus becomes
relatively more important.

Equation (1) is, of course, valid only in regions where the
necessary derivatives exist and are continuous. Since these
conditions do not hold where shock waves occur, and since
shock waves are a prominent feature of most transonic flows,
an additional equation is needed for the transition through
the shock. The fundamental properties of a shock surface
require that the normal component of velocity be discon-
tinuous and the tangential component, and therefore ¢, be
continuous. The necessary relation follows from the classical
expression for the shock polar, which in the small disturbance
transonic theory is approximated by

(1—M_ %) (¢s,—¢2,) 2+ (0y,—24,) "+ (0:,—22,)*

—M_? 'y—f—l fpfy,tsp’_” (

o 5 ¢r,—¢z,)> (3)
where the subseripts @ and b refer to conditions ahead of the
behind the shock.

Equations (1) and (3) are usually developed for the case
where the coordinate system is placed so that the z axis is
parallel to the undisturbed stream at infinity, but they also
apply to the case where the coordinate system is rotated
slightly. TIn the present analysis, it is convenient to aline
the z axis with the longitudinal axis of the wing or body as
shown in figure 1. Such a system is usually referred to as
the body axes. With these coordinates, the relation be-

Ficure 1.—View of wing and coordinate system.

3

tween the total velocity potential & (z,y,2) and the perturba-
tion velocity potential o(z,y,2) is approximated by

B(r,y, 2,) =U (a-+az)+o(, 9, 2) (4)

where a is the angle of attack.
The expression for the pressure coefficient €', is not
invariant with respect to small rotations of the coordinate

system. In body axes, the proper expression 18
. 2 1 5 5 2
( /1:—[7'7 (§01+a¢3)hz"——3 (¢!/—+SO.’.) ()

The boundary conditions require that the gradient of the
total velocity potential evaluated infinitely far from the air-
craft be consistent with the uniform free-stream conditions
there and, when evaluated normal to and on the surface of
the airplane itself, be zero. The condition at infinity yields
&(o)=U_(z+az) or that

o(=)=0 (6)

An exception to this statement occurs in the vieinity of the
wake at great distances behind the wing, but no complica-
tion ensues due to the relative smallness of this region.
The condition at the airplane surface results in the relation

g%)zf'w(nﬁ—wm)%—m %f+7"2%§+'73%:0 (7
where n,, 1, and n; are the direction cosines of a normal to
the airplane surface with respect to the z, y, and z axes,
respectively. This relation is too general for the present
needs, however, because it applies to all shapes, whereas the
analysis is to be a small disturbance theory that applies
only to slender bodies and thin wings. For such configura-
tions, n, is small nearly everywhere on the surface and will
be neglected in comparison with either unity or (no2+mg®)%.
In this way, equation (7) simplifies to

U (n+ang)+ny éf'*‘ll:; a—@:Um('n,—kang)—Fa\‘p:-O (8)

oy oz on :
where 7 is the normal to the curve bounding a cross section
in a plane normal to the z axis.

All of the subsequent analysis proceeds from Green’s
theorem which relates a volume integral over a region 1 to a
surface integral over the surface = enclosing V. Green’s
theorem can be expressed in many ways; here it is found con-
venient to use the forms associated with the linear differential
equation obtained by equating the left-hand member of
equation (1) to zero. This results in two different forms of
Green’s theorem, one for M_<1, and the other for M, =1
and prompts the introduction of the following abbreviations

B=(1—M, 2%, k=M,2 71 ©)

©

If the undisturbed flow at infinity is subsonic (i. e.,
M_<1), equation (1) can be rewritten as

. fo) y
Bortonten—koson=k (% (10)
oL\ 2
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and the corresponding expression of Green’s theorem is (see,

, ref. 21)
41‘v:-—fj<¢aasj-‘ggf>(lz (11)

‘J‘J.J‘NJL( Q) — QL))

where @ and ¢ are arbitrary functions and L(Q) is defined as
follows

y O
€. 2.

)EB JI'+"”/’/ | ' .’: (12)

and 0Q/0» is a derivative along the conormal and is defined by
00 _0Q ,, ,0Q 0Q _

701/:6.:"8 11,—{—0? ]h+b- (13)

where ny, n,, ny are the direction cosines of the normal to the
surface drawn into the region 17,

If the undisturbed flow at infinity is supersonic (i. e.,
M_=1), equation (1) can be written as

s Q [
—B“san-'rsow/+<,o~.-:/f&p,¢n:’fa (% ) (14)
T\ 2
and the corresponding expression of Green’s theorem is
- Q :
JU wLQ)—aoly ':_JJ a"—sz ‘“‘b)/\' (15)
gy
where the following definitions
Li)=—50,19,10, (16)
and
oQ 20 , fe]9} 00 -
53 B”‘+Dy”"+b: Ny (17)
apply.

DERIVATION OF INTEGRAL EQUATIONS FOR
TRANSONIC FLOW

In this section, integral equations corresponding to the
transonic differential equation are derived for subsonic and
supersonic free-stream conditions. One of the principal con-
tributions here evolves from the attention given to the shock
waves, or discontinuity surfaces, appearing in the flow fields.
It will appear (see egs. (23) and (30)) that the perturbation
velocity potential can be expressed, for M, less than or
greater than 1, as the sum of integrals that show no explicit
contribution of the shocks. Closer analysis of these integrals
reveals, however, that discontinuities in velocity can appear
and that they automatically satisfy the shock-polar relations
(34) and (37)). This section is prefatory to the
formulation of the transonic integral equations for the par-
ticular cases of a slender body of revolution and a thin wing.

(see eqs.

INTEGRAL EQUATION, Mo = 1

The function ¢ in Green’s theorem, equation (11), is now
identified with the fundamental solution 1/¢ of the differen-
tial equation L(y)=0 and the function ¢ is replaced by @,
the perturbation velocity potential of the flow field under

'

|
|

consideration. the following

relations hold

From equations (10) and (11),

12 a;>\‘__'“1 :
ff (5 o—va 5 )12= JJJ&LW‘
4
oo ¢le J :
-~ [[fE2.C5)ev 0o
where
o= [(@—2)*+By— y)*+Bz—2z,)3* (19)

In these equations the running coordinates in the mtegra-
tions are x,, ¥, and z; and ¢ is to be calculated at a point P
with coordinates z, 7, and z.

Equation (18) is now applied to the infinite region V
surrounding the given object to be studied. Some care
must be exercised, however, in fixing the enclosing surface
Y since Green’s requires that singularities and
regions of discontinuity must be excluded from the domain
of integration. It is to be noted, first, that ¢ vanishes at
r=ux;, Y=, and z=z and the effect of the resultant sin-
gularity can be determined only after the field point is
enclosed by a neighboring surface and the region taken
external to this surface. Second, since shock waves are
to be expected within the flow field and discontinuities in
the perturbation velocity components occur across these
waves, the boundary of V' must also be drawn so as to exclude
such discontinuity surfaces.

In figure 2, a schematic indication of the body and the
region of integration is shown. The complete three-dimen-
sional extent of the body has not been pictured; it suffices,
however,

theorem

to state that the surface = (shown dashed) is
composed of a sphere of large radius which forms the external
boundary of V', a sphere of infinitesimal radius surrounding
the field point P, and a final surface enveloping the object,
its wake, and its shock waves.

Ficure 2.—Region of integration; M

©
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If equation (18) is applied to this region and the a priori
assumption is made that the perturbation field attenuates
sufficiently fast with distance to negate the contribution
of the surface integral over the large sphere in the limit as
the radius goes to infinity, the following expression results:

s J(l@_bl / Jli
el&,Y,2)="— Aor c v ‘ove 2 4r o0
o+Ww
WV a (pl_l:.’ " o
J”a gl i

01 /\,~7 17 Qo o) i
“ov a v w@vo

In this equation, the integration region over the surface of
the object and its wake is denoted by O+ W. The deriva-
tives in the surface integrals are, in all cases, along lines
directed away from the integration surface and into the
three-dimensional domain V since, as follows from equation
(13), the direction numbers have the same sign as the direc-
tion numbers of the true normal and the Mach number
effect is limited to a foreshortening of the longitudinal
dimension. On the shock surface X the conormals are
directly opposed on the upstream and downstream faces
X and N,.  On the body itself, the conormal derivative can
be simplified in the manner used in developing the boundary
conditions of equations (8); that is, from the restrictions
imposed on the gradients along the body surface, the direc-
tion of the conormal becomes effectively that of the normal

Thus

n lying in the crossplanes ;= const.

on the surface of the body and wake.
If the triple (spatial) integral of equation (20) is integrated
by parts z-wise, the resultant form is

B N C‘ﬂ A 2 \_ 21— Si—
PAslhR= 4#JJ[ ene 2 5 “]) an e i
o+w
L EER e ke > : @1 -«
GJJ [0( 3 2 ”!> Yoo | o
Aa
Gk L D
JJ[ E;/_ Pr, Nl)fﬂﬁay a;_ ([“+
Ab
Jj - " ) dVv (21)

Equation (21) is of particular interest because the integrals
over the shock surfaces may be shown to vanish. In order
to prove this, one notes first that the two integrals extend
over the same geometric surface but that the integrands are
evaluated, respectively, on the upstream and downstream
faces and, by definition, the directions of the conormals are
opposed. When the integrands are combined, the total
integrand can be expressed as the difference of the two
terms, one of which contains the factor (¢)y,—(¢)y, and the
other contains the factor

428347—H57T——2

e
<¢;152n1+<p”1n:+<pzln:s—5 @z, "M A i

k

9 9
(%,B'n 1@y Nate: W3—5 %,“lh)x
The first of these factors vanishes by virtue of the fact
noted previously that the perturbation potential is contin-
uous across a shock surface. The second factor can be
rewritten in the form

Bz<11)‘1,_ 11)‘{.) (n1) )‘(,+ (1‘)‘.'._“41) (n2) )\I;+ (w}‘z._wku) (n :‘)Xz,_

ke 5 i
2 (u)‘[:—u)‘a-)(“]-,)‘b
Also, the change in the velocity vector occurring at the

shock surface must be in a direction normal to the shock.
This implies the relations
(n)x,: (), (g)n, = (Un,—Un,): (0n

Thus, the second factor to be evaluated becomes

=3 z\") 4 W, — Wy,

up, )+ (o, — o) >+ (wn,—wn ) —I; (un>—
[(ux —ux) +(u —lx

Bg(u i Uy, ’-’) (uxh— u N.)

—}—(lb\ _U))\ ] Z

The numerator of this fraction, however, corresponds to the
shock-polar conditions of equation (3) and the expression
vanishes.

It finally remains to remark that in the surface integral
over the body itself, the term n,p,* resulting from the
integration by parts is of higher order than the normal
derivative of the perturbation potential. The term can
therefore be neglected and equation (21) becomes

- e I ’1 Ogﬂ /s k P ’ o Bl Bl

90('1'.’/.';) JJ o_a” (pbna _{'_ ‘) ‘Prl 3 ‘_ )’l‘
o+tw

(22)

Equation (22) provides another integral expression for the

perturbation velocity potential, for AM_ <1, in transonic
flow theory. The first integral on the right is algebraically
equivalent to the expression for ¢(z, 7, 2) in linearized theory
and the spatial integral is a contribution brought about by
the nonlinear term of the basic differential equation. It is
of interest to remark that a derivation ignoring the existence
of the shock waves can also lead to the same form of the

equation. In this respect the relation is not unlike cases
arising linearized supersonic theory where it becomes

necessary to study the contribution provided by the fore-
most shock wave induced by the body. For the majority
of cases of practical interest, it can be shown that compen-
sating terms arise and that the discontinuity surfaces are
taken care of by a formal development that ignores the
existence of these surfaces (see, e. g., refs. 22 and 23).
It is not possible, however, to ignore so completely the
existence of the discontinuity surface in transonic flow and,
as will be seen in the later developments, equation (20)
for certain purposes, preferable to equation (22).
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Jquations (20) and (22) will now be written, for purposes
of reference, in the following final forms

@y,2)=eu(@,y,2)+ ij 5 ¢’ ofl ~—)rlT' (23a)
=eul@,y,2)— 4 = UI ; ,l‘idl (23b)
=<,91,(-I‘..7/~—— ff 1\’

S G “";")iw 250 |
Y
=u(2,Y,2)— 4 7 [f u/\‘
41ra, f f (aa %3)‘“”' (23d)

In each of the above equations, ¢, has the analytic repre-
sentation it has in linear theory. The first two relations are
obvious repetitions of equation (22). The two latter rela-
tions are transeriptions of equation (20) where the notation
A (0p/dv) = (0p/ 0¥ )x + (Op/ v )x introduced, the

continuity of ¢ at and

has been

the shock surface has been used,

where in equation (23d) the variable
w=sinh™!- e —
Bl /‘7/1) ﬁ’(r'-—fl)'] :
_@—a) , fe—n|+ {@—a) *+B(y—1)+(z—2)1}
o, Blly—uy)*+(z—21)P*

is employed to express the integral equation in a form that
will be of value in establishing a reduction to the case of
sonic flow.

The longitudinal perturbation velocity is given by the
z-wise derivative of any of equations (23). Consider, for
example, equation (23a). After first isolating the singularity
at the field point by introducing the limits #,=xz+¢, one has

u(x,y,2)

o} e 0 1 ‘
:O.r*ﬁ"(""”':) ! /11'1’14 > {[({zml I[J O.l'la)(/r‘T
L e RO :
zte ~ \ V41 /
.k 1 o edydz,
G ” g #n ilo2) ooty —y e ez T

Q2N =
-l7r fff )?I‘ J'IZ(r)(”

In the limit as e—=0 the influence function in the integrand of
the double integral is effectively a two-dimensional pulse
function at the point y,=y, z,=2 and of strength 27/82.
The expression for u then becomes

COMMITTEE FOR AERONAUTICS

k vw¥(z,y,2)

u(x,y,2)=u(z, z/,-H—B - (24)

TIECEE

A detailed account of the application of the two-dimensional
form of this equation to the calculation of airfoil pressure
distributions has been given by Spreiter and Alksne (ref. 15).

INTEGRAL EQUATION, Mo =1

Use is now made of Green’s theorem as expressed in equa-
tion (15) and Q is set equal to the perturbation velocity

potential o(z,y,2). The direct analogue of the derivation in
the previous section would require that ¢ be replaced by
[(x—x)*—B(y—y) 2 —B*(2—z)?)** but this leads to the im-
mediate introduction of a finite-part technique in the inte-
gration. For the initial stages of the analysis, ¢ will be
identified with the fundamental solution & of Z(y) =0 used by
Volterra (vef. 24). From equations (14) and (15), the follow-

ing relations hold:
—{[[aTwav
‘_.

il
“‘”J" 3

0
S Es

‘p;'zj)(ﬂ_' (25)

where

=21

Blly—y1)*+(z—z1)%*%

w=cosh™!

The successful application of oqmm(m (25) to the transonic
problem hinges on the proper choice of the llnee dimensional
region V and its enclosing surface . Discontinuities in the
velocity components are again to be taken into consideration
at the shock waves. Furthermore, the fundamental solu-
tion of Volterra becomes infinite at y,=y, 2=z, that
everywhere along the line passing through the field point 7
and parallel to the x axis. Figure 3 indicates the disturbance
field of the object as well as V and = (shown with dashed

s,

™ Bow shock

_.-Cylindrical surface

M

=1

Ficure 3.—Region of integration;

©
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lines). The bow shock fixes the foremost extent to the dis-
turbance field and X lies adjacent to it and other possible
shock surfaces as well as the surface of the object and its
wake. The downstream limits of the region V are fixed by
the forecone with vertex at P and determined explicitly by
the relation

(e =) =Bl(y—y)*+ (2— 25 (26)

The inner boundary of V'is the eylindrical surface of infinites-
imal radius given by the relation

W= Fle—-a)i=¢
The conormal derivative is defined by equation (17); on the
infinitesimal cylinder its direction is parallel to that of the
normal to the surface, and on the forecone from Z the
conormal is directed along the surface itself. Formal
analysis yields the expression

; 1
o(2,1,2)= o leJ( L
O,-‘ = e
)71'0! OV ¢D7w)(~ 2m oz, OV

%
(@) — = o] Pz, = e
2l %&ﬂf TR el

where integrals over the surface of the body and wake are
denoted by 7, over the two sides of the shock surfaces by N, and
N, and over the enclosed volume by V. In each case, only
that portion of the surface or volume lying within the forecone
of P is included in the integrals. The surface integrals over
the forecone itself vanish because @ and 0w/dv are zero. It
should be noted that the forecone is that of linearized theory
and has no rela ionship to the region of dependence in the
actual flow field.

Integration by parts, in the last integral, leads to the
relation

Dol o Bl
o(2,Y,2) = o> a,fjl: e 5Pz 1)‘—500’)@](1_‘_,—
o k 3 =
’7r ox (JJ +JJ l: ; 5 Pz Ih) goo;w:l(/_,-}—

)\u )\ b

T4 7)o B B b ey SN Py
21 O JJ 2"911_(‘0.1'1‘0,)([" (28)
1%

Equation (28) is the form, for M =1, analogous to equation

(21), for M_ =<1, and on the body and wake surfaces involves
the approximation

fo) fo) fe)
5 g +“@ Ton

1t is not difficult to show, from the shock-wave relation of
equation (3), that the combined integrals over the surfaces
N\, and N\, vanish. The perturbation velocity potential can,
therefore, be given alternatively as

‘p(ﬁ.r,g/,,z'):~——)% OIff( on "'On>d\‘+
o a,JfJ 5 Pz, (aw >‘”_/ (29)

Equations (27) and (29) may now be written in the various

forms
PO )T 1 Jff L (a‘”>1v (300)

=op(2,1,2)— >;ra, fJ 59z, _(” (30Dh)

l JJ ( wd))—
[haloyes T 0 *Ffl . (o
T _,Jf(bl 5 >w(ﬂ/ (30¢)

oo Lefif e CRoNIE =
) 0,

oSSl (E fo) ‘prl", 1 = : ‘

-’J.U (a.,-; 2 );d‘- (30d)

1%

'“SQL('I J!

where ¢, has the same analytic form as in linearized super-
sonic theory and use has been made of the relations

wo=cosh™! —— i 115
Blly—y1)*+(z—21)%* (31)
0w _ et ——=
ob, [(G—oF—0Wy—we BE )it

Comparison of equations (23) and (30) shows once more
a difficulty that appears in linearized analysis of subsonic
and supersonic flow, namely, that complete parallelism be-
tween the formulas is not achieved directly. This parallelism
can only be established after interchanging the order of
integration and differentiation and, because of the singulari-
ties involved, it becomes necessary to introduce the concept
of finite-part integration. Furthermore, it is well known
that the resulting multiple imvu'mlw. can no longer be written
in a unique form (see, e. g., ref. 25) but must be expressed
differently, depending on the mdm in which the integrations
are to be performed. No attempt will be made to develop
these ideas further at the present time.

CALCULATION OF CONDITIONS ON SHOCK SURFACES

It is of some interest to study equations (23a), (23b), (30a),
and (30b) as the field point approaches a discontinuity sur-
face and to discover the mechanism by means of which these
basic equations furnish the velocity jumps associated with
the shock waves in the field. To this end, consider first the
case M, = 1. FKigure 4 shows the geometry of the problem.
The bow wave induced by an aerodynamic shape is indicated
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Fraure 4.—View of element of shock wave and coordinate system.

and the point 7, at which conditions are to be calculated, is
chosen arbitrarily close to the rear surface of the wave. The
surface of the wave can be replaced locally by a planar ele-
ment and a new coordinate system &, », ¢ introduced with
the origin fixed at the intersection of the line y,=y, z1=2,
and the bow wave. Point 7 then has the coordinates & 0,
0 and the planar surface is given by the linear relation

aé +bn+eciH=0 (32)
Since the bow wave is situated upstream of the linearized

disturbance field, u; is zero and, from equation (30a), the
perturbation velocity is

ko2 ([ u? [0
u(, 0,0)=5- 55 ]“ (5o ) dedmds, (33)
“ S oA NG ST

where w=cosh™![(§—£&)/8(n >+ 2)"]. By virtue of the field
point’s nearness to the bow wave, the term %?/2 in the inte-
grand is assumed a constant and one then gets

w2 o (% Y7 X2 Q)
u(e,0,0=5- % o5 | “dni | dnm | S de
2w 2 08 Jz i X 0&

Xo=(—B(n*+50)"

_ blag+ci) +aBla’E 4 2acti— (a8 — b —c)5 2"
: a?B— bt
S[(' S[= ((12/3"’— ])'—’) 1,:]

aBr—b2—c?

where

X,=—(bm+et)/a,

Y

7, 7= a

Integration and differentiation vields

feu® a?

> — a4 bt

w(£,0,0)= (34)

It remains to show that this result, derived from the
integral expression for the perturbation velocity potential,
is consistent with the result one would get from the shock-
polar relation of equation (3). At the downstream face of
the bow wave, equation (3) becomes

— B2, 0yt wy i =ku h:i”'z

The incremental velocity vector occurring at the shock sur-
face is, however, normal to the shock surface and this yields
the relations w,:v:w,—a:b:e.  Substitution into the shock
polar relation gives

2

kwy ( Uy’ ) kuy? a?

Wy———= 5 9 > 5 — — - -
’ 2 \B*uy'—uy —wy’ 2 —@?B+b2 2

(35)
in agreement with equation (34). It therefore follows that
the integral expression, for M_ =1, will adapt itself on the
shock surface to any bow wave consistent with given body
geometry. This result can also be extended to include any
shock wave in the flow field.

An analogous procedure follows for the case M_<1. Let
the shock surface in the vicinity of the point P at £0,0 be
given by equation (32) and assume that %* is composed of a
continuous part and a discontinuous part that has the con-
stant value u,> ahead of and u,?> behind the shock.
tion (23a) then yields

:
Lqua-

lim [u(E—,0,0) —u(t+,0,0)] =

£0
. k . Al (tf ad¢ydy
lim — (g2 —uy? AJJ - - e
o gt )OE J [@&4-bm+ctr)*+a*8n2+a*8* ) >
(36)

where the double integration extends over the region of
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discontinuity. If the differentiation with respect to & is
now carried within the integral signs and ¢ allowed to ap-
proach zero, the value of the integral becomes independent
of the original limits of integration. In this way one gets

2 ]L"(l: /uaz_ w )12
—upy=Llim [u(t¢—,0,0) —u 0,0)]|=—= T e
Uq—Up ]ELT [u(¢—,0,0) —u(¢+-,0,0)] 282+ b2+ ¢? 9

(37)

It can be shown, as previously, that equation (37) agrees
with the result given by equation (3), the shock polar con-
dition, for M <1.

REDUCTION TO SONIC FLOW THEORY

In this section, the previously determined equations will
be studied in the limit as sonic, free-stream speed is reached.
The integral relations then assume forms that correspond to
the nonlinear differential equation when g=0.

INTEGRATED STRENGTHS OF EXTERNAL SOURCES

It is proposed here to determine a relation that will prove
useful in the following section in connection with the reduc-
tion of the integral equations to the special forms appropriate
for M_=1. 'This relation will be recognized subsequently
as connecting the integrated strengths of the exterior correc-
tive sources in the crossplane z=ux,=const. and the rate of
change of body cross-section area. As a means to this end,
equation (10) is written in the form

o O TRl T e 2
I S 5 =g 55 + V3o (38)

where V? is the two-dimensional Laplacian operator in the
transverse plane. Each term is then integrated over the
entire z=u, plane external to the body. The double integral
involving V% can be partially integrated and converted
into a line integral by application of Green’s theorem for a

plane
; o :
.[f(vz¢)r =,“(1y(1: — ——‘J(v <§i>r I"(la( (39)

where the line or curvilinear integral extends around the
curves (' enclosing the region of integration of the double
integral. For cases in which the plane 2=z, does not inter-
sect any shock waves, the region of integration can be taken
at once as the entire 2=, plane exterior to the body. If the
assumption is made, as in linear subsonic theory, that the
normal gradient of ¢ attenuates with lateral distance suffi-
ciently fast to suppress the contribution of the curvilinear
integral along the outer boundary, the boundary conditions
of equation (8) permit one to equate the line integral along
C to —U.S"(x,) where S’(z,) denotes the longitudinal
gradient of body cross-section area. The integrated form of
equation (38) thus becomes

D i i T
lcff(aj ?)ﬁ:“({ydz:B~ff<a%l_)>l_:rudy([z—( S (x,) (40)

In the more general case, however, in which the plane z=u,
intersects a shock wave as illustrated in figure 5, discontinui-

X=X, plane

Frcure 5.—View illustrating intersection of shock - wave and
=1, plane.

ties oceur which require that the integration region must be
divided into two parts, one lying between the body and the
shock wave and the other extending beyond the shock wave
to infinity. Application of Green’s theorem to each region
and addition of the separate contributions results in addi-
tional line integrals carried around the two sides of the shock
surface. These two line integrals can be combined into a
single line integral, in which case equation (40) can be written
as follows

Lff(agl I-j)f,,: (13/(12—1—”[; I:A (\g%):l,:, dor=
o [[(SY)  dyte—U.8"@) @)

where A(0p/On)=0¢,/0n—0¢,/on and where in the single
line integral the integration extends around the curve de-
scribed by the intersection of the shock wave and the z=uz,
plane, and the normal 7 is taken as directed away from the

body.
In the subsequent work, attention is to be directed toward

results at M_=1. We assume here that in the limit as f—0
the first term in the right-hand member of equation (41) will
vanish and one then gets

- Ted b1 Sl
I.JJ (%) dyde+ [(859) don=—U.8"(a) @2
& A

r=z,

Tt will become evident in the discussion contained in the fol-
lowing section that the left side of equation (42) represents
the integrated strengths of the exterior corrective sources in
the cross-plane z=ux,=const. in the limit as M, approaches
1. It follows that under conditions corresponding to sonic
flight speed, the total source strength in any transverse plane
is zero: The sum of the sources within the body or wing
(sources appearing in the term ¢,) is of equal magnitude but
opposite sign to the corrective sources required by the non-
linear term in the differential equation.

Equation (42) allows one to make some conclusions about
the lateral attenuation of the z-wise gradient of u*. Consider
the double integral as written in terms of polar coordinates

S
]LJJ E %12“ l'l([/'l(lgl
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Since the definite integral must converge, it follows that the
integrand attenuates faster than 1/7? and if the assumption
is made that the integrand has a purely algebraic character,
one concludes that for large 7,

Oru- 1

= (43)
where /N is some positive constant.

A check on equation (43) is provided by the work of
Guderley and Yoshihara (ref. 26) on axially symmetric flow
at sonic speed. In that analysis, for large 7,

and this is in agreement with equation (43) when N=2/7.
The same reference also gives

Qe 1
or

which serves to substantiate the assumption made earlier

“whw

)([1,
+ 6%

_sing o
Arr Ox

o5(2,r,0)= ) [(@—2)*+6%

In equation (44), cylindrical coordinates x,
r*=y’+2% 6=tan=' (z/y) and the notation

r, 8 are used where

pu=[r*+r*—2rricos(0—6,)]"

has been introduced.

Under the imposed conditions, the first two terms in the
right member of equation (44) reduce, as shown for example
in reference 27, to approximately

k@) sind U, 0
47r or

g
It remains to attempt a corresponding modification of the
two remaining integrals. Consider, next, the triple integral.
Since the integration extends over all points in space, one
encounters a nonuniformity of convergence in the logarithmic
influence function when 8 becomes vanishingly small and #,
becomes infinitely large. From equation (43), however, it is
known that ou?/ox attenuates rapidly with increasing 7, and
the resultant error in miscalculating the effect of the loga-
rithm for large 7, is thereby reduced. The triple integral is
therefore approximated by

Yo gr(ay tn r— 9’( )
20

2mr

2)lx—
S
B,Dn

r— T

k ’1112(-1‘1,/i1i9ﬁ .
T or OJ o, 2 |2

r— 2,

(11 mdryd,

This term can be rewritten as

5 Jf,: a Up’ (l‘)lx 512] In plI/"l({l’l(]ﬁl—
2
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that the curvilinear mtegral along the outer boundary can
be neglected m equation (40).

INTEGRAL EQUATION FOR SLENDER BODIES, Mo =1

In the reduction of the integral equations to the case =0,
methods analogous to those employed in references 25 and
27 will be used. Attention will be confined here to field
points at a finite distance from the body so that in the limit
as B approaches zero, the term g7 can be assumed to approach
zero uniformly. As in conventional slender-body theory for
linearized flow, the longitudinal distribution of cross-section
area S(z) is assumed to possess a continuous z-wise deriva-
tive. The method of reduction can be exhibited in a suffi-
ciently general form if a lifting body of revolution is con-
sidered. When M_<1, the perturbation potential for a
body of revolution ¢z follows from equations (23) and for
the purposes at hand the form (23d) is preferable. For
sufficiently slender and smooth bodies the term ¢, can be
expressed in terms of a rectilinear source and doublet dis-
tribution and the corrective source distribution appearing in
the triple integral then extends over all space external to
the = axis. If «(x) is the a-wise distribution of doublet
strength, equation (23d) becomes

_L__Jf< ,'1)/117‘,' -11|+['_J1) *f‘ﬂpn]' TR
41 Ox 1; ]l“.lli Bor
. — \.M' . \2.1 g2 213
o @z, > (x ‘1) | T]l‘H(f 77’1) +B P1r l 1’1(1"1([J'1(101 (44)
B |T— 11‘ Bp
]i 0 T— &y )\‘_’n ff[ uB("rIv’lvB) »
T a. l"—,ll‘ 11‘1 a,ll :]11([/1(101
Consider, finally, the integral over the shock surface. For

B near zero, one gets the expression

a‘p8>
zgaff B

— 2|z—ua
D E ~—f'ld}3
.r—fll

Bru

which becomes

1

a¢n
= z91,21) Inpudoy—
o N ( Y1,21) npndoy

47r oz f}f x ‘ In|e— ll]d'lf 2 l?/lv*'l)(I(T)\

where doy represents an element of arc on the curve deter-
mined by the intersection of the shock surface and a plane
normal to the z axis. The normal 7, as in equation (42), is
directed away from the body.

The reduced form of equation (44), for the case M_=1,
is given by the sum of the above three expressions. In the
forms given, an apparent dependence on B remains in the
expression

1 T—;
T 4r Ol [J—-.I“l

/-f

1 da, l:['mLS"(xl)—{»

b ul? ('lla'l) )

i 1'1(11.(161+fA s (.’lf,yl,,zl)fla)\:]

011 :.4
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The bracketed term vanishes by virtue of equation (42),
however, and the dependence on 8 disappears. The sonic
form of the integral equation for the lifting body of revolu-
tion is, therefore,

=S ()
2

k{x) sin 0
Qoli(\'l‘r/‘ye):’

/111‘—4.*"*+.)J b¢ /NPn(/ﬂ+

7I' .

o Jf 0 “")/npn/l(lu(lﬁl (45)
m

Starting under the assumption that M, =1 and using
equation (30d), one can derive the same result, the only
essential difference arising from the fact that in the limiting
process care must be taken to restrict the disturbance region
T to that portion of space within the Mach forecone from
the field point at x,,z.

Equation (45) expresses the sonic equation in the form

; i (F e
op(x,r,0) :‘PZI‘(-”;")B)_Fﬁ JXA a‘flk Inpudoy+

By jf( 9 " = ) /Hpnl 1([/ 1(161 (4h)
&

where ¢, (2;7,6) is the harmonic potential for the body of
revolution in transverse planes. As expressed, this sonic
form of the integral equation for the perturbation potential
is identical to the integral equation corresponding to the
transonic differential equation at f=0; that is, it gives, for
a flow field in which shock waves may possibly occur, the
integral equation corresponding to the partial differential
equation

v+1 =
¢!/!/+§0222T;‘_ PrPrz (47a)

ko

then holds. Substitution into equation (46) yields

O[l k
oz 2

1 R :I';
R 00

1 )
¢1;(f,/‘,9) :‘102,,(‘2“}‘")0)_1‘— .)‘FJ;A (pB

and through use of equation (47b) one gets

k a YR (2, 8 ) * o
1Hpnl drdf, = (]6’ I:J —{—f :! Inpur 1(1/1— j (ZBIJ
R(z,0)) o

Sl

and admits discontinuity surfaces for which the difference
relation

o o ’y_TLI @.r TS”I o s
(ev,—ev,)’+ (e, —0) = 5 (¢,—9x)" (47b)

is satisfied. The direct derivation of equation (46) would
follow from an application of Green’s theorem in the trans-
verse variables to equation (47a) without the introduction
of the slender-body assumptions.

The interpretation of equation (42) in terms of net source
strengths is now apparent. Kach of the three terms in the
right member of equation (46) provides two-dimensional
sources in each transverse plane z;=const. and the perturba-
tion flow field is simulated by the combined effect of these
sources and in lifting cases, a doublet term. (The doublet
term is of no concern in the present discussion since its net
source strength is zero.) The first term, ¢2,, contains a
source on the z axis with strength fixed by the gradient of
area, S’(x); the second term represents a curvilinear distri-
bution of sources around the shock wave with strengths
fixed by A(Q¢/0n); the last term represents a planar distribu-
tion of sources with strengths determined by the nonlinear
term (%£/2)(0/0x)p,”. KEquation (42) thus states that at
M_—=1 the combined source strength must vanish in each
transverse plane.

Equation (46) corresponds, for the body of revolution at
M_=1, to equations (23¢) and (30d) in that it contains an
explicit contribution from the shock wave and is expressed
in terms of the basic singularities of the differential equation.
A form analogous to equations (23b) and (30b) can also be
derived as follows. Let r=F(z,0) be the equation of the
shock surface. The relation

JHPII, 1(]] 1(]01

kf R 0)011(10 < Uy’ g pu) b,
0 1=I'1’(,r,01)

2

u 'B

lnpn(lzr,\-{—%ff%’-/npnrl(lmdﬁl

e(x,r,0)=g@ (T;r,0)+ 5= O.IJJ /npu/la’/ldﬁl (48)

The above results have been worked out in some detail
or the body of revolution. The sonic equations for other
shapes follow similarly through a reduction of the general
transonic integral equations or can be expressed directly
through consideration of the sonic differential equation.
The final equations for both cases appear as follows

o(@;Y,2)=x(x; Y,2 )—i—o = [T Ly Inpgrdrdf,  (49a)
=p(2; Y, )+ J O(p,g Inprdoy+

[T 2 11;, - Unp pridirdb; (49b)
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where ¢,(z;7,2) is a two-dimensional harmonic function
which, for the body of revolution and for the planar wing is,
respectively,

U.8'),, K@) sino

P or 27 (508)
e 1 o Aw ( . / — 2 | ~2 L;I |
ooy =gp | Al Il =y Pyt
1 82(2) 2 (1!/1
7 Apw Z; 1 o 5 1 o7 50}))
o f——xl(r) Lw ( ./1) [(y_yl)z+2_] ( )

In the latter expression,
AWE; Y) =W(E; Y1)om04 —W(E; Y1) 2=
Ap(x; Y1)= @(2; Y1)z =0+ — @(&; Y1):=0—

and the lateral boundaries of the wing plan form are fixed by
—s3(x) and sy(x).

SLENDER-WING THEORY IN LINEARIZED FLOW

In the preceding development, the integral realation for
the perturbation potential in sonic flow has been expressed
in a form that follows from an application to equation (47a)
of Green’s theorem in transverse planes. The determination
of a solution thus depends to a large extent on the evaluation
of the effect of the two-dimensional singularities that are
placed throughout the exterior portion of the flow field.
Examples of a direct attack on a similar problem are to be
found in the calculations of two-dimensional transonic flows
by Oswatitsch, Gullstrand, and Spreiter and Alksne, refer-
ences 9 through 15. In the present report, an indirect
attack is to be made, following the ideas of Whitcomb and
Oswatitsch (refs. 6 and 7) by relating the solution for a
slender wing to that of a body of revolution. The analysis
will show that once one establishes the details of the crossflow
potential fields associated with a wing and its related body
of revolution, the residual disturbance fields near the two
bodies are the same to a certain order of accuracy in terms
of the slenderness ratio.  The mechanies of such an approach
can, in fact, be observed in linearized wing theory and such a
development will be given in this section as a prelude to the
subsequent sonic theory. Attention will be limited to the
subsonic case and, as an added simplification in the analysis,
only wings possessing lateral symmetry will be considered
although such a restriction is not essential.

ANALYSIS

The linearized equation for subsonic potential flow is

‘/9!/!/_"@3::-"62‘)5:: (3])

and if Green’s theorem is applied, formal manipulation leads
to the following integral relation for the potential ¢, of a
planar wing

9

f: B i 4 2 9
g0‘§-(“l',]/,€):l,ﬁ»_v“_(-l' ;y;‘:)_.:r ’fﬁair“-( 'r'rlllygl)[” [/‘.‘*f‘]'l-'—

2rry cos (0—6,)"2ridridf, (52)

No integrals along possible discontinuity surfaces are neces-
sary since shock waves do not appear in linearized subsonic
flow theory. KEquation (52) is linear in ¢ and can be sep-
arated into additive expressions contributing to ¢y ,, the
potential associated with the thickness distribution, and
ow,«, the potential associated with camber and angle of
attack. In this way one gets for the perturbation velocity
components

289 e, :
Uy = 71.3”__(—57} EJJ Crzyy I[P +1*—2rr, cos (0—6,)]"*ridrdb,

(53a)

. a ] 2 9 1
Wy, = ll’:,,..,—%afrj f(p,,"__,/n [r*4r2—2rr, cos (6—6,))"%ridrdb;
(53b)

and

U H',a:uz“..“_%%J f‘f’rrw,n/” [ 4r2—2rr, cos (0—8,)]"%rdrdb;
(54a)

) =—an B')a ' 2 .2 _Dmm. ana YVor 9
Wy, o= U'Q"'-"—Zr&fj Pazyy In[r’+r—2rr, cos (0—6,)]2r drdb;
(54b)

The corrective integrals in equations (53) and (54) ob-
viously do not modify the area distribution in the thickness
case by virtue of the vertical symmetry in the flow field nor
the load distribution in the camber case by virtue of the
vertical asymmetry in the field. Tt follows that

A'M’u'_ — AW,

2w.0 Ay, =AU 2W .« (55)

where the delta notation denotes the increment in” the func-
tion in passing through the plane z=0, that is, the difference
between the values on the upper and lower surfaces of the

wing. As a consequence, ¢, ~can be expressed in the form
© '(_l';yyg) 1 *s(z) Aw;r . ) .
—¥__ = == In(r*4-y,*—2ry, cos 0)*dy,+
[ © 4T ) —s(x) [ ©
1 (9 Aow o 7 sin Ody,

= 7 WS Tl ("-)G)
2r) s Us rm*+y®—2ry,cosd °

If exact conditions on the wing surface are to be sought in
linearized theory, equations (53a) must also be satisfied.
For example, in the direct case of given thickness, equation
(56) predicts uz,, and equation (53b) is then used to deter-
mine the exact streamwise velocity component as affected
by the external-source integral. In the direct case of given
loading, equation (56) predicts w,,, and equation (54b) is
then used to calculate the true wing camber, modification of
w,,, . being produced by the integral term. The difficulties
of such calculations are so disproportionate to those of solv-
ing the linearized equation by standard methods that they
appear to add needless complications to a relatively simple
problem. In transonic theory, however, the right-hand
member of equation (51) is replaced by a nonlinear term and,
in the absence of more obvious methods of attack, the diffi-
culties involved in such an approach become less of a deter-
rent; in particular, the integral forms of the corrective terms
are of added interest since they are suited to approximations.
The details of such an approach will not be considered further
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at the present time since for slender wings the use of a re-
lated body of revolution yields information of a sufficient
order of exactness in both linear and nonlinear theory.

In the following work, a complete knowledge of the solution
for a body of revolution will be assumed known. Thus, if
S(z)is the cross-sectional area of the body and the distribution
of lift is fixed by «(z), doublet strength per unit of length,
the linearized solution for the body of revolution is

@,,(1,1',0)__ L0985 S’ (xy)dx,

U. 4o [@—a)+F7%
Br sin BJ _ k(@)dz, (57)
i Jo o—a) 67T \
and the perturbation potential in the transverse plane is
?@f&(’)ﬁsl({),’" r__«(x)sin 0 (58)

T 5 < z
U. 2r 27

The integral relations for the wing and the body combine
to give

CW— OB P2y P2 57& I‘f(ﬁoll'_ﬁplf):r In[r*+rl—
2rry cos (0—6,))*2r, dr, db, (59)

Equation (59) is exact, subject only to the restrictions of
first-order perturbation theory, but with added restrictions
on the geometry and loading it is possible to show that the
magnitude of the final integral is negligible to a certain order
of accuracy. We now assume the wing is slender, that is,
s(z) 1s small in comparison with over-all wing length. Let,
furthermore, the wing and body be of equal length and have
identical longitudinal distributions of cross-sectional area.
This implies

s (z)
S’ ()= J A (@ y1)dy (60)

—8(z) ( ©

and establishes the condition that the distribution of two-
dimensional source strength in equation (58) is equal to the
strengths integrated in the transverse plane of the sources
appearing in equation (56). It will also be convenient to
equate in the same manner the doublet strengths in those
two equations and one is led to the relation

et (61)

—s(x) @®

f\w A<p_w(J Y1) diyy
k()= —

The first objective will be to show that for field points in
the vicinity of the slender wing the first two terms in the
right member of equation (59) differ from the left member
by an amount that is of higher order in s/l. The evaluation
of the error term can be performed by an iterative process
in which the first step starts with the approximation

(ﬂu‘zq&:w—sﬁen‘fﬂpu (62)
Before integration, the integrand in equation (59) will be

written as the product of Fourier expansions of its terms.
For the logarithmic term, one has

428347—57—3

oS m(0 01
2| 52 Inry— s <y
/”:[/ )+Il ¥ T m=1 (’1> e ke

2r cos (0—0,)])%= (63)
l/u-—z 11> ;osm((? 0)

Ilél
m=1 m

and, similarly,

1 © m ”
= )(ﬂ) sin m@, [y <r
7 sin 6 Y1 m=1\7

"2+?/12—‘21'y1 COS é: s SN
—>3(—) sin mé, r=|y
Y1 m=1<y1> ) |./1{

If equations (63) and (64) are used, together with equation
(56), and conditions of bilateral symmetry are imposed, one

gets

(64)

"792".(.15;1/,,72’) S’( +Z (L),,,(.I') cos 2mo+

I/T: / = /Q Zm
2 b>,,,_1(r) sm,m(flm —1)0, R (65)
m=1 (,/g
where
T o e sz ,11) (J1>“"'(1J1
(IQ,II(I)_‘I-Wml Es (66&)
and
1 () 2m —
Do 1) A‘*’ .4 (’/') d’/l (66b)
_41I"l —s(z)

Equation (65) holds true beyond the cirele of radius s(z) en-
closing the transverse section of the wing; within this cirele,
the expression is

eow (23Y,2) _

l) ‘1271 I') >2"+1_
= et 0
cos 2mb & 2 1 (NG 1 ’
mzz‘\’l 2m "Z“ 1)"(1)[<> 27n—2}1;i_<;> (27n+271),+71>+
1 2 B 2m—1 ]
(‘)171—271~—1 ] ,,,Z'_lqm m-1)0§ 2n( I)I:( ) 2n—2m +1+

N 1 1
= SOl o SEabetle o 5 <o 37
<\> (2m+2n~1+2m —211—1)} rss (67)

where the coefficients A, and B;, are related to the boundary
conditions through the expansions

Algl,(lv‘iyl)g W[ihnil') .’/I 2n 3
£ _"Z:“, S 7(\?) (68a)
(I 1Y Y1

ol 4::2:11‘”“)" ’)( ) (68b)

Once the coefficients a.,,, bs,_1, As,, and By, are related in
magnitude to the geometry of the wing, the size of the integral
term in equation (59) can be estimated. Since Aw(x,y)/U.,
is proportional to ¢(x)/l, the wing’s thickness ratio, it follows
from equations (66) and (68) that the following order esti-
mates hold

Wom(2)=0(ts/l?), Asn(x)=0(ts/1?) (69)
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Let, furthermore, A¢(z,y)/U,. be assumed proportional to
a(r)s(z) where a(J) i1s a measure of local angle of attack or
camber; equations (66) and (68) then yield for the remaining
coeflicients

])2,,,_l(.l'/)i()(a-\'//), 1;271("'):()((1"\']//) (T())

Equation (67) can also be written in the simplified form

, Sl o = 2m# :
o :,”7) 0 7,’,/,\“14(.,.,'_>+Z\l](0~ 1 (’W R%)_*,

I0f 2l s, 2m

z sin (2m—1)0H,, ( ,’,), r<s (71)
m=1 S
with the order estimates
1«'(1, 5>:om//‘-’), G (. 5):0(1.\.//2) 1, (s, 5) 0(as/l)
3 s \ S, S,
(72)
[(x,s,0) 1](.["\,B)+12(J',i\‘70)
Ul Uil U.l
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Evaluation of order of error in equation (62). -Kquation
(59) is now written in the form
ow (r,y,2)=

@2y ('.l',’]/,,?\)—@2}{(.1','1'.0) +og(x,r,0)+I(x,r0) (73)

where

I(x,r,0)=—: *J J 5 (ow—
0

op)ln|r*-+

2—2rr; cos (0—0y)|"2ridrid8, (74)
and an estimation of the order of magnitude of 7(z,7,0) is to
be made for field points in the vicinity of the wing. The
approximation of equation (62) is to be used together with the
given expansions of the two-dimensional perturbation poten-
tials. It suffices to simplify the analysis and estimate the
order of the error at » equal to s.  One then gets

L\ 2m 9 2m+1 NS A
J J { Tim(@ l) cos 2mb, by, . 1)( ) sin (2m—+1)6, ]}[/u/, i) 28 “(ﬂik(’:)] rdrdf, —
m=1 JAl n=1 r n

K vl//(J
) )

i \) cos n(f— 0,)] . dridb,
n=1 3%

After integration with respect to 6, one has

m=1 27”

U 2m

s m=1

=)

From equations (69), (70), and (72), the order of magnitude
of I(z,s,6)/U_l is given by

©

4m? 2m—

(2,5,0) o (185
.\[ rzB‘O(-lq /'HS)

The first step in the iteration fixes the maximum value of
the error incurred in neglecting the integral term of equation
(74). In the vicinity of the wing, therefore, the perturbation
potential can be expressed as in equation (62) with an error
of the order given in equation (76).

Near the body, a further reduction of the difference pp—e¢,,
is possible since the explicit equations for the body of revolu-
tion are available. This yields the usual form of the slender-
Thus, from equation (62),

(76)

wing solution.

~
=

ow = oo, (2) (

where

: : B2 '2"j'°°
D)= — 0y ) —=—— I".’gf ~rdrdb
() /T/zf (¢n P-,,) EWJ() A @252, 71,01) nryridridb, )
78

s Oy = cos 2mb
In—+F"" (1 —'>+ > —— G,
"y S

’m 9 g 2m —1 )
cos 2 m() r ] sin ( - 1
G:II, £y + (9, :

+Z sin (2m—1)6,H,,

.r,ﬁ>:| l:/u,\'—
m=1 S

I(z,5,0) B (" < (Léln(f)(s‘)‘”’ o bam \)*”‘“‘- 5 : LS ), s '/'x>
] | e oS ]'10+‘571;+1(_ bln(-m+1;0:|1,(l/1—6J“ “5m7 /11E+]* (‘.z,,—'\'—’]/n.\/,([/mL

(75
From equation (57), f(z) becomes, for the subsonic case,
.__%roe bo.r ;l jj_“‘ S’ (zy) I:/n e —Hn{l dz,
:_[ﬁ aa.r JUL Li;j izl ; 21l g, (79a)

It is not difficult to show by a similar analysis taking into
account the possibility of discontinuities in the flow that
equation (77) holds also for M_~>1 and that f(z) then has
the form

U S’( )in g

(79b)

SLENDER-WING THEORY IN SONIC FLOW
The extension of the foregoing derivation to the nonlinear
case will be given in this section. The iteration procedure
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designed to discuss the linear problem is effectively the de-
velopment of an expansion in terms of the slenderness param-
eter of the wing and with appropriate restrictions on wing
angle of attack can be applied with little modification.

ANALYSIS

Equation (49b), the relation fundamental to the following
discussion, provides that the sonic expression for ¢ valid in
the 2=u, plane can be considered to be composed of three
terms; ¢z, a line integral around the possible intersections of
the 2=z, plane and a shock wave, and a surface integral
over the entire portion of the =2, plane exterior to the body.
In many important cases, simplification occurs because the
line integral introduces no contribution to the values for ¢
in the vicinity of the body. Perhaps the simplest case in
which this situation develops is that encountered very
frequently at M_=1 in which the shock waves are situated
entirely downstream of the most rearward point. A second
case in which the line integral introduces no contribution
occurs when the discontinuity surface is situated in an
r=1, plane and is, therefore, essentially a normal shock
wave. The discontinuities associated with the normal
shock wave are contained in the contribution of the double
integral. Since most sonic flows about smooth wings or
bodies probably fall into one of these two cases, attention
will be confined in the following discussion to those cases in
which no contribution results from the line integral. Thus,
if equation (49b) is written first for a wing and then again for
a body of revolution, and the latter is subtracted from the
former, the following relation is obtained:

o (,,2) =2, (239,2) — 00, (@7,0) +on (@,7,0) + T (@,1,6)  (80)

where

[ i ) x 3
J(‘"”"‘”:‘E} JU Jﬂ §a’(uw-*u};)

In [r2—r2—2rr, cos (0—0)"%,dr,d6; (81)

The quadratic nature of the integrand in equation (81),
together with the additive dependence on thickness and
camber in the transverse-plane potentials, prompts one to
simplify the analysis to cases involving a thin wing of given
thickness but limited to an angle of attack or camber-
length ratio « that is small in comparison with the thickness-
length ratio #/I. In this way, sufficient information is re-
tained to establish the relationship between the wing and
J(x,5,0)  Ji(@,s,0) | Jo(x,5,0)
N

o b (0) sin (2v—1)0, [ S eoent=a)
=1 (1 / ) i } ll“l n=1 (71

© . S” . 3 . ©
o 008 20y F,,,( >:| + 25, 7#(—;) ln}%-}- IiHe ( )+Z

m=1 ‘)771 m=1

+

~uBt

r( >+ >, o8 2m 250, (*( '1>—l—"u,, ,:IZsm (2v—1)0,H(

2m

(2,8 R oI (i ' |: @Y, (x) cos 2mb;
(vw[ 41!' aT m=1 ("/ )2m

AV”(.I)

I'1dlld61+4 DIJ J {[ B /
cos 2mé Sk

Im le( )]+[ A)‘/ﬂ/‘

body flow fields for the thickness case and at the same time
determine a linear dependence on angle of attack of the wing
loading in the vicinity of a=0. Under these conditions it
will be possible to relate the wing flow field to that of a_body
having the same area distribution but not inclined to the
free stream. Consistent with these conditions, the following
equations apply:

¢2|s':¢2iv',n+wzlv.a’ P22, (82)

and the perturbation potentials for the wing and body can
be expressed as

¢ll’:‘pIV,l+¢lV,ay PB=—¥B,1 (83)

where the subscripts ¢ and o identify the contributions at-
tributable to thickness and camber. The term uy*—uz® in
the integrand of equation (81) can now be approximated by

U —Up* = (s, —Uo )2+2u3_,(u2",ll—u2”.1)+

“W.t “B,t

(\u2w.z_ Uoy o) Wagy o P

2up, Mo, (84)
where the initial assumption

&szsﬂzw—s&‘zﬂ.l‘hﬁl;./ (85)
has been made and higher order dependence on « has been
deleted. Tt remains to show, through the evaluation of
J(z,7,0), that the assumption made in equation (85) holds.
It should be noted that, to the order of exactness of this equa-
tion, normal shocks on the wing and body are situated at the
same longitudinal station.

The first two terms in the right member of equation (84)
depend solely on the thickness distribution of the wing and
body, and the two remaining terms contain the effects attrib-
utable to the lift and thickness combined. Substituting
from equation (84) into equation (81), we see that the first
two terms contribute to J(z,r,0) a function that is symmetric
about z=0 and the two latter terms contribute an asym-
metric quantity. From equation (80) one then gets

Awy ;= AW, . AUy o =AU, -
These relations are identical to those given in equation (55)
and, as a consequence, equation (56) necessarily remains
valid along with the expansions given in equations (65) and
(67).

We now approximate J(x,r,0) atr=s:

2m€,

1 om(T) COS 2'7 7} (l m
+~ g, IZ( ‘(l—TI l+ Z - L) 2
m=1 (/9)* m=1 /

In i—{—F’().r,, Il)—}—
ry 3 S

+

}[/nx—z '1> e “5)6 b, :lll([l[(M] (86)
n=1
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[he orthogonality of the trigonometric terms, together

with the fact that uz , has no dependence on 6, permits one to

J(x:s:

T
- 47 Ox

(1 o)

Inr
1
m=] (/ 1/ /g i

Ul

sin (2m—1)8 by (x)

(2m—1) (ry/s w—’:|+

cos 2mé, ;-

=i 2m

4m

”

m=1 S

The convergence of all the terms in the first integral is as-
sured when up , varies as 1/ for large , N being any positive
constant; for small » we assume wup , varies directly with
Cross-sec tlmml area of the body. The order of magnitude of
J(r,s,0)/U 1 can then be seen to be given by

J(z,s,0)

{2'\..1 B
i *()( G /H.\)

Since it follows from equations (85) and (56) that the magni-
tude of ¢/ [ in the vieinity of the wing is 0[(ts/l*)In s], the
relative error incurred by neglecting J/U [ 1s 0(ts*/1*).

Following the method used in deriving equation (77), we
can achieve a final simplification in the wing’s perturbation
potential. Thus,

(87)

®

ow = oo+ () (88)

where
® 0 ug*(x,r)

= Inry rdr,  (89)

0 O 2

g(x)=lim (90/{4/*902“ ,):A
>0 .

In the absence of analytical solutions for the body of revolu-

tion problem, the evaluation of ¢g(x) must be carried out by

less direct methods. This will be discussed further in the

section on applications.

APPLICATIONS TO SEVERAL PROBLEMS INVOLVING
SONIC FLOW

In the following section, the exploitation of the results for
sonic-flow conditions will be carried out in some detail. In
view of the difficulty associated with transonic analysis, it
appears likely that the equivalence relation of equation (85)
will play an important part in the interpretation and use of
experimental data as well as in purely theoretical predictions.
The discussion will be concerned principally with applica-
tions to slender wings and bodies and to the relationships be-
tween the acrodynamic characteristics of the two configura-
tions. It is obvious that the known basic information can be
supplied either by theory or by experiment and many of the
results to be given are written with the idea that they can be
used in this dual sense.

RESUME OF PRINCIPAL RESULTS OF SLENDER-BODY THEORY

[t appears worthwhile, before proceeding to the examples,
to re-examine the problem of transonic flow about slender

bodies of arbitrary cross section from a heuristic, although

This second approach may be

less rigorous, point of view.

)7rU”[ Z

m=1

‘ ,. 9//(1
}'1(1' 47 Ox J J l: 27l
:' In s rdrdf, +4 o ‘J 21Uy, ,{‘7
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achieve considerable simplification after
The resulting expression is

the 6; integration.

2m 6 Wyp(X)

(/, /S‘)""' +

‘7m
. e
ln—+F’ (: 4>+
7 S

S (x)

5 I +1«"

:I/IM —

\ regarded, if one prefers, as a physical interpretation of the
result given in equation (80).
Consider the case of compressible flow about the slender
body of arbitrary cross section shown in figure 6. The gen-
[ eral procedure is to consider first the complete three-dimen-
‘
|

Vo \

= f(x) linear
‘ g(x) Myl
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2w . o, A R
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! 2wa it (pgw)/ - (Pzﬁ,’ ’ CPB,'
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=il
! kP Bex @
‘ Ficure 6.—Schematic representation of elements of slender-body
theory.

\
\

sional problem and then to introduce simplifying assump-
tions consistent with the restriction of slender plan forms.
As in the more detailed analysis, it is again assumed that
any shock waves are situated either entirely upstream of the
most forward point of the body or entirely downstream of
the most rearward point, or are normal shock waves if situ-
ated along the length of the body. The resulting solution
for the perturbation potential can be expressed as the sum
of four parts. As in the preceding analysis ¢, , ¢, , and
¢, , are solutions of the two-dimensional Laplace equation
as indicated. Thus ¢, corresponds to the two-dimensional
incompressible-flow solutmn for translation of the cross sec-
tion, and ¢, , to that for the growth of the cross section.
In addition to satisfying the prescribed boundary conditions
at the body surface, these two terms satisfy the requirement
that the lateral velocity components (0¢/dy, 0¢/0z) vanish
at infinity. These terms alone do not furnish a satisfactory
approximation, however, for cases in which S(z) is different
from zero because ¢, . acts like 8" (x) In 7 at large r, and
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hence Q¢/0x is infinite at a large lateral distance. This error
can be removed, however, by subtracting the term ¢2, , COT-
responding to the two-dimensional incompressible-flow solu-
tion for the growth of a body of revolution having the same
S (x) as the original body (thereby canceling ¢,  , at large
7), and adding the three-dimensional solution ¢, for flow
about the same body of revolution. If ¢, is determined
from linear theory, the results correspond to the familiar
formulas of subsonic and supersonic slender-body theory.
(This leads, in both cases, to the result given in equation (62)
and reduces to equation (77) where, for subsonic flow, f(x)
has the form given in equation (79a) and, for supersonic flow,
the form given in equation (79b).) In keeping with the
previous analysis, this function of z will be denoted by f(x)
if it is determined from linear theory and by g(z) if deter-
mined from transonic theory.

Although the linear-theory approximation is unsatisfactory
at M.=1, the same intuitive procedure can be extended to
sonic flow. The desired expression follows if ¢,  is deter-
mined from the transonic differential equation. Thus, as
given in equation (85), one has to a known order of accuracy,

(,0!’,’:90;’”,”.‘{‘(,92“‘.[_802“ ,‘HP/;,: (90)
and this result reduces for points near the body to
ew=pw 1 9g(x) (91)
where
sﬂzu.:sﬂzl,.,_‘lrwzu.l,: !/(-1);—1};11)(9011,/—693,:l) (92)
P ;

as indicated in figure 6. It is apparent that equation (90)
has a dual basis for validity and represents either the relation
afforded by transonic theory for M.=1, or that given by
linear theory for other Mach numbers. The customary re-

g

.04

striction to slender wings and bodies must be observed in
both applications.

The power and weakness of the present intuitive reasoning
is well illustrated by the fact that the relation given by
equation (90) is found without recourse to the detailed inves-
tigation of the earlier sections whereas the restriction to
small angles of attack that enters in the simplification is
overlooked. This deficiency stems from the fact that it is
insufficient to assure that merely the infinite velocities be
removed. Since the space involved is infinite, it is also nec-
essary that certain integrals of velocity (see eq. (43)) be
finite, and 1t is in connection with the attenuation of the
velocities arising from the term ¢, . that the deficiency
occurs. One could, perhaps, have continued the heuristic
reasoning but, once the principal idea has been established,
formal analysis can be used to establish the restrictions and
to evaluate the error terms involved.

Some insight into the validity of the foregoing equations
can be obtained by examining the numerical solution given
by Yoshibara in reference 17 for sonic flow about a circular
cone-cylinder at zero angle of attack. Inasmuch as it was
not assumed either explicitly or implicitly that the per-
turbation potential in the vicinity of the body has the form
indicated by equation (91) (the boundary conditions were
satisfied at the actual body surface rather than along the
body axis), these results are particularly suited in this
respect for the investigation of the region for which the
simplified relation applies. On the other hand, the example
is not ideal because the sharp corner at the shoulder violates
the smoothness condition; it is, however, the only case for
which a theoretical solution is available. Accordingly,
figure 7 has been prepared so as to show the variation of

—_— ('Pglf

Yo

(Pzi"(%gf

Y%

Fraure 7.—Variation of ¢p,,/U, with » for several stations along the length of a cone-cylinder of semiapex
angle 1/10 at free-stream Mach number 1.
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en,/U. with 7 for several stations along the length of the
cone for the case in which the semiapex angle 6 is 1/10 radian.
Attention is called to the fact that the values for ¢, given
in this figure are for a cone of unit length whereas the
original values given in figure 5 of reference 17 are for a
cone of length 10. A dotted line is also shown for each
station representing the values obtained after subtracting
¢, /U, computed by

e, 1 dS zlnr ’
e ey sl 9:
U. 2rdz =100 &)

from ¢z /U, at the same point. In order to illustrate
further the nature of these results, figure 8 has been prepared

05
7“ r=x/10 (surfoce)
/,/ 2
04 ," // ==r :.4 / —
g 03 ///
N == e
Tls \ M|
[\ = ——-r=1.2
g .02
0l
g=0 | | - | sttt .
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Frcure 8.—Variation of ¢p.,— ¢ with = for several r of a cone-
eBt— P2 ,

cylinder of semiapex angle 1/10 at free-stream Mach number 1.

to show the variation of e8¢, with z for various 7.
The resulting values should, according to equation (92), be
a function of z alone for small ». It can be seen from an
examination of these figures that the difference ¢, ,— ¢, 18
indeed very nearly a function of 2 in most of the region for
which results are available. Slight deviations occur in the
immediate vicinity of the nose and at the largest distances
from the body. The latter departures are so small, however,
that it is necessary to possess additional mfmmahon f01
greater distance from the body before one can determine the
extent of the region for which the g(z) function is applicable.

DETERMINATION OF ¢'(z) IN TERMS OF PRESSURE DISTRIBUTION ON A
NONLIFTING BODY OF REVOLUTION

Although ¢z ;, and hence f(x), can be calculated directly
by means of linear theory for either distinctly subsonic or
supersonic flow, general methods are not yet available for
the theoretical determination of ¢z, in transonic theory.
It is evident from its definition, however, that g(z) depends
only on the longitudinal distribution of cross-section area
S(x), and that its derivative can be determined from simple
aerodynamic measurements of the flow about a slender
nonlifting body of revolution having the same S(z) as the
given body. From the point of view of applications, nothing
is lost in not knowing the actual level of ¢(x), however, since
knowledge of its gradient, ¢’(z), is sufficient for the deter-

mination of flow quantities such as velocity and pressure.
Since the easiest flow quantity to measure is generally the
pressure distribution on the surface of the body, perhaps the
simplest way to determine ¢’(x) is through a relation ex-
pressing this quantity in terms of the pressure distribution.
The necessary relations for the perturbation velocity poten-
tial, ¢z , and the pressure coefficient 'y, , are provided by
equations (48) and (5), which reduce, in the vicinity of a
slender nonlifting body of revolution, to

_Us dS
"Dls.c*T_)ﬂr dx

Inr-+g(x (94)

, 2 o dRN: 2 o S"2()
W o sﬂw‘(\ﬁ) =L n

(95)

where [2(x) represents the radius of the body of revolution
and the prime denotes differentiation with respect to .
These relations can be combined to solve for ¢’(z) in terms of
the surface pressures and the cross-section area with the
following result:
Y/ Y IZ
g @) =—= [(( 5), ot S._ (=) n‘S 1 9)] (96)

The cone-cylinder solution of Yoshihara (ref. 17) again
affords a means of illustrating the application of this result

at M_,=1. Thus, figure 9 has been prepared to illustrate
the variations with z of the pressure coefficient 2 on the sur-
A2
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Frcure 9.—Variation of ', and ¢’(z) on the surface of a cone-cylinder
of semiapex angle 1/10 at free-stream Mach number 1

face of a cone-cylinder having a semiapex angle of 1/10
radian, and of ¢’(x)/U, computed therefrom, using equa-
tion (96). As in the case of figures 7 and 8, the values of
¢’ (x) have been converted from those given originally for a
cone of length 10 to those for a cone of unit length.

[t is likewise evident that the function ¢’ (x) can also be
determined from pressure-distribution data for thin wings
in an analogous manner, although naturally more geometric
quantities are involved in the calculation.

? The curve for Cpp , shown in figure 9 differs from that given originally in reference 17

due to the correction of a sign error in the quadratic term of the expression for pressure co-
efficient. For the cone having a semiapex angle of 1/10 radian, this change has the effect of

diminishing the values given originally for C,,B (on the cone surface by a constant amount,
namely, 0.02.
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RELATION BETWEEN PRESSURE DISTRIBUTIONS ON RELATED WINGS
AND BODIES

Wings and bodies having same longitudinal distribution
of cross-section area.—Kquation (90) displays the relation-
ship between the perturbation velocity potential ¢y for a
thin low-aspect-ratio wing and the corresponding potential
o5, for a slender nonlifting body of revolution having the
same longitudinal distribution of cross-section area. In
most practical applications, however, one is not so much
interested in relations involving the velocity potential
those involving the pressure distributions. The following
discussion will be concerned with the derivation of such a
relation. Thus, consider the two objects illustrated in
figure 10. Both have the same S(xz), but the first is a non-

L5 (x) = w R2(x)

Ficure 10.—Views of wing and body having the same longitudinal
distribution of cross-section area.

lifting body of revolution and the second is a thin lifting
wing. The relations for the potential and pressure coefli-
cient for the body of revolution are those given in equations
(94) and (95) of the preceding section. The corresponding
relations for ¢y and (7, in the vicinity of the wing are

Py
SOIVZW“,‘*‘!/(-I') (97)
5 2 Qow ;
( Dprn = l'c; 76(:" (98)

Since ¢(x) is the same for both objects, the desired relation
between the pressure distributions on the wing and body
of revolution can be determined by combining equations
(95) through (98); thus

e 2 2my 8,8, 8%
(I’;'.'—(nﬂlx,z>r:}a U, DJ'7+ In + S (99)
It is interesting to note that this relation holds not only for
nonlinear theory of sonic flow, but also for linearized slender-
body theory for subsonic and supersonic flow. This follows
directly from the fact that equation (91) and the associated
statement are equally correct in linearized slender-body
theory if g(z) is replaced by f(z).

The term involving ¢, ~can be considered known inasmuch
as it can be determined directly using equation (50) or any
of several other methods (e. g., conformal mapping, ete.)
available from classical two-dimensional potential theory, or
indirectly if either the linear theory or the slender-wing-
theory solutions are known for the wing. To illustrate, let
the subscript S denote the values indicated by the slender-

wing-theory solution. Then, for example, if (ow), is
known, ¢,  is given by

Cor— (ow)s ‘f(-l') (100)

where f(z) is provided by equations (79). Correspondingly,
one has

e TR N SR
70.!‘ :(( /’ll',)Aw+ﬁ-f (x) (101)

o

©

If, on the other hand, the linear-theory solution is available,
the relation

lim or=1im ¢g (102)
M Sl i NS

applies, whence

2 Op i gt oy ge
- e =lim [ @t @] a0
where the subseript L refers to values given by linear theory.

Equation (99) enables one to calculate the pressures in
the vieinity of any thin low-aspect-ratio wing, provided the
pressure distribution is known on the surface of a nonlifting
body of revolution having the same longitudinal distribution
of cross-section area S(z). The corresponding rule relating
the pressures on two wings having different cross-section
shapes but the same S(z) can be easily derived by applying
equation (99) twice and subtracting so as to eliminate all
terms pertinent to the body of revolution..

Wings and bodies having similar longitudinal distribution
of cross-section area.—It is a simple matter to extend the
previous results so as to include more general relations which
apply to wings and bodies having longitudinal distributions
of cross-section area that are merely proportional. The
information needed to achieve this generalization is supplied
by the transonic similarity rule for slender bodies of revolu-
tion (ref. 5). The rule states that at M_=1 the pressure
distributions on two slender bodies of revolution having
area distributions given by

&L ___Sm.II y ~I.‘
H<7>—”Vm,l ASI <7> (104)

are related according to

( > m, 1T y )’l’“‘([ *gll( /l)[ AS(mI <Fyl+l>
p” o Sm I ,1,” T da (%/1)? S e
(105

where S, refers to the maximum cross-section area and the
subscripts T and II refer to properties associated with the
two bodies. If both bodies are in air, v;=", and equation
(105) reduces to

v r S,,,.” Y .l’) 1 szH (-'//) Sm,l
(wﬂﬂ‘g/m$f?mmvm&m<m>

If it is desired to determine the pressures (', for a wing
having an area distribution given by Sy (z/l) and the pressure
distribution is known for a body of revolution having an area
distribution Si(x/l) proportional to Sy (z/l), one merely com-
putes Cp, ., for a body of revolution of area Sy(z//) using
equation (106) and substitutes the result for (.,*,,M in equation
(99).
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APPLICATION TO THE CALCULATION OF PRESSURES AND FORCES ON THIN
ELLIPTIC CONE-CYLINDERS AT Mo =1

The relations developed in the preceding section will now

be applied to the calculation of the pressures and forces at

M_=1 on the conical portion of the thin cone-cylinder of

Z

Ficure 11.—View of thin elliptic cone-cylinder.

elliptic cross-section illustrated in figure 11. The ordinates

of the upper surface of the cone are given by

e 7,>_-L (M2t —y2) (107)

nl
where m is the tangent of the semiapex angle, [ is the length
of the cone, and ¢ is the maximum thickness 0( the cone. It
follows that the elliptic section in the plane r=u, has major
and minor semiaxes equal to ma; and {x,/2(, respectively.
The cross-section area and surface slope are, respectively,

mtmax,? Ozz, mf:1

Sl = = or,  2(mix2—yD)%

9] (108)

Pressure distribution on nonlifting cone-cylinders.—From
equation (50), ¢, for the symmetrical nonlifting case can be
written as

1 AL 02 o1 aid
(‘Ozu'::f_);.fﬂm 2o 5 @y)inlly—y)*+274dy,  (109)
which, when evaluated on the wing surface (i. e., z=0,
—ma<y<maz), yields
I z‘mJ m v
P2p=— in (110)

After inserting this relation into equation (99) and carrying
out the indicated operations, one obtains

. O mt ml
Cpp=Cpy— (1+/ ‘)f (111)

where (7, refers to the pressure distribution on a circular
cone-cylinder having such a semiapex angle 6 that it has the
same longitudinal distribution of cross-section area as the
elliptic cone-cylinder; thus

m t
‘)Z

The pressures on such a body can be determined from those
shown graphically in figure 9 for #=0.10 by application of
equation (106), which reduces to the form

C,,=1006%(C —26%n1006? (112)

l'/:)(i:o.m

following equation (99), the
is the same as given by linearized

As mentioned previously,
SEP: S 1 5 Y 5 f
difference C,, —C,,
slender-body theory for subsonic or supersonic flow. As a
corroboration of this statement, consider the expression
given by slender-body theory for the supersonic pressure on

the thin elliptic cone (ref. 25, p. 257)
mt m(M A —1)%
Y — «
Coey=— 1+In i (113)
and the corresponding expression for the supersonic pressure
distribution on the slender circular cone (ref. 25, p. 241)

o112 2520

mt mi(M*—1) ,
—é/{w In [ = :] } (114)

The difference between equations (113) and (114) obviously
reduces to the form given in equation (111).

The application of the foregoing theory to a specific case
will now be illustrated by determining the pressure distribu-

tion C, at M_ =1 on an elliptic cone having m=1% and
t/1=0.06.

The first step is to calculate the pressure dis-

tribution at M_=1 on the surface of a circular cone-
cylinder having a somiupv.\' angle given by
mt % -
=(0.015)"*=0.1225 (115)

The pressure distribution on the selected elliptic cone-
cylinder can then be calculated through use of equation
(111) and is

=

Py P

—0.0364 (116)

The results for both the circular and the elliptic cone-
cylinders are shown graphically in figure 12.  Note that the
pressure distribution is independent of 7 in this case and
that a single curve of (7, ~ versus xz// suffices to define the
pressure on the wing.

Drag of mnonlifting cone-cylinders.—The drag Dy at
M,=1 of thin elliptic cone-cylinders can be obtained by
direct integration of the product of the pressure and surface
slope and is expressible in the form

Dy=D, +"°° 2 ” (,)“

(117)

where the integration is extended over the plan form and
D, represents the contribution to the drag that results from
a finite leading-edge radius of curvature. Since only that
portion of gy denoted by ¢, contributes to 7),, this quantity
can be calculated in the same manner as described in refer-
ences 25 and 28 for linear theory. Thus, the contribution
per unit of span is, in slender theory,

D, pml )/ (1\>

dy " dx ({18
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Fraure 12.—Pressure distribution on a thin elliptic cone-cylinder at free-stream Mach number 1.

where 7, is the radius of curvature normal to the wing | For the thin elliptic cone, z, is given by equation (107)
leading edge and s is the local semispan. If the ordinate of and s(z)=mz, hence
the wing, in the vicinity of the leading edge, is : of2
(s, 8)=5, 3
2u=h(s,y)(s—y)* 119 &
u Y) Y) (119) and
S 5 i
‘ 3 W g (l[)‘, UF oo( z 919 e
equation (118) becomes ])I:A_)J O e £alls o (121)
Jo dy 4 2
e S e de\?
bie T Pai- = pafe o) ) U e : s e,
a2 2 dx. ['he second term on the right of equation (117) becomes, upon
substitution of equation (111) for O,

0 o 0 B8 s (RUPSI S mt m/
50 "’ 3(‘,;W D drdy=——=; [J ( "e Jp (]Ar— (1 +in ——

JO

S /):,

T Pl ml
=Dy Peg= meer (140 g )
The drag of the elliptic cone-cylinder is thus T
Dy=Dp—" paUs’ m22n ml (122) Thus, although both bodies have the same area distribution,
o 3 7 ¢ 4 < = . . . . .
S 2t the drag of the elliptic cone-cylinder is less than 80 percent
Note that the ecircular cone-cylinder and elliptic cone- of that of the circular cone-cylinder.

cylinder have different values of drag at M_ =
they have the same area distribution.
the order of magnitude of the quantities involved in equa-
the drag at
having semiapex angle §=0.1225, as determined by inte-
gration of the pressure distribution shown in figure 12, is

tion (122),

(])B)G:m 225

whereas that of an elliptic cone-cylinder having m=1/2 and

t/l=0.06 is

([)u ),,,»1/7—() O() )(\5 pw[ ’m' /2

t/1=0.06

More general results for circular and elliptic cone-cylinders
can be obtained by combining equations (123) and (124)
with the transonic similarity rule for the drag of slender
bodies of revolution. The latter can be derived by inte-
gration of the corresponding relation for the pressure given
in equation (106) and was first given by Oswatitsch and
Berndt in reference 5. It states that the drags at M, =1
of two bodies of revolution having area distributions given
by equation (104) are related assuming both bodies are in
air, so that v;=vy, according to

[[} —+_pf S (/ ‘)TS ){ ;Sm I] (12:))
= R e, IT,

1, even though
As an illustration of

M_=1 of a circular cone-cylinder

0.00484 L=—= 2 (123)

: 24 m
(1 —‘4) ])H g ‘Sm III
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For slender circular cone-cylinders S==#%2 and equation
(125) reduces to

Du=() | Dict2n U et Y] o
I Z

\VII

which becomes, upon substitution of the values given by
equation (123) for D; and 6,

B0 ooy B 79 o
Dp=—m0'1.55+2 In 6?] — (- (127)
The general expressions for Iy and Dy can be compared more
t=)
readily if the relation 6= (mt/2l)*2 is introduced to express 8
in terms of m, t, and [ of the thin elliptic cone having the
same area distribution, thus

e .
])1;*_ 2 ’[4 m-=t (1- .)—rl/l! 9] >] (128)

Combination of equations (128) and (122) yields the cor-
responding result for the drag at M _=1 of thin elliptic cone-

cylinders
]) 7_‘[) :[ '(03 zr 7 '.’ll‘.’ ( (=) /71 IHK{\> (']‘)()
LRI [ ety £y

Before leaving the subject of similarity rules, it is of interest
to note that equation (129) for the pressure drag of thin
elliptic cone-cylinders is in accord with the transonic simi-
larity rule for the pressure drag of thin wings of finite span
(see, e. g., ref. 4). The latter is usually given in dimension-
less form and provides that the pressure drag coefficient
Cpat M_ =1 of a family of thin nonlifting wings of affinely
related geometry, plan-form area S,, thickness ratio r, and
aspect ratio A satisfy the equation

@ .
'—,‘Li:‘/(;lT":;) (1%())
-
where
Do
& —7 (el
Pl oy
5 S

and f indicates a functional dependence. If indeterminate
forms that arise from the infinite plan-form area of a cone-
eylinder are avoided by letting S, represent the plan-form
area of only the conical part of the body, S,, A4, and 7 are
related to m, ¢, and [ according to

t :
ASVI):]}[/27 4',\:4712, Ti7 (]:;3)

and equation (129) can be rewritten as follows

() Iw A
D . Dy =T 17"(1.55%3/21 o ) (133)
‘\‘I’T".; \

% p U2 18 S
2

It 1s evident from this form of the result that C,/7%%is a fune-
tion of A7 alone, as required by the similarity rule.
Pressures and forces on lifting cone-cylinders.—The
relations summarized in figure 6 also permit the calculation
of the pressure distribution on a thin elliptic cone-cylinder
when inclined at a small angle of attack. To caleulate this

quantity, one must first have the expression for ¢, .- The
necessary expression is well known, however, since the prob-
lem is equivalent mathematically, for the planar boundary
conditions, to the boundary-value problem associated with
translation of a flat plate in a two-dimensional incompres-
sible fluid. Thus ¢, —and ¢, on the surface of the thin
inclined elliptic cone are

o, o= U a(m2x2—y?)¥ (134)
{ / Lr £x T 2.9 9
=" In LU (iR —yE (135)

where the upper (plus) sign is to be used on the upper surface
and the lower (minus) sign on the lower surface. After in-

Y=

serting equation (135) into equation (99), one obtains

mt ml 2am’z
Coy=Cpp— ( Fin - )T 36
P Y 1+In 5 1—(”1_,"__)_]/-),2 (136)

where the convention concerning upper and lower signs still
holds. The aerodynamic loading, or the difference in pres-
sure between the two sides of the wing, is thus

) A])u- (O (O o dam’ e s
pl['mz/g_( I'u')l ( I’u-)u‘“(mgll.z_yz)lé (137)

A sketch of the load distribution is shown in figure 13. Inte-
gration of the loading over the plan form leads to the follow-
ing expression for lift

(0} .
T,”-:p”.) 2 (2ram?(?) (138)
Although the pressure distribution at M_=1 is not the
same as given by linear theory, it will be recognized that the
load distribution and lift arise solely from ¢, and are there-

Ficure 13.—Load distribution on an inclined thin elliptic cone-
cylinder.




fore the same as given by linear slender-wing theory. One
recognizes, consequently, that the lift of any low-aspect-ratio
wing having such a plan form that no part of the trailing edge
extends forward of the station of maximum span is given by

(V 2
Lw:p"O 5 (2masy®) (139)
and the drag due to lift by
])w—[)u'“;.,:g‘ L (140)

The fraction % enters as a result of suction forces on the lead-
ing edge. Note that the above statements also imply that all
reciprocal and reverse flow relations of linear theory are ap-
plicable to lifting forces at M_=1 on slender wings at small
angles of attack.

As in the case of drag discussed previously, equation (138)
for the lift of thin low-aspect-ratio wings is compatible with
the transonic similarity rule which states that the lift-curve
slopes of a family of thin wings of finite span and affinely
related geometry are related according to (see, e. g., ref. 4)

720, (A6 (141)

where

: 5,
) 4 .
7, =lim

: i A
a—0 (Pm[ 'wg/zl)svl)a (14_)

Substitution of the geometric relations of equation (132)
into equation (138) for the lift, yields simply

; ™ ;
10 Q:Sng“ (143)
which is obviously in accord with the similarity rule. The

drag due to lift given by equation (140) is in corresponding
agreement with the appropriate transonic similarity rule.

MOMENTUM ANALYSIS OF DRAG OF SLENDER BODIES AT M., =1

The previous example of the thin elliptic cone-cylinder has
disclosed significant differences in the drag at M_=1 of
elliptic and circular cone-cylinders having the same longi-
tudinal distribution of cross-section area. Since this finding
is contrary to the often quoted transonic area rule, it is of
interest to study the sonic drag of a more general class of
bodies. This will now be done using momentum methods.

Derivation of general relation for drag.—Consider a surface
2 which encloses a volume containing an aerodynamic body.
The vectorial force /' on the body can be determined by
considering the pressures and flux of momentum at .
In general there results

;': ~J [ (p——pw)(/g—J fp ‘_" |:< (_"m -+ f) '(12_,‘] (144)

where vector notation is used, p and p are the local static

=5
pressure and density, and V' is the local perturbation velocity
vector.

For present purposes, the surface  will be taken as shown
in figure 14. Two parts of = denoted as T and IT, are plane
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Frcure 14.—View of surface £ used in evaluation of drag.

surfaces normal to the 2 axis and situated upstream and
downstream of the body. The remaining part of =, denoted
by III, is a small circular cylinder of radius Ry large enough
so that the body is entirely enclosed within the cylindrical
surface. Since it will be assumed that the body is slender
and smooth enough that the necessary restrictions on ¢ are
satisfied at all stations forward of the base, but that discon-
tinuities in geometry or velocity may occur there, the plane
surfaces I and II will be placed at infinity upstream and at
the base of the body, respectively.

It is sufficient, to the order of accuracy of transonic theory,
to approximate p and p at points near the body by

M u
S e B
[ L%
and

P—Po=—p, {I 'w11,+_1j [(1—M w4, +w?] }

Furthermore, if attention is restricted to the streamwise
component of force, total drag of the enclosed body is given
by

U:p‘;’Jj (M > —D)u?+v*+w? dy (1,2'—p®J I wo, Rsdf dx (145)

11 111

where », is the radial component of velocity. This expres-

sion holds, of course, at M_=1 and becomes

(146)

1T

[):e;’J I (F+w?)dy dz—op., J fu v, Rydf dx
o o

An alternative form for equation (146) which will prove useful
can be obtained by replacing the surface integral over II by
a line integral. Thus, Green’s theorem provides

J j (*+w?)dy d::J I [( g‘; )1—(2@ ):I dy dz
1 T T 53

IT

:—J 1) g‘j (/a(-‘—J fﬂ%ady dz (147)
C !
11
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z where Oy refers to an integration contour drawn around the
cross section of the body. If the exterior portions of the
control surface £ are now selected the same for the two
cases (1. e., surface 11T is the same for the wing and body),
it follows immediately by subtraction that

i C@_ : ()p»
Dy=Dp—2= <J e =il N R > 152
W ) p[rgo_u 7 do, p”ga_” S 2 do, (152)

The integrals over Cy can be divided into two parts after

s recalling that the analysis applies for small angles of attack
\\\\\\\\\&\\\\\\&\V y g ysis applic 1 angles of attack
and that ¢, can be written as the sum of ¢, and ¢
provided the thickness does not vanish. Substitution of this
relation into equation (152) yields
¢ ag&y .
Dw=D —pi( 0y ——22 (o,
w B 2 \ ('“_9.“-_" on ot
- y a¢., ' D‘pq
Ficure 15.—View of integration contour in plane II of Z. [ PV P . = da) (153
. (,"‘Sa'”'»‘ on : ('“50-,, on g )

where (7 is a curve, situated in plane 11, which goes around
the wing and also around the control surface X, do, 1s an where the integrals involving the cross-product terms are
olv{nvnt of C, zm_(l n 1s the 'umt- normal drawn into the in- | absent since ¢, and its normal derivative along Cy are
terior of € as illustrated in figure 15. But the relation
=o,+g(z) holds near the body, and therefore within
e=ent9g( ¥

hence the equation y2o=0 is satisfied in IT,

even functions ot 2, whereas ¢, and its normal derivative
are odd functions of z.
Since ¢, is proportional to «, it is evident that the first

”"I‘((,gf?,&)(}yd::_J)‘pasc ) (148) integral .of o.quation (_'1;')3) provides a ('()ntri.buti()n to the
Jy T on drag which is proportional to the square of the angle
attack. This quantity is exactly the vortex drag and
and equation (146) for drag becomes represented by the same expression at all Mach numbers.

o {* 20 i ) .Tho difl'.orvn(‘o of the two remaining int.ogyuls g'i'\'vs the

D= .,J 2 do, ‘PCDJ[“’V/':(/@(/-" (149) | difference in the drag at M_=1 of a nonlifting wing and

T body having the same longitudinal distribution of cross-

section area. Since the two integrals will not always cancel,
the drag of the wing and body will, in general, be different.
One can account in this way for the difference in drag of
thin elliptic cone-cylinders and circular cone-cylinders dis-
closed previously by integration of surface pressures. To
show this, one must evaluate the integrals of equation (152)
at the shoulder of the cone-cylinder (z=1[) using the expres-

Relation between drag of wings and bodies having the
same area distribution.—Consider sonic flow about two
aerodynamic shapes, one a thin wing and the other a slender
nonlifting body of revolution, having the same longitudinal
distribution of cross-section area. If equations (90) and
(91) are substituted into equation (146), and if the Fourier
expansion for ¢, —¢, ~obtained from equations (58) and

(65) is introduced into the integrals over IIT and the portion sions for ¢, and ¢, given in equations (110) and (93). In
of ' contiguous with III, one has the integration, the contour Oy extends on both sides of the
|y axis from —ml to +ml whereas the contour (' is a circle 4
B [J o, "”” do,+U, ;_ g(x)+ of 1'z1diu.\'_0!. Upon carrying out the in(‘licat(‘(l ()[3(-1'uti0n.s,
A one obtains the same result as that given previously

()¢ - . equation (122) in which the drag of the elliptic cone-cylinder
—p. wgv, Rsddde  (150) ; el L " g
- " on ¢ : is substantially less than that of the circular cone-cylinder.

It Special cases for which the drag of wing and body is the

The contour (' is here divided into two parts. The inner | same.—Although it is important to note the difference in the
portion that immediately surrounds the wing is denoted by | drag of two bodies, it is perhaps even more important to
Cyw, whereas the outer portion is denoted by Ciyy. 1t follows know under what conditions the drag of the bodies is the
similarly that a corresponding expression can be written for | same. If attention is confined to nonlifting cases so that
the drag of the body of revolution. Thus @2, . 18 zero, the vortex drag vanishes, and the condition for

pa| [ O¢s, (/AS dos lhv ((111(1111\ of the drag of a wing zm.(l b(.)(l)' having the same
Dp=— 5} [J( P2, 50 do. U T 'H‘J( ¢85 5., /0’:|— area distribution is that the contribution of the last two

B 111

o integrals of equation (153) cancel. This condition is
P IJ wpor Rxdbdre  (151) satisfied for certain large and important classes of shapes.
0

1 | One such class includes shapes that are cylindrical at the
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base since, then,

acpg“. a‘P2 \
f—() ———2—0 5
on ! an (T4
and :
I)w"DB (1-’—))

Another includes many shapes that taper to a point at the
rear since, then, both integrals again vanish. Other classes
for which it is more difficult to specify the geometry include
shapes for which the integrals have equal values different
from zero. The latter case provides some interesting situa-
tions in which some members of a family of wings and bodies
having the same longitudinal distribution of cross-section
area have the same drag and others have a different drag.
To be more specific, consider a low-aspect-ratio pointed wing
having a straight trailing edge normal to the free-stream
direction and smooth airfoil sections closing with a finite
wedge angle at the rear (an example of such a wing is a
triangular wing with biconvex profiles), and a body of revolu-
tion having the same area distribution as the wing. Applica-
tion of equation (153) to this pair of bodies quickly leads to
the conclusion that the drag of the body of revolution is
infinitely greater than that of the wing. This is apparent
because the integral around the base of the wing is finite,
whereas that around the base of the body is logarithmically
infinite since

& (\_ga-_yﬁ il 1 ( = {/LS‘ 4 )
J(ﬂg” = (/a,,~-2ﬂ_ (B (/.1‘) In ki i

(156)

and dS/dz is finite and £ is zero at z=[. The infinite drag of
this particular body of revolution is, of course, spurious and
is no doubt associated with the fact that the round stern is
too blunt to treat with a theory of the slender-body type.
On the other hand, there is no reason to believe that the
pressure drags of the wing and body are the same.

Since no corresponding difficulties occur at the base of the
wing, let the drag of the above wing be compared with that
of a second thin low-aspect-ratio wing having the same
longitudinal area distribution. For such a comparison,
equation (153) must be replaced by the corresponding rela-
tion between the drag of two wings

94

, Qws \ Qo
Dy Dy L L g i
g e it g&g”,” 2 ao 2 "f"'-’u'] = Q0
R W W 7

It is immediately clear that the two wings have the same
drag if they have the same geometry at the base. This con-
dition for the equality of drag of two bodies having the same
area distribution has been arrived at previously by Harder
and Klunker (ref. 16) and by Berndt (ref. 29) by somewhat
different means. As is apparent from the preceding dis-
cussion, this condition is sufficient but not necessary.

As a further example, consider the case where the geometry
of the two wings is affinely related, that is, for a constant
chord, the second wing is derived from the first by simple
stretchings of the y and z dimensions. For the present class
of wings, having straight trailing edges normal to the free-
stream direction and airfoil sections closing with a finite

wedge angle at the rear, each of the integrals of equation (157)
can be written in the form

i a‘pgu' p: e ) Y &
JC“_@”, = '(/JFZJA [(p_;w 2L au//)]j:[x(.r([ <\;) (158)

Then the product A7 of aspect ratio and thickness ratio is the
same for both wings, although A and 7 individually may be
different. 1t follows, moreover, from the fact that the ratio
z/t of the wing ordinates to the maximum thickness is the
same function of z// and y/s, for affinely related wings, that
¢, 1s the same function of y/s, for both wings. Since s, is
proportional to A and Ar is the same for both wings, it fol-
lows that the two integrals of equation (157) have the same
value, and both wings have the same drag. Inasmuch as it is
only the conditions at the trailing edge that enter into the
integrals of equation (157), similar reasoning shows that the
two wings also have the same drag if the condition of affinely
related geometry applies only to the cross-section shape and
surface slopes in the 2 direction at the trailing edge. On the
other hand, if the wings have merely the same longitudinal
distribution of cross-section area, the simple relations just
described between the various elements of equation (157) no
longer hold, and the wings will, in general, have different
drags.

APPLICATION TO NONPLANAR PROBLEMS

Equation (90) expressing the relation between the per-
turbation potential for sonic flow about a thin low-aspect-
ratio wing and that about a slender body of revolution has
been derived on the assumption that the boundary condi-
tions for the wing can be specified on a planar surface. The
development outlined in figure 6 suggests that the result can
actually be extended to include more general classes of slender
shapes. Accordingly, assume that equation (90) holds for
cases involving nonplanar boundary conditions and let the
results given in the preceding sections for the drag at M_ =1
of thin elliptic cones be extended to include slender elliptic
cones of any eccentricity. The analysis proceeds identically
to that for the thin elliptic cone, the only change being that
¢2,, must be recalculated. This is a simple problem in two-
dimensional potential theory since ¢,  represents the poten-
tial associated with uniform growth of an ellipse, and the
result, when evaluated on the cone surface, is

G Stma mx [ i

Substitution of this result into equation (153) leads to the
following relation for the drag

[)u':””_?rpm:[zvm2 m2t2ln l:’((/ ( 1+L)-"l

4 21 2ml

(159)

(160)

Clomparison of these two expressions with the correspond-
ing relations for thin cones given in equations (110) and (122
shows that they differ by the inclusion of an additional factor
(1-+¢/2ml) in the more general result. Although the contri-
bution of this term is of negligible importance for cones hav-
ing t/ml small, it is vital for nearly circular cones, and indeed
necessary to assure the equality of Dy and Dy when the ellip-
tic cone becomes a circular cone, that is, when ¢/ml=2. In
order to illustrate this point further, figure 16 has been pre-
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Ticure 16.—Drag of elliptic cone-cylinders at free-stream Mach
number 1.

pared, showing the variation with 2ml/t, or the ratio of major
axis to minor axis, of the drag at M_=1 of two families of
elliptic cones. All members of each family have the same
longitudinal distribution of cross-section area. As indicated,
one family is defined by m#/l=0.02 and includes the circular
cone-cylinder having a semiapex angle § of 0.10 radian, and
the other by mt/l=0.03 and includes the circular cone-
cylinder having #=0.1225 radian. The solid line indicates
the values computed using equation (160), and the dotted
line those computed using equation (122). In both cases,
the drag Dy of the circular cone-cylinder is calculated from
equation (127). As would be anticipated, the solid and
dotted lines coincide for thin cones, but they differ consid-
erably for circular cones (2ml/t=1). More interesting, per-
haps, is the extent to which the drag of a family of cone-
eylinders having the same longitudinal distribution of cross-
section area depends on the shape of the cross section.,

The procedures applied here to the elliptic cone-cylinders
can also be applied to many other cases, such as wing-body
combinations, etc. For bodies having the same longitudinal
distribution of cross-section area as a cone-cylinder one must
merely determine the appropriate function for ¢, —and pro-
ceed in the same manner as for the elliptic cone-cylinders.
For other bodies it is also necessary to have knowledge of
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either the theoretical solution or the experimental pressure
distribution for sonic flow around a body of revolution having
the same (or affinely related) longitudinal distribution of
cross-section area as the given body. It should be remarked,
however, that the extension to some of these problems in-
volves the assumption that equation (90) applies to non-
planar cases.

COMPARISON WITH EXPERIMENTAL RESULTS

In the remainder of this paper, experimental data will be
presented and a comparison made with the predictions of
sonic slender-body theory. Although these comparisons
may not be ideal, since experimental data for M_ =1 are
only available for families of shapes that strain the assump-
tions of the theory, they show remarkable agreement with
the theory and help define the range for which the results
may be expected to apply.

Cone-cylinders.—The most informative class of bodies to
investigate further with regard to comparison of theory and
experiment is the cone-cylinder. This is because of the
availability of not only the similarity rules, ete., but also the
complete solution for the pressure distribution and flow
field in the vicinity of such bodies. Experimental data are
also available in reference 18 by Solomon for the pressure at
several points on the surface of two rather blunt circular
cone-cylinders at Mach numbers near unity. The tests were
conducted on cone-cylinders having semiapex angles of 20°
and 25° and at Mach numbers up to about 0.96. The cor-
responding pressures at M_=1 can be obtained only by
extrapolation. The test Mach numbers are sufficiently
high, however, that the local Mach numbers on the body sur-
face are virtually independent of the free-stream Mach
number. These pressures are plotted in figure 17 together
with the theoretical pressure distribution for slender cone-
evlinders at M_=1. The latter were computed using
equation (112) together with the theoretical pressure distribu-
tion for a circular cone-cylinder having semiapex angle 6=
0.10, see figure 9. With the exception of one point on the
25° cone-cylinder, the theoretical and experimental values
are in remarkable agreement, considering the bluntness of the
cones.
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Ficure 17.—Comparison of theoretical and experimental pressure distributions on two cone-cylinders at free-stream Mach number 1.
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It would be very informative to make similar comparisons
for cone-cylinders that are more slender, or that have non-
cireular cross sections, but the authors are unaware of any
suitable experimental data. Studies involving bodies of
revolution having area distributions that differ from that of
cone-cylinders are handicapped at the present time by the
lack of theoretical solutions for the transonic pressure dis-
tribution, and would have to be confined to the investigation
of such items as the range of applicability of the similarity
rules, the existence and lateral extent of the g(z) function,
ete.

Wings.—Since complete solutions for sonic flow around
three-dimensional wings have not yet been obtained, the
following discussion must be confined to cases in which
experimental information is known for two or more wings or
bodies having the same or affinely related longitudinal dis-
tributions of cross-section area. Probably the most exten-
sive set of data of this type is that given in reference 20 for
a large family of affinely related wings of rectangular plan
form having NACA 63A0XX sections. Since the results
for M ,=1 can be presented most concisely by using the
variables suggested by the transonic similarity rules for
wings of finite span (see, e. g., ref. 4), the experimental results
for the zero-lift pressure drag and the lift-curve slope at
M_=1 are given in figure 18 by plotting (',/7% and 7%}, . as
functions of A7’ As shown previously by A\I(-Dv\'ltt‘
(ref. 20), these data confirm the statement provided by the
similarity rules that the results so plotted should define a
single curve for each aerodynamic quantity.

The curves representing the zero-lift pressure drag and
the lift-curve slope have the same general form for high-
aspect-ratio wings. The curves approach horizontal lines
for the wings of larger aspect ratio, and the values for the
lift and drag are not too different from the theoretical values
given by Guderley and Yoshihara in references 30 and 31
for two-dimensional sonic flow around double-wedge profiles.
The curves approach straight lines through the origin for
low-aspect-ratio wings and the experimental values for the
lift-curve slope of wings having A7* less than about unity
practically coincide with the theoretical values given by
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Ficure 18.—Drag and lift at free-stream. Mach number 1 of a family

of rectangular wings having NACA 63A0XX profiles.

equation (143). The corresponding theoretical values for
the drag at M_=1 are not known.

Some measure of the applicability of the theoretical results
an still be derived, however, by examining the relation be-
tween the experimental drags of various wings. If the
effects of the violation of the theoretical requirements that
occurs at the round nose of the unswept leading edge of each
of the present family of wings can be disregarded, the dis-
cussion following equation (158) applies and all low-aspect-
ratio wings having a given longitudinal distribution of cross-
section area have the same drag. Inasmuch as not many
pairs of wings of the present family actually have the same
area distribution, a more useful statement of the result is
that the drag is a unique function of the area distribution.
Since the area distribution of an affinely related family of
wings can be specified by giving, for instance, the chord / and
the ratio S,/ (or its equivalent, the product of the aspect
ratio and the thickness ratio) of the maximum cross-section
area to the chord squared, it follows that the drag and
geometry of the present family of wings are related according

to
[ m
(0U22)1 < > H(dn)

where f; represents an unknown function of the indicated
rariables. This relation may be contrasted with that pro-
vided by the similarity rule that states

(161)

ot D Rl
TS AT

(162)
where S, refers to the plan-form area. At first glance, the
two relationships appear to bear only slicht resemblance.
It can be seen upon closer examination, however, that some
of the apparent differences are superficial and of little or no
significance. Thus, let equation (161) be rewritten as
: e
DU S,,

= ’i Pf(Ar)= *f (Ar)2fs(A7)

or

%:Aﬂé_/gmr) (163)

This appears to be the closest that the two results can be
brought together without introducing additional restric-
tions or approximations. Both are now concerned with the
same qmntitv Op/7%, but equation (162) states that this
quantity is equal to some unknown function of A7, whereas

equation (163) states that it is equal to A% times some
function of Ar. The only way in which both results can
be universally correct is for the functions f, and f; to be
constants and not dependent on either Ar or A7%. Both
rules are not universally correct, however, since equation (163)
is derived from transonic slender-body theory and therefore
can be expected to apply only to wings of small aspect ratio.
From the foregoing considerations, one can conclude that
the drag at M_,=1 of the low-aspect-ratio wings of the
present family must depend on the geometry in such a way
that Cp/r% is linearly proportional to A7%. KExamination
of the drag data of figure 18 shows that the experimental
results exhibit precisely this trend for wings of A7 less
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than about unity. An alternative interpretation of this
result is that the drag of a number of low-aspect-ratio wings
of the present family all having the same chord, varies as

/
the square of the frontal area; that is, D/<*1,' pw(,'(ﬁ[z)
/| \2

depends on the square of S,,/I>.  Further discussion of these
and related points appears in reference 32.

It appears that the degree of correspondence between
theory and experiment disclosed above for such extreme
cases as rectangular wings of aspect ratios 3 and 4 must be
attributed partially to the averaging influence of integration
and that the same close correspondence may not be found
for more detailed quantities. For example, slender-body
theory indicates that the lift on low-aspect-ratio rectangular
wings at M_=1 is concentrated along the leading edge.
Although pressure-distribution measurements were not in-
cluded in the test program reported in reference 20, pitching-
moment measurements were made from which the center-of-
pressure position can easily be deduced. The results indi-
cate that the center-of-pressure position at small angles of
attack is within the first 10-percent chord at M_=1 for each
of the wings of aspect ratio 1/2 or 1, but moves progressively
rearward for wings of larger aspect ratio. Hence the range
of A7*% for which theory and experiment agree may be ex-
pected to be less than that indicated by the integrated lift
and drag results. On the other hand, application to wings
of the rectangular plan form imposes severe strain on the
slender-body assumptions, and better agreement, or a wider
range of applicability, might be anticipated with wings of
other plan form, such as triangular.

Wing-body combinations.—Several comparisons between
the experimental zero-lift drags of wing-body combinations
and bodies of revolution having the same longitudinal dis-
tribution of cross-section area were given by Whitcomb in
reference 6 in connection with his discovery of the area rule.
The bodies tested were of such geometry that the integrals
of equation (153) are zero and the drags of wing-body com-
binations and their equivalent bodies of revolution should
be the same. The experimental results show excellent
agreement in some cases, and lesser agreement in other
cases. These results will not be discussed further here since
the experimental data are already analyzed from the point
of view of equality of drag in reference 6.
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