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AVERAGE PROPERTIES
ON FLAT PLATE

OF COMPRESSIBLE IJAMINARBOUNDARY LAYER
WITH UNSTEADY FLIGHT VELOCITY‘

By FRANKLIN K. MooREand SIMONOSTRACE

SUMMARY

TtM time-average charaa!eridhs of ihund.a.ry @er8 over a

@t plate in ruzrly quusi-steady jfow are cktermirwi. The
plate may be eit.hr h.sulded or tioth.ermd. The time averag~

are found Without 8p80if~~ the ph Veiki@ t?X@tiy exwpt

that it h potiwe and ?ia.8an average vuhe.

Ea& time average involves two groups of L9-m.8 to the order

considered in the report, a time amrage of gum&tedy term8,

and tmvM reluki to tie reduced fr~ of th plate velocity

jluctwuth-ls.

The guu&d.eady term di~er from the txdutx for tig @w

at h corresponding average velocity. Thae di~erw are

reinforced by the frequ.en@ okpendent averages for adtk.b&

wd? temperature and hea.t-trawfer &. The e~ech oppose

one andhr in the we of skin fria%n.

The spm”al awe of harmonic vekly variation h mid.aed,

and it ia found that large amplhuk accentuate the imporknw

of h freg-depmdeni term.

08cihthg the wall to hcreme the heat-tiarwfer rai% i.s not

adcantugeous if tlw power to omi.lhte t.lwplate h aecownted for.

~RODUCTION

In many current problems of aerodynamics, unsteady
motions of rLsurface are important. The accelerating and
decelerating phases of missile flight and the intermittent
flow in an engine during unstable combustion are examples.
The nature of the boundary layer of these unsteady flows
may be studied with a view to detemnmm“ “ g friction drag,
surface temperature, and rate of beat transfer through the
surface. Usually, the boundary layer is so thin that’ it
responds ahnost instady to temporal changes in flow con-
ditions. Thus, the time h$tc~ of the boundary layer is a
succession of steady statea, and such a boundary layer is
called quasi-steady. If the motion involves accelerations
which me particularly rapid, the quasi-steady description
may require correction.

In any we, it is often des.tiedto assess the average tiect
of fluctuations in flow conditions. For exiunple, if an insu-
lated body is in motion with a speed that varies in time about
some average value, the average friction drag and th”eaver-
age surface temperature may differ from values appropriate
to steady motion at the average speed. Another munple is
furnished by the speculation that the net performance of a
heat exchanger could be altered by imparting an unsteady
motion to the wall.

In the present study, as an idealized special case, of the
foregoing type of problem, a semi-infiniteflat plate is a.wuned
to be ,in motion parallel to its surface and normal to its
leading edge with a flight velocity U(t) that is always in
the same direction but has a magnitude that fluctuates with
time. The result@g boundary layer is assumed ltiar and
compr=ible, and the surface is ;lther insulated or at con-
stant temperature. The assumed Prandtl number is 0.72,
which is appropriate for air under normal conditions.

The boundary layer is awuned to be nearly quasi-steady.
The basic boundary-layer anal@s k already available for
this problem in references 1 and 2, which treat the insulated
plate and the constant plate temperature cases, respectively.
The velocity profile in the boundq laye; is found in the
form

;=* [~’(a)+~of~(a)+~lf{(a)+ . . . +RVh(U)+ . ..]

(1)

where u is the usual Blasius variable signHying parabolic
similaxi~ in the boundary layer. (A complete definition
will appear in a subsequent section.) The function F(u)
is the Blasius function for steady motion of a flat plate.
The parameters tn govern deviations from quasi+teadincsx

X“ dW(T)
tn-l—va+l dT.——— n=l,2,3, . . . (2)

In casea of tlight at substantial speed, the factor U*+l
usually ensure that t=-1 is a rather small quantity. The
functions ~(u), ~O(u),and fl(u) are available in reference 1.
A full list of symbol notation is provided in appendix A.

If the plate surface is insulated, the temperature profile
may be written as

#=1+++M2 (T)r(u, J’0,~1,h...) (3a)
m

where the ‘%ecovery factor”

r=li!(u)+t~o(a) +~lrl(u)+ . . . +&W(U)+ . . . (3b)

and the functions R, 7., and ~1are tabulated in reference 1.
If the plate is @ a ccnstamttemperature at whioh heat tmms-
fer tak place, reference 2 gives
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o—e ‘+-~=H(.) I~,(om–O.)

‘–O.—O. sb’)+
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ro Md +%,(o:_om)80(”) +

(4)

and provides the functions H, S, ~, +3.,hl, and s1.
A study of the time-average properties of the flow rep&-

sented by equations (1) to (4), when the speed of the platez
u fluctuates with time, is described herein. The functions
~W r~, &, ~d % me required for this purpose, and, not
being available in references 1 and 2, are determined herein.

A previous report (ref. 3) studi~ the average rate of heat
tmnsfer from an oscillat~flat plate, but diilem frdm the
present study in that the plate is doubly ~te and there
is no net motion through the surrounding fluid; on the
avemge, the plate is at rest. Appropriate comparisons are
made herein between the. results of the present study and
those of reference 3.

DERIVATIONOF FORMULASFOR AVERAGEPROPERTIESOF
BOUNDARYLAYERS

The stream function x for nearly quasi+teady flows is
deiined in references 1 and 2 as

+=mxf(g, -to, il, rz, . . .) (5)

The coordinates X and Y measured in a system with its
origg fixed at the lending edge of the plate are related to
those (z,y) in a coordinate system w~ch is stationary in
the fluid by (see sketches (a) and (b)):

x=x+ J‘Udt
o

(7)

(8)

Equation (8) is employed to make the momentum equation
independent of the energy equation. The velocity in the
X, Yqstem is related to that in the x,y+ystem by

U(x, Y, T) =u=(z,~,t) + u(t) (9)

The constant Cis the proportionality factor in the assumed
viscosi~-t empemture variation.

(lo)

110 the presentproblem,ffcom=fflty h fmLortanL mmhdbss is rmtrk@d to auter
@Y tiwb IIIOtfOnof* Plate. T’fmL%fn a mrrmwndlng wfnd-tnrmeltmt UM modal
Pxdtbnmn fdbvmkdmmkhauy and the trrrmofSow wmId Imhafd mnclant. The
~oftiwmlmd 2hramm-hflti mtimtappPfora MmM~a
PnMng flow.

This constant may be evaluated by matching equation (10)
with the Sutherland formula at some appropriate point, for
example, at the wall. Thus

(11)

The unsteady boundary-layer chmacterietim cttnbe deter-
mined from equations (1) to (6).

FORMOFUNSTBADYBOUNDARY-I.AYERCHARACIEflJsTICS

Insulated plate,—The unsteady boundary-layer charac-
teristicshorn which the average properties will be determined
are presented in this and the subsequent section in a more
extended form than in references 1 and 2. The wall shear

()
strw T.= P~ may be obtained k the following d@cm-

a~ .

sionkss form horn equations (l), (8), and (10), and from the
state equation for constant pre9sure (PO=Constant):

The displacement

(12)

thickness 6* maybe deiineda as

(13)

Y

u(t) - L-Positkm of *I8
Ofthne /*o

~z:z ------ x

I

(a)

U(T)

x

(b)

(a) Coordinatesfixedin fluidat rest.

(b) Coordinatesiixedinplata.

J‘Thestmdy-fim da?adtfonof elkplacanenttbhknmb adopbxl heroin. AoWdfY, tho
dlsplwementeffectof tboWm3ary leyerb mt properlym-ted by tblsdetlrdtlonIftho
flcnvisnnstmdy. However,fnreferemce4it fsshownthattbeetmdyaxprewfonbpmtoftbo
mrrsd OIW and bmuLw tbfsemrmsfonyfeW themrrmt qnmkteady tit ftemloufetbn
f9tberefmwWerr8nted. .
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Upon application of equation (l), the state equation @O= Constant), and equations (3) into (13) there results

r{
6*= ~mx zim(2u–~–[fo~o( mj+fitl(~)+w(++..

u d. ‘+m[J:Rd”+’JmTod”+ ~

“Jm”’d”+~Jm”@Jd”+ 0.- 1}
(14)

where )
77L=(7-l)M: (15)

Isothermal plate.—The dirnensionleaswall-shear-stress, or locakkin-friction coefficients for the case of heat transfer at
the platq is identical in form with its counterpart for an insulated plate (eq. (12)). The constant C is evaluated by
assuming’ that O@in equation (11) is the adiabatic wall temperature for the i.ndated plate and the maintained iso-
thermal temperature in the he&transfer case.

The displacement thickness for this case is obtained horn equation (l), the state equation, and equations (4) and- (13)
rmdis given by

‘*=*X{:.
lzm(2u–m–[rofo( @)+r*fl(0)+rifmi@)+ . . .]+

where J
~_eu–e.

em
(17)

The local rate of heat transfer is given by .

(18)

Using the definition of the Prandtl number, the state equa-
tion, and equations (4), (8), and (10) in equation (18) yields

fl– -, -Om)~Y{H,(0)+&qO)+–-;r ( w

[ 1 .[
r, MM-&(o)+ . . . +tl m)+ -

&s;(o)+ . . .
1[

+r?l W)+% d’(o)+ . . .
1}
(19)

TIMEAVERAGmFORARRITRARYVELOCITYFLUOITIATYONS

It is now assumed that the velocity fluctuate in a periodic
but othenvise arbitrary mannar, that is,

u(t) = u~(fd) (20)

where Q is the frequency of the fluctuations and g is an
arbitrary positive function so that

s

1*ij=T* , g(r) d7=l

where .
T=&

Substituting equations (2o) and
yields

(21)

(22)

(22) into equation (2)

(23)

with the frequency paxameter Q given by

~=~a
u.

(24)

Therefore, for arbitrary fluctuations of the velocity, the aver-
age local skin fiction coefficient to order Q2is obtained by
applying equations (20), (22), (23), and (24) to equation (12)
and integrating as in equation (21). Since for a periodic
function,

~=o (25)
and Sk.O

g-y=ng-(~+1) (g’y , (26)

the following equation rew.its:

(27)

According to the remarks in the previous section, equation
(27) holds for both the insulated and isothermal plates where
only the value of (?,differs.

In a simiIar manner the time averages of equations (14,
(16), and (19) are

%==J-(x“ ~ lim, (2u—F) +m*~
u. J“R do-+

&- 0

{[ 1 (s

m
fl~ ~fl(m)+foo(’”) g-9/2(g’)2+’?ll* 32,

T1du+

l“”~d”)’-’~)’})}) (28)

for the displacement thickness of the insulated plate;

my=Cv.x ylfi .j~m(%—F’) +-m*~
u. s

- S’ da+
&- 0

‘s
2@g-’fl “H du+@

{[ 1
– ;fl(’=)+fw g-en(i)’+

m“(:i’’d”+~m’~d”) g’’’’~+’+

- 2@(i+f’1d”+J”~d”)g-’n@’)2})‘2’)
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for the displacement thiclmess of the isothermal plate; and

~=-w=(~’’’)~+’”~’”~’ +

as
{[ ~ 1

:h;(o)+&”(o) g-’i’(g’)’+

[
~ ; 8:(0)+& (o)] g-3qg’)2

})
(30)

for the average local heatAmmsferrate of an isotherm-alplate
where

m=m*@ T.
and

(31)

The average value of the adiabatic wall temperature (i. e.,
for the insulated plate) is also obtained in a similar manner
from equation (3) and is given by

ii

{ [ 12’}(’2)&=l+~* 17(0)@+Q’ rl(0)+rm(O) g- (g )2
m

SECOND-ORDERSOLUTIONS

. In order to determine the average properties of unsteady
boundary layers to order W, it is evident from equations
(27) to (32) that the second+rder (in ~0) solutions (denoted
by double-zero subscript) must be know-n. These solu-
tions nre determined in subsequent sections by extending the
results of references 1 and 2.

DIFFBRENTLU EQUATIONS AND BOIJNDABY CONDIYYONS

The partial differential equations describing the unsteady
flow and heat transfer of compressible viscous fluids are
given in reference 1 m

#Fr+k&P-J!!#%-I-=u’(n+Cvmk-r (33)
and

In reference 2 it was found more convenient to write eaua-
tion (34a) as

_ e–e.e (9=-0.

The appropriate boundmy conditions on ~ are

+F(x,~ ,T)=A-(O,Y,Z?=U(Z’)
k-(x,o,n=$(x,o,n=o

For the case of an insulated surface as treated in
1, the boundary conditions on 8 are

L9(X,0,T)=13(0,Y,Z’)=0.
and

&r(x,o,z’) =0

.

(34b)

(35)

(36a)

(36b)

reference

(37a)

(37b)

For an isothermal plate, equations
ref. 2) by

(37) are mplnced (SW

e(X,- ,z’)=e(O,Y,z’) -0 (381L)
and also

e (X,O,T)-“1 (38b)
SOLUTIONS

The methods of solutions for the insulated and isothermal
plate are identical to those in references 1 ond 2, respectively,
but, in each csse, the method is extended herein to yield
second+rder results.

liundated plate,—For the insulated plate the boundary-
value problem is deiined by equations (33), (34n), (36), and
(37). For nearly quasi-steady flows the stream function
given by equation (5) and the temperature function given
by equation (3a) are substituted into equations (33), (34n),
(36), and (37) to yield

-fU(~ ,f.)=z; f.(o,rJ =f (O,rfi)=0 (41)

~a(o,~.)=r( co,t=)=o (42)

Introduction of equation (2) innkes equations (41) and
(4$ self-consistent (i. e., functions of u nnd ~. only). l?or
nearly quasi+teady flows, ~%<1 (see refs. 1 or 2); there-
fore, the functions and r can be expanded as follows:

Y(u,rn)=F(u) +ro.fo(a) +f-lfL(u) + . . . +r;j-m(d)+ . . . +
rorljol(u)+’ . . . (43)

r(u,~J =l?(r) +~~o(a)+~lrl(a)+ . . . +~~rm(a)+ . . . +
~O~rm(d + . . . (44)

Substitution of equations (42) and (44) into equations (39)
to (42) and collection of tams independent of f nnd those
multipled by to and ~1yield the three sets of equations solved
in reference 1. Since for the present purposes the next
higher order terms of equations (43) and (44) nre needed
(see eqs. (27) to (32), e. g.), the terms multiplied by ~j me
collected and field

-% +~w–@%+5~.l&=–2Y~( 2–fi)+fi(2c-3jo) (45)

and

t&+ Pr(fi~-4F’r.) =Pr[2vrh+2fgo-5B~.–

3r~jo–~fm–i~q (46)

in addition to
fcc(~)=fm(o)=J-OJ(0)=0 (47)

and
rL(0) =rm(~ ) =0 (48)

The function F and its derivatives are available in reference
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5, andjO,TOand their derivatives are presented in reference 1.
Hence, the secondader functions fmand m for the insulated
plate are defined by equations (45) to (48).

Isothermal plate,—Equation (45) holds for the isothermal
plute as well as for the insulated one. However; for the @-
thermal plate, equations (34b) and (38) replace equations

“ (34rL)and (37). The temperature function given by equation
(4) is obtained by letting

where

h(u,r.) =H(u) +f-ohu(u)+r,h(u)+ ...+Mw(d + .“..+
rorlhl(u) + . . .

and

Substituting equation (4) into equations (34b) and (38)
yields those equations treated in reference 2 independent of
f and to order ~0and ~,. To order ~~the follow@g equations
are obtained:

l&+ Pr(17i&-4F’hm)=Pr(2rh&3f&-6H~m+ ‘
2~o–8hJ (49)

[
9&p@8&r=@’8m) =Pr %8& 5~’fcr

1
3f@;+28r#o-F’%4 w)’ (50)

&(@)=&l(o)=o (51)

8~(co) =SW(0) =0 (52)

The functions on the ~ghkhand sides of equations (49) and
(50) are given in references 1,2, and 6.

Equations (46) to (52) thus define four boundary-value
problems for the functions ~M,rrn,h, and sm. Th~e prob-
lems are solved for a Prandtl number of 0.72 by a numerical
integration method described in references 1 and 2. The
functions are presented m table I.

RESULTSFOR AVERAGEPROPERTIESOF UNSTEADY
BOUNDARYLAYER

The following formulas are obtained by substituting the
results of references 1 and 2 and those of the previous sec-
tion into equations (27), (28), (29), (30), and (32), re-
spectively:

r
~/= (0.6640) # ~fi– (1.306) Q2g-5flg”+ . ..1 (53)

m

For the insulated plate case,

fP[(l.986)g-’@g’2+(3.420)m*m+ . . .} (~)

9=1+ (0.8480) &m+ (5.051) Q’g-’g”+ . ..] - (55)
m

and for the isothermal plate ease,

7=(1.721)
r

%x {(1+1.13 @)~+(O.1673)m*~+
m

Q1[(1.986+1.0950) g-gflg’g+(0.3112) zn*_+ . . .}

(56)

Q2[(0.8360) @g-7~g’i+ (0.7574) m*g-3@gn]+ . . .} (57)

DISCT!9SION OF QUA23MTEADY TERM

The leading terms (i. e., tams independent of Q) of equa-
tions (53) to (67) reflect the nonlinear dependence of the
physical quantities on Z7in a quasi-steady situation. Under
the restri@ion that g is positive, all these leading terms are,
of co&e, positive.

.

Obviously in the completely steady insulated case, when
g= 1, all the leading terms in the braces equal 1. In the
steady isothermal case, of course, only the factors involving
g became unity. lln the general quasi-steady case, when
only the restriction that ~= 1 is applied (eq. (21)), the mag-
nitude of the leading terms may be compared with unity
(the steady case) using a special case of the Schwartz ine-
quality (ref. 6), namely,

Lf the choice m,;=O,l is made; equation (58) yields

For m,n=O,l/2, the result is

For m, n=3/4, 1/4, ~ g~>~= 1 and, therefore, in view of
equation (59b), yields

p~ 1 (59C)
——

If m=n= 1/4, g’1’ g-1J2 >1, which, together with equation
(59b), yields

~> 1— (59d)

——
If m, n=514, 1/4, then @Jz glD >F2 and, therefore, in view
of equations (69b) and (69c), yields

lamlated .surface.-hspection of equations (53) to (55),
together with equations (59), shows thatJor the in@ated
surface case, the quasi-steady values of C’f, ~, and 13Waxe
always greater than or equal to the corresponding quanti~
for uniform flow at the average velocity ~&

The foregoing effects are clarified by considering the aver-
age velocity profile. For example, suppose that for half of
the time, O= 1/2, and for the rest,of the time, g=3/2, so that
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~= 1 (fig. 1(a)); for incompressible flow, the average
steady velocity proiile is

%=:[9’(%)+W.E”=)l

——. —

ADTTSORY COMMIZTEE FOR AERONAIJltZCS

quasi-

(60)

The result appesm in figure 1 (b); the dash-dot linesrepresent
the instantaneous quasi-steady proflea at the low and high
velocities, the dash line represents the Blasius proille for the
average (as if g= 1), and the solid line is the average proiile
from equation (60). The valocity from equation (60) is
greater than the Blasiua value near the wall and less than
that value far horn the wall. These profile differences are
more pronounced if the variation of stream velocity is more
extreme; if g= 1/2 for nine-tenths of the time and if g= 11/2
for the rest of the time (fig. 1(c)), then

The result appearain figure 1 (d). The deviation of the avar-
age “profile from the Blasiua shape cleaily implies increased
skin friction, and also suggests an increase of 3*.

Note that the effects just discussed can be deten.nined
without fully specifying the function g. All that is needed
is a specification of the proportion of time during which the
various velocity values apply; in effect, a probabdity density
distribution for velocity is sufficient. In deriving equations
(60) and (61), the ill~trative velocity functions were chosen
for simplicity; of course, the pr~ent analysis would not
apply near thesudden veloci~ changeswhich wmrepostulated.

5

4

3

.92

I

El
(a)

o [
T/2r

I I I
Velccily Wofik

Tie cvefqq iifUm
—-— Instardaneaus Blm”~ u/U(@/2)

—-— Imtodanemus M3shs. u/Wu=3/21
l.––-––- Blosius for steady fb ,Um- -“

(b)

Heat transfer.-ll there is heat transfer at constant wcdl
temperature, the quaai-steady value of ~ from equation (66)
is grater than the Blasius value unless @ is nearly at its
maximum negative value, —1, which corresponds to a wall
temperature of absolute zero. The heatdmmaferrate ~ must
be regarded as a function of @ and m* (eq. (66)). The finer
cross-hatched plane of figure 2 denotea q aa a function of @
and m* for the average Um(g= 1). Positive g doncheshewtflow
out of the surface into the gas. If g is not always 1, then tlm
fit term of equation (57), independent of m*, tends to di-
tih themagnitude of quasi-steady heat-transfer rate. Tho
second term, proportional to m* and independent of @,
always provides less heat flow out of the surface. The result
is sketched as the coarser crosshatched plane of figure 2,

Figure 2 indicates that variable stream velocity results in
increased heat transfer to the wall only in the case of a coolod
(q<O) wall, and even then only if m* haa a value so that

(62)

incasw of negative ~. If @>O, the condition of zero avmago
heat transfer is

(63)

DISCUSSION OF PRBQUENCY-DEPBNDENT TEUMS

Equation (53) indicates that averago akin friction is
diminkhed in proportion to the square of the frequcmcy,
The dominant factor in this effect is the response of the
boundary layer to rate of change of acceleration W(O) in

I I I1

Vjbcity pvfil~

Time cvemge, G/Um
—-— Instantaneous Blasiu~ u/U(gdfi
—--— ktstontonews BMW, ufl(fpll~

——––– BIOSJUS for sfeody fbw, L&

(B) Distribution of plati velooity with time. Moderate velocity

variation.

(b) Boundary-1ayervelocity protlle. Moderatevelocity variation.

Fmmm l.—lIMect of plate velocity variation on

6

5

4

3

2

I

HI c)
o I

7/2v

(c) Diatriiution of pIatevelocitywithtime. Abruptvelocityvariation.

(d) Bounda@ayer veloci~ profile. Abruptvoloaityvariation.

pro~e of averagevelocityin boundarylayer.
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oq. (27)). With respect to skin friction, the quasi-steady
tmm and the frequency term are in opposition. Subject to
the requirement that $2<<1, a flat plate will experience
a diminished average drag if

—
p–l

Q’> —
(1.306) g-’@g’2

(64)

Owing to the appearance of gm in inequa~ty (64), abrupt
velocity changes would favor drag reduction.

Insulated surface.—The average value ‘of 6*, horn equa.
tion (54), will increase with Qa. The adiabatic TVW tem-
pmature increases with W, which reinforces the effect of the
quasi-shmdy term.

Heat transfer.—From equation (57), the terms propor-
tional to ~ all reinforce the effects of the quasi-steady terms
with respect to the steady value. That is, the @ term in @
reduced the magnitude of g a-sdoes the quasi-steady term
since ~< 1, and the negative value of the f22term in in* is

Heat Ironsfer

m Averqe

Steody

‘$

.

Fxrmnn 2.—Effeot of unsteady velocity on relation among average

heat tmnefer, temperature difference and Maoh number.

consistent with the corresponding quasi-steady term since
p>l.

In the heabtrangfer case, the @ terms of 3* also reinforce
the corresponding quasi-steady terms, when the groups
depending on @ and m* are considered separately, just as in
the foregoing discussion of, g.

-ULm FOR HARMONIC U(T)

It may ofta be of interest to evaluate equations (53) to

(57) when the function g is specialized to have harmonic
form

g=l+Esin T .

where the restriction 0<6<1 is imposed so that flight
direction is not reversed.

Arbitrary e.—The various integrals are evaluated for arbi-
trary c in appendix B in the order of their appearmce in
equations (53) to (57) with the following results:

1,+==:- [4E(IC)-(1.--,)~(~)] (I31O)

(B13)

(Bl)

14=g-9~g”=
2

lo5r~(l-#j~

X[(3+16c–6~ E(k)–2(3+4c–3&) K(k)] (jB15)

18=~=2~— [(23+9d) E(k)–8(1–c) K(k)] WV

“=-=-+:;16’E(k)-”(k)l
(i314)

whare
k={-),

(m2)

(65)

(B3)

and K and E we the complete elliptic integrals of the iirst
~d second kind, respectively. The results me pr~~ted

in table 11
Small E.—b the event that e ie very small, to a first

approximation, each of the foregoing equations for arbitxary
e may be replaced by making the appropriate substitution
for N in the formulas
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F!=l+:m?–1) 2}’.
,...

,“

- (66)
~=; ~

e Near nnity.-If Eisnear unity, then ii (eq. (B3)) is also
nenr unity, or k’=-W-~ ‘k nearly zero; and the
asymptotic relations

,.

K(k) =hl ~“
~-e

E(k) =1.

apply (ref. 7). Equations (65) @come

~ .8@. —“ 2J2 1
W’ 9-6D9’2 ~.3T ~

-=m*~L9
“G’

—2JZ1g-W#~+ ~()~ (1—●
)’

.— —
(

In*e.+)

—

?<; 9-29’2 :&

.

(67)

Thus, as -1, equations (53) to (57) show that the effect
of the Q=terms is greatly accentuated because their coeffi-
cients approach i.niinityfrom equations (67). For example,
tiquation (53) becomes

~P(O.6640)~ [(1.20)–(0.3918) ~+ . . .] (68)
m

It should be noted that under these circumstances (-1)
the higher order terms in flabecome significant.

REMARESON HEAT-TRANSFERPROBLEM

In a previous section it waa shown that the heat-transfer
rata with an oscillating surface d.iilers I%om that @h a
surface in stOady motion (see fig. 2). The relative merits
of the oscillations, however, depend upon the particular
configuration or application. For example, it has been
determined that a greater heat-transfer rate to a cooled
oscillating wall can be obtained for @<O provided that
inequality (62) applies. This result suggests that, if one
wishes h increase the rate of heat abstraction from a gas
flow over a cooled surface (as, e. g., in a heat exchanger),
it maybe advantageous ti oscillate the surface mechanically

.
in its’ own plmie so that the relative stream velocity oscil-
lates. The power required to oscillate the plate should
properly be assessed to the system. Unless this power is
less than the additional heat transferred, no heat is ab-
stracted from the hot gas; also in this case that power could
be used directly to increase the eneqg obtnined with the
surface iixed or in steady motion. Of course, if the oscilla-
tions were inherent to the system, the assemmentwould not
be required.

If the power required ti oscillate the plate is taken into
account, the comparison is as follows: The excee9 of power
required beyond that corresponding tQ staady flow is given
by 4

xJr-u7w–u.Tw@m)]cur=;pmu:JrxAP=
o

gc’1-u,(u’.)] dx
o

(69)

and the increment of heat transfer into the wall owing to tho.-
oscillation is

AQ=— J‘RKLJ1 U (70)
o

where X is the lengti of the plate.
Equatii (69) can be evaluated from equ~tion (63),

because gO, is given by the same formula as Of with the
exponent of g i.ncrewed by 1 wherever it appears in equation
(53):

AP= (0.6640)pQWm
r

*X p–l +U(SF)I (7’1)
m

Equation (7o) can be evaluated directly from equation (67),
setting g= 1 to define g(U.):

(o.4wL*@–l)+@(@)] (72)

The question is whether AQ>AP. Therefore, equation
(71) is subtracted from equation (72) to yield

AQ—AP= (0.8211) c#.pmu.
T

CY.x
~m [(l–p)@-

(0.385) @–l)m*+@(il~] (73)

Thus, if AQ–AP>O,

o p–~
~—l>(o.385)m*—
9= 1—p

(74)

If inequality (74) is-to hold, +1 must be positive. Now,

the greatest value which 19Jo=”w approach consistent with

~ThefarnldamedfmAPacconntaford the Werreqnkd bJmdnMntlM Iatelomght.K’ LIf only thetpowerreqnf@ toc@dIlatethe plate ax-y wind-tunnelflowor aatotlonnry

heat .ohemmr wem m, m fo~* ~- [ ~dX ~otCd bo @, whlab-.
h & then thatgivenfneqnatkm(69) in theamount ~~~-rWL)] dX. EwmUon
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heat flow into the surface is the insulated surface value from
equation (55). Thus, inequality (74) becomes

jm.~
0.424?n*~>$l>0.385m*— l—p (76)

m.

or,

T2_ 1
l.lol~>~

1—p (76)
. .

It is doubtful that any reasonable function of g can be idvised
to mtisfy inequality (76). Inspection of table II shows that
inequality (76) cannot be satisfied by a harmonic function of
any amplitude.

For a stationary configuration, inequality (74) is computed
using the AP expressionin footnote 4 and again the inequali~
cannot be satisfied. Therefore, for air at normal conditions,
the power required to oscillate the plate would exceed tlm
extra heat transfer obtained by oscillation.

The results of the foregoing discussion may be compared
with the result of ~eference 3, wherein it was concluded that
oscillation of a doubly infinite plate, in a fluid otherwise at
rest would also rcault in an increased heat transfer to the plate

grentor than the extra power required only if $’>1.
.

CONCLUSIONS

The unsteady laminar boundary layer on a flat plate in
compressible flow has been analyzed for the case of time-
variable velocity of flight with a view to describing the
time-average characteristic of such a boundary layer.
Flight velocity is assumed to vary slowly enougheo that the
resulting boundary-layer flow is nearly, but not quite, qua.si-
strmdy. The wall temperature has been assumed constant
both along the plate and in time; further analpis would be
required for the case of fluctuating surface tempwature.

In order to obtain time averages, the expansions of flow-.
xv(j) xv’(t)quantities must include terms in ~0=~, ~1= ~ ,

and f?, The terms for ~0and ~1were taken from previous
work, while the f: terms were obtained by numerical integra-
tion, and are presented in tabular form herein. -

The time-averages of skin friction and “displacement
thickness” are presented, as well as heatitrausfer rate at tie
surface, and for the special case of in adiabatic wall, tlie
surface temperature.

A significant amount of information may be obtained
without specifying U(t) beyond the requirements that U(t)
remain positive’ and have an average value U.. Each time
average involves two groups of tarms to th6 order contem-
plated in the present report: A time average of quasi-steady
terms, and teams proportional to the tiverse square of the
characteristic time of the velocity fluctuation (i. e., the
square of reduced frequency).

The quasi-steady terms differ from the values for steady
flow at the ccrreaponding average veloci~, oiving to the
nonlinear dependence of the physical quantiti~ on U(t).
In fact, especially for extreme variations of t7(t) about the
mean value, the average velocity profl10 is steeper near the
wall and more gradual in its outer portion than the Blasius
profile which applies at each instant. Thus, in the quasi-

steady approximation, .skin friction, ‘{displacement thick-
ness,” and adiabatic wall temperatures are greater on the
average than for the case of constant velocity. The magrli-
tude of the part of the heai%transferrate that is independent
of Mach number is less in the quasi-steady approximation,
whereas the Mach number dependent part diflera in the
direction of less heat out of the surface into the gas.

The diiterenccs cited are reinforced by the frequency
dependent averages for adiabatic wall temperature and heat-
transfer rate. The effects oppose one another in the case
of skin friction.

The VSJ50UStime averages are derived for the special case
of harmonic velocity variation. Large amplitude affeck
chiefly the frequency-dependent terms, greatly accentuating
their importance.

The question discussediswhether it would be advantageous
to oscillate the surface of a heat exchanger in order to take
advantage of the increased rate of heat transfer to”the wall,
and it is concluded that the heaktransfer advantage would
generally be vitiated by the power requirement for oscillating
the surface against the action of skin friction.

LmvIs FLIGHT PROPULSION LABORATORY
NATIONAL ADVISORY Co amrrmmn FoB k4R0NAumc8

CLEVEIAND, OHIO, Septembm 6, 1953
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APPENDIX A

SYMBOLS

constant defined by eq. (11)
local skin-friction coefficient
specific heat at constant pressure
related tQstream function for flat plate in steady flow
functions related to stream function for unsteady

flat-plab flow, i=O, 1,2, 00, . . .
function related to plate velocity, deiined by eq. (20)
temperature function related to steady isothermal

flat-plate flow
functions related ti temperature for unsteady iso-

thermal flakplate flow, i=O, 1, 2, 00, . . .
thermal conductivity coefficient
Mach number
function related tQMach number, defied by eq. (15)
constant defined by eq. (31)
geneml exponent
power
Prandtl number
total heat-transfer along ‘plate
local heat-transfer rate
function related to temperature for stOadyinsulated

flat-plate flow
functions related to tmnperature for unsteady in-

sulated fla~plate flow, i=O, 1, 2, 00, . . .
function related to temperature for steady iso-

thermal flat-plati flow
functions related to temperature for unsteady iso-

thermal flat-plate flow, {=0, 1, 2, 00, . . .
time
stream or plati velocity in X-direction (see sketch

0))
mean velocity

u
u=
x
x

Y
‘v
‘t’

8*

L
e
o

P
9

P

a

Um

T

T~

:

Q

@

relative velocity in X-direction
absolute velocity in x-direction
coordinate along surface measured from leading edge
coordinate along surface in system tied in fluid

(see sketch (a))
coordinate defied by eq. (8)
coordinate normal to surface
ratio of specific heats
displacement thickness
amplitude of velocity fluctuations
dimensionless parameter, n=O, 1, 2, . . . . (eq. (2))
dimensionless temperature diilerence
temperature
absolute viscosi~ coefficient
kinematic viscosity coefficient
density
dimensionless coordinate deiined by oq..-

rdimensionlew coordinate, ~+x
m

function related to time by eq. (22)
local wall shear stress
constant deiined by eq. (17)
stream function
frequency parwneter defined by eq. (24)
frequency of velocity fluctuations

(6)

Subscripts:
w evaluation at wall (~=0)
w, evaluation in stream (1’- w)

Subscript notation for partial dfierentiation is used when
convenient. Primes denote ordinary differentiation.
Superscripts:
— time average as defined in eq. (21)

.

.
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APPENOIX B .

DETERMINATIONOF INTEGRALSFOR HARMONICOSCILLATIONS

Given that g(r) =1+6 sin T, the various averages.~pear-
ing in the equations are to be found. The averages g-lfl and
~ can quickly be espreseed as complete elliptic integals by
replacing ~ by 22 and t&ing account of the symmetry of
the integrands:

@l)

J
p=L 2’

2T ~
~ll+c sin rdr= ~~”~dz

.2- jq(~) (B2)
u

whcro
k=~- (B3)

and K(k) and E(k) are complete elliptic integrals of the first
find second kind, respectively (eqs. (773.1) and (773.3), and
tables (1040) rmd (1041) of ref. 7).

with help from equations (858.3), (436.00), and (436.03)
of reference 7, these results me obtained:

@)

The remaining averages are of the forms

s

N~=~ *
~ 27, (l+c sin r)~~dr

and also

2’=

JgNti#a=x ,(l+C sin T)N++ C(X3’‘r

(B6)

dr

L

2,

3.

4.

1047

Thus, equation @37) can be evaluated knowing equation
(336), which may be obtained from a recursion formula, as
follows: From integrating by parts,

Jg 2T(1+cSiIl T)N& COS2T d7=~(2~+3)~(l+~ Sin ,)N+%0

1
[s

6

‘(l+c Sin T)N% dr–‘Sm r ‘T=m(2N+3) ~

J

‘2r 3

1,(l+cSiIl T)Nti dr (B8)

Combining equations (B7) and (B8) yields

()

7
N+; (1—2) gN+—2(N+2) g@+(N+;)g~+=o

(B9)

Substituting equations (Ill) and (B2) into (239) yields all
necessary relations for evaluating equations @6) and (337):

P=* w-o-ml (B1O)

~=+r-~[(23+$W+W-4-KI (B1l)

( i%)
g-3Pg’’=–4~ E–

v“3.&(i%K)

(1312)

(B13)

4

( )

l+2c+6~ E–x @14)

‘-7ng’2=15TJiTz (1–.4) 1+6

2
9-’%’2=

lo5ir~e (1—I+)’
— [(3+16 E–6~E–2(3+4E–3~~

(B15)

The foregoing averages are presented .in table ~ as func-
tions of e.
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TABLE I.-SECOND-ORDER SOLUTIONS

h’

1.CS60
1.03m
; g:

.E2ml

.n%m

.37m

. !nlm

–: W%

–. 165S
–. 25@3
–. 23462
–. 3wi’4
–. 425S3

?’
–. 442QJ
–. 44530
–. alm
–. 4UEQ8
–. 37091

–. 32KIS
–. m
–. !am
–. Km!E
–. 15346

–. 118)4
–. USS19
–. m387
–. 04494
–. 0W3

–. 02Mo
–. Olm
-.03773
–. U1449
–. mm

–. IX1116
–. 0m6
–. culls

.m

. mlo

. CIX119
-m

.&fw ha amu

o
.1
.2
.8
.4

.s

.6

.7

.8

.0

LO
L1
1.2
1.3
L 4

1.5
L6
L7
L8
L9

20
21
Z2

H

25

H
28
2Q

30
21

H
X4

3.5

H’
3.8
X(I
40
41

0
.10728
.Wi84

:%%

.4s70

.48460

. 614M

.52B3

.53U42

. 51m2

.427s3

.4eam

.43162

.3w@3

. 24i04

. 3024s

. 2S.47

. 2VW

. Inm

.14234

. ln82

.C@Ea

.00419

.04m

.C@333

:%!%
.01038
.W6i!2

:%%
. alr34
.Cm30
.m

. W.u8

:=
–. axm

. m14

.cm36

.m13

o
.W539
.02126

:%%

. rnfn

.167W

. mm

.2m2

.X2343

.376M

.4m4

.47531

.EQcm

.66147

.FQE37

.63US5

.0m8$

:%%

.71825

.Z?@3

.74278

. 74s23

. 7m4

.75776

.iWS1

. 7E017
.7W4
.mm

.70S)7

.i&m

:%%
.7W8

.76573

:%%
.mml
.70575
.70576
. 7W

o
–. 45493
–. i0i78

–1. 04778
-L 2iW2

-L 32738
-L 3T%22
-L W
–1. 34%5
–L ~

-L l&Z15
-L W312
–. 92344
–. 78.4ss
–. tmw

L51%S
L 4W21
L42673
L W75
1.21876

:O!&g

. Slm

.67937

.5MQ

.42474

.31232

. 21m4

:&l%

–.IXW7
–. 04348
–. 07347
-. W2m
–. 10164

–. lam
–. 00231
–. 03237
–. @234
–. on23

–. 0tm5
–. 04m4
–. ma9a
–. IJ31O5
–. m

–. o17a5
–. Ol?m
–. WGz
–. m
–.an49

–. Cm97
–.W91
–. IX1117
–. m
–. MS34
–. cm13

-m

-a lam
–. 13245
–. 13322
–. 132%3
–. 12tk36

–. 12273
–. 11146
–. 095n
–. 07’m
–. CuSia

–. 0!m7
–. Qm9

.02116

:=

.07&M

.ISWs

.W541

. 0m3

.09.517

.Mm9
; 0&31:

:%%

.0478

.0RB3

.02W7

. 017s9

. Olz?s

. CE)776

:%%

–:%%

–.00111
–. m33
–. mm
–. CEJ124
–. moo
–. CW37
–. m

o
-.01321
-. OM49
-.amsl
–. Cma3

-.iwa2
-.07737
-. W6
-. 0W3
-. 10ZJ3

–. llxzxl
-. l@63
-.10704
-.10439
-. m

-. Ww
-. CE3M
-.07435
-.W4M
-. 0E4Q3

-. 04W
-. a?Jml
-. 02m5
-. Cr2216
–. 01636

-.01160
-.mno
-. W180
-. Wz71
-.m121

-. om22
.Cmxa

;WJ

.Cm71

:%%
.IxKm
.Com
.m12
.Cnxu3

1. mm
.IWz82
.31418
. 12?46

–. mm

–. as207
–. mm
–. Imz
–. 1’23S3
-. !m73

–. 21111
–. 2?B7
–. mm
–. 17282
–. 14m

–. 11611
–. U3334
–.05113
–:mzl&

.02z%5

.Ccm6

.04m5

:%%

. CMnu

.04347
-: O%&

.02@3

. 021n

.01704

.01304

. 0G976

. mn4

.W1.xt9

:=
. al164
. Wlcn
.Cm70
.Ix04.5

o
.aw3
.U5M
. 14WI
. lm17

.14773

. 13e83

.12125

. lcrm

.C@m7

. 031w

.04m

. ml

–:%

-. 02e?a2
–. 02mJ
–. 04361
–. 04721
–. Mm

-.04674
-. w
–. 03m
–. U3472
–. 0m39

–. mm
–. Omn
–. 01613
–. 0U69
–.m
–. am7
–. cmQ3
–. a874
-.oono
–.@J177

-. W116
-. D372
–. cm44
-. Oum
–. w
–.ocnm

.W
>

–. 4’am
–. Zoln
–. 24104
–. lm
–. as322

.olm2

.O&wJ

.mwl

. 1067!3

.U231

.11065

. 10!237

. Craln

.07’m

.W.m7

.am6

.C-lm

:%23
.01774

.Olza

:%%
.Wm
.mm
.mm
. Imm

,-m

JoJ. &-25491 JOm &-LC422 Joha d.--lC3333 JOw dw-O.0713

TABLE IL—EVACUATIONOF INTEGRALS

r,

L COWS
1.am9

k!%
L LS!B3
L 17934

h

ac&EJ

.Zm7

. mm
23%511
&?@ml

I,

:122&

.ncm

OHUl
629.049

L--lJ- 17 Ig 110
. —

O.oma cmO&
.11282

.2zm
i= .4’3776

10.S?546
46.842$4 1:%%

1,

1. CQ747
L 140B
L3W54

i w
1. E2273

a:

.6

.8

.9

.9s

L m
L@O
L 1S)

Hl
L45126

ac%&lE$

. 24m

l:%R
22CQS2

..

. ,...’


