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A THEORETICAL INVESPIGATiON OF THE LATZRAL OSCILLATIONS
OF AN AIRPLANE WITH FREE RUDDER WITHISPEdIAL
REFERENCE TO THE EFFRCT OF FRICTION

By Harry Greenberg and Leonard Sternfield
SUMMARY

Charts showing the variatlon in dynamic stability
with the rudder hinge-moment characteristics are presented.
A stabilizing rudder floating tendency combined with a
high degree of aerodynamic balance is shown to 12ad to
oscillations of increasing amplitude, This dynamic insta-
bility is increased by viscous friction in the rudder con--

trol system°

The presence of solid friction in the rudder control
system will cause steady oscillations of constant amplitude
if-the floating angle of the rudder per unit angle of side-
slip is stabilizing and greater than a certain critical
value that depends on other airplane parametsrs, such as
vertical—-tall arca and airplane moment of inertia about the

vertical axis, The amplitude of the steady oscillation is

proportional to the amount of friction and is generally
guite small but increases as the cond1t10n of dynamic
instability is approached,

An approximate method of calculating the amplitudes of
the steady oscillation is explained and is illustrated by a

-numerical example, A more exact step-by-step calculation

of the motion is also made and it is shown that the agrce-
ment with ths approximate method. is good,

INTRODUCTION

Plight tests have shown that, under certain conditions
of rudder balance, undamped latsral oscillations may occcur
when the control is freed, The oscillations involve
coupling between yawing motions of the airplane and move-
monts of the rudder and depond on the amount of friction in



the rudder control system, A previous theoretical investi-
gation (reference 1) showed the existence of these unstable
oscillations but d4id not cover a sufficlently large ranse
of the variables, particularly of the rudder floating-
moment parameter. The importance of this-parsmeter has
*been emphasized by the recent 1ntercgt in control surfaces
having a positive, or stabilizing, floating tendency - that
ig, surfaces the free movements of which tend to oppose any
disturbance of the airplaane.

Theoretical calculations (reference 2) have shown that,
. for a rudder having a stabilizing floating tendency, in-
creases in rudder damping may cause unstable oscillations.

A general discussion of -the effect of friction in producing
oscillations of limited magnitude under thesge conditiong

is given in an unpublished document by scnalrer and Busgh

of Boeing Aircraft Co. : :

Because of thu advantages in uoinb a rudder with a
pogitive floating tendency, the undamved-oscillations that
may occur when such a surface is used have been. fully in-
vestigated. The present revort gives the results of 8
theoretical investigation of the subject and:-deals primarily
with the effects of friction on the stability of the ogcil-
lations in yaw of an airplane with rudder free. The effects
of rudder inertia gnd mags balance, airplane 'inertia, *
weathercock. stability, and rudder effectiveness are aliso
treated, ' ' S S

o
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Cn hinge-moment coefficlent kh/~V S c > 4 .
@Ché frict10nal hlnge-mOment coefflricnt /ﬁf/~V Sr r>"
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Cn effective increment in viscous~-damping coefficient
Dog duc to solid frictioa

c rudder chord
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D' différentidl operator (d/ds)
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frictional hinge moment

radius of gyration of rudder about hinge axis, divided

O,y S¢in *byaﬂ

railiuvs ¢= gyrut*on of airplane about vertical axi S,
dividsd vy semispan.

tail longilk divided dy wing semispan
mass of airplans

mass of rudder

distance traveled in semispans (2Vt/b)

airspeed

distance of rudder center of arav1ty behind hinge,
Hiv1ded by semlspgn

effective angle of attack of vertical tail

angle of rudder deflection measured from neutral
posltlon, radians

amplitude of rudder oscillation

angle of lag (angle between the position of the rud-
der and the position of the airplane)

complex roots of stability eguation (v + iv)
airplane density ratio (m/pSb)

rudder density ratio (mr/psrcr)

density of air |

angle of yaw, radians

amplitude of yaw oscillation-
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METHOD OF ANALYSIS

PThe only motiozns considered in the anralysis are a
yawing of the airplane abdbout its center of gravity and a
rotation of the rudder about its hinge. It was shown in
reference & that the oscillatory stabdility of an airplane
with these two degrees of freedom is essentially the same
ag when the additional degrees of freedom - that is, roll-
ing and lateral motion - are taken into account. The egua-
tions of motion for two degrees of freedom are developed
in appendix A. These equations can ve obtained from the
equationg given in reference 1, whaich include the effect
of lateral motion, By making the angle of sideslip equal
and onnosite to the angle of yaw.

The golution of the eguations shows that the motion,
in most cases, coagsists of two superimposed oscillations:
one of longer period involving a sensible coupling vetween
yawing of the airvlane and swinging of the rudder and the
other of shorter veriod, which corresponds to the oscilla-
tion of the rudder when the airvlane is acting as a rigid
gupport. The longer-period oscillation has the lower dsmp-
ing and is therefore the one of interest. The period and
dampiang of tais oscillation, when giveh as the distance
traveled along the flight path expressed in terms of sgome
characteristic leangth of the airplane, are independent of
speed and, provided the density parameter p 1is constant,
of airolane size and weight. '

On the basis of the eguations for two degrees of free-
dom, the oscillatory stability.depends on the following
factors:

Airplane and rudder masg characteristics as expressed
by _

2

(¥R

wk airplane wmoment of inertia

-d
urkra rodder moment of inertia
urxrl rudder product of iunertia

Yawing-moment characteristics of airplane as exoressed

by

c weathercock stability
. :

c danping it yawing

By
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Yawing-moment characteristics of rudder as expressed by

C rudder effectivenesgs

ng§
yawing-moment variation with angular velocity of
rudder

Rudder hinge-moment characteristics as expressed oy

Chw f}oating-moment ?arameter )

Cth ninge-moment variaﬁion'ﬁéth»yawing

Chs‘ .reétoring~momeﬁt parameter

ChD8 radder démﬁing parameter )

Inagmuch as only the aerodyrnamié or viscous damping
ChD6 can bte conveniently treated.in the equations, it 1is

necessary for the analysis to asssume an equivalence between
the actual golid friction and g fictitious viscous friciion.
This equivalence is chosen in such a way that the energy
consumed by the solid friction is equal to that consumed by
the viscous friction during each cycie. The method of deal-
ing with this equivalence is detailed and discussed in
appendix ®. The error ianvolved is such that the ecuationsg ..
do not show the small irregularities in the motion that will
actually result from the presence of the friction. The
periods, amplitudes, and conditions for stability, which
depend on averaged values, should, however, be revroduced
accurately enough.

The study of the effect of the different factors on
the rudder-free motiorn of the airplane was made by a series
of computations for the "average" airplane of refereunce 1
in which the variation of the period and the damoing of the
lateral oscillation with Ch5 and Chﬁ, was determined for

various representative values of the.othér parameters. The
basic or average values of the parameters are given as
follows: ‘

wky " oo . .. .. 0,926 .an . - . . . . . -0.0864

LWk % . o . . . . . . 0.0222 O . e v . . . =0.097
r r . . ) L}D‘gj

MpXp « = « « « « « « . . 0.0 Cag + + » » o« <+ -0.076

Loo.o. . . . . . . . . .0.918 Chma ¢ o« « +« . =0.0053
)

) -0 11

Cth!r’:. e e e o« « . 0,918 Ch\lj ChDS e e e e s e .11
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RESULTS AND DISCUSSION

In general, the equations of motion show that, with a
ruddér zaving a vpositive floating tendency, restriction or
damping of the rudder movements introduces a lag in the
rudder motion that reduces the damping of the lateral oscil-
lation and that may result in continuous or unstavle oscilla-
tions. If the rudder damping is due to solid friction, the
phase lag decreases with an increase in amplitude and the
oscillations are continuouns and stavie), that ig, the oscilla-
tions are limited to a definite amplitude which depends on
the friction. Aerodyramic or viscous damping of the rudder,
however, causes a phase.lag that does not change with ampli-

. tude; hence, if this lag is sufficient, the oscillations

will be unstable~- that ig, will iancrease indefinitely.

Increasing oscillations due to aerodynamic éamning of
ggg;gggggg.— In figure 1 the damping -and the frequency of
the oscillation as répresented by values of u and v are
shown as functions of the floating-moment and restoring-
moment parameters of the rudder.,

The values shown for u and v are related to the
damping and the period of the lateral oscillation by the
equations ‘ '

P = 6.28/v
Ty, =-0.58%/u
, 2

where the period P is in terms of the number of semigpan

lengths that the . airplane woves for a complete cycle and
the damping T% refers to the number of semispans the

airplane moves before the oscillation is damped to one-half
its original amplitude.

In figure 1 the control system is assumed to be fric-
tionless. TFor an average value of the airplane radius of

4 ' . ‘
gyration [ ky = % ﬂ\ the density ratio employed in figure 1
correspouGs to a wing loading of 25 opounds per square foot

for an airplane of 40-foot svan at sea level. A4 positive
value of Ch¢ corresponds to a stabvilizing floating tend-

.ency, and a negative value - of Ch6 corresponuds to a sta-

bilizing restoring moment. The magnitude of Cp is a

5.
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measure of the control forces regquired to deflect the rud-
der at zero yaw; a Oy, of =-0.4, for example, corresoonds
. =0 - .

to 150 pounds of pedal force for full deflection of a rud-
der having an area of 25 square feet and a chord of 3 feet
at an indicated speed of 100 miles per hour.

The oscillation becomes undamped for only positive
vaiuves of Chw and a high degree of aerodynamic balsance
corresponding to small numerical values of Ché' For values

of Ch6 numerically greater than a certain magnitude (in

this case about 0.12) the damnlng of tne ‘oscillation in-
creases with pesitive floating tendency as indicated by the
curved solid lines. The freguency of the oscillation in-
creases rapidly as Oy is increased, as shown by the dot-

ted lines. The straight line in the lower quadrant is the
iine of gzero weathercock stability with rudder free.

Effect of rudder inertia.- Figure 2 SuOWs the effect
of rudder inertia on the oscillatory stablllty boundary.
The effect c¢f rudder inertia on the 0501llat10us is desta-
bilizing but is not very great for reasonable amounts of
inertia, as was also shown in reference 2. For this rea 1s0n
and for simpler calculations, rudder inertia hasg been neg-
lected in most of the subsequent calculations.

Effect of mass balance of rudder.- Mass balancing the
rudder has a stabilizing effect on the oscillstions, as
shown in figure 3. It should be noted that complete mnass
balance, MpX, = o, is necessary to provide stability at

ChW = Ch6 = 0. DMass overbtalance, p,.x, negative, is de-

sirable to insure a margin of stability with co.nlete aero-
dynamic balance.

The destabilizing effect of viscous damping of the rudder
for positive floating tendency is shown for two values of
the airviane inertia in figures 4 and 5. RBoundaries for
increasing oscillations are drawn for arbitrary increases

in the value of rudder-damping derivative. In the figures
the dotted line drawn tangent to these boundaries determines
a region where the oscillations are stable no matter how
large the viscous friction in the rudder system is. This
line may be called the boundary for complete damping. As
the line passes through or very close to the origin, it



correspondg to a fixed value of the ratio of Cp  to Ch&

W

or the floating ratio of the control zurface. TFor values

of the floasting ratio numerically greater than the critical

value corresponding to the dotted lines of figures 4 and 5 -
that is, for points above these lines - the damping may De
said to be incomplete because unstabvle oscillations may oc-
cur if the rudder damping is great enough. Similarly, for
points on figures 4 and 5 below these lines, the damping

is said to be complete because, no matter how great the
viscous danmping of the rudder, the oscilliations will decay.

When the viscoug friction increases bYeyond a certain
value that depends on the valune of wa,: a furtner increase

has-a stabilizing effect. This

act is also shown in fig-
ure 6, wnere Ch5 arnd C- c

Apg cnsidered as variables

and the boundaries for increasing oscillations are drawn
for two values of Chm' The maximums oun the curves corre-
. k4

1 [ 24

spond to the boundary for compleie damping in figure 5,
The value of the aerodynamic damping derivative for th

rudder is -C.11 and is indicated by the vertical line. This
value is the minimum amount of rudder damping mossible. Any
larger value would, of course, e due to viscous damping in

.the rudder coutrol system, such ag might Le suoplied by a

aasnpot.

The freguency v of the undamned 03~111a+1un for
points on the boundaries of figure 5 is shown in fignre 7.
The angle ¢ Dby which the radder lags btehind the yaw mo-
tion and the relative amplitudes of rudder and yaw o/¢
are plotted on the same figure. A comparison of figures o
and 7 indicates that the nhase angle corresponding to the
voint where the effect of rudder damping:is reversed -
that is, the minimums of figure 6 - is 45% in “oth cases.
These two figures are very uvseful in calculating the ampli-
tudes of the undamped oscillatiomns bduilt up when solid
friction is present.

teady ogcillationsg nroduced by sclid friction.- If
the effect of viscous friction is destabilizing, as shown
in figures 5 and b, the presence of solid friction will,
under certain conditions, result in steadily maintained
oscillations. This fact.can be shown by using the concept
of eguivalent viscous friction, which gives the following
relation between effective incresse of viscous damping,
amount of golid friction, and amp litude and frequency of
the oscillation:
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This forwula is derived in refereunce 4.

By use of this relation in conjunction with figure 3,
the action of _friction can be explained. If the initial
disturbance B/Chf is very swall, the value of effective

ChD5 . is, according to the preceding expression, very
large and the point representing this value of ChDG will

lie to the left of the appropriate curve of figure 6.
Because this point is in the stable region, the oscillation
will aamn out completely. If the initial value of. 6/0hf

is nhigh enough to place the point on the concave side of
the appropriate curve in figure 6, the motion will be un-
stable and the amplitude will increase. This increase in
amplitude decreases the numerlcal value of the effactive
ChD6 until the point on figure 6 moves to the right oranch

of the curve. - Any further increase in amplitude is impog-
sible because it would bring the voint on flgure 5 into
the stable region. If the ianitial value of 6/Chf is very

large, the effective value of Chpa is numerically very

small and the point representing it on figure 8 will be to
the right of the curve, in the stable region. The ampli-
tude will then decrease and cause the value of chDé to

increase until it equals the value at the right branch of
the curve. ' :

In figure 8 the amplitudes corresnmonding to both
branches of the curves of figure & are plotted agaianst th
restoring-moment parameter for two values of the floating-
moment parameter. As the condition of aerodynamic bzlance
is avproached, the magnitude of the oscillations increases
markedly. When a condition is reached at which the oscil-
lations wouwld increase without solid friction, they will De
vnstatle with friction if the initisal digturbance is greater
than that corresponding to the left branch of the curves of
figure 6.

The region where steady oscillations can occur is
bounded on one side by the boundary for increasing oscil-
lations without solid friction and on the other by the
toundary for complete damping. The variation of the ampli-
tudes of rudder and yaw oscillations in thls (shaded)
region is shown in figures 9 and 10.
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The amplitudes of the steady oscillation are propor-
tiornal to the frictiomal hiunge-moment coefficient, as shaown
in appendix B. These aanlitudes are therefore directly

-proportional to the amount of friction and inversely propnor-

tional to the sgquare of the indicated speed. QOver most of
the region the amplitude is extremely siall, even with rel-
atively large amounts of friction. On a typical airplane
(apvendix B) having parameters corresconding to the voint
shown on figure 9 and with a friction moment of 4 foot~-
pounds, the mazximum amplitude of yawing oscillation occur-
ring when the rudder is freed at 300 miles per hour amounts
to less than 0.59°,

Effect of airpnliane mass characteristics.- As the moment-
of-inertia ratlo Wkz® of the airplane avout the vertical

axis is increased, the rcecgion where steady oscillations may
take place*is extended but the boundary for increasing oscil-
lations is unchanged (fig. 11). An increase in moment of
inertis is equivalent to an increase in wing- loading if the
airvlane size and mags distridation s2re held constant. In-
creased wing loading therefore increases the likelihocod of
steady oscillations due %to friction,out does not alter the
couditions for unstable oseillations. Additional calcula-
tions not shown here indicate that the region of unstatbtle
oscillations is not altered appreciably by varistions in
ukz® of from 0.2 to 5.0. -

Effect of varying the weathercoclk stability by changing
the verticel tail area.- The effect of varying the weather-
cock stability of an airplane vty changing the area of the
vertical tail is shown by figure 12.  The effect of chang-
ing vertical-tail area on the weathercock stability and other

~factors ig as follows:

- ' ~ : ] 1 r\b -
St/s L’nﬂ, CnD\l/ Cné Cngé UhDS

0.04 | -0.032 | -0.076 | -0.051 | -0.0036|{-0.09
.06 -.054 -.097 -.C76 -.005s8) -.11
.10 -.128 -.130 -.12% -.008¢| -.14

- .

Effect of rudder effectiveness.- Increase in rudder
effectiveness, such as would Te obtained, for examnle, Dy
increasing the ratio of movable to fixed tail surface, has
an adverse effect on the dyramic stability, as shown in
figure 13, The critical floating ratio varies inversely
with rudder effectiveness. '
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Summary chart showing the effect of several parameters
on the limiting conditions for steady oscillations.- Tig-
ure 1l sumrmarizes the results of figures 11 to 13 and shows
the effects of four significant parameters on the region
where steady oscillations may take place., The term dae/aé

in the abscissa is directly preportional to Cn. (refer-
ence 1). Additional values of Cp, and pkg ? “are in-
cluded to cover the practical rangs of weathercock stability
and most of the range of moment-of-inertia ratio for present-
day airplanes. The smallest value of pkzz shown, 0.926,
corresponds to that for & wing loading of 25 pounds per
square foot at sea level for a pursuit airplane having a
radius of gyration about the vertical axis equal to one-
sixth the span. If the span of the airplane were increased
by a certain factor, the wing loading corresponding to a

giﬁen ukzz would increase by the same factor, other con-

ditions remeining constant.

Effect of mass overbalance with solid friction.- It
has already been shown (figs 3) that mass overbalance of
the rudder (rudder center of gravity ahead of hinge) has a
beneficial effect on the boundery for increasing oscilla-
tions. The effect on the boundary for steady oscillations
is also beneficial, as shown in figure 15. The dotted line
corresponds to a mass-balanced rudder; the full line cor-

"responds to & rudder the center of gravity of which is 10

percent of the rudder chord ahead of the hinge and the mass
of which is about 1 percent of the mass of the eirplane,
This rudder weight is considerably more than usual but could
be reduced by increasing the distance between rudder hinge
and rudder center of gravity.

CONCLUSIONS

The calculations presented in this paper show the ex-
istence of oscillations of constant amplitude in a rudder
system having friction and certain hinge-momént character-
isticse The charts presented show the conditions that tend
to minimize or eliminate these undesirable oscillations and
are intended as a guide to the design of airplanes having
rudders with a stabilizing floating tendency. The results
of these calculations indicate the following conclusions:
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1. A closely valangced rudder having too great a »os
itive floating tendeucy will be dynamically unstable 1f
the control is freed.

2. Under condlt;cns of dynamic stabiiity for a rud-
der with a positive floatlng tendeacy, a continuous oscil-
lation of fixed amplitude maJ te caused by frlctloﬂ in the
control system.

3. The amplitude of the steady oscillation is propor-
tional to the amount of friction and, for all practical
purposes, the oscillation may bve eliminated by reducing the
friction, provided tke aerodynamic bvalance is not too
nearly complete. C x :

4. The amplitude of the steady oscillation is inversely
proportional to ubo sguare of the 1na1cated sneed

5. The steady:oscillation.can vte eliminated by using
a sufficiently small floating ratio or by mass.cverdbalaunce
of "the rudder.. e B

6. A p031t1ve floatlng tendency can . be vused to com-
pensate for a lack of weathercock staollxtv 1f the control
system is des1gned for small frlctmon.” :

Flisbt tests will be necessary to’ iudlcate the maximum
amount of steady osc1llntlon t&at is allowable or an air-
plare. ,

Langley liemorial Asronauticml Labtoratory,
National Advisory Committee for Aeronautics,
Langley ¥ield, Va.

APPENDIX A -

EQUATIOmS OF mOTION FOR THE CASV OF VISCOUS

FRICTION iw TH“ RLDDmR CONTROL SlSTEur

It was shown in reférence 3 that tne lateral motion
of the center of gravity and the rolling motion may be
neglected in the analysis of the lateral oscillations with
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free rudder. The number of‘degrees of freedom is thereby
reduced to two: namely, apgle of yaw and rudder deflection.

The equations of motion are:

S - - =N V
(2cg"D® - Cop D = Gy )+ (~CapgD = Cng)6 = 0

[(2urk, %+ 2upxp1)D2 - Chy P - chﬁ/]w(egrkfoa'- ChpgD - chﬁ)? 5§20

R _ . A .
Substituting W = Me“® and 6 = Nehs in these equations

- indicates that A must be a root of the fourth-degree -
equation

AV RN + 6%+ BN+ F = 0 (1)

where
Az L‘szgklrkrg

B = "2Hk22ChD5 + 2(CnD5 - Can)Hrkrz M E’urxrwnm

- 2 L 2 o '
C = =2pky"Cng + CanChDs '-ChD¢pn95 + 2upk. (Qn5 - an) * 2up %100

B T CnpyOhp - chwcné - Ch\g,ranﬁ + CnyChps

F= Cnychgvf;Cthna

- - The boundary for divergence is obtained by setting’
F =0 and that for increasing oscillations is found by .

v'"setting_Routh's'discriminant .
R = BCE - AE® = FB® = 0 | (2)
The roots of equation (1) can be:éasily.found when equa-

tion (2) is satisfied; in this case the values of Ao
corresponding to the undamped oscillation are

‘ RN
The amplitude ratio and phase difference between rud-

der and yaw for the undamped oscillation can be found by
substituting iv for A in the expression



"is equal to -tan a.
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2uk, A% - ¢ N =-'C
. A

A+ Cné

 Cnpg

which may be written as p + ig. Then the amplitude ratio

Py

gﬁﬂ =/ p° + qa and the angle of lag € of 8 Ybehind ¥
-1 a

p

If ¢C and ¢ are considered as variavles and all
YAy h 8 . ° IKL » :

other parameters held constant except ChDJ’ which is pro-
J -
portional to Cp » curves of the type in figures 1 to 3.

result from the relations R = 0 - and ¥ = C. If the rud-
der moment of inertia is neglected, consideradle simplifi-
cation in the expression for R results. Eguation (2)
then reduces to

R=CE - ¥B =20
ig congidered as a variable, in addition to

, & family of curves can be drawn, as on fig-

ures 4 and 5. The envelove of tie curves in these figures
can be found by solving simultansously the equations

R=2CE~-FB=0

and

The regult ig a relation between Ch5 and phw. The

straight lines giving the boundary for complete damping on
figures 4 and 5 were obtained in this way. This boundary
determines the region where an increasge of the viscous
damping parameter --ChD6 can cause dynamic insgtability

and is of signlficance in determ1n1uu ‘the effect of solid
friction. : :
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APPENDIX B

TREATMENT OF SCLID FRICTION IN CONTROL SYSTEM
Aporoximate Method of Calculating Amplitudes

of Steady Oscillations

Previous work (reference 5) has shown that certain
dynamical systems can, in the presence of solid frictiomn,
build up constant-amplitude oscillations that would not
exist in the absence of friction. This work, however, was
limited to the case of continuous motion of the rudder -
that is, motion in which the rudder does not stop moving
during each cycle. The effect of friction in the case of
discontinuous motion has been discnssed in the previously
mentioned document by Schairer and Bush of Boeing Aircraft
Co. The main results of their analysis agree, in general,
with this report dut do not include as many 1actor: and
do not agree quantitatively with. tnc Dresenu work.,

It is shown in the body of the report by apnfoylmat—
ing the solid friction oy an equivalent viscous friction
that, if viscous friction is destabilizing, solid friction
will result in constant-amplitude oscillatioans. The ampli-
tude of the oscillations is given by

where ChDS is the value of the viscous damping required
f

to make R =0 minus the value of ChDS due to aerodynamic

damping of the rudder. This expression for the amplitude
in termg of the amount of goiid friction, the amount of
viscous friction, and the freguency is dérived in refer-
ence 4.

Numerical Example Using Approximate Method
The calculation of the amplitude of the steady oscil-

lation dve to solid friction will now be made for a specific
airplane having the following characteristics:
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Ch“rl‘, L]

. 1.852
. 0
. =0.2
. _o;s

The other parameters are the same as those listed in the
section on Method of Analysis.

figures
the value of

The point representing these values is irdicated ou

values

A

B

=4

taf

[e]

| Ohpg
culate the coefficients of equation (1).

9 and 10 by a crossed circle.

for R = 0,

are obtained:

0.

-3.704x

0.742 - 0.097x

CE - FB =

64x

let ChDé = X

In order to find
and cal-

The following

0.006204x° + 0.0803x + 0.03109 = 0

Value of

Corresgponding
to steady
osciilation

Correspording
to minimun
conditions

X
B
B

v =./E/B

EhD5f
B/Chf
8/
i
"W/ Gy,
he

-0.399

1.47%
0874
.2138

~.289

20.6
1.4

14.5

-12.55
45,45
. 8447
1348
-12.44

.76

.18
4.2

The values in the last colurn correspond to the minimum
initial disturbance necessary for building uwp the oscil-
lation to a constant amplitude. ’
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Any disturbance greater than 0.76 radian of rudder
angle and 4.2 radians of yaw angle per frictional hingse-~
moment coefficient will therefore build wmp to a steady
oscillation the amplitudes of which are 20.6 for the rud-

der and 14.6 for the yaw angle, in the same units.

These nondimensional values can be expressed in phys-
ical units as follows: If the rudder dimensions, fric-
tional hinge moment, and indjicated speed are

Rudder area, S,, sg ft . .-._. S -

Rudder chord, cn, ft S
Frictional hinge moment, Hf, ft-10 .

Airspeed, V, mph . . . . . . . . . . . . . ... . . 300
Wing span, o, ft . . . . . . . . . . . . . . .. 42.4
then

Chp = ———bee— = 0.000322
£ L ovPs e
5 FY SrCp

Vo= 14.6 x 0.0003822 x 57.3 = 0.26°

and

§ = 1.4 X 0.26 = 0.38°

for the amplitudes of the steady oscillation, and

Vo= 4.2 X %5%§ ='0.074°

§ = 0.76 x 2238 = ,0140

20.6

for the minimum disturbance required to start the oscilla-
tion. In this case, it is seen that the steady oscillation,
having a maximum amplitude of less than 0.5%, would hardly
be perceptible in flight.

The period of the steady oscillations is

277 X 42,4 X 860 = 1.42 sec

0.2148 2 X 300 x 88




Comparison with More Exact Calculation of the
Effect of S0lid Friction on the Motion

In order to check the approximate theory, a step-by-
step calculation of the rudder motion following certain
initial disturbencesg was made for two conditione. The
results of these calculations are shown in figures 16 and
17. EBack time the rudder motion stopped the rudder became
locked by the friction and the subsequent motion was cal-
culated for that condition until the force on the rudder
exceeded the forece of friction, when the rudder moved back
and another step in the celculations was made. The steps
in the calculation are thus of two alt°rnating ¥inds:
rudder~fixed motion and rudder-free mot The motion
of the rudder under these conditions has flat—top;péak
2gs shown ian the figures and also in flight records.

Figure 16 shows tne motion corresponding to the numer-
ical example given in the previous section. The motion
without gsolid frietion is shown for comparison. An arbi-
trarily chosen initial displacement in yaw was taken. The
effect of friction in causing the motion to build up is
clearly shown. The vertical lines on the right of the fig-
ure give the amplitudes as previously calculated by the
approximate method. :

Figure 17 ghows the motion for an airplane having zero
weathercock stability for two differeat disturbances. The
motion following the large disturbance counsists of damped
oscillations; the motion following the small disturbance
leads to slightly increasing oscillations. It must De ,
presumed, therefore, that each disturbance will eventually
reach the game constant value. The amplitudes calcunlated
by the apvroximate method are again shown at the right side
of the fi gure. i

The agreenent btetween the amplitudes as calculated by

the exact and the epproximate methods 1s better in figure 17
than in figure lo. In toth cases the approximate calcula-
tion gives the higher value. The agreement should be con-

sidered good in view of the avnproximations ianvolved and, in
any case, the values givzn by the avnproximate method are on
the conservative gide.
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