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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

ADVANCE RESTRICTED REPORT 

THE STRE~GTH OF PLANE WEB SYSTEMS IN 

INC O:-1PLE'.r:c DIAGONAL TENS I ml' 

By Pau l Kuhn and Patrick T. Chiarito 

SUMMARY 

Two, series of d i a~o~al-tension b eams with double 
uprights were tested tc destruction while strain measure ­
ments were being mpd e at a large number of points . The 
re sults i ndicpted that the previously pub~ished method 
of stress analysis is somewhut conservative in a certa in 
range ; the discrop~ncy betweon theory and tests w~s re­
duced by dropping a simpl i f:"ing n.ssUml)tion , ,.nd n set 
of corr e spondin gly r ovised formulas for stress ana lysis 
is g i~en i n a form suitable for ready reference . 

On the bnsis of the revised formulas , more than 100 
te sts ~~de by five m~ nfac t urer~ were analyzed . Most of 
these tests were ~ade on be~ms with single uprights. An 
empirical formula for the f ~ ilinb stress in s i ngle up ­
rig~ts was der i ved from the te sts . 

An appendix presen ts th e r 0sults of systematic cal ­
cuI a t ion son s t r u c t u r 0. 1 e f f i c i en c y • The g r C'. ph s 0 f th e 
Rpp e~d ix m~y b0 used to obt~in first ~pproxima tions of 
sizes for dosign purposes . 

HiT:] O:lUCl' I ON 

A semiempirical theory for the Act ion of shear webs 
in incompl o te diagonal tension has been developed in ref­
Er ence 1. The empiri c al coeffici e nts for this theory 
wore chie fly obtl .ined by st r ain - gage tests a t low stresses. 
In order to check t he valid it y of these coefficients at 
h i gh stresses , a new inv est i gat ion vas starte d in which a 
number of beans wero tested to failure while the strains 
were being measured with electrical strain gages . All 
th e tests were made on ~ebs with double uprights . In-
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formation on the failu e of sing le uprights was obtained 
by analyzing the results of tests made by five manufacturers . _ 
~hese tests were made available to the NAC A by the joint 
action of the Army, the Navy , and the Civil Aeronautics 
Authority in a gen ~ ral effort to effect coordination bet~een 
existin ~ structural data and theories. The manufacturers ' 
te s ts also yielded soma infor matio~ on we b failures and 
rivet f a ilur es . 

The paper is divided into two pa rts . The first par t 
deals wit h th e experimental investigation carried out by 
the NACA. Th e se c ond part is of an analytical nature an d 
is divided into two sections . The first section g iv es the 
formulas used for stress analysis in a form suitablo for 
ready reference. The second section discusses the ' amount 
of experimental evidence available on spe cific itoms g the 
scatter indicated by the test data, and other pertinent 
information t h at may be useful in judging t he reliance to 
be p laced on an y gi ven formula . An appendix discusses the 
Qu e~ tion of s tructural effic i e ncy of the web system on "the 
basis of the n ow formulas for stress analysis. The graphs 
given may b e used as aids in obtaining the p roportions for 
a balanced des i gn . 

Attention is call e d to tho f s ct that some s~mbo~ 
used in thi::Ll'.QllQX..t have a s l.ightly dj,ff§reI.LLmcanl.!!.L-ih.9.!!. 
in_ E af e r ~Q~.2~ __ ,~E~ c~'£'E:Eg.E __ w e ro made to p c rm its i mpl i ­
fication of a ~umb c r of formulas . 
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actual cross-sectional area of upright , sQuare 
i n ches 

effective cross-sectional area of upright , sQuare 
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G shear modulus, kips pe r square inch 
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effective shear modulus, taking into account 
dia g onal-tension effects 

effective shea r modulus , taking into account 
diagonal - ten8ion effects and effects of 
exceeding t he proportional limit of the 
material 

effective column len g th of upright, inches 

appl i ed load, kips 

internal force in upri ght, kips 

ultimate applied load , kips 

transve r se shear force in web , k i ps 

volume of caterial (qeb and uprights) per inch 
run, square inches 

spacing of uprights, inch es 

depth of beam, back of top flan ge to back of 
bottom f lange , i n ches 

effective depth of b e am, centroid of top flange 
to centroid of bottom flange , i nches 

depth of beam , centroid of rivets i n top flange 
t o cen tr oid of rivets in bottom flange , inches 

length of upright , centroid of attachment rivets 
in top flau~e to centroid of attachment rivets 
in bottom flange, inches 

k diagonal - tension factor 

t thickn ess of <Teb , inches 

tu thickness of uprights , inches 

a angle bet ~een ax is of beam and direction of 
diagonal tension 

strain in web pcrallel to axis of diagona l tension 
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€x strain i n flanee caused by diagona l tension 

p 

<Ju 

strain in upright c aused by d i agona l tensio n 

radius of gyration of cross section of up~ight 
with respect to centroidal a~ i s p a rallel to 
web. inches 

compressiv e stres s i n upright caused by 
diagonal tension , kips per squa r e inch 

T nom i nal shear stress in web , k ips pe~ square 
i n ch . In most c ases , this stress may be 
computed by the approximate formula T = s/he t 

Tcr critical shear s tr ess , kips per square inc 

Teq equivalent shear str ess , kips per square ~nch 

wd parame t er of flange f l exibility 

I. EXPERI~ENTAL INVEST I GAT I ON 

Test Objects and ?roceQur e s 

Tes'L...§..:QQQil.1el.l...§.. - The test specimens --consis...tBd of 
13 beams i n two series with nominal depths of 40 inihe s 
and 25 inches. The detailed dimensions of the beams -are 
g i ve n in tab 1 e r. T h G web san d the up r i gh t s \,,1 e T"e-- a f 
24S- T aluminum alloy with , the exception of the web on 
beam 25- 3 , which 'tlas of 17S- T alloy. The _flang.es of the 
40 - 1nch beams vlere of steel. The flanges of th e 2.5.".inch 
beams wer~ of 24S - T alumiuum alloY a Figure 1 gives the 
genera l dimensions of the 'beams and '-figu r e 2 sh.o'ws th-e 
cross sections of the upri ghts . 

Tes t proced,ure. - The beans were. atta.cfled to a heaY ;)l 
!3teel str1.lcture by steel an£le s . When the maxi..m..um -t 'e.st 
loads were lar ge r th an 8 kips) t.he t es t loads were ap,pli ed. 
to the beams by a portable hydraulic' jack -of . ID0-.. k i p's 
capacity. Thi s portable jack is equipped wi t h a load- · 
indicatin g system of the hydraulic type used in test..ing 
machines. For loads less t han 8 ki~ , a hand-o~eTated 
hydrc.ulic jack ,,,ras used , and t he load was measured ".i·t h 
a platform scale of 12 kips capacity. A ·typicaL set- up 
for a 25 - inch beam i s shown in figure 3 . 
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Most strain measurements were made with electricaJ 
strain gage s of the w ir d - r es i s tanc ~ typ e fabrlc a t od by 
th e NACAo Gages wer e ~lways used in pairs o n oppo s ite 
sides of the b eams to eliminate the effects of local 
b Oldin g st r esses . Fo r purposes of strain measurements, 
end effects wore a s sumed t o exist over a l engthw ise 
distance equal t o ha lf the dopth of the beam from the 
r oo t and from the tip . Str a in me as ur emen ts we re usually 
t ake n on a ll of t he uprights a nd i n a ll of t he web panels 
not subjected to the en d effects. The test r e sults shown 
in the figures are g r o up a v e rages obtained by averaging 
th e resu l ts of ell gages c onta ined in the s a me len g thwise 
gr oupo The number of strain gages used for one test 
varied from 3G t o 70 ; th e smallest numb e r were used with 
an upri ght s pa cin G equ a l t o the depth of the beam. 

Deflections of the beams were measured by the metho d 
shown s c hema tically in f i gur e 4 . A li ght truss holding 
d ial gages re ading to 0.001 inch was fastened to t he 
beam b y means of a veTtica l a rm . This arm was securely 
fa s tene d to t he u ppe r and the lo wer fla ng e of the b e a m 
at the station where the inbo a rd w b r e i n for cement ended . 
The out e r most dial wa s 10cateQ at the sta tion where the 
outboard 1eb reinforcem ~ nt cogan. r~e deflection me asure ­
monts were thus confin ed to the r ogion qhe r e the we b was 
of single t h ickness , a nd the reference line was t he tangent 
to th e cla s tic li ne of the beam at tha inboard end of this 
re g ion$ 

In order to prevent fa ilure ef the ceaills by t wisting , 
lateral support was p rovided in t he form o f parall e l-mot io n 
li nk s. These li nks consisted of two ang le s each and were 
held at the ~ar e~ds b y a spac e trusswork bolt e d to the 
b ack sto p. Tle ti p of this trusswork is visible in figure 
3 just beyonQ the tip o f the beam. The links may b e see n 
i n figure 5. 

Deflections of the up ri ghts normal to t he plane of 
the web were measured on so~e beams by d ial gages , as 
shown in f i gure 6. These mCRsn r ements were abandone d be ­
C3use t he deile ct ions we r e p~actically z e ro i n the load 
r Rnge ~here it 'as co nside r ed s af o to l eave the gage s in 
place . 

Th e 45 0 triangle promi nen t in figure 6 wa s us e d to 
measure th o e lon gation of a 45° line . Microscopes equ i ppe d 
with filar microm ~ t e rs were clamp ed to the a n g le and serve d 
as measurin g instruments . The measurem e nts were intended 



6 

c~iefly to chock for the existence of permanent elongatio n 
in tho wob. ~hey leTa abandoned after a few tests because 
it was found that pe rm ~nent set began l a ter than anticipated 
an~ that the predictions of upright failures vere unreliable 
and uncons e rvRtiv0. T~p un8xpocted occurrence of upright 
fnilure joo~ardized the safety of the equipment. 

F~iluro of the upri ghts by forced twisting is shown 
ill figuro 7. ThiA type of failure is typical of thin 
Uprig~lt [, • 

.Accuracy of measllrements. - The er1'ors of the load 
measurements ~er3 not mo re thpn 0lle-half of 1 p3rcent . 
Web thickne sses were IDeasurad on a lar ge number of 
stetions; th e aver age thick:1ess (!RL p_obabl:r be reliod on 
to ±0.C003 inch. The cross-sectional a~eas of the 
upri ghts BnG_ of the flange3 i-!erO determined by woighing , 
except for the steel flanges used on beam 40-1 Rnd beam 
40 - 2, which we r e dGtGr~ined by measurement, Cross-sec ­
tional areas for ~luminum- alloy sections detormined by 
·r e i g hi n g a~: 0 pro b a b I Y a c cur n t e t 0 ± I per c G n tit hoe r r 0 r s 
in tho cro o s-sectional araRS of tho steel flanges are 
proba~ly lar ~er , pe rtictlarly when d3tcrm i ned by measure ­
ments, but it i s no t poss ibl e to give quantitative esti ­
mates. The ecwu~~cy of t10 strain maasuremcnts is esti ­
mated to ±1 pcrc~nt. 

Test. Results 

~Xr.~_~~.l'· i n _..:.2~_~ . - Tho s tt;rdI! mOCl.!='ur.:lmcnt c; on the 
~ebs ~eTO taken ~t ~nglos of 45 ~ith th3 beam ~~es . ~hc 
observed strain" ~ero ~ul~ip lio1 by tho f qctor E to 
o bt ai~ stre~~ v~lues; tho rcsultipg s ~ rossos ~orn, of 
cours e , nowinal bccquso tnc st~te of stress wac; Rctu~lly 
t'."o-:lirr.onsioll"l . Wh,)n the s trec:;sos oxcoeclod the pro­
portional limit , the gtress-str~in curve of tho materi~ l 

was usod to convert the mO"l.suro1. strains into 'I st-ressas . 
Individual Rtross-strain ur vos ~o r e taken only for tho 
webs expe ct e d to fail bofor ~ f~ilurc of th0 upri~hts took 
place; an ~ve r ~gn stre s s-Rtrpin curvn nas sod to convert 
the strain readin~s O~ the othOT ~ebs into str~sQ 8 s . The 
resulting o::perir!.lc r.tal str~ss v'LIuos ·",1'0 sho'-'n ·i :'1 figure 8 . 



The calculat ed stresses ShOWl in f igur e 8 we re 
obt a in e d as follows: 
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Th e theory of . i n c omp l ete di agona l ten sion developed 
in r eference 1 assumes tha t th e stre ss in t he web c an b e 
dos crib ed by sup8 rposing the effects of a diagonal-tension 
load k S and a shea r l o ad (1 - k)S. If the angle a of 
the diuEonal t ension i s ~sGumed to b e 45°. the nominal 
st r ess a lo ~g a 45 0 lin o is 

EE: ~ E r 2T k T (1 - k I (1 + IJ, ) l 
L -;- + E J 

= T [1 + ~ + k (1 - ~) J 
T~G vnlua of ~oisso n ' s r atio ~ wes takon AS 0 . 30. 
The stress g i ven by forrrul~ (1 ) is an a v erage s tre ss . 
The max i mum str oss is g iv on by the f~rmul a 

EE: = T L 1 + ~ + k (1 - ~) J (1 + k C 2) 

( 1 ) 

( 1 a) 

whore C2 is a facto of st r ass c oncent r 3tion c aused by 
flexibility of t he flanges ; this f~ctor will be disc ussed 
l a. t er . 

The st ress g iv en by fo r mula (1) is plotted in figure 
8 as Q das~ed lino . the stres s g iven by for mula (Ie) a s a 
sol i d lin e . The strasses cal culAted by f o r ~ul ~ (la) sho uld 
be co mpa r ed wi th thG E tr ~SGes measured on di~goncl-t ens ion 
lines pass ing through the jo i nts bet wee n upri ghts and 
f l anges . Jo correction was m~do t o al lo w fo r the fnct th a t 
the angle a wns not exac tly Gqual to 45° . The e rr or in­
yolved i s a c osine er r o r .:en d ·las abolt I! pcr c unt in the 
"fo r st casc o 

The agree men t between experimental and calculate d 
values i s sat i sfactory on the 40-i nch be ams . excepting 
the s tre ss~s in beam 40 - 1 at lo ads abo ve 1 5 kips . No 
defin ite cause has been e o teblished f or tle d i sc repan cy , 
but t v a f act o r s may ha ve a bearing o n the sub j e ct : The 
beam was loaded a number of times to 15 kips, and th e 
strain gages u sed were not suitable for use on buckl ed 
sheet . A d iff eren t t y pe of gage was us e d in all th e 
oth e r test s . 
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O~ the 25-inch beams tho exper iment a l stresses show 
a tendoncy to be somew~at low. It is believed that this 
discre~nncy can be as crib ed to portal -fr ame action (fig. 9) . 
This exp l anation is supported by figure 3, 1hich shows beam 
25-1 cRrrying a load of 1570 pounds or 23 percent of the 
ulti~Bto lond after the web hod been completely ruptured 
from flange to flange . The raverse curvature of the 
flengec typical of portal - frame action is very evident in 
f i gur e 3. 

If it is assumed, as n first approximation , that the 
shear deformation of th e web and the portal - frame aatio n 
do not influence each other , the shear 8' that is carried 
by the web is related to the total shear S by the ex ­
pression 

8 ' 
S 

I 

where EI is the bending stiffnes s of .. one flange and 

(2) 

Lp is the effect ive IIheight II of the portal frame . Va l ues 
of S'/S are given in table II; these values are based 
on the assumption that Lp may be taken as the length of 
web of single thicliless (fi g. 9), that isp the end bays 
having tripl e thickness are considered as rigid . Insp e c­
tion of fi gure 8 and of t~e valuos of S'/S in table II 
indicates that the differences between experimental and 
calculated stresses would be reduced if t he portnl - frame 
action were taken into eccount; only on b eam 25-~ would 
there be a larger difference of an unconsorv~tive nature . 
In ordLr to a void confusi~n on tho fi gure, no corrected 
calculated curves a r c sholn • 

..s.i1:..Qssos in upric:hts .- On tho first 40-inch beam , 
a detailed survey of st res ses in the u p ri ghts was made 
with Tuckerman strain gages to study the effect that was 
termed " gusse t effect" in reference 1 . The results of 
the strain survey are sh o wn in figure 10. It will b e 
seen that the gusse t effect is very pro nounced on the 
tension side (bottom s id e ) of the beam . On the compres ­
sion side, however , no gusse t effect can def init ely b e 
said to exist except near the tip ; the average of all 
uprights shows a guss~t effect only at th e tension side 
of the beam. 
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T~e measure~ents made wi th electrical stra in gages 
on t.he other 1830ms are summarized in fi r.;ure 110 ~ 0 

stresses on ind i vidual urri ghts are shown in figure 110 
but the averages shown are Guff ici cn t to indi cate t tat 
the ev i dence concerning the gusset effect i s conflictinG . 
0!1 the 2E-inch bear;:s '.'li th 0.01.1- t1nd 0.016 - inch "[e1.1s, 
there is pract ic ally n o evidonce of gusse t offect. It 
w0~ld the r efore seem adv isable to drop the u se of the 
~u~se t factor as ~ r ef in emen t not warra~ted by th e pre ­
sent state of knowledg e . 

Figure 12 shows t~e stresses in t he u prigh t s plotted 
aga i ns~ lo ad . For each beam , t he stresses sh own are those 
for t he mo st highly stressed s tati on alon g the uprights 
in each case . ~he calculat ed stresses are general ly in 
~ood agreement with the maximum ex~erirnent al valn·s for 
the 40 - incb beams . The only except ion is the first 40-
i nch beam; on this beam, t~c maximum stresses were hi6her 
than the calc~lated stressJs . 

On the 25 - inch beams, th e web was so thin th&t the 
condition of pure diagonal tension should have been 
a~proached very closelyc ~he upright stresses moasurod 
on t hose beams wo re thorefore expected to be in closer 
a E; r camcn t lith the t.hJory than tho str (; ""SGs mE)asured on 
the 40-inch b oams. Th~ rev erse ~as true; inspection 
of fi ; ure 12 shows t~at the measured upright stresses 
in tho 25- inch beams wore considerably lo wcr than the 
calculated st r esses. The differences ~ re too large to 
be explained by portal - frame action , althou~h this action 
was s uffi~i c nt to oxplnin mos t of the d iff orenc es between 
ob served and c a lculate d web stresses. Th e thoorotical 
calcu:!..ation of 
D,c cur n.tc ; 3uch 
l O\ve Ver ~ t"1C'. t 
the c a lculated 
h<:>..s beon iound 

the angle a might b o thought to be in­
Docs ur oments of a as ~e ro ro~de indic a ted , 
a was s li ght ly ~bo ve r~ther than below 
v nluo. No oxplnnation for t he discrepancy 
thus far . 

~he s tr esses in t~e uprig~~E constitute t he most 
sens i t iv e c rit erion for t hE) validity of a~y theo~y of in ­
co mple te diagonal tansion. Fi gu re 12 sho~s th e theory 
used in t h is p~pe r t o be i n v_ry satisfact ory agreement 
with the test results on the 40- inc~ bca~s ani to be 
cons ervative for tha 25 - i n ch bca~s. Webs as thin as 
those used on the 25 - inch beams will 50 1doB bo onc ou~­
tarod in p~actice. 

/ 
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Failures of u~ights~- On all but beam 25 - 7 , the 
uprights \Irere rather sturdy (tuft::::: 3) and failed by 
column action; a typical failure is shown in figure 5. 
Tho ratio of developed strength to predic t ed strength 
varied from 0.99 to 1.37 (table II). The uprights on 
bourn 25 - 7 wore designed to inil by forced tuisting; the 
failuro is shown in fi~ure 7 . 

Rive~~~~right-t~-w~~<- In all excep~ beam 40 -1 
and beam 25 - 7 , the upright-to - web rivets were design ed 
for the f ir st test to have a strength in double shear 
app ro ximately equal to the load on the upright at failure 
(table III) . On beam 25 -7, the rivet spacing was arbi ­
trarily dec~eased to make the uprights and the 1eb act 
as a unit as lon~ as possible in spite of the localized 
nature of the fai~ure ~xpected , namely~ failure by forced 
t1:Ji s ti nge 

On baam 40-4a the web was not d amaged when the up­
rights failed. The uprights were removed, straightened 
and again attached to the beam with the ne xt larger size 
of rivet. When the uprights were a ttache d, care wa s take n 
to shift the~ around i n order to change th e relation be ­
tween the failure pattern of the web and tho failure 
pattern of the uprights. The rivet strength of beam 
40 - 4b was 1.57 times the rivet strength of beam 40 -4~ t 
~nd t he load cnrried w~s 1.06 times as mac~ ns in the 
first test. The uprights wore a~ain removed , straightened 
and r eattached ~ith intermediate rivets added. The rivet 
st r ength was now threo times the original value, and the 
beam strength wns found to be 1.18 times th e original 
value. (S ee table II for data. ) 

Beam deflec~2on~ .- The compar:son betveen oxperi ­
mental and calculated beaill def l Gctions is shown in figure 
13, T. e Gxporimcntal defl e ctions arc cons idcr ,"'.bly 10\ve r 
thnn tho calculated doflections on t~e 40 - inch benms; 
on t he 25- inch bonms, the a Greement is generally be tt e r . 
The most obvious explanati on for the discropancies would 
be t hat th o effoctive s hG~r ~odulus Ge obtained from 
reference I is too 10~ , but this obvious expl~nation does 
not appear to be the correct one . Plate-girders with 
thick webs (re ference 3) tJsted in the shear - resistant 
range gave consistently smaller deflections t han the 
.nlculoti ons indicated; only a single beam out of 8 gave 
1 a r gur de i' 1 e c t i J n s . The d iff ere nee '.'lE1. s abo u t 6 po r c e n t 
for the total deflections and more t han twic e as much 
for the shear def l e ct ions Rlone , if the single excep tion 



i s ex clude d o Those r esults indicate that th o simp l e 
forlliulas commonly u sed for computing th o ben ding de ­
fl e cti ons nnd sho~r deflections become c onse rv a tiv e 
when th e be~ms a r o short end deep , that is, when th e 
l eng th~width ratio is 18ss than about 4 on a cantilever 
b ;)am . 2.the f .:lct thnt t he discropancies ':Jere I n.r ge r in 
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t ho t ests on the 40- inc h benms than i n nIl other beams 
may be at tri buted in p~tt t o the f a ct t ha t t he pr ope rties 
of the o t ee l flangos wo r e not so accurately known RS the 
pr opertie s of th e Rluminum-alloy fl anges . I n addition , 
an experi menta l e rr o r might have beon caused by we lding 
t he reference truss t o th e beam flanges. The we lds had 
a spanw ise len g th of 4 inches , and it is poss i ble that 
their effective center did not coi nc ide with their ge o­
me t ric center. 

P Armanent deflections. - Permanent deflections of 
the b e am s a sin d i cat e d by the re a din g S 0 f t he d i a 1 gag e s 
at th e tip are tabulated i n ta.ble IV . ~ or t he 0.040-
inch webs , the set was only sl i ght ly above the accuracy 
of t he me asurements a t shear stresses up t o 10 kips p e r 
square i n c h . I n the 0 .011- and 0.0 16- inch webs of the 
25-i nch beams, a defin ite permanent def l ec t ion was in­
di c a t ed by the dial gages and began at a shear stress 
of about 1 2 . 5 kips per square i nch . Visual inspe ction 
of the webs on the 4 0-inch beams showed no obvious 
'.r rinkles . On tho 25 - inch b ,} ams . the i.rebs sh owed p ro­
noun c ed wrinkles of hRlf - moon shape under t he ends of 
tho up ri ght s , where t he jo gs l es in the upri g hts left 
the sh o ot unsupported and thereforo incapable of carry­
ing any compres siv e st r ess in t he d i rect io n of the up­
rights . 

II. ANALY~ICAL I NVEST IGATIOY 

Formulas Usea for str e ss An a ly s i s 

The collection of formulas g iven in this sec tion 
was Ch iefl y in t enaed to de s cribe the me thods by which the 
an e l y tic al c alc ulat ions were maio . Beyond this purpose , 
t he collection mo y ser v e as a guido fo r struss ~na lys i s . 

The fo rmul a s were e it he r t aken directly f r om r e f e r­
en c e 1 or a r e s1 p I e additi ona l app lic n tion s of the basic 
t heory dcv ul op ed in th i s r o f e r ence . One im p ort an t mod i­
fication of thc theory was mede by dr oppin g a s i mplify-
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i ng aSRu~ption made in reference 1; the nature of t h i s 
modifi ation i s discussed un(ter the side heading Design 
clla..rt fOLincollU2 1ete dia.ronn.l te'lsion. 

For certain itens of design , no formulas have been 
presented in this section ~ eithor because the experimenta l 
evidence i s inconclusive or we c ause no definite design 
c~iterion now.exists. These items are discussed in the 
correlative study of the next section. A careful perusal 
o f t h'O) C.9 r l' e l.E,j; l~§. t u ClX _ .§ h 0 u 1 d pre c e de any e. t t em p t t a 
app ly the formulas given here .. 

Effectlv..lLQJ'o.E...§..- sqct_iunal aroa of u-criehts. - Th r e e 
bas ic t;rpes of uprig'1.t are shown in figure 14. In type 
( a ), double uprights symmetr ical with r espo ct to the 1eb, 
the effective cross - se ctio nal are of the upright equals 
the actunl nrea 

AU = AU 
e 

In t;yr:pe (b), siuf,l e Upri5!1.ts 0::'1 ene side of the \' eb, the 
effective cross -s E~tional area is defined by the formu la 
(reference 1, equation (23)) 

~-u 
e 

(3) 

where e is the di 1tance from tte web to the centro i d of 
the upr i ~ht. In type (c), where a transverse member such 
as a bulkhead is attached by means of a connecting ang l e , 
the effective area AUe may be as s umed to consist of the 

connecting angle and of an effective width of the trans ­
v erso member. Th is t ype of upright was not used in the 
prGscnt investigation and i s included here only for the 
sake of completoness. No pFrt of the web WaS included 
i nth ear c a. AU i :1 an yea s e • 

Buckli~_ r.;t r e~of .- eb. - The buckling Sh0D. r stress 
Ter of the wob was obtained from figure 15 for simply 
sup~orted edges . This figuro is b ased on tho formula 
developod by Tim os hc nko (ref erence 4 ) . When some or all 
of the odges of tho panels were c l ampe d, the buckl in g 

- -- --~.-----------------~ 



stress Tcr obtained from figure 15 was multiplied by 
the fac tor 
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'6 Pc) + 0,0 ---
P 

( 4 ) 

where p is the total perimeter of the panel and Pc 
the len gth of the clamped edges . The origin of the factor 
1 .66 for the condition of all edges fully clanped was d is­
cussed in r oference 1. 

Tho edge support F, iven by the flanges or the uprights 
to the sheet was ~ssumed to be the equivalent of fully 
clampod edges when the sheet das cla~ped between two angl es , 
providcG. t118t cash ang l e 'VIas at l eas t three t imes as thick 
as the sheet and had flat facos touching t he sheet ( fig . 
16 (a)). The odges of the sheet pane l were takon to be 
the lines whero the sheet allGrged from und e rneath the 
an g los ( A , fig . 16 ) 0 

Tho .,cdge suppor t las as sumed to b (3 th e e qui val en t of 
simply supported edgos for the tYFoS of upright shown in . 
figuro 16 (b), (0) 3 and (d): namcly, double uprights con­
sisting of extruded ang l es av in G crowned ~aces touching 
tho shoot, double upri ghts ha vin g a thickness about equa l 
to the thickness of the 1;/eb , and single up:cights. For 
these 3 typos of upright , the edges of the sheet panel 
\,! 0 rot [',k en t 0 bot 11 e r i v 0 t 1 in e s • The ass urn p t ion s con­
c orning edge support for upright typos ( a ), (0) , a nd (c) 
were suggosted by th G resul s of strain maasurementson 
uprights. For type ( d) , the assumptiions ~,ro justifiod 
only in an indirect manne r by tho f inn.l results. A method 
of r e l at in g the edgo s upport to th3 thickness of thc up­
right pnd t h~ thickness of the web i s 8 ivc n in tho ~ppondix . 

Design chart for incomplete diago~§l~~nsio~. - Tho 
degree of development of the di~gonal-tension fie l d i s 
numerically defined by tho di~gonal - tension factor k 
(r eference 1). This factor spec ifi es the portion of the 
tot Rl shoar th ~t i8 cRrried by di gon~l -t ension Rction 
oft he 1t! e b ; it i s a fun c t ion 0 f the r r, t i 0 A 1.10 I d t ,-.n d 

tho re"tio t/Tcr 
of the f actor k 
of the tw o dosifn 
copi es of figures 
f r om the NntiJnal 

( refe r ence 1). The num e rical valuos 
wore obt~ined by inspection from ono 
ch('rts (fig. 17 or f i g . 18). Lf'rger 
17 ~nd 18 may be ~bta i ned on roquest 
Advisory Committe o for Aoronautics. 
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The stress in an upri ght can be calculated by the 
formula 

kT dt O"u = -.---- tan a ( 5 ) AT] + (1 - k)d.t 
e 

I n reference I, this formula (e quation (13)) was g iven 
i n a slightly simp li fied form by omitting the f~ctor 
tan a; the omis s ion ~a8 bas e d on th e s i mp lifying assump ­
tion that a = 45° . I n order to obtain bett e r agreemen t 
with the t e st d a ta o ver a v i de range of variabl e s , the 
s implifying assump tion was dropped i n the p r es ant paper, 
and the values of au/T shown in fi gures 17 and 18 were 

obtained from th e corr esp o ~Q ing values of r e f ere nce 1 by 
the following roc es s of correction. 

The values of Gu /T ~ iv e n in reference I we re con­
siderod as first &pnrox i mat iona. According to the theory 
of pure diagonal t 6tlsi on (reference 2) , th e angle a is 
defined b y t he equation 

tan:3 a = _€ __ €_X 

E: E:y 

The magn itude of E: x is egli gi ble in mOEt practical 
c asa s; th e magnitud9s of E: and E:y we re computed by 

( 6 ) 

using th e fir3t approximations for the stressas as g iven 
by reference 1 . Formula ( 6 ) b e cam e under th ese assump ­
tions, 

tan:3 o. = __ 1 __ 
GU 

+ -
2T 

(7 ) 

whore (Ju/T wa.s th e first approxi:la t iol1 obtatned from 

r efe renc e 1. 
(7), and th o 

The valu e of t an a .as co mputed by formul a 
f irst app ro x ima ti ons of O"u/T obtained from 

r efe r ence 1 we re multiplied by t an a to obt a in tIe s o c­
a ni approx i mations tha t a r c g iv e n in fi g ures 17 and 18. 
The differ en c e b etween the f irst app roxi ~ation and tha 
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second approxi~ation is swall vhen the r atio AUe/dt i s 

l ~rgo but becomes quite la~ge when this r at io i s small . 

A!l a 1 y s is 0 f VIO b s t r en P'J; h • - The s t re s sin the ''I e b 
VIas exp r essed as an flequiv~.lentfl shear stress defined 
by tho formula. 

The fa ctor C1 tak os into account the fact thnt tho 
~ngle a is sODewhat le ss than 45 0 and i s Given by the 
expression 

1 
- 1 

sin 2((' 

( 8 ) 

( 9 ) 

For conv en ienc e , tho value of 01 i s shown grnph ic n lly 
i n figure 19 . Tho cxpreGsion (1 + kO I ) i s simply a 
form ,1 [>. for strc.ight - line int e rpolation bchr0en th e 
limiting cases of s~ear ~d pure diagonal tension . 
Fi~ure 19 ~lso giv3S t~D a ae a mntter of SOIDe i n terest . 

The f[>._tor 02 i s sh own graphically in figure 20 
and was obtained by a simple tr~nsformation from the 
corresponding factor 0a given in roference 1. I f this 
corresponding f[>.ctor i s ~eno ted t empo r arily by Cal , then 

;::., 1 
(10) 

The expression (1 + kC a ) is ~ga in n formu l a for ~ straigh t­
li ne i ntorpolation betv8cn the limitin cases of shen r LI2 d 
pure di Ggon~ l tenS ion . The pnram ctc r wd charactorizing 
th e flexibility of th o fl;~ngo is given by ti.10 expression 

~V'h8re IT an d 
t c s i ') n f 1 nIl g 8 

wd 

4 ,r-------

= 0 . 890. 
/ t 

(11) 

~ro t he moments of inertin of the 
of the cJmpression flange; r espe ctively . 
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F o rmu l a (11 ) 
as the ratio 

is an approx i mation that is val i d as lo ng 
IT/Ie does not differ too much from un it y . 

The allowable web stress was computed by the fo r mula 

(1 2 ) 

This formula is equivalent to formula (82 ) of reference 1. 
The values of Tult and ault were taken from referen c e 5. 

A~~l~§i§_of upri~ts. - The stresses in the upr i gh t s 
were computed by tne ~xp~ossion 

(1 3 ) 

The rat i 0 aU / T vI a sob t a i ned fro m 0 n e oft he two des i g n 

charts. For double uprights , aU represents the a v erag e 

stress in tho upright. For single uprights , aU represen ts 

tho maximum stress, that is , th o ::;trcss in the fibers nex t 
to the web. 

A vi sua l study of upri ght failures has led to the 
conclus i on that single upri ghts of open cross section fa il 
as a result of twisting forced by the fo l ds in the wobs 
upon the uprights . Tho allowable str es s for this type 
of f a ilur e was computed by the empirica l formulas 

au(all) = 12.5 tuft kips per square inch 

au(~ll) = 10 . 5 tuft kips por square inch 

(1 4 ) 

(14a ) 

Formula (1 4 ) may be considcr~d to represent the ave r age o f 
the tes t data , nnd formul~ (14~) may be considered to 
repre s ent the low e r limit of the test data . 

Doubl e uprights of op en cross sectlon mey fa i l by 
forcad tvi s tin g o r they may fail by column failure . Fo r­
mulns (14) Bnd (14 0 ) vero used to chock agninst twist i ng 
failure . In order t o check ag~inst column failure, .the 
e ff o ct i v e column l enG th wns c omputed by tho formula 



f o r (d/h ~ 1. 5 ) 

With thi s e ff ect iv e len gt h, t :'1e s l a n c..e r::l oss ra ti o La /p 

wa s c omput ed ' n d t ~e All ovab l e str ess was o bt n i na d f ro m 
th e st a n d Ar d c o lumn curv e f o r 24S-T ma terial a s g iv e n 
in r e f e r o nc e 5 . 

Analysis of ri v ets web - to - flan g e .- The load n 
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(15 ) 

per inch a cting 'on tl: a l:leb-to':' ;."' l an g e 'rivet s vIa s calculated 
by the formula 

R = S ( l + O. 4 l 4k )/ hR 
(16) 

The allo ~lable r i vet loads vlB re t ake::l fro m ref c r c nc 3 5, but 
a correct i on wa s mad 6 for the a ct u al d rill si ze u s ed when 
it was k n own. The us e of t h is corr e ction i s sugg este d for 
the anal y sis of t e st ~ata but no t fo r ori d i n ar y str e ss 
an a ly s is . 

1lllaly s i .s of r i V l; tL~.1' J ;z:h t - t 0- f ]..ungQ . - The tot 8.1 
forc e a cting o n t h~ up ri ght-to-fl ange riv 0 ts is e qual to 
th e int e rn a l fo r c e i n t he up ri g ht , wh i c h ~s 

(17a ) 

( 17b ) 

The riv e t s in dou b l e u p ri g ht s a re in d ouble shear ; rive ts 
in sing l a u p ri gh t s Rre. in si ng le s h ear . Formul a (17b) 
must be modifi e d by a n em p iric a l co off ici e nt wh e n u so d 
for ~ ctual st r ess ann lysi s . (6 00 8c ctio n Corr e l n tive 
Study of 4anuf a c tu rcr s l Te s t s a nd ~AGA Teo t s . ) 

Th e allo~ n bl e load s Oll riv e ts we re t ake n fro m ref e r ­
e nce 5 . A corr e ctio n was me d a f e r a ctua l c.. rill s ize used 
when it ~as known . ~h G u se of t h i s corr e ction i s s u~ge st o d 

for the a n a l y sis o f t e st d a t a but not for ordinary s tress 
D. n n l :rs is . 
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An Rlysi s ..9.J_.h ' am 40 f1.§ c;ti..QB.§". - The be am deflections 
were computed hy th o s t andard method of addin g bending 
de f l e ct ions a nd s he~r de f l e ct ion s . The mom en t of in e rti a 
us e d in th e computation of th e b ond i ng def l ecti ons wa s 
b rl, s e d on t h o entir 0. g ro ss secU on; t ha t is, no ded.uct io ns 
we r e made for in effoc tive n c s3 of the "reb o r for riv e t 
holes . The shear def l o ctions wa r e com pu t e d by tIC formu la 

B = Tx 
(18) 

whe r e x i s th e dis t a~ce from the r e f e renc e sta tion to 
t he s t ation b a in g cons i d~ r od . Th o e ff e ctiv e shea r 
mod u lus Ge was ob t o in e d fr om f i gur e 24 of r e ference 10 
~he corr e ction to Ge f or excee ding th e proport i on a l 
li mit was b a sed on t he t e nt ative corre ction curv e shown 
i n fi gur o 21 , wh i ch is besed on unpub li shed te s t s of 
10 she a L pane l s 0.0 25 and 0 . 0 4 0 inch thi ck. With in t he 
r a ther l a r ge s c a t te r of the t es t dat a , th e curve was 
found to bo i ndepende nt of the d egree to wh ic h tho d i a ­
gona l t ens i on was -eve l oped ~nd may the refore be u se d 
for th e limitin g c ase of unbuckl ed she e t ~hon Ge = G. 
The cur ve t h e n becomes iden ti cal wi t h t ho s hear s t r oss ­
strain cur v e of t h e ma ter i a l. 

An a lysis of a lclad w9~A. - The most s a tis fac t ory 
mc t lod of anal~r zi nb c lcl n.d \" be wns found t o be th o 
f oll ow i ng me t hod : Ti c actua l we b thickness t was r e ­
p L l c e d by a n e f f e e t i v e t b. i ck nos s t 0 = O. 9 t, an d the we b 
was then ~nn.lyzed ns t houfh it we r ~ made of t ho b Rs ic 
a lloy o l one . Tho e ffoctiv G t h ic knoBS t o was used in 

a ll c n. l cul !1.ti ons , i n cludin g th e ca lcula tion of T cr • 

L i mit a tions on_}!..§..§! of theorv. - On ac count of th e 
comp l ex ity o'f' the problem o f in com ple te d i agon[" l tens i o n~ 
it has not been poss ible t hus far to exp lo re expe rimentally 
th e en tir e r ange of poss i ble des ign p r opo rtions ; limita­
tions mu s t th e refore be impo s ed O ~ t he use of the th eory . 
Th e n e ce s sity for certain li ~ itations is ap p aren t; the 
n acessity for additional li mitations Day be d i s cov ~ r e d i n 
th e actual u se of t he theo r y . 

Go n e r 'tl c ~poriencc '.'7 i th pr oblams of o l<1.s tic i nst!1-
bility i nd i c.:tt.o s th".t the LH':ory -rill noe 1 to b e moiifi c r'i. -"hen 
t he buc kl i n~ str ~s s of tho ~ob o~ceod s tho p roportion~ l limi t 
of t ho materi ~ l, or ap~ r ox i mR tely 12 ki p s p: r squ~ro inch 



for 24S-T alloy . In th e te sts analyzed in this paper , 
the buckling stress was a l ways below t he proportional 
lim it . 

S Experimental evidence tends to indicate that the 
~ t heo r y of dia~onal tension begins to break down when 
~ t he spacing of t he uprights becomeR l arger than the 

depth of the beam . The folds then have a pronoun ed 
t e~dency to run from corner to corner of the panel in ­
st o ad of takin g tho d ir ection indica t ed by the t~e ory. 
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At th e same time the effect of flex ibility of tho flang 3 s 
i nc reases rapidly, and there is at present only frag~ 
mentary exp er imental e vid en cG to support the vali d ity 
of t he theorr under such circumstances . 

The calculations for Atructu~al effi ci en cy Gi ven in 
the appendix indicate that , for web systems wi t h do uble 
uprights , t he structural efficiency tends to zero as 
t he ratio o f web t~icknesD to web depth decreas es . This 
conclusion appears re asonable. For web syat e ms with 
single lprigh t s , h owever , the calculations indi cate that 
a finite v alue of s tru~ tural Efficiency is n~proached as 
the ra ti o of web thickness to we-o depth decreases in ­
defin it ely . Th e calcala ti ons also indicate that , as the 
upright spacing decr eases , the structural eff i c i 0 ncy 
approaches that of a wob not subjocted to buck ling . Th e se 
:' osults for h/ t~ cnand. for d/h ~ C i o not app e ar phys ­
i c a lly roa30~ablo and a r c probably caused by f ailure to 
recognize tho exi ' t en co of a tenJing type of failure i n 
singl e uprights annlo g ous to thd band ing failure of double 
~p ri ghts . Caution should bo used , t herefo r e , in the anal ­
ysis of web systoms with sin~le uprights when the uprights 
a rc clo :::;;ly ~'pa cc d, or .:/ben tll') thicl::noss - dopth ratio i s 
ve ry sma ll. 

Correlative Study of Uanufa c turers l Tests 
and rTACA Te s t s 

In the li gh t of the theor y of in~ omplete Jiaeonsl 
t ens io n in reference I as mod i fied by the presen t paper, 
a comprehens i ve study was made of ro r e thM 100 tes t s 
made by five aircraft manufacturers i n ord e r to correlate 
these t ests with t he NA CA t ~Rts described in ~action I . 
and '1ith the t _eory . r:r.'h~ teEts Here confined, in general , 
to dete r mina tion of the y i eld lond and of the ~ltimat e 
load ; no s train - ~age data were included emong the a vai l ab l e 
d a t a . Thd test s furnished cufficient i nformat i on on severa l 
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items to permit a very substantial reduction of the 
NACA test program and were therefore of considerable 
usefulness. 

Unfortunately~ the value of many tests was lessened 
by the lack of pertinent information o For instanceo th e 
shapes of bulb aLgle stiffeuers were not given; it was 
therefore impossible to calculate accurately the slender­
ness ratios of the upri ghts. Again, nominal thicknes~es 
were gi ven instead of ac tual thi~knesses. The result~ 
obtained may be in error by as much as 5 percent owing 
to this source of error alone 9 because the commer cial 
tolerances are of this order of magnitude. In view of 
the incompleteness of the data, the individual results 
obtaine d from the analyses of these test s should not be 
t oo closely scrutinized. For this reason, and also be­
c aus e the ana lyse s are qu ite voluminous 9 no details are 
given in the following discussions. Only final concll~ 
sions are givenp based on the a ~ gregate of all available 
data. 

Strength of web.- Tests made of square shear panels 
0.040 and 0 0 025 inch" thick under pure shear (reference 6) 
we re generally in c l ose agreement with formula (13) for 
the a llowable equivalent s hear stress when the sheet was 
riveted to th e outside of the flange nngles u When the 
sheet was clamped between the flange angles, about 10 
percent higher stresses were develope • 

Amon~ the available manufacturers' test data were 
eight tests of beams that faile1 in the eb; in all cases, 
the eb was r iv e ted to the outside of the flange angles. 
The ra t io of de veloped s t ren gth to calculated strength 
was 0.99 ~ 0 0 07. Corrections for actual properties of 
material were made. but t he corrections were based on un­
certain data in some cases . 

In the NACA beam tests reported herein, two web fail­
ures were obse rved. discounting the failure in the web of 
beam 4 0-3 damaged by accidental con ta ct with an electric 
welaing torcho These webs were clam~ed between the flange 
angles and developed 1004 ~ 0 0 03 times the pre1 icted 
strength based on formula (12). The deve lo ped strength is 
therefore b percent higher than the developed strength of 
the grou~ of beRms with the webs rive ted to the out s ide of 
th e flange angles; whereas r the tests with the square shear 
panels of reference 6 in d icat ed a gain of 10 percent due 
to clamping the web between the angles. A possible reason 
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for t ho d i sc r epancy i 3 s s f oll ows: The fl ang e ' ang l e s 
used for the beam tests (secti on I ) were 24S - T a l um i num­
all oy angles w i t~ a fairly ~moo t h fin i sh . The f l an ~e 

anl-; l es usei fo r t lle sheeu' pono l tes ts , o n the othe r 'hand , 
were structural-stee l angles y i th the usua l rough f i n i sh . 
The an~lcs with the rouGh fin i £_ can probably deve l op 
lur g e r fri c tion :orce3 on the sheet t hun the angles with 
the smooth fin is h , and t hese fr i ct ion f orc e s r e li ov e t he 
endangered se c t i on of the s~ee t. 

The t 0StS dis c ussed t ~us far i nclude o n l y b eams in 
which the i nfJuence of f l ex i bil it y of the fl anges was 
sma l l (C a < 0.04 ). The s t rain - gage tests of beams 25 - 2 
aild 25 - fi tend to indic c te that t~e factor C2 g i yes 
reas onably co r rect str0sS val~es when O2 = 0.3 . A web 
failure in a beam with Oa = 0 . 5 indica t ed tha t l a r ge 
theoretica l values of O2 may tend t o be slight l y c on ­
servative . 

The UQus l method of r educ i n~ t est re sult s f or mate rial 
p r operties i n ex.oss o~ minimum guaranteed val u es was 
f oll owed in the se anal~ses. Th i s method i s basad on the 
p r opert i es obtaino~ with standa r d tensi l e spo c imen s . Th e 
discussion of th ,'" r t)SlJ. lts in reference 6 pointed ou t tha t 
t h i s m~thod i s qU 0s t ionablc and ruBY be in or r or by as muc h 

. as 10 pe r cent boc~use tho stress - concentration fac t o r f or 
holos is no t equ al t o unity , as commonly assumed f or s t a tic 
3tren~th c alculations . The test results of roferunc~ 6 
a l s O ind i cate thnt tho strnss -c onccntrati on facto r i s n ot 
constant nnd 30ll0times varios in su c ~ a mann e r as t o nu l ­
lify a highe::- strength sho\-1ll by a standar d tons i le spe c imen . 

s t r engt h of upri~hts . - I n s i ngle upri ~h t s of opon 
sec ti on~-fa-llul': is--;:;,r l )2.rent l y procil)itatGd vihcn the fo l d s 
of the wob force ~ l ocaliz ed twisting of the up r igh t s . 
The twist c ~uses ~ localiz od ~eaken i !lg of the upr i ghts : 
tho finnl fc ilure may the r ofo r e be a bending fai l ure . 
Double upr i ghts ~ro susceptible to tho same typo of fa il ­
ure and must be soparate l y checkod aga i nst fa i lur e by 
for c ed t wisting nnd ~gc inst c o luDn failure. Doub l e as 
1el 1 as single uprights mu s t, of cou~se , be chackod ng~ i ns t 
the poss i bili t y of fai l u r o by 1 0ca1 in~ t abil i ty . 

The emp ir icnl f0rmul ~s (1 4) Rnd (1 4a ) fo r up ri gh t 
s tr esses caus i n ,; fa I lure 1)y forceci twisting \.;e r e o b ta i ne d 
i r o~ a n ~nalysis ef the m~nufacturers: tests . The t es t s 
i nc l uded nI l t ypes of s t iffone r c ommon l y used ; name l y , 
bulb ang l es , plain formed .nng l eR , and forDed angle s wi th 
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lips. Th3 stresses in the upri~hts were calculated by 
tho formulns given in the preceding section. Single 
uprights woro assumod to furnish the equ ivalent of 
simple support to tho sheet . 

It WB3 fo~nd by trial that the upright stresses de ­
pended p~imarily on the ratio tuft. Figure 22 presents 
the plots of test points; the straigh t lines are graphi ca l 
representations of formulas (14) and (14a) 0 The figure 
indicates that the average agr eement between the tests and 
for~ula (14) varies so~ewhRt with the beam depth. The 
formula is conservatire for the group of beams 10 inches 
deep becones gradually less c ons~rvative , and bocomes 
finally uilconsorvative for the group of beams 40 inch e s 
deep. The formula aSrces feirly well with the ave r age 
of the largest ""roup 0 that is: the 30-inch g ro up. I'iithin 
the r~nge covered by the tests, the properties of the 
materia l arc independent o f the abs olute sizes. Tho appa r­
ent decrease of ultimate upright stresses with increasing 
b eam depth probably indicates that the ultiDate stress 
depends on a more co~plicated function thnn t he Ta tio 
tU/to The observed decre~se of ultimate stress Day also 

be merely accidental ~nd may disappear when tho number of 
tests annlyzod becomes much larger thnn the number now 
avnilable. 

Th e last exp l anat io n is supported by the test results 
shown in figure 23, which include results for six beRms 
48 inches deep; the rosults are in fair agreemen t wi th 
for~ula (14). The results shown in figure 23 were obtained 
with bea3s having double uprights alternating 1ith single 
uprig~ts, usually of different size . It was assumed , be ­
cause the upri g hts we r e closely spaced, that the stress con­
dition . depended on tho average effective cross-sectional 
eraa of the upright ~ ; tho allowable stress was de t e r min ed 
sepnrntely for doubl e uprights and sing13 uprights. Fail-
re occurred in sono beams in the double uprights, and in 

otner beams in the singlo upright s; the c~ .. lculn.tions in ­
dicO-ted c o rrectly which type of upright should L,il first . 
This fact » as well ~s the egraen e nt with formula (1 4 ) in­
dicntod by figure 23, ~ay be tAken AS vindicating the 
Doth o d of nnalysis used . Since the 48 -i n c h b o nos of 
fi gure 23 g i ve results in agreoment with formula (14) I it 
seeDS rc~sonably safe to cssuna that the foroula is val i d 
for ~ll beaD depths up to at least 50 inch os . 

For Rctual str ~ ss ana l ysis. it is rGc 0m~: n1o~ t~~t 
the DorB conservative fornula (14a) be used. As fi gure 22 



i nd icat es , t his formula represents fa irl y we ll the 
lo ~ar limit of th3 test ~ata . The two low ~oints i n 
the 20-i n c h group are probably "wild." The low poin ts 

23 

in th e 30-inch g ro up at low values of t~/t sug~est that 
~ the edge support given by t hin uprights should be con -
~ sidered ~s less t hGn t he equi valent of a simply suppo rt e d 
~ e ge e (3ee tLe ap:pen.i i. xQ ) 

Double upr i g~ts , as men tioned before, may f ail by 
column act io n or by forced twisting. Formula ( 15) f or 
effe cti ve column l engtn was based on t he NACA tests 
( se ction I) and r ep l aces Wagner1s theoretical curve of 
tlG ratio oi theoretical buckling loai VT to Euler load 
P~. (S ee r e£'erenC8S 1 and 2 . ) Formula (15) in.iicf'tes 
t~nt the bracing offe ct exe~ ted by tha web on t he uprigh ts 
is much less than predicted by Wagner;s theoretical curve , 
even when V{,q,gner I S CU:-V 8 for pin - endod u pr i e;ht s is appl ied 
t o upri gh ts attached u ith tl . .,rO rivots or bolts. In the 
limiti ng cas e of vary slliall spacing of the up ri ghts! 
Nagne g iv es a value of VT / FE = 7. h i le fo r mula (14) 
gives Le/hU = 0.5 corresponaing to VT/P E = 4 . A partia l 
exp l a~8tion for the nigh values ottRined by Wagne r may lie 
in the fact that the observed patter~ of failure d id not 
a g ree very ~e ll wi th the simple pattern assumed by Wagner 
for his st r a in-a ne rgy calculati ons of the strength of 
up ri ghts . 

As table II indicates) formula (1 5 ) te~ds to giv e 
s li ghtly conserva tive results. Atte~ti on i s called to 
the fac t~ however , tha t it is i mpo rt ant t o use actua l 
instead o f nominal values of t he depth of the outstanding 
leg in ord er to obtain correct value s for the radius of 
gy r at ion. So ~e allo~a~ce should be made for t he fact 
tha t in extruded angles t he full thickness of the l eg is 
not carri ed to the extreme tip~ 

Particularly i ns tructi ve are t he tests wit h double 
upri ghts included in figure 22. Calculations shew t hat 
the stresscs developed by the doub l e up ri ~hts on the 30 -
inch beams are only f racti ons (0. 3 to 0.6) of the stresses 
that would Froduca column fa ilur es . 

s t r e.!lg t h of rivets 1tleb - t o - flall~ .- The actua l st reng th 
of the ~eb-to - :lange rivet s i 3 usually w91 1 i n ex cess of 
their n ominal st renGth . Part of th i s excess streng th can 
be tracei to the fact that the ho l es a re a l ways d rilled 
ov ersi ze to faci li tate i nsertion of the riv e t ; the a ctual 
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cross section of the rivet is therefore lar~er th n the 
nominal cross section, and the excess is quite large in 
the smaller sizes of rivets. There is also a change in 
the stren gth properties of the rivet a~ a result of the 
JrivinB operation (reference 7). 

Sin~e the factor8 giving excess Atrength to the 
r i vet s va r y fro mea set 0 cas e, it is ad vis a b 1 e t 0 bas e 
tho stress analysis on tha nominal strength. Test re ­
Bults should be r edu c ed to tho nominal strength analogous 
to the manner of reducing other test rosults to minimum 
guaranteed properties. 

The available d3ta i ~c lud od five failures in tho web ­
to-flange rivcto . A comparison of the rivet loads com ­
puted by formula (16) with the stren~ths of the rivets 
based on the drill size indicatod thut formula (16) was 
always conservative o the minimum margin found being 2 
percanto The usc of he inst_ad of hR was found to 
be unconse~v ative in some cases; this fact is mentioned 
because he is frequently used in all fornulas for the 
desiGn of girdors . 

F or mala (1 6) i s s i m~ly a stra i ght -line for~ula :or 
interpolating b etween the limiting cases of s~ear and 
pure diagonal tension. Under a rigorous interpretation 
of the theor y of incomplete diaGon~l tension, separate 
rivet loads would be computed for the diagonal-tension 
load kS and the shear load (1 - k)S and would be 
Rdied vectorially. The rivet loads obtained in this 
manner are low er than tho~e obtained by formula (16) ex­
cept for k = 0 and k = 1) the maximum difference being 
about 9 pe::'cent at k;-:: 0.4. The rivet loads found by 
'eetarial add itio~ we re ~ound to be too low by 5 percent 
in two cases, compa::,ed with the a ctually developed 
strengths of the rivets . ~he use of formula (16) is 
therefore reco~mended, although the method of vectorial 
addition of partial loais may appear to be more rational . 

In tho tests referrod to, the webs were riveted to 
the outside of the f l E1.ngo ",n.r;le::; ; it is probable that 
slightly higher riVut strengths can be developed when the 
wob is clampei between the flange angles. 

S t r e 11 g tho f r ire t S ll.IH i gh t - t 0 - f In?; 0 • - The a v a i l ­
abIa experimantal ~v id ence on tha strength of the rivets 
in the onds of the uprights 'las fragmentarYe It has been 



customary to design those rivets o ith e r on the basis of 
tho pure diRgonal-t .nsion theory or on the b as is of tho 
theory that nll shear in ex~ess of th8 critical shea r 
is carried by diagonal tension . These theories give 
v ery conservative results and , co nsequ cntlyj there were 
pra c tically no records of failure of the rivets am on g 
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the available test dat~ . Ind irect evidence fas obtai~ed 
by compa ring the stren~th of successful rivet joints with 
th e calculated lo ads on them . I~ the NACA tests of section 
I, bolts were used in s tead of rivets because it was con­
sidored mor a important to obtain da ta on failure of the 
uprights than data on the failure of rivets. 

Th e load on the e~d riv ets of double uprights is g iven 
by formula (17a ) . There was a rJcord of one failure but , 
in this c ase , the nominel s t rungth of the riv ets was only 
about ono - half the load calc u lated by formula (17a ). Ex ­
am ination o f successful rivet joints indicated thRt for mu la 
(17a ) is probably alwars con servative , but it is impossiblo 
to g ive definite quantitative data because thera was too 
much uncertainty abou t seme of t he ba ~ ic data, particularly 
on the actual stre ~gth 0 f the rivet s . 

The force on a single u~right is theoretically 

~ = -U 

Si nce the upri gh t is eccentrically loa ded , some al l owance 
must be made for ~end i ~g in the rivet. The simples t method 
of making this a:lovance i s to multip ly Pu by a factor 

larger than nity to o bta in a design load . Among the avail­
able test dat8, we r e 1nta on two failures of end rivets 
i n single upri ght s. These t ests indicated that the value 
of Pu g iv en s hould be doubled to obtain a design load . 
The calcula tions were uncertain , chiefly because the shape 
of th e cross section of the b u lb-ang le upri g hts was not 
known and co nsoqucn tly AU

a 
co uld not be calculated with 

any degree of certainty . A de fini tely cons0rvativc design 
procedure for these two cas es would b e to apply formula 
(17a) . It is recom mended , t he refore , that for~ula (17 a ) 
be used for singlo upri ~hts as well as for double uprights 
until add itional dx~er i mental evidence i s obt ained . 

Rivc1~BIlght - to~~c~ .- The dosign of the rivets 
between upri g hts nnd web re s ts on n very unc e rtain basis 
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for sin gle upri gh t s ao ~e ll as fo~ ~ouble u pr i ght s . 
Des ign crit Drion s arc e it he r of ~n in~ ef inite nature or , 
~lthough definite t he o=etic~llY I ccnnot be r e adily trans ­
l a ted i n to spec ific design requir ement s. 

For sin g le uprightc , a ~ossi~lc crit e rio n ~or design ­
i ng th o rivots is g iven by the conside.l.8. tio i1 tha"t th e 
ri vo t lin e should gi v~ to the shaet a s much s u pp ort us 
po cs ibl ~ in o r dor to i n cr ease th 3 bucklin g stress . The 
equ i val ent of a simply supp orted edge c ~n possib ly be 
obtnin e d wit h a prnctic n l riv e t pitch , bu t t he n~ mber of 
riv e ts n e cessary to ~chievo this purpose is not known at 
pr esen t ~nd ~robably v ar ies considerably , depunding on 
tn o int e r' pre~[I, tio::: of th f' t e r m lIequivalent of a simply 
supp ort e d ed g e . 11 0r.. 8 method. of des i. g n 'r eferen ce 8) is 
to choose the rivet spacing such t~a t the web does ~ot 

buc k le between riv e ts un~ er t~e compressive stress acting 
on the uprights . The ques tion arises , however, whether 
it i.s necessary to prev e nt the occurrence of this buckl i ng 
until t he maximum load has b ee n reac he d o r whether it 
mi g ht b e pe r missibl e to l e t buc kli~g beg in after th e de ­
sign yield load . An up~c r li o it for tho riv o t p itch is 
g iv on by the criterion p<d/4 sugges t e d i n r e f e rence 1 . 
This criterion i s ba s ed on t h e as sump tion s th a t one fo l d 
begins at each u p ri g ht Bnd tha t the rivet pitch must be 
less than one - fourt h of the wave l s n g th in or de r to b r eak 
up the ~ave ~a t tern . ~he assumption tha t on e fold starts 
at e ach upright do es no t hold for a ll pos s i ble design 
proportions , although for a luminum alloys it pr obably 
holds over mos t of the p r ~c tical range . 

I n do u b le upright~ expe ct ed t o f a il as columns, the 
rivets s hould th e or e ti cal l y be d ,signe d to withs t and the 
l on g ituJina l sbenr force in the up~ight . This shen r force 
c ~nnot b e c a lcula t ed unle ss th : de fo rmatio n of the uprights 
at t h e inst a nt of failur e i s knovn , and t ho c a lculation 
of th is deformBtion is boyond the limitqt i ons of tho li n ­
earized theory of column ~ ction . For columns m~~e of 
st ee l wit h n we l l - defin od y ield point , some prog r ess h~s 
b oon mado in c a lculat in g tho deformations . For ma t ci rials 
with curvod s tress - st r ain d i ag ram s such a s aluminum alloys , 
t he c a lculations will b~ muc h Do r o d iffic~lt; they Rro 
further complicated by tho br a cing a ction of the ,,, e b "nd 
by tho fact th~ t tho str p. ngth of tho r i vets affe cts the 
streng th of tho uprights , 03 shoun by the tests on beams 
40 - 4a , 40 - 4b , snd 40 - 4c . On the mong er evidenco g i v en 
by the three Ll;.CA t os ts , it i s s u ggeste d that th e tot a l 
str e n g th of th e riv o ts in doublo 3h~ar b o m ~d o a t least 



equRl to the load Pu on tho upright a nd preferably 
equal to tiice th~ l o~d . 
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In double uprights expected to fail by forced twisting, 
mere attention should perhaps be given to close spacing of 
the rivets than to the strength of the rivets. 

Permanep.t set o - In the manu.facturers ' tests ana.lyzed , 
permanent set was determin ed by one or sev eral of the 
following criterions : 10SR of tautn es s of the web , deter ­
mined by feel ; permanent buckling of the web as a whole, 
determined by a str~ight edge; appearance of defin i tely 
visible s~ear wrinkles in the corn ers : and , finally, 
visible p erm8.nen t set in t he uprights. On e report. me ntions 
that the me thods em~loyed ~ave lower y i e ld lo ads thRn the 
deflection re adings , but there is no record of de fl o ction 
r endines bey ond t h is passing mention. Th e data on yield 
loads giv0n in the teEt reports a nplyzed ha7e , ttereforo, 
the co mm on feature thu t they Rre not based on quantitative 
moasure~ents. Subjective methods of the typo u s ed mny 
conceivably y ield r eRsonabl~ con s istent re sults when em ­
p l oyed by one engineer within the co mp~ss of one test 
series . Results obtained by different en gineers , on the 
other hand , may be expe c ted to shOlAr a l a rge amo 1L.t of 
scattere 

Examinatio~ of sepa r ate t est series in~i c ated l a rge 
scatter within each te t se ri e s ; the ~xpe rimen t al she&r 
stresses produ~ing pe r manent set are therefore shown as 
a co mpos ite plo t i n figure 24 . The shea r stresses were 
calcul ated by the fo mula 

(19) 

The co r rection factor k0 1 was a lw ays fairly smal l, but 
the factor kO a was greater than 0.5 for a number of beams 
and w~s 0.76 for ona beam . The test po ints in figure 24 
indicate that pe rmanent set begins at shear stresses as 
lovi a s 11 or 12 ldps pe r s~uc;.re inc h. This result is in 
agreem ent wi th the r esults obtain~d from the m~asurcmGnts 

of per Til an en t d e flo c t ion s L'l th.o I i .. C A , " s t .3 (t a bIG I I ) • 

Test engineers uppo~r to b e more or le ss i n Ggreomcnt 
thct a severo ~oight ponBltJ would be imposed upon thc 
do signo r if he '!·; T e r 0 crt::. ir Jd. to do s i gn 1:\ bC [l.m in s uch a 
m ~nncr that no wrin~los rc ~ri n p~rceptible af ter th0 design 
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yi e ld 10 L",d he. s boen ~_p p li cd oncc. A req,uiromont o f this 
nat'J.rc would a lGo ap,Pear to be not en tirely consistent 
with the fact tha t simp l e members may be des i gn ed to 
re a c ~ , a t t he des i gn yield lo ad, t he specification y ield 
stress of t he materi~l . Th e speci_ ic a tion y i e ld point 
i s not defined as t he minimum pe rc ept ible pe r~an ent se t 
but as a wel l-d of i ~ed , fair l y large permanen t se t . In 
vi ew of these considerations , it would se em advisabJ,e 
to subs tit ute for the so~ewha t vague co ncept of permanent 
s e t two separate co n c cp t o , na~ely, pe rma n en t shear de fl ec ­
tion and permanent wri nkles . 

It se~ms reasonable to assume tha t th e pa r mc nent 
shea r deflection can be c a lcul ated by r e l a tin g t he sh ear 
stross gi ren by formula (19) directl~r t o the e ff o ct ive 
shear stress - str ~ in curvo of tho mntcri e l. Tho on l y r es ­
e r vation to bo m2 do is th2t the factor C2 mus t not be 
too 1 2 rg e , because a l a r gn fnctor O2 i s ( ss o ciated with 
F l ~ r ge concentration of shea r stress , and th e shear de ­
f l ec tion of the beam is a function of the average sh eat 
s t res s rat her than t h e m a x i mum she a r s t re s s 0 

In reference 9 , dealing with torsion tub es of 17S- T 
a lloy , i t waB suggested that the yie ld she~r stress be 
defi n e d a s t he str 8sS at 'Jh ich GIG = 2/3 . I f th i s sug­
gesti on is follo wed , the curve of f i g ur e 2 1 gi ves a yield 
stres s of 24 k ip s pe r square i ch . ~h i s value is i n re as on­
able ag r ee men t wit h t he yield st r esses of 22.5 kips pe r 
squa re inch for 17S- T a ll oy ment i oned i n r e ferenc e 3 and 
23.3 kips pe r square inch g i von i n referenco 9 . The elas tic 
limit of 24 S- T al l oy li e s at 12 . 5 k ips p e r square inch if 
figur e 2 1 i s used as h a s i s . 

The r esults shown in figlre 24 indic a t e that t he shear 
stresses p roduci ng pe rm anen t ~rinkles li e a n ywhe re be tween 
the el astic limit a n d the y i e l d stress fo r s hee ts l es s than 
0 . 06 inc h th ick . For t hicker sheets , th e stress p r oduc ing 
permanent Jrinkles is nea r er the y i e ld s tr ess , but the 
numbe r of t es t s in this region is small. I t i s i nte r e sting 
to note tha t t he low e r limit of t h0 s c a tter b and in fi gure 
24 may a l s o be exp l ai n ed by r GfD rrin ~ to th e expe rimental 
r osults of Wagne r and Lahde g i ven in r e f ~ r Gn c e 10. Th es e 
expe ri ments showod tha t the max i mum stresses a round th e 
edges of a sheet panel in shea r a r e a bout twice as h i g h as 
t he aver age stress~s . 

Perman e nt ~ rink les ~ay be c aused by compressive stresse s 
in the sheet whe re the j OBg le of t he up ri gh t leaves the shee t 
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wi t hout support . This type of wrinkl e can probably b8 
predicted by th e method u sed for predictine the bu ckl ing 
of sheet between rive t s (r eference 8). 

~ Lan gley Memor ial Aero naut ical Lab oratory, 
~ National Advisory CQ m~ittee fo r Aer o n autics, 

Lan g ley Fi 0ld, Va. 

APPENDIX 

STRUCT URAL EFFICIErr CIRS OF DIAGONAL- TENSION WEBS 

The fo rmula s for st r ess analys i s p res ente d in thi s 
paper a re r eason a bly a d e quate for the d e sign of the web 
and of the uprig t s . It seems app ropriat a , th ere fore, 
to r e - exami n e th o ques tion of structural e ffici en cies 
obtainable by balanced desiens i n ~h i ch th e web an d the 
up r i ghts f ail simultaneousl y . 

Within the r a nge of v al i d i ty of t he for mu l as g iven , 
th e stresses developed depe nd only on the proportions of 
th e we b syst e ms and ~ ot on th e ir absolute s izes . The 
range of validity of t~e f o =mu l as may be assumed a t l e~s t 
to equal t h e r a n go o f tho t os ts, t ha t i s , to cover web 
depths up to 50 inc hes .. nd wob t hi c k n e ss e s u p to 0 . 091 
inch , subj e ct to t he limit~tion tha t Tcr must be less 
tha n th o propor ti on~l i ~ i t of the mate rial . All curves 
shown i n th e appendix comply wit h thi s l i mitation . 

In o rd e r to r educo th e larGO amount of com Du t a ti ona l 
wo r k , a standard shape of cr o ss s e ctio n was ns suoed f o r 
tho upri gh t s. For simpl icity . a si~p lo a ngl o us c hOsen • . 
Th o outst a nding leg ~ a3 ~ssumed to be tw ic e ns wide a s the 
le g at t a ched to th e web to g ive n se cti on o ffici o~ t in 
bonding . The width- thickness r a ti o of tho outstB~ding l e g 
was assumed to b e b/tu = 12, to elimin a t e tho poss ibility 
of e l astic instability of the free ed g e . tith t h ese as ­
sumption s , the followin g r elations we re obtained for doub l e 
uprights : 

p = O. 47lb 
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and for single uprights : 

ATT = b Z /1 6 
"e 

The material was as s ume to be 24S- T alloy. The strength 
values a nd t h~ c o l um n c urve were taken fro m r eferen c e 5 . 
Th e riv e t factor waG taken as CR = 0.80 . For~ula (14a ) 
was used t o obtain the allowablo stress f or twis tin ~ f a il ­
ur e . 

The bu c kl i ng stresses were co mpu t ed by t ~e f o rmula 

where Tcr( s up p ) is th e buck lin g stross for p&ne ls wi th 
simply supported edgos givo n by fi ~ur e 15 . nd K l i s a 
f ac t o r dopend i ng on t.e upr i .:;.~l t s as sho'IJn b y figu r e 25 . 
The c u rv o for K l i s b~3ed on ve ry limit od 3xporimontal 
ev i den ce but , since chan~cs in K l do n o t a f fec t t~e 

final r esul t ve r y much , the curve may be used fo r most 
practical purposes . The particul ar manner i n which the 
f a ct o r K l was ernplvyed ~ere i _p lies the assumpt ion that 
the meth o d of edge su~po~t along the flanges i s the same 
a s alon g the upriehts . 

On th basis o f ;hs aerum tions outlined, a numbe r 
of web systems we r e des i f~ed such tha t t h e webs and the 
upri gh t s would fBi l s i multaneously . Curves 0 the s truc ­
tur a l e ffici encies of tho web systems wit h double uprights 
are shown i n fig re 26. The meas ure of effici enc y used is 
the st r engths of the qe ba div i ded by the volume of material 
per i n ch r un V , or the a v e r age shear s tr ess based on al l 
the material in the web system . The c a lculations s ho ved 
tha t at large values of hit ( 4000 and 2000 ) double up­
ri gh ts fail by c o lumn bending . The curves p e r tain in g to 
failure by bend i ng arc concave d ownfard in fi gure 26 . As 
hit decr ea s es , a poin t is reachod where t ho uprights fai l 
by t wi stin g bafore they c an fail by bending . The curves 
pertaining to twisting f ail~rc are concave upward in fig ­
ure 26 . For hit = 1000 , tho curve for bonding fa ilur e 
and t he curv e f or t wi s ti nb faill r o int e rs e ct twice . When 
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d/h is either near unity or qhen it is s~all , bend in g 
failure i s decisive. For intG~~ediate val u es of d/h g 

twisting failure is decisive ; the dec isiv a t ypo of fnil ­
ure in G~ c h c~ae is indic~ted by full lines in figure 26 . 
At hit = 500 , twis~ing fa ilur e is de c i sive except at 
small values of d/h. 

Ins pec tion of figurA 26 lends to s ev eral conclusions 
of general interest . On e conclusion i s t ~a t the struc -
tur~l efficiency increases as the value of h/~ decreases o 

The r ea son is twofold : Ar hit decreases, the st ate of 
stress in the web ap proac ~es more clo s ely the state of 
shear , and the al lowable equivalent shea r str BS incr eases . 
At the sane tim.e , t':.e 10 ':,0. im:?o ~od on t he u pri:'Shts decree.ses , 
and cmall o r upri ~ht 8 ~ay be u sed . 

Anoth o r co~clusion that m~y be drawn from figure 26 
concerns t he upright spacing giving tho g r ea t o st structural 
OIIlcioncyo At v ery l ar~e v alues of h!t, th g re a tost 
efficiency is obtainct whe~ dlh equals unity. Some cauti o n 
should be u sed in the prac tical ap p lication of t~is conclu­
sion , because the c a lc u lations on which figure 26 is based 
ne gle ct the influenc e of f l ex i~ility of t he flal.g es . 

At sma ller va~u8s of hit , when t wistip~ ~ccomes the 
decisive type of fai lure , tho b~s t eff ici e ncy is obt a ined 
by u s in g closely spa ced uprightr . The curves for t wist i ng 
failure conti nue to rise c.8 d/h dec reas os , and the 
strength- ,olum e ratio approach~~ th o limiting value CRTu l t • 
The on set of column failur o , _o~over , makes i t i mpossible 
to r e aliz o th o high e ff icioncy that could be obtained if 
failur es le rd confined to twisting fa ilures . 

The r es ults of the c~lculutions for single upri~hts 
are shown in f i ~ur~ 2 7 . ~h e curves ha v e a somowhat unusua l 
ap:po~ranco and. ra .1.pparent.ly of nn os cillaton' nature . 
Th e curves t e nd to wa rd t~ 8 li ~it in g value of S/ V = CRT ult 
i n tho same manner as the corr c spon~ ing curves for twisting 
f a ilur e of double uprights in f i gu ro 2 6 . The curvos for 
double lpr i gh ts are , however, prevented fr om r each i nf thJ 
l i ~i tin g ~aluo CRTult by thG fact tha t bend i ng fa ilure 
beC!o mos c cn trolling ; th e theoretic .. l curveS for sing le up­
ri gh ts , Oll tho oth e r hand , cun uctunlly ren ch the liciting 
v~lue because the ~cthod of anc lysjs used does not r ecogn ize 
the pOasihil i ty of b~ndin ~ failures in s ingle uprights . No 
doubt such fnilures e r c ~ossibIG ; in th o li miting cnse of 
very clo soly spacod upri ;hts , tho theo r y of buckling of a n 



orthctropic plate (reference 1 ) should be applicable. 
Because little is known Rbout tho validity of this theo r y , 
no a tte mp t was mnde to tcke iLto account the possibility 
of bending failures in ~inglc upr i ghts. In view of this 
f~ct , results con corninG clo aely ~pa ced single u~ ri ghts 
should be con s id e r ed with g r o~t c autio n . 

Failure to take into a~coun~ the possibility of bend­
in g failures in single uprights is probably also res p onsi ­
ble for the fact that figure 27 indicates a finite valuo 
of structur~l efficiency for hit ~OO , while the struc ­
turnl efficiency of webG wi t ~ double uprights decraas8s 
i~definitely a s hit incr eases . 

In the design of ~e syste~G, t he g iven Quantities 
a rc norhlall~ the shear leal S and the depth ~. It 
i s customary to ~ombin e these ouan titi GS into th o struc ­
tur[:l index JS7h , wh ich is b;:sed on '~he principle of 
s t ructural similarity stating th~t stresses in geome tri ­
cally similar structures are identical when the loads are 
proportional to t h e squa~e of the linear scale ratio . 
structures having the same index values have the same 
stresses. 

In figure 28, the - tren t:>th-volume ~ .. atios fOl" 'lo bs 
with double uprights and for webs with s in ~le uprights 
are p lotted .:.tgainst th-8 str- ctural iniex . 1"le dis­
co~tinuity in the curves for single upri ghts is caused 
by reaching th~ limitinG stess va~uc of 50 kips per 
square inch in the upri~hts. Th~ test rang0 indicated 
i s the rang o of manufacturers' tests, which includos 
that of the ~T.ACA boam tests. We ll l'lithin the test range , 
there i s little to cho os0 b0tween single upri ghts a~d 

double uprights. Near th~ oordors of the t ost r ~n~G , 
the single uprights become more c ~fici cnt than the double 
uprights . It should be borne in mind , ho~ever, that the 
unrestrict od validity of the formula for twisting f~ilure 
beco mes questionable n 3ar t he bord o rs of t~ e t ea t region . 
~ho curves in fi gu r e 28 sho~ moro clearly tlan fi~ur es 26 
and 27 the manner in which t ho structural efficioncy varies 
with the hit r a tio . This comparison i s pos s ible because , 
for practical purposes, tho TP tio hit may bo usod instead 
of the ind ex valuo J~/h w~en only struc tur .s made of the 
same material nrc being studiod . 

Of considernbl e practic~l int 0 r est is the ~~gni tudc 

of the reinforce men t r at io Aul t. Fi gure 29 shows 
graphically how the reinf orcemen t r a ti o varies with the 
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s t ru c tura l index . Thesn curv e s mRy bo u se d to obt o i n 
nn estim ~ t e of t he nm oun t of stiffenin ~ r e qu ired i n n 
give n design . S ince th e sh a p e of the up ri ght ch o s e n will 
pr o b a bly dif fe r f r o m th e st ~nd Brd shap e a ssume d f o r t hn se 
c a lcul n tions , ~ fin a l a n a l y s i s mu s t " b e made i n mos t c as es 
t o choc k the str ength o f tho we b system . 
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TABLE I. - PROPERTIES OF NACA BEAMS 

Beam h h. hR hU . t d d Uprights AU = AUe AUe P Flanges wd 't cr Ii (nominal dt (2Ls) 
(s~i!~.) (in. ) (in.) (in. ) (in. ) (in. ) (in. ) size) (sq in.) ( in. ) 

(in. ) (In. ) 

40-1 41.1 40.0 ~8.6 38.6 0.0425 10.0 0.25 ~X1X! 0.338 0.795 0.256 2X2xt 1.12 1.83 

40-2 41.1 40.0 38.6 38.6 .0425 10.0 .25 14x~ .384 .903 .490 2X2i 1.12 1.83 

40-3 43.1 41.4 40.6 38.6 .0392 20.0 .49 1~~ . 384 .490 .490 3X3~ 1.52 .42 , 
40-4a 43.1 41.4 40.6 38.6 .0390 20.0 .49 axH .353 .454 .351 3X3~ 1.52 .42 
4O-4b 43.1 41.4 40.6 38.6 .0390 20.0 .49 a4x~ .353 .454 .351 3X3~ 1.52 .42 
140-4c 43.1 41.4 40.6 38.6 . 0390 20.0 .49 ~~i .353 .454 .351 3X3xa- 1.52 .42 
25-1 26.1 25.0 23·9 23.9 .0102 10.0 .40 !xlxto .123 1.206 .232 2X2xrt- 1.24 .11 

25-2 26.1 25.0 23.9 23.9 .0105 20.0 .80 ~4xrl; .123 .586 .232 2X2x.fo 2.51 .04 

25-3 26.1 25.0 23·9 23.9 .0116 10.0 .40 H+* .110 .952 .167 2X2xrt 1.29 .14 

25-4 26.1 25.0 23.9 23.9 .0153 10.0 .40 ~4~ .114 .747 .182 2X2~ 1.38 .25 

2"5-5 26.1 25.0 23.9 23.9 .0150 20 .0 . 80 ~4x! . 269 . 897 .247 2x2xfc 2·72 .08 

25-6 26.1 25.0 23.9 23.9 .0162 20.0 .80 !b4~ .206 .635 .241 2X2xte 2.79 .09 

/25-7 26.1 25.0 23·9 23.9 .0402 10.0 .40 a-~x.040 .101 .252 .291 2X2~ 1. 75 1.12 . 

~ 





TABLE II 

SUMMARY OF NACA TEST RESULTS 

Beam Pcr Pult Failure Pu1t S' 

CsIc Jlult 
T 

(kips) (kips) 

40-1 3.11 21.40 Uprights 1.03 0.995 

40-2 3.11 39.30 Flange ( a) .995 

40-3 .68 37.00 bWeb ( a) .978 

40-4& .61 30.30 Uprights .99 .916 

40-4b .61 32.10 Uprights 1.05 .916 

40-4c .61 35.10 Uprights 1.17 .916 

25-1 .03 6.80 Web ( a) .934 

25-2 .01 6.30 Uprights 1.37 .928 

25-3 .04 7.60 Web ( a) .939 

25-4 .10 7.80 Uprights 1.06 ·952 

25-5 .03 10.90 None ( a) .952 

25-6 .09 10.00 Uprights 1.22 .953 

25-7 1.13 12.70 e Uprights .96 .980 

-Uprights did not tail. 
b 

Pre.ature failure owing to accidental17 damaged 
web. 

eFailure precipitated by forced twi.ting. Ulti­
mate failure at end of one upright. 
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TABLE III ~ 
~ 

STRENGTH OF UPRIGHT-TO-WEB RIVETS (NACA TESTS) 

RiT.t. Rivet 
Beam (A17S-T) .tr;nfth 

Quan-
tit7 She (ki~.) 

(in. ) 

40-1 12 ~ 1.94 

40-2 12 1 7.94 g 

40-3 l~ t 1.94 

4o-4a 12 1 
1.94 g 

40-4b 12 ~ . 12.45 

40-40 23 ~ Z3.85 

25-1 5 t '.30 

25-2 5 t 3.~ 

25-~ 5 
1 

3.30 !r 
25-4 5 t 3.30 

25-5 5 1 3.30 B 
25-6 6 ~ 6.22 

25-1 8 t 5.30 

-no"bl. all.ar. 
b Uprights did not tall. 

Calc O'p 
at ult 

_te 

(affij .q n. 

7.90 

11.90 

24.20 

19.60 

21.20 

24.20 

18.30 

30.00 

22.20 

18.20 

(c) 

28.00 

·9.60 

cTest stopped betore tailure. 

Calc Pp 
at ult Sr Pult _t. Cal.e PU catc 'ult (Jdpa) 

2.67 2.97 1.0, 

4.57 1.74- (b) 

9.30 .85 (b) 

1.00 1.1~ ~ 
1.48 1.66 ~.~ 

8.56 2.19 .... l'l 
2.25 1 •. 47 (b) 

3.69 ·90 1;~1 

2.45 1.35 (b) 

2.08 1.59 1.06 

(e) (e) tb) 

5·77 1.08 1.22 

.91 5.47 .96 
--

g 





TABLE IV 

PERMANENT BEAM DEFLECTIONS (NACA TESTS) 

Total Shear Permanent 
Beam P 't deflection den.ction set of 

(a~iI~.) of tip of tip tip dial 
(kips) (in. ) (In. ) (in. ) 

40-1 20.00 11.76 0.395 0.296 " 0.004 

40-2 15.00 8.82 .298 .224 .000 

40-3 15.00 9.24 .329 .285 -.002 

40-4a 15.00 9.30 .371 .327 .006 

25-1 4.00 15.68 .477 .401 .019 

25-2 1.50 5.73 .169 .139 .002 

25-3 4.00 13.78 .394 .319 .007 

25-4 7 .• 00 18~570 .440 .009 

25-5 4.00 10.67 .323 .249 .001 
--.. --

aTest stopped before failure. 

Pu1t 

(kips) 

27.40 

39.30 

37.00 I 

30.30 

. 6.80 

6.30 

7.60 

7.80 

alO •90 
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Figure 2.- Cross sections of uprights. 
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Figure 3.- Beam 25-1 after failure. Notice web rupture in third bay from tip. 
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Figure 5.- Beam 25-6 after failure of uprights by 
column bending. 
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Figure 7.- Beam 25-7 after failure of uprights by forced twisting. 
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Calculated average stress _(Formula,(/)) : _. 
Calculated maximum 5tre5stformula(la)~ 
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Fi9ure 14.- Basic t':1pes of ypr;ght. 
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