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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

ADVANCE RESTRICTED REPORT 

TESTS OF A DYNAMIC ~ODEL IN NACA TANK NO. 1 TO 

DETERMINE THE EFFECT OF LENGTH OF AFTERBODY, 

ANGLE OF AFTERBODY KEEL, GROSS LOAD,' AND 

A POINTED STEP ON LANDING AND 

PLANING STA]ILITY 

:By Norman S . Land and Linds'ay J. Lina 

SUMMARY 

Tests were made in the NACA tank no. 1 to determine 
the effect of length of afterbody, angle of afterbody keel, 
and gross load on the limits of stable trims and on the 
landing characteristics of a model of a flying boat with 
conventional , steps. The studies were made with four lengths 
of afterbody. four angles of afterbody keel, and five gross 
loads. In addition, tests were made of a pointed~step --~ .-- .-

model. Th~ model represented a hypothetical flying boat 
with a design gross load of 160,000 pounds and a wing span 
of 200 feet. 

The tests showed that, between gross loads of 140,000 
and 200,000 pounds. the 'stability at landing remained un­
changed. Increasing gross loads raised the stable-trim 
ran g e to higher tri,ms ,and kept the stable range constant, 

The tests also showed that the~e is an optimum angle 
of afterbody keel ,which results in the greatest ran g e of 
stable triws but not necessaril y the best landing stability. 
The model with the high est angl,e of ' after~ody keel tested 
showed the best landing stability at low landing trims; 
whereas the model with the lowest angle was the most stable 
at high landing trims. 

With a constant angle of after b ody keel, the shortest 
afterbody tested exhibited the greatest stability at land­
ing and the widest rang e of stable trims, 

The one ·form of pointed step investie;ated showed a 
very narrow range of stable tri lli S but had no tendency to 
skip on landing at any landing trim, ' 
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INTRODUCTION 

Most of the tests of dynamic models at th e NAC A tanks 
have necessarily bee~ of a specific n a tur e - tha t is. tests 
of mod els of existing full - scale d esi g n. These tests are 
mad e to d?ter mine th e characteristics of a d e si g n snd . if 
possible . to improv e it. The location, d ep th. or form of 
t he st ep . l e n g th of afterbody. ~nd ans ie of a fterbody keel 
h a ve been chang ed d u ring the cou rs e of such tests and their 
effects on the dynamic characteristics determined. Because 
of t he purpose of t he investi g ations. few s y stematic s~ddies 
of the effects of such changes are undertaken . 

The effects of a series of chang es of dep th of step 
and load coefficients on t h e range of sta b le trims have 
been investigated (reference 1). As a coutinuation of the 
study of t h e e f fects of fundamental variables on hydro~ 
dynamic instability. NACA model 1~4 was tested with four 
angles of afterbody keel , four leng ths of afterbody , and 
with a pointed step. In addition. inasmuch as the te sting 
technique had been i mp roved since the reference te s ts , a 
series of five g ross loads on t h e basic confi ouration was 
investi g ated; The effect of these variables on landing 
instability - that is. s kip~ing - and on trim limits was 
studied. 

The NACA model 134 used for the present tests is a 
later desi g n b a sed on the same lin e s as NACA model 101, 
which was used in the reference tests . 

APPARATUS AND PROCEDURE 

The NACA tank no. 1. the towing apparatus , and the 
method of determining trim limits are ess~ntially unchanged 
from the descri p tions of refer e nce 1 . 

Landing instability. or sKlp~ ing , was studied b y actual 
take-offs and landi ng s ma de with t h e model . The carriage 
was accelerated until the model too k off at approximately 
the desired land i ng trim . Af ter ta~ e-off , the model was 
free to rise ap p roximately 6 inches. fUrther motion being 
restricted b y a st op. The trim was then adjusted as closely 
as pos s ible to the desired landing trim by means of the 
elevators . The carriag e was decelerated at a fixed rate 
until the model had landed and had reached a definitely 
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stable condition. The actual trim at contact and the 
speed of the carriag e at contact were noted, and a motion­
picture camera recorded the behavior of the model. 

8 The afor 6- mentioned fixed rate of deceleration was 
1 not necessarily the scale valu e bu t was the only rate that 
H could be repeated with reasonable accuracy with the exist­

ing technique of carriage operation. At this rate, speed 
was reduced from the contact speed (40 to 50 fps) to hump 
speed in about 10 s econd s. 

DESCRIPTION OF MODEL 

The model is a l/12-size r~pr e s ontatio n of a hypo­
the t ical flying boat with ~ d~ei g n gross load of 1 60,000 
pounds and a span of ZOO feet. A profile of the model" 
wit h the basi c step and atterbody, is shown in figure 1. 
Profile and bottom plan vi e ws of the afterbodies tested 
are shown in fi gu res 2 to 4, and fi gu re 5 shows photo g raphs 
of the complete model. 

A full-size flying boat comparable to the model tested 
would b e ge nerally similar to th~ Martin XPB2 M-l Mars . The 
wing a n d tail surfaces are similar to thos e of the Mars in 
size and in location with resp~ct t o the s tep. 

The hull lines are based on the lines of model 101. 
The b ow wa s rais e d and short ened from the original form to 
provide a more p ractical, s eaworthy forebody. The d e ck 
li ne was rais ed in order co rup l ete ly to sub me rg e the ~ing 
root for aero dy namic cleanness and the tail extdnsion wag 
widened sufficiently to accommodat e a turr e t. 

The "basic" model with a depth of step 5.5 percent of 
the b eam . angle of afterbody keel 5 . 5 0 from the b a se line, 
and a length of aft e rbody equRl to 07.15 inches, repr e sents 
conv e ntio na l p resant-day design. Th e length-o f - afterbody 
series included the basic a ft 8 r body , on e lo nge r afterbody 
(basic leng th increas d by 1 /2 b eam ), a nd two short e r afte~ ­
bodies (1 /2 beam and 1 beam shorter than the basic l e ngth) ' , 
all with an angle of after b ody keel of 5 . 5 0 • The ang l e -of­
afterbody-keel series includ ed the basic a fterbody 5 . 5 °, 
one lower ang l e 4 . 0 0 , and two higher an g l e s 7.0 0 and 8 . 5°, 
all with the ba~ic l e n g th of afterbody of ~7 .1 5 inches. 

The po i nted step was laid out to g ive the same st e rn­
post clearance as the basic hull , that is, th e sam e ang le 
between main-st ep st e rn-post lin e and base lin e . 

l 



It was anticipated that the depth of the main step, 
5.5 percent of t he baam, probably 70uld not be great 
enough to eliminate skipping complataly on the basic model. 
This condition was dasirable in order to study thd dffect 
of variations in the afterbody on an already unstable model . 
Tests with a deeper ste9 are contemplated. 

The construction of the model followed the usual prac­
tice. The li gh t plywood frames were notched to receive 
balsa string ers, mahogany keel. and chine strips , qnd the 
whole was planked with bal sa. Exterior finish consisted 
of tissue laid in dope as a seal for fine cracks and pin 
holes and of several coats of pigmented varnish. The lower 
portion of the hull was constructed with two removable sec­
tions, a step section and an afterbody section. 

I~portant dimensions of the model are as follows : 

!u1l~~i~~ l~~~i~~_~~~~ 

Dimensions of hull 
Be am , maximum 
Beam, at step 
Length of forebody (bow to step) 

(Lentth-beam ratio = 6.70) 
Length of tail extension 

(Length- beam ratio = 2.61) 
Length, over-all 

(Length-beam ratio = 8 .7 0) 
Depth of step, at keel 
Angle of dead rise at stap: 

Excluding chine flare 
Angle of forebody keel 

Angles of afterbody keel: 
Model 134A (Basic) 
Model l34B 
Model 1340 
Model 134D 
Models l Q4E, 134F, 134G 
Model 1 34H 

Leng~hs of aftarbody : 
Models l34A, l34E, 134C, 1~4D 

(Leng th-beam ratio = 2 . 61) 
Model 1.;4E 

(Length-beam ratio = 3 .11) 
Model 1 .34F 

(Length-beam ratio = 2.11) 
iliode l 134G( 

(Length-beAm ratio = 1.61) 
Model 1~4H 

14.24 ft 
1" .8 6 ft 
51. 70 ft 

;:)2 .95 ft 

124.05 ft 

0 .78 ft 

5 . 5 0 

4 .0 0 

7.0 0 

8.5 0 

5.5 0 

2.0 0 

37 .1 5 ft 

44 .27 ft 

.50.0.3 ft 

22 . 91 ft 

62.12 ft 

14. 24 in. 
13.8 6 in. 
51.70 in. 

32.95 in. 

124.05 fn. 

0.78 in. 

5.5 0 

4.0 0 

7.0 0 

8.5 0 

5.5 0 

2.0 0 

37.15 in. 

44.27 in. 

30.03 in . 

22.91 in. 

32.12 in. 
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Angles oetween keel l i nes at 
st ep : 
Model 1 3 4A 
Model 1 34:9 
Model 1.34C 
Model 134D 
Models 1 34E , 1~4F, 134G 
Model 1 3 4H 

Di mensions of wing 
Area 
Span 
Root chord (s e c . NACA 2~020) 
Tip chord \ (bee. NACA 23012) 
Angle of incidence 
L . E . at root , aft of F. P. 
Length , IL A. C. 
L . E . M. A. C .• aft of F.P. 
L . E . M. A. C • • forward of step 
Angle of incidence of M. A. C. 

Dimensions of hori z onta l tail 
surface 
Type 
Area 
Spa n 
Inci d ence (nor mal ) 
Dihedral 
L . E . of root chord of wing to 

L . E . of root c~ord of tail 
Root c h ord (sec . NACA0015) 
Tip chord (sec . NACA 0015) 

Loading conditions 
Gross . loads: 
l'~od el 1.3 4 A 

(desi g n) 

Models 1 34:9 , 1 34 C. 1 34D , 
134F, l..54G , 134H 

e . g . forward of step 
(40 pe rcent M . ~ . C . ) 

c . g . forward of step 
(20 p~rc~nt M. A. C. ) 

e . g . above step 

1..54E , 

6 . 8 0 

5.3 0 

8 . :3 0 

9 . 8 0 

6 . 8 0 

3 . .3 0 

.3 b8;') sq · rt 
200 ft 

28 ft 
9 . ..5 3 ft 
5 . 5 0 

;38 . 01 ft 
20 . 12 ft 
40 . 70 ft 
11 . 00 ft 

5 . 5 0 

Twin , V 
505 s q ft 
41.38 ft 

3 0 

14 0 

65 . 77 ft 
14 . 83 ft 

9 . 63 ft 

127,.300 10 
140,000 10 
1 60 ,000 It 
1 80 ,000 10 
200 , 000 Ib 

160,000 10 
3 . 56 ft 

5 . 99 ft 

12.2:3 ft 
1.360 X 

6 8 
Pitching moment of inertia 

aoout e . g . 10 slug- ft 

5 

6 .8 0 

5.3 0 

8.3 0 

9 .8 0 

6 . 8 0 

3 . ..5 0 

25 . 58 sq ft 
200 in . 

28 in . 
9.33 in . 
5 . 5 0 

38 . 01 in . 
20.12 in . 
40 . 70 in. 
11.00 in. 

5 . 5 0 

3 . 5 1 sq ft 
41. 38 in. 

3 0 

14 0 

65.77 in . 
14. 83 in. 

9 . 63 in. 

73 . 1 10 
80 . 4 10 
91. 8 Ib 

103 . :3 10 
114. 8 1b 

91. 8 10 
3 . 56 in . 

5.99 in . 

12.2 .3 in. 
S . 9 s 1 ug- f t 8 
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RESULTS AND DISCUSSION 

The trim limits of stability are plotted against s peed 
for mod ~l l~4A for various g ross loads in fi ~ur es 6 to 10.' 
The ang le of afterbody keel was varied and t h e resulting 
curve is g iven for mod el 104B in figure 11, for 1 34 C in 
fi gure 12, and for 1~4D in figure 13. The effect of 
chanbes in the length of afterbody on these limits of sta­
bilit y is give n in figure 14 for model 134E, figure 15 
for 1 34F, and figure 16 for 134G. Figu re 17 is the curve 
of trim li mits of stab ility a ga inst s pe ed for the model 
with the pointed step, 134H. 

The effect on the limits o f stabi lit y of g ross load 
is sho wn in fi gure 18, of an~ le of afterbody kee l in fig­
ure 19, and of le ng t h of after body ill figure 20 . The 
critical trims from fibur 0 S 6 to 10 hav e bee n cross-plotted 
against .g ross load i n figure 21, against angle of afterbody 
kee l in fi~ure 22, and against leng th of afterbody in fig­
ure 20. In figures 21 to 2J speed is the parameter. 

Tri m Limits of Stabilit y 

~tt~~t_~t_h~~~.- The effect of load on the trim limits 
of stabili ty is best sh own in figures 18 and 21 . The g en­
eral eff ect is to raise t he co mp l ete set of limits to 
h i ghe r tri ms as t~e gro ss load is increased. Some incon­
sist ent crossi~g of the faired limit curves may be observed 
in figure 1 8 . This inconsist en c y is undou~tedly due in part 
to differ el ces in th e pe rso na l interp r et ations of the point 
at wh ich instabilit y began by t h ree observers, each of whom 
ran a p art of t he tests . The critical trims (trim at upper 
and lower limits) from t he fa ired cu r v es of figures 6 to 10 
have b een cross-plotted aGainst load in fi gu re 21 at several 
speeds. Thi s fi gure s h ows that the c u rves of critical trim 
ag~inst load are approximately linear. It s hou ld b e suffi­
cient, then, when a s pecific model is tested, to investigate 
only the ex t reme values of g ross loads . 

~ft~£t_£t_~~~h~_£f_~ft~~£~~~_~~el .- Fi gure s 19 and 22 
summarize the result s of t he tes t s with various angles of 
afterbody keel . No mar k ed c hange s i n the position of the 
lower limit r e sulted fro m changes in this angle . This 
fact verifies t h e gene ral ob s ervation that the afterb ody 
has no effect on low-angle planing stability. 
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The upper limits were raise d to higher tri ms as the 
ang le of afterbody keel wa s increased . The chang e wa s not 
li nea r, as fi gu re 2 2 sho ws. Incr easing the angle from 
4 . 0 0 to 5 . 50 raised b oth u pp er limi t s; a fUrther chang e to 
7 .00 raised t he u pper li mi ts a g r eate r a mou n t. The c hange 
fr om 7.0 0 to 8.50 p roduce d little i n creas e in the st ab l e ­
tri n ra n~ e and enti r e l y c h anged t he character of the mot io n 
du ring high-ang le po rpo isi ~g . With an ang le of after body 
keel of 8 .50 , h i gh- ang le p orpoisin~ appeared to consist 
mainly in violent ve rtical motion and vary little c hange 
in trim occu rr ed . Lowe r an;les of afte rbo dy keel ~ ro du ced 
the usua l high-ang le po r noi si nb of coupled tri m and ris e 
mot io n s, the angula r wot i on being c en t e r ed at som e point 
nea r t he stern p ost. 

Co nsiderab l e loss i n ran ge of stable trim s wil l r esu l t , 
t ~en , if the angle of afterb o dy kee l is far from the optimum. 
Not only ma y too g reat an angle show no inc r ea se i n stability 
but it may even d e cr ease the stable r a n ge or l ead to a mo r e 
viol ent type of po r~oi sing . 

~ff~£~_Qf_l£~g~~_Qf_~f~££~Q~~'- Fi~u r es 20 and 23 sum­
marize t he effect of length of afterbody Oil the trim li mits. 
I n figu re 20 so me crossing of t h e low e r li mits may be notic e d. 
A sli gh t, al mo st negligible tr nd to raise the lower limit 
as the l eng th of afterbody is i n cr e ased may be se en on the 
cross n lo t s of fi~ure 23; the cha n~e is SO sli gh t as to b e 
uncertain a ~d of no p ractical si gn ifican c e. 

The upper limits are rais ed to h i ghe r tri ms as the 
af te r bod" is s ho rten ed . This effect is e s pe ci a lly pro­
nounce d f or the c hange from th e 30 .0 3-inch length to the 
22. 91-inch l eng th. an aft e rbody s~ort e r t h an is conventional 
at the p rese nt time may t he r efo re be expe ct ed to increase the 
stable-tri m rang e of a fl y ing b oa t . 

I t mus t be r emembe r ~d t hat in the l ength-of-af t e rbody 
series a c o nsta nt angle o f af terbo dy keel was ma intai ned , 
which results in more ster n- post clearance as t he a fterb ody 
is shortened. 

~ff££~_QL~.-l2.Qi~l£s:'-.2.!ep.- Fi6 ure 17 s how s a compa rison 
of the trim limits determined f or the p oi nted-s tep model 134H 
and the basi c mode l 134A. Th e p oi nted-step arrangement was 
test e d, be c au se it wa s believed to offer a naturally Nel l­
v enti lat ed step whi ch s h ould have a de sirabl e effect o n land­
ing and porpoising s tability. It i s evident fro m the curves 
t ha t t he p oint e d-step model has a mu c h smaller ra nge of sta­
ble. tri ms than th e conv ent ional mod e l. The lo wer limit . ... 



8 

except at the hump speed, is considerably hi'gher than for 
the conventiQnal model, probably because of' the high be am 
loa din g on the '. step ' at , i n t e r me d i a :t e p 1a n i n g s'P e e d san d 
trims. 

The upper limi,ts with the pointed-step hull are -lower 
than for the conve~tional hUll. The resulting range of 
stable tri~s is ,very narrow , about 2.5° , · at speeds between 
32 and 3$ feet per second. 

Landing Stability 
, 

~f.f.~~~_2.f.2.Q.~9:. .- Ananalyais of the motion pictures 
made of landing s of model 134A at different attitudes with 
several gross loads gave the following results: 

1 
2 
3 
4 
6 
8 

10 
12 

--------------~--

----------. .,-:---~ -_ ......... _-----
. Full size 

140 ,000 

lliodel 
80.4 

Num- Land 
b er ·· . ing 
of 'speed 

_~~~~~ s..~~!~J 

3 49.2 
1 50 . 0 

" -- -~ -- -----
6 41. 0 
5 - , 40.8 
0 S8.8 

40 . 6 

160 ,(JOO 

91.9. , 

Num­
'ber 
of 
,~~~l:~ 

1 
2 

-4 
4· 
4 
6 

Land­
ing 

speed 

.~~~~~ 

46 . 4 
47.2 
----
44 . 0 
42 . 4 
40 '.1 

, 42. 6 

180.000 200,000 
---- --------1·------------

103.3 114 . 8 ---------- ---
Num- Land- Nurn-: Land-
ber ing ber ing 

of, " s.peed of s'P eed 
~~~E.~. . (ips) !~~~~ itl:!l_ ---_.-

.. ----- ----- ----- -----
----- ----- ----- -----

I 48 . 8' ' 6 49.2 
:1, 47 . 0 4 48.8 
5 46.0 5 47. 6 
4 , 45 . 6 5 47.2 
4 44 . 2 5 46 .0 5+ 

9 40.2 5 _~ ~~~1_~~ __ 1~~ ,~_~~ .3 ~5 . 6 
----.... -_. ---- .. .. ---- ------------

The numbe'r of: skip s given. for each" la-ndin'g is the' num­
ber of times . the - k~el at the main step came clear of the 
water after the initial contact. This number give.s no indi­
cat ion of the violence or magni tude of, t 'he: jump but may be 
used as a rough comparison of relat~ve instability for dif­
ferent condi~ions. 

An inspection of the foregoing results shows no definite 
trend of the number of skips as the g ross load is chansed 
witil in the test limits; consequently i 'nvestigations of landi'ng 
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instabilit y with a given hull form , made at the desi gn g ross 
load, may b e e xpe ct ed to r ep resent behavior at lighter loads . 
Tentative co n clusions r ea c~ed fro m obse rv Rtio ns made from 
tests of other mo d els verify this assumption. 

~ff~~1_~f_~~g!~_~f_~f1~~~~~~_~~~~.- The following 
tabl e g ives the results of the landings mad e with the dif­
ferent angle s of afterbody k eel ( ~odel s 1 34A , 104], 134 0 , 
and 134D): 

~ Angle of, 
~ ~terbo dy 
Tr im cit k ee 1 
landi ng~degJ 

(d eg) , 
-------------

2 
4 
6 
8 

10 
12 

4.0 5.5 

----T----- ---- -----
~rum- I La nd- NUlJl- La. nd-
b er ing ber i ng 
of j speed of s peed 

SkiPSr f PS) s k i ;? s (fp s) 
---~-. - ,----- ------

1 46 . 4 2 47 . 2 
4 44 . 0 4 44 .0 
3 42.8 4 42 . 4 
3 4;) . 6 4 40 . 1 
1 42 . 21 6 2 . 6 
5 43.0 5 4 1. 6 

----- ----- --- --

7 . 0 8.5 

---T--- -----T-------
l'Tum- Land- Num- Land-
ber ing ber ing 
of speed of speed 
s k i p s (fp s) s k ip s (fps) 
----- ----- -~---- -------

1 47 . 2 0 50 . ~ 

0 44 . 2 1 46 . 2 
1 40 . 0 1 45 . 6 
5 4;) . 6 6 46 . 8 
9 43 . 4 8 I 44 .8 

11 40.8 4 .-l43.o 
----- ---- -----

It is evident that n o an g le of aft erb ody keel tested 
was 0 p t i mu mat a 11 1 and i n g at t i t1) des. Th e t VI 0 h i g h est 
ang le~ of after b ody keel t es ted, 7 . 0 0 and 8 . 5°, showed the 
least skipp ing tend e n cies at l an di ng tri ms below 0 0 • At 
hi gher land ing trims, however, these a ng le s wer e more un­
stab le t han the lo west ang le , 4 . 00 . I nasmuch as most land­
i ng s i n full-size ope ration are pr obably ma~e at t h e higher 
trims, a low an g le of afterbody keel wou ld be the desi g n 
c h oic e to min i mize skipp ing . 

If the test results s h own i n the p rec ed ing table are 
anal y zed on the basis o f trim o f af terbody k eel, t h e same 
co nclu sions are reac h ed . Each of these four afterbo d ies 
showed the least te n de ncy to s k i p when land in ~ at nega tive 
afterbody t ri ms . At p os i tive after b ody trims. the lowest 
a ng le of afte rbo dy ke~l of the se rie's has t he least tend­
ency to skip. 



10 

~f[~9.t_£f_l~!!5.th_£f_~f~~!:.~.9_9x . - Th ere su It s 0 f the 
landing s made with different lengths of a~terb ody (models 
1 34A , 1 34E , 13 4F, and 13 4 G) are s h own in the f oll owing 
table : 

------------------1-----------r----------------------T
----- -------

Le ngt h of 
afterbody 

( i n . , mode l ' l 22 . 91 30 . 03 3 7 .1 5 44 . 27 
Trim at ft full 
landin g , s iz ~ 

--~~:.~~-------~--·-t-----
. jNum-

lber 
lof __________________ +~~~s 

1 I 0 
2 0 
4 
6 
8 

.5 
1 

10 3 

______ ~~ __________ l __ ~ __ 

I 
~::~=- ;::~-r~::~~ ;:~~~-T~::~~T;::~- ~::~~--

in€; ber l iug be r ing l-oe r ing 
s -P G e d 0 f I s 1'J e e d 0 f s pee d 0 f s pee d 

(~~~~ ~~~~~~ ~~~~~ ~~~~~t~~~~~ ~~ips . ~!~~~--
48 . 0 0 4: 6 • 0 1 I 4 <3 • 4 0 52 . 8 
50 . 5 1 <4:4 . 0 2 I '±7 . 2 0 52 . 0 
44 . 6 1 ~2 . 8 4 i 4~ . ol 0 49 . 6 
42 . 6 7 44 . 0 4 ',42 . 4 12+ 45 . 0 
42 . 0 5 42 . 0 4 40 . 1 15 I 44 . 8 

4~ . 21· ~ I ~ 1.2 6 I 42 . ~ 10 144 . 0 
~2.8 b ~O ' s l 5 I ~ l . b 5 42 . 4 

_____ ~___________ __ ___ L _____ l_____ _ _____ __ 

These dat a indicate tha t t~e shortest afterbody tested 
w~s def i nite l y the most st able at any landi ng trim higher 
than S o. At lo~e r l and ing tr i L s, the shortest af ter b ody was 
not more s teble than the ot~ers bu t appeared to be just as 
sta b~e . A sho rt afte rbo dy ~ith th e same ang le of aft e rbody 
keel as a longer afterbody may be expe cted , therefore , to be 
t he mo re stabl~ a t landing . 

:m.ff~~t_of_§,,2£.!.Q~Q9:._§.t.~ . - The pOinted-step hull 
( mod el 13 4H , fi g . 4 ) exh ibit e d no te nde nc y to skip at any 
landing a tt i t ude test~d. At h i gh l anding trims, the mode l 
trimmed down s ha r p l y af ter contact . This ction , which wa s 
v ery sudden, may be a s u n des ir able RS li ght skipu ing . 
Furthor tests to ex~ lore the c nara c t eristics of this type of 
step wou ld be of considerable i ~ terest. 

CONCLUSIONS 

1. Increasi ng the gross load of a fl y i ng boat r aises 
the trim limits to h i gh er t ri ms. No marked chang e in the 
rang e of stable trim attitudes occurs with load chang e . 
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The shift in the trim limits to higher trims is approxi­
mately linear with the increase in load. No appreciab le 
ch Rug e in the landing instability (ski9ping) a~pears as 
t he load is changed . Testing at only the extremes of 
gro ss-wei ght conditions should therefore be sufficient i~ 
inve s tigati ons of trim limits and landing stability. 

2. There is no obvious optimum angle of afterbody 
keel for the best over-all characteristics of the mod el 
tested. A rel a tively hi gh angl e of afterbody keel showed 
the g re~t e st range of stable trims but was more unstable 
on landing except at low landing trims. The choice of an 
angle of afterbody kee l for a gi ven design should be made 
only after tests, at least until further research data 
are available. 

3. With a fixed angle of af ter~ody kee l, a short 
afterbody may be expected to be more desirable than a 
longer one for the uurpose of securing g r oate r range of 
stable trims and be tte r s ta bility at landing. 

/ 

4, Tests of one p ointed stP.p indi cat ed it to be con­
siderably more stabl~ at landillf than a conve~tional step. 
The po int ed step, however, had a narrower range of stable 
tri ms available than the convention~l steu . 

b. Wide variations in angle of afterbody kee l or 
lengt h of afterbody had r elat i vely small effects on the 
skip p ing characteristics of a wade l ~lready unstable at 
landing. A change in plan form, however, thAt produced 
better natural ventilation of t~e st ep co~plete l y elim­
inated ski pp ing. 

Langley Memorial Aeronautical Labor~tory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va. 
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Keel P.Ilgle, d eg 

(a) V.~ 20.0 f ps ( b ) V E 25. 0 fpI (e) V - 30 . 0 fp s (d) V • 32.5 f ps 
( f ) V - 37.5 fpI (g) V • 40.0 fps ( b) V • . 42.5 fpl 

(e) V'" 35.0 fp l 

F1gure 22.- Model 134. Effect of angle of afterbod y keel on stabilit y l imits. 60 '" 160,000 Ib, 
full-11111 91 . 9 Ib, a odll. Afterbody length", 37.15". 
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~lgure 23 . - Kodel 134. ltteat ot afterbody le~h o~ I t ab111ty 11.1tl. 60 • 160 , 000 l b, t ull-
11se; 91.9 lb, .odel . Keel angle _ 5.50 • 


