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SUMMARY

An analysis 1s made of the stability of an airplane
with ailerons free, with particular attention to the -
motions when the ailerons have a tendency to float against
the wind. The present analysis supersedes the aileron
investigatlion contained in NACA Report No. 709. The
equations of motion are first written to include yawing
and sideslioping, and it is demonstrated that the princi-
pal effects of freeing the ailerons can be determined
without regard to these motions. If the ailerons tend
to float against the wind and have a high degree of
agerodynamic balance, rolling oscillations, in addition
to the normal lateral oscillations, are likely to occur.
. \ On the basis of the equations including only the rolling

motion and the aileron deflection, formulas are derived

for the stability and demping of the rolling oscillations
in terms of the hinge-moment derivatives and other char-
acteristics of the ailerons and airplane. Charts are

also presented showing the oscillatory regions and sta-
bility boundaries for a fictitious ailrplane of conventional
propoertlions. The effects of friction in the control
system are investigated and discussed.

If the allerons tend to trail with the wind, the con-
dition for stable variation of sticlk force with aileron
deflection is found to determine the amount of aerodynamic
balance that may be used. If the allerons tend to float
against the wind, the period and damping of the rolling
oscillations are found to be satisfactory (in a mass-
balanced system) so long as the restoring moment is not
completely balanced out. Unbalanced mass behind the -
hinge, however, has an unfavorable effecct on the damping
of the oscillations and so shifts the boundary that close
aerodynamic balance may not be atteinable. It is found
that friction may retard somewhat the damping of the
aileron-freec oscillations but in no case causes undamped
oscillations 1f the ailerons are otherwise stable.
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INTRODUCTION

The problem of the stability of an airplane with
allerons free has been treated in reference 1 as an ad-
Junct to the investigation of elevator- and rudder-free
motions. More recent developments in aileron design
have led to an increased interest in the possible effects
of positive floating tendency, that is, a tendency for
the allerons to move downward as the angle of attack is
increased. Oscillations observed in flight have been
thought to arise from this condition and have suggested
the present more thorough investigation,in which particular
attention 1s given to the motions when the floating
tendency 1is positive. The present analysis is intended
to supersede completely the aileron investigation of ref-
erence’ L .

In the present anslysis the equations of motion are
first written to include all lateral degrees of freedom —
sideslipping, yewing, and rolling « and movement of the
alleronss A numerical example is then used to show
that the important information concerning the motions can
be obtained by investigation of the rolling and aileron
motions alone, although a somewhat modified interpreta=-
tion of the results msy be indiceated, Because most
allerons are mass-balanced about the hinge axis to avoid
flutter, the mass-moment parameter representing the effect
of rolling acceleration on the aileron position is also
omitted from the bulk of the analysis. With-these
simplifications it then becomes possible to derive, in
terms of the remalning aileron and airplane characteris-
tics, general formulas for the rate of damping of the
oscillations, where oscillations exist, and equations
expressing the conditions for stability. The hinge-
moment characteristics of the allerons will be considered
the principal variables.

Charts will be presented to show numerical results
in certain ecases. In these examples the effects of the
mass characteristics of the ailerons, which cannot
readily be expressed in general formulas, will be investi-
gated. A discussion of the effeet of friction in the
control system will also be included.
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Airplane characteristics:
m mass of airplane

k radius of gyration of airplane about airplane
X X-axis

k radius of gyration of airplane about alrplane

»1
o

ence from aileron center of gravity to hinge
xis (positive when center of gravity is behind
2 n )

r

vy distance from aileron center of gravity to plane
of symmetry of airplane
-
y spanwise distance used in computing Cy, to include
~
; ¥ow Bog
the effect of rolling; thus, =
b/2 Ch
a
b, span of ailerons

root-mean-square aileron chord



Symbols used in describing motions (all engles are in :
radians):

< Q ©° ™

acceleration of gravity
dengdity of alr
X R
dynamic pressure SpV
steady-flight speed
distance along fl1,
distance along flight path traversed during one
. : . /2
oscillation, semispens (\“/
y
sideslip velocity (positive to right)

angle of attack of wing

effective angle of attaek due to flap deflection

angle of sideslip (positive when sideslipping to
right) 1

J

angle of yaw (positive when nose turns to right)
> { ~ = 1 8

angle of roll (positive when right wing. ls down)
-

rigbt‘wing AOWI}
rolling velocity (dg/dt)
yawing velocity (dw/dt)
side force (positive to right)
vawing moment

rolling moment in rolling-moment coefficient; 1ift
in 11Tt coeffleclent

hinge moment




p,
Nondimensional quantities
m % -
b= S airplane density parameter
\\‘) s
MY
- e N2
Z
m X : . ; :
I & rreenilo- 3 airplane moment of inertia about X-axis
X nleh \0/2/
kz &
m f . . [ " .
I_= g airplane moment of inertia about Z-axis
Z  8fb \b/2
0 /
. &
m, K’a . s y s
g = «—~§~— - aileron moment of inertia about hinge
pcg“bg b/2 axis
. &
. O0H/dD¢ ) " -4
& = -Zgi~é mass-moment parameter, hinge axis (lNon-
andba dimensional expression for effect of
Inertia of aileron system in causing
alleron deflection when airplane is
accelerated 1n roll.) For ailerorns
alons,
AT X 7
O’) iy e i
. D~ b/2 b/2
tf ratio of flap chord to airfoil chord at a given
section
- a =
B = Q/2 d jifferential operator. In
g v dt B
8 J . pb
d particular, D4 = ==
b/Z 2V
A root of stability equation
= real part of K, proportional to rate of damping
of motions
n magnitude of Imaginary vart of A, proportional
to frequency of oscillations




I yawing-moment coefficient ..
asb
C rolling-moment coefficient L
b sk
e
Cy, hinge-moment coefflicient -
Ac5 Py
.
c 1ift coefficlent (:;\
b \as/
! /"‘7 \
CY slde~-force coefflcient [=

Subscripts attac

hed to moment coefficients indicate
the partial derivative of the coefficient with respect
to the quantity denoted by the subscript.

1T Insparticulam,
A~ A .
s i B "
Oy & % - hinge-moment coefflicient due to unlit aileron
5 0 d@ilectlon, or restoring tendency. He-
storing tendency is positive when surface
is overbalanced
oG,
- h : 5 ;
Ch v hinge-moment coefficient due to unit change
a @ itn local angle of attack, or floating
tendency. Floating tendency is WOQl ive
when surface floats .against the relative
wind
3 Ch
Cx = - hinge-moment coefficient due to unit rate
D& oDs of deflection of ailerons (generally the
‘ aerodynamic damping, but may include
| viscous friction in the control system)
cC,
CZ = = rolling
5 O

moment due to unit aileron
i on,

deflec-
or effectiveness cf the ailerons
producing roll

in
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e 1blo) A
50;
ODb B
(\)Ch
oDd "
oDS ;

The var!able

partial de

equivalent to holding a

part of additional 1lift due to angular velocity
of flap caused by acceleration of potential
flow (—Th of reference 2)

part of addltional 1ift due to angular velocity
of flap caused by effective increase in

=1 -
—1l of reference 2
21

camber

vart of hinge moment due to angular velocity of
flap caused by acceleration of potential flow
m m
‘l, <
= ‘l, where - P -and T are given in
a = L L
g
\ L ¢,

reference 2

part of hinge moment due to angular velocity of
flap caused by effective inerease in camber

1 m
gy iis : s .
Se—0, ‘Where, . i andr T are given in
e, 3 <h3E 12 .
Gt 6
\ i

reference 2

DF is held constant ir
rivative with respect to & or
constant.

1 taking the
D8, which is

The following symbols are adopted because of common

usage:s
é/
CZ_:-
Py

f|c4
o'l

I'A

no
=
=

Q
]

> 10
|5
e

U
o fo
(&

v

aerodynamic damping of the airplane in roll
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v o % and 2 -
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ANALYSIS ’
Equations of Motion

The general equations of lateral motion with allerons
free, coupling the rolling motion of the airplane with
the yawing and sldeslipping motions and with the movements
of the ailerons following a small disturbance, are as
follows:

{5 &Y — .._.éY = o=
m(v + W) - B2 - dmg = 0 (1)
w . & ON oN | » oM QN _ 2 oN
mk21b'-\'.f-——.-— —-——v..—"-—:S..__‘._ﬁ._"_:O (>
; YRS YA TR T &
mie ® F - ﬁ(g; -p0h | 2k sQL.30L=0 (%)

8 Y 36 35 %
H

o

where the dot over a gquantity denotes its derivative with
respect to time.

For small angles of sideslip, v = BV. Dividing
equation (1) by gS, equations (2) and (3) by qSb, equa-

tion (L) by an b s and introducing the nondimensional
operator D = (i—i- yields the following nondimensional
s
s
o/2)
equations:
A ..
(LLPLD"CYQ)? - CTJ¢+14-;~L DV =0
‘J
-CnE.B— cnpwf + (@IyD = On YDV - (Crps? i) 8 350
y (9)
-¢, p+ (21, D-C, Y@ - DY - ¢(C, D+ C,;_ )6 =0
O16P (21yD=Cy ) - Cy Cips 15)
-Gy B+(-ED = On, )DF- Cp DV + (214D°~Cp__D-Cp )6 = 0
B\~ D DY D5 o) p.
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If solutions are assumed to have the form Ce 375,

the exponent M must satisfy the stability equation in D
obtained by setting the determinant composed of the
coefficients of B, @, DV, and 6 equal to zero. In

the general case described by equations (5), the stability
equation is of the sixth degree in A and ths six rocots
may indicate motions composed of as many as& three oscil-
latory components. By means of simplifylng assumptions
‘Justified by the examination of numerical examples, the
stability equation will eventually be reduced to a cubic,

" Préliminary Calculations

It i1s first proéoposed to simplify the analysis by
neglecting the cournling between the rolling motion and
the yawing and sideslipping motions. 1In order to test
the validity of such a treatment, two sets of calculations
have been made for a speclfic case, one set including
the cross-coupling, and one set considering only the
rolling apd aileron motions,

Numerical values assumed.< The alrrlane character-
istics assumed are given In btable I. A 1lift coefficlent
of 1.0 was chosen to magnify any differences between the
two results, The stability derivatives were obtained,
with ths exeception of Cjp,, from table I of reference 3,
The value of Cj was tuken from reference lp, on the
assumption of a 2:1 tapered wing of aspect ratio 6. The
mass characteristics are intended to be representative
of a conventional pursuit-type airplans.

The alleron characteristics assumed are for 15-
percent-chord allerons covering the outer 0 percent of
the wing span., The values of the derivatives arse listed

in table II. The allcrons were assured to be mass-
balanced; consequently, &€ = 0, The moment of inertia of
the allcrons was also taken egual to zero. (The validity
of a comparison made on the basis of zero moment of inertia
will be checked in a subsequent section.)  The hinge-moment
parameters h and Ché were retained as the principal
variables, o

¥
e
L=
.
-

Nature of the motions, four decgrses of freedom.=-
The composition of tha motions, as indicated by the roots
of the stability equation for various combinations of




Ch and Gha, is described in figure 2. ith I, and
a
g equal to zero, the stability equation for this figure
is a quintic and there are, therefore, five roots to be
accounted for, It is possible to consider separately
one real root; thls root passes through zero along & line
designated in figure 2 as the spiral divergence boundary.
In the region around the positive Ch -axis the remaining
a

four roots form two complex palrs, indlcating that the
motions have two oscillatory components. Along the
long-daghed curve one oscillation disintegrates into two
aperiodic¢ modes, divergent or convergent accordingly as
the oscillations are stable or unstable; at all values
of: C and C outside this curve the motion is

ha hé
composed of one oscillatory mode, which is almost always
stable, and three nonoscilllatory components. Inside the
curve, the two oscillatory components are stable so long

as Ch6 is negative. As Ch5 becomes positive, in-

stability sets in, as indicated by the oscillatory sta-
bility boundary. In general, only one mode becomes
unstable; the same oscillation breaks down into two
aperiodie modes at a slightly larger value of C, .

In a small region (AB in figure. 2) defined by the inter-
section of the two branches of the boundary, both modes
are unstable. This detall and others occurring outside
the stable region, or near the boundary, are nob cen=--:
sidéred of any nractical importance: they are mantlosed in
order To answar quebtiona that might othsrwlsc be suggoscsd
by inspecition of the Tlguvre,

Rate of divergence, four degrees of fresdom.~ Tnas~
much &as figure 2 indicates that the motions will be un-

stable for most combinations of valuss of Ch and Ch P
(o4 o]

it seems advisable first to examine the nature of the

divergent Jnsta0111t worleh appsars almost vaanvoicdable,

The condltion far tht?ll °ta01L11y /zero ro)t) Is that
the constant tbym of the stability equation vanish; that
19,
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o = 0, O =
+ -A haané 7/ r Zé izl r.)

The rate of dlivergence ¥or the ungtable values of Ch
a
and Ché (for the specific case to which fig. 2

pertains) is indicated by the lines of equal roots in fig-
ure 5. Although these lines appear to go through the
origin, each has its intercept at a positive value of

Ché proportional to the wvalue of the root. For small

values of the root, however, the intercepted distance is
negligible, and the loci may be considered lines of con-

r‘
I \/h
stant floating ratio 2" i 08, Figure 3 shows that the
a Cy,
Bp
divergence over most of the range of negative (i is
e
very slow. This divergence is, in fact, the so-called
"spiral instability" that is generglly anticipated by
alrplane designers. In the fourth quadrant, however, a

sudden rapid increase in the rate of divergence is ob-
served, which corresponds to a change of sign in the
coefficient of A 1in the stability equation. From the
practical point of view the floating ratio at which this
sudden increase occurs locates the significant "divergence
boundary." A line through this region and the oscilla-
tory stability boundary may therefors be considered the
complete boundary for stability of the alrplans with

all four degrees of freedom,

Equations for two degrees of fresdom.- The infor-
mation obtained from calculations neglecting the yewing
and sidesliopping motions will now be considered. The
equations of motion siwplified to include only coupling
between rolling and aileron motion are as follows
(nondimensional form): -

(21D - 7, \g B ly s 3iYe =1
D= 5y \F - <,ZVMJ 2) -
\ r.‘) Ble} o) L (6)
o)

it el
=5 cia s Sl s, B o 4 0% ¢ A o & 1= =0
( oE hDﬁ) 7 < g hT)(’J hf)
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and the stability equation is

+ (JZ ch_ - 0 Chm') = 0 (7)

Nature of the motions, two degrees of freedom.- For
the case defined by tablesl and 11, the motions are as

described in figure L. The stabllity equation is a
zero at the divergence boundary. The remaining two

roots form a complex palr, indicating an oscillatory
mode, inside the region defined by the long-dashed curve.

cublc, and there is agsin one real root, which becomes
Qutslde this region all three roots are real and no

O ctlatiien SN e e Tl The oscillations become unstable
at a small positive value of Ch », Wwhich is almost inde-
6}
pendent of the value of Ch 5
a

Comparison of results, two and four degrees of e
freedom.- The results of the two computations can now be
tested for agreement. Comparison of figures 2, 3, and L

suggests that the effective divergence boundary of the
cross-coupled motions (shown by the dotted line in fig. 2)
may be assumed to coincide with the true divergence
boundary in the simplified cass. Thus, where the simpli-
fled analysis indicates a change from stability to in-

8

.

stability, there i actually a sudden transition from a

slow divergence to a rapnid one. The comparison may be
extended into the first gquadrant of the charts. Here

the divergence boundary appears, in the more exact
enalysis, as a branch of the boundary between damped and
undamped oscillations (line 04, fig. 2). The oscilla-
tions are, howesver, on the point of breaking down into
aperiodic modes &and the instability would in practice

be indistinguishable from uniform divergence. In ac-
cordance with these observations the line of zero roots
obtained from the simplified analysis will be termed ; ;

the "divergence boundary," with the understanding that
such a designation is strictly true only when the cross-
coupling is negligible.
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Further comparison of figures 2 and L. shows that
the oscillatory stability boundary of the simplified
treatment, although shifted slightly by the introduction
of the additional degrees of freedom, is so little altered
that it also may be retained as part of the stability
boundary. Moreover, the position of the line enclosing
the oscillatory region remains essentially unchanged and
still indicates the values of the hinge moments at which
one oscillation breaks down. It'may therefore .bs coh-
cluded that, except for the presence everywhere of an
additional mode of oscillaticn to be discussed subsequently,
the broad aspects of the selution for the more complex
case may be deduced from the results of the simplified
analysis.

Comparison of the roots at a number of points ‘shows
that the results of the two calculations are in close
quantitative agreement, also, with regard to the oscilla-
tory mode common to both analyses. Thus, both the
perbod and the damping of the oscillations of one mode
can be obtained from the results of the simplified
analysis.

The oscillations of the second mode have both
damping and period virtually independent of the hinge
moments of the ailerons. In the case chosen for
illustration the period is of the order of 30 semispans,
or, if the span is L0 feet and the wing loading L0 pounds
per square foot, &bout 5% seconds, throughout the range
of C, Wwith Ch5 negative; the motion damps to half

a \

amplitude in the course of one oscillation. Because
the aileron characteristics are not involved and because
of the magnitudes of the period and damping, this mode
appears to be the normal lateral oscillation of the
alrplane with controls fixed and &s such is treated
elsewhere in the literatures. For the assumed airplane
this mode does not become unstable anywhere within the

region indicated as stable by the simplified analysis.

Effect of alleron moment of inertia on cross-
coupling.- It seems desirable to check the foregoing
conclusion against results obtalined with the moment of
inertia of the alleron svstem retained in the eguations.
For this purpose, the roots of the stability equations
have been calculated at Gy = Ml5 amg Ch@ = 0.02,

s’
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-0.1, =0.2, and -0.3, with Ty =0s085; With four

degrees of freedom, the stability equation has six roots.
0f these, one root indicates the spiral mode and, in the
unstable region, has the same values as are rviven by
figure 3 for the case with zero moment of 1nert1a. A
second real root corresponds to the real root of the
simpldfied equation. The four remaining roots form,

in general, two oscillatory pairs. These roots are
compared with those of the simplified equation in the
following table:

Ct, T¥opfzqg:ns Four degrees of freedom,
23 ok (& AI.A’ S .
o) Ia = 0.025 Ia = 0.025
0.02 J.oozv T 0104 -0.004ly £ 0,221 v.vai T 03006
-.1 OL3 + 831 -1.05% ¢ 89111 -.0258 * .1991
Dz | 077 * 1.6621] -1,081 % 1.6841| -.0245 £ .1991
-.3 -1.086 *'2.1861 -1.06% * 2,1891| -.02L1 + .1991

At Cha = 0.02, where the periods are of the same order of

magnitude, the effect of the cross-coupling is seen. Else-
where the perliod and damping in both calculations agree
within 1 percent. It appears reasonable to concludu

that the sfﬂtemﬂnts of the preceding section hold in spite
of the omission of the alleron moment of inertia from the
(‘alculatlz, S,

0

Simplifled Analysis

e

Using the reduced form of the stability equation
makes it possible to investigate the effects on the
stability of the airplane of varying the aileron char-
acteristics, and even to give certain general formulas.
Because most modern alrplanes arec designed with ailerons
completely mass balanced, these formulas may be still
further simplificd by assuming & equal to zero.

Alleron~-free oscillations.- The oscillations ase .

sociated with freeing the alleron controls casn now be .

investigated in mors detail. If & palyr off roots lis
sseened in  the form M= «aftni, =z veletion can

be derived giving the frequency n in terms of the coef-

ficients of M in equation (7). This relation is too

lengthy to be presented in its general form; however,

calculations have been made from it and the results will
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be shown in the form of lines of equal period P = 2m/n
onh *the stabllity charts.,

The damping of the oscillations is more readily
expresslible than ls. the period,: particularly.dd! @ fixed
value: of the frequency is assumed. Moreover, calcula-
tions of the damping for zero frequency and for the
highest frequency likely to be encountered in practice
showed that the expression could be still further simplil-
fied by omitting the terms containing the frequency and
Ch (since these terms apparently canceled each other)

a
without any appreciable loss in accuracy. Thus, with
& equal to zero, the damping a 1is, to a good approxi-
mation, the smaller root of the quadratic

v Cy B 8 ¥
Ber & o L -, (TR e - T Hhé B0 (&)
18 Ly LLIXI . =2 3

which is independent of Gy .
g

At the stability boundary, the damping a 1s zero,
andy: thereifore,

@5 @
G = wln DS (9)
1’16 L /
QIY

approximately.

The more accurate expression for this boundary is
obtained by setting Routh's discriminant equal to zsro.
The result is a linear relation between Cn and Ch ;

a

y &)
that is,
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Figure L, however, shows the variation with ¢ to Dbe

hq

actually guite smell.

Stick-force critérion.- The divergence boundary is
obtained by settinig thE constant term of the stability
equation equal to zeroj; then,

C sy G
Ch, b/2 %,

This condition for neutral stability is identical
with the equation for zero slope of the hinge-moment
curves

L _ Cy . + 1 S5 - uip 12
as hg a6 “Ppg " (12)

and is therefore also identified with the condition for
zero stick force in pure roll or in a rapld rolling
manesuve r. Inasmuch as the stick force per unit deflec-

tion of the allerons is proportional to i;?, 1lines of

constant stick ferce are obtalned by replacing the zero
in equation (12) by appropriate constants. Ths rolling
a7 _ pb
as 2V
is independent of the hinge moments; the equation for con-
stant stick force therefore results in a family of
straight ¥Ines parallel to the divergence boundary of
equation (11) and the criterion for light stick force for
given alleron dimensions and effectiveness 1s the close-
ness with which that boundary is approached. A com=-
parison of one aileron with another, however, shows that
the stick force will @also be proportional to the value

of T,°b,.

effectiveness, per unlit aileron defleetion,

Method of investigating the effect of friction.-

When the effect of friction in the control system 1s
considered, it is necessary to distinguish between two
types, viscous friction and solid friction. Viscous
friction, which varies with the speed of the flap de-
flection, is exactly equivalent to an increase in ¢ ’
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heretofore considered to be due only to the asrodynamic
damping of ths ailerons. Solld frictlen, acts,din a mors
complex way but may be approximated by an equivalent
viscous damping, the amount varying inversely with the
amplitude of the deflection. (A more detailed dis-
cussion of this approximation is given in reference 7.)
Thus, in the course of a damped osoilldtion for example,
the apparent ¢, ~ increases and the quesuion of. .the

effect of the friction reduces to the question of whether
ansiheresse  1n Ch iG] StﬁOlllZlnb or destabliliizing,
D&

EXPLANATION OF CHARTS

The stability charts (figs. 5 to 9) are intended
both as illustrations of the application of the pre-
ceding formulas and as working charts from which the
behavior of a particular set of allerons on a con-
ventional airplane may be nredicted. If the analysis
is to be applied to an airplene having stability char-
acteristics that represent a considerable departure
from those tabulated herein, it will probably be advisable
to calculate the nature OL the motions from the general
formulas (equations (7), (8), (10), and (11)).

gures 5 to 9 show the oscillatory regions and

llnes of equal period in those reglons, as well as the
stability boundaries for aileron- free motion. ( The
damping of the OSCllldtlJnS is shown separately in fig. 10.)

ivurebj, 6, and 7 show the results for 15-perecent=chord
dllerons with three different moments of inertia covering

a wide range of values. In all other respects the
allerons are those previously used as a basis for the
preliminary calculations. The airo1ane characteristics

o

are those given in table I. igures & and 9 present
stability regions for 50—0@rccnt chord ailerons of the
same effcct¢van 5SS 07 as the l5-percent-chord ailerons
of figures 5, 6, and % The span for the wider ailerons
would be 28 percent of the wing span, as against LO per-
cent for the narrower ones. The otner characteristics
of the 30-percent-chord ailerons are listed in table II.

Two values of I, are presented for comparison. The

airplane characteristics are not changed from those of
table T.
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In figures 5 to 9, the value used for the aerodynamic
damping of the aileron motion JhD 1s the theoretical
value for unbalanced flans (fig. 1?. The value of Cy,

D&
actually varies with the amount of balance and is there-
fore not constant for any one chart. Moreover, the
variation depends on the manner in which the balance 1is
obtained. The variation is, however, slight in any
case -~ less, for example, than the amount introduced by
frictlion, (If balancing area is added ahead of the
hinge, complete balance involves approximately 15 percent
reduction in ?P from the theoretical value.) The

‘D6
variation of ChFS with -C,_  end Gy , therefore, need
J (6] a
not be incorporated into the charts. The effect of a
change in ch38 may be estimated by a comparison of fig-
i
ure 5 with figure 8, snd of flgure 6 with figure 9, inas-
much as the principal difference between the calculations
for the narrow- and wide-chord ailerons of the same
gffectliveness is an lncrease in Cn_ o *

_ Mg

The relative magnitudes of the stick forces for the
narrow- and wide-chord allerons are indicated by the
spacing of the lines of equal stick force in figures §
and 8. The hinge moments are expressed in these figures
in terms of the mean wing chord in order to make possible
& direct comparison of actual forees. As previously
noted, all the lines are parallel to the line of zero
stick force, that is, to the dlvergence boundary.

Figure 10 shows the distance required for the
oscillations to damp to one-half amplitude. This
distance is 0.69%3/a, where a 1is given by equation (8).
A single value of Tgz was selected, and the distance to
damp to one-half amplitude was plotted.against 'Ché for

several values of Cth. The filgure was designed
primarily to serve as the basis for the discussion of
the effeet of frictlion endiis, therefore, more
general than the preceding charts. Thesdamping  for
l15-percent-chord ailerons without friction is also shown,
however, (to be applied to fig. 6) and the damping for
30-percent-chord ailerons, Lol 0.025, (to be used with
fig. 9) may be understood to coincide with the line for
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Ch " = =02, The inclusion of lines for other values
D
of Ia would not affect the conclusions to be drawn

from the figure.

In figure 11 the stability boundaries are shown in
the same form as in figures 5 to 9 for values of &
varying from complete balance (& = 0) to a value roughly
corresponding to that for en aileron with center of gravity
20 percent of i1ts chord behind the hinge (& =-0.6).

From equation (7) 1t can be seen that & does not enter
into the stick-force criterion. Routh's discriminant,
however, is derivable as an essentially linear relation
between ¢, ~and £. Although the boundaries shown

9)

ere for I, = 0.0125, they are practically invariant
with the moment of inertis. The effects of increasing
the damping of the ailerons or ¢, and of* changing

o}
¢ are substantially additive, neither change affecting
the variation of critical Cy, with the other variable.
It may be generally concluded from figure 11, therefore,
that the presente of unbalanced mass behind the aileron
hinge restricts the permissible degree of aerodynamic
balancs.

DISCUSSION OF RESULTS
Oscillatory Yodes
Oscillatory regions.- It may be seen from the figures
that In all cases rolling oscillations (in addition to

the normal lateral mode) will follow a disturbance if
Cp. 1is small and Cha 1s positive. From figures § and

9 it may be concluded that the range of Ck for which
&

oscillations are possible increases with the width of
the ailerons. As previously suggested, figures § and 9
may also be understood to indicate the increase in the
extent of the oscillatory reglon with increased Cn

Db

due to any other cause.

Effect of T,.- Comparison of figures 5, 6, and 7
and of figures U and § shows that the moment of inertia
of the ailerons introduces a second osclllatory region.
On further investigation, the oscillations in this
region are found to be very rapnid but well damped. Both
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damping and period depend almost entirely on the tendency
of thc ailerons to resist geflectlon, &8s expressed by
Cy _» Cp and the moment of inertia I, (See section

o} DS y
entitled "Bffect. of aileron moment of inertia on cross-
coupling" for values of the roots in this region.) The
mation is therefore interpreted as a flapping movement
of the ailerons uncoupled with the motion of the airplane.
This mode is so well damped (maximum distance to damp to
helf amplitude = 0.63% semispan in the range considered)
as to be of no practical importance and furt‘cf diseuss
sion w111 therefore be limited to the rolling oscilla-
tio =

occurring in the nelghborhood of ¢, = 0.
o)
Period of ron-free rolling oscillations.-
The period of 1 ..mg UuCLngfian depends to &a large
extent on the L‘o«tLﬁw wendency of the allerons. When

Ch =-0.!, for cxample, the period for narrow ailerons
‘a

f the airplane
l

[

may be of the order of 1§ semiapans, or, if
g at [00 feet per second and has

is travelin X a8 a 0-foot

wing span, three-§uarters of a second. In tle case of
1der ailerons or of ailerons with smaller positive

IlOdnLﬁg tendency, ths period is uOHSldGdelj onger.

Damping of Oscillations

It is perhaps preferable to consider the period in

conjunction with the demning of the oscillations. The
distanece required for ths gseillations to damp to half
amplitude is shown in figure 10. Application of:fig-
ure 10 to the preceding figures lndicates that, so long
as -Sl is negative, the motion dsmps to half amplitude
)
in a fraction of an oscillation. If the ratlo 0 /Cy
tg" B
1s in the nelghborhood of 0.3 or greater, the ratio of
period to damping distance 1ls so large as to make the
motion in effect a uniform subsidence.

Effect of airplane characteristices.- Tt should be re-
membered that the )PPOGding conclusions are based on com-
putations for a particular airplane and are not
quantitatively applicable in genersal. If the ratio of
damping in roll to moment of inertia in roll ¢ /Iv =




~0
N

more rapid than is shown by figure 10. In addition, the
boundary will be shifted to the right, with the amount of
positive Cp allowed increased provnortionately to the

increase in ¢y /IX (equation (9)).
n

With the exception of the considerables effect of un-
balanced mass, shown in figure 11, no factors other than
those just dliscussed enter critically into the damping
or stabllity of the oscillatory mode. Thes effect. of
variations in floating tendency can be seen in figures §5
to 9, where lines of equal damping would be very nearly
perallel to the osclillatory stability boundaries, The
parameter CZ , the aileron effectiveness, enters into

o}
the expression for the stability boundary (equation (10))
in combination with Ch and has similarly 1little
‘a

influence on 1it, (It may be noted here that the period
of the oscillation is also affected by a change in Cy

6
in roughly the same way as by a proportionate change in
Ck ? The moment of inertia of the ailerons appears in

equation (8) for the damping, acting to reduce the time
requlired for damping to half amplituds. The effect of
I, jon the position of the boundary (zero damping) is,
however, negligible, as may behsecn by comparing fig-
ures 5, 6, and 7, and figures S and 9.

Bffeethof  Friction

The effect of viscous friction in the control system,
as has been noted, is merely to augment the resistance to
the aileron motion as expressed by o 1k a2 The result

i976)
may be seen in the charts for increased aileron chord
\ > Q e : °
(figs. G and 9). Oscillations occur over a wider range

of Ch3 than with a frictionless system. Also (from
By 5 : : L

o

fig. 10) the rate of damﬁing is gernerally lower, when
Cp. 18 negative, because of the phase lag between 5
8

and D&; however, if Cb is positive, the additionsal

damping will retard the motion and extend the range of
stabiie @, ' .
hé

If solid frictlon is pre
of Cy : will gradually inc
D

nt, the effective value
e as the oscillations

oS
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die down -~ according to the approximate theory, approaching
infinity as the amplitude approaches zero, but in actual
practice causing the ailerons to stick at some small
angle of deflection. While this change in effective
Cb is taking place, the rate of damping will slowly

D5
decrease or increase, accordingly as Cp is negative

6
or positive, and will approach the rate corresponding to
the ailerons-fixed condition, as shown by figure 10. 1In
no case will oscillations of increasing amplitude occur
because of the presence of friction if the ailerons are
otherwise stable. Moreover, because the damping ap-
oroaches a finlte (non-zero) rate, there is no possi-
bility of steady oscillatloens, such as occur in the
rudder-free condition {(reference 7).

CONCLUSIONS

1. The stability of an alrplane with ailerons free
may be determined to a very large extent without regard
to the cross-coupling between the rolling motion and the
vawing and sideslipping motions. Neglecting the yawing
end sideslipping leads to a simplified analysis that

does not predict the occurrence of spiral instability.
The simplified analysis doss, howev*r, predict the values
of the hinge momsnts at which the instability becomes
violent. Also, the simplified analysis will not include
the normal lateral oscillation of the airplane with con-
trols fixed, but the stability of this mode is not af-
fected by freeing the ailerons and that phase of the
problem 1s outside the scope of the present investigation.

® O
C

2., Divergence, or an unstable variation of the
control force with alleron deflection, is the only form
of instability likely to occur in the case of mass-
balanced ailerons witk negative floating tendency,
except for flutter, which is not considered in this
analysis. The use of ailerons with considerable ten-
dency to float against the wind, however, introduces
the possibility of oscillatory motion with the ailerons
free and, 1f the ailerons are aerodynamically overbal-
anced, of osclllatory instebility. The unstable oscil-
lations exigl In addition to the normal rolling-yawing

8 illationa'in+rodu ed by the dihedral angle and by
the directional stability of the airplane.

TR AN R A SRS ORAERY i
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5. As long as the restoring moment i1s not completely
balanced out, the damping of the aileron-free oscillations
in a mass-balanced system is so great &s to make the os-
cillations appear to be of no practical concern. The
presence of unbalanced mass behind the hinge, however,
restricts somewhat the permissible degree of aerodynamic
balance. ‘

e Comparison of the 15-percent-chord and 30-percent-

chord allerons shows that aerodynamic overbalance is per-
missible, from considerations of stability, in the case of
shorter, wider-chord ailerons if considerable positive
floating tendency is present. The permitted increase

In aerodynamic balance is not enough, however, to offset
the rapid increase in stick force with aileron chord.

On the other hand, the oscillations are of considerably
lower frequency for wide ailerons than are ghose that
occur at the same stick force in the ecase of narrower
ailerons.

5. The pres

nce of viscous friction in the control
system has the same effect as ing the aerodynamic
damping of the allerons. ihe presence of solid friction
in an otherwise stable system has the effect of gradually
increasing or decreasing the damping of the oscillations
as their amplitude decreases so as to cause the rate of
damping with ailerons free to approach the rate with
ailerons fixed. Neither instability nor steady oscilla-
tions will result from the presence of friction.

6.. The stability of the control-free oscillations
is virtually independent of the moment of inertia,
floating tendency, or effectivenets of the ailerons.

(- An airplane with a large ratio of damping in
roll to moment of inertia about the X-axis permits a
closer degree of balance in the ailerons before oscil-
latory instability is incurred end, with ailerons free,
such an airplane is generally more stable than one for
which this ratio is small.

Langley Memorial Aeronautical Taboratory,
National Advisory Committee for 4eronautics,

P

Lengley Field, Va.
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ATTLERON CHARACTERTSTICS

Value

Deriv- Tl pona A 1E-nercent- | 30-Ds
3 i 8 RS 1 6 fy S 578 L & =
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81'C
ative chordg- chord
allerons ailerons
s 1 e figure 16 £ eference F e A =5 1C/\
Cy “rom flgure 16 of reference 5, -0.156 0156
& R
¢ e : )
with k = 3% obtained, firom
O
empirical .curwve .off | figure i
herein
r ,
"l “bna  (See fig. 1)) 0.013% a0
07 e, - & x a6 > che o) =\l ) L GO
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SN
~ ~ — 8] T‘ / o}, & T ) =
“n On TG g R e 0.0240 el O ;
=6 =8 s A
(Reference 6, 5. 107)

C c. SR e Rt , 0.002 0.002

T 2 2 o T e s o T = ~ >
o T'or frictionless system. (Ses -0.110 =04 220
s d - o o .
D8 fig. 1 for formula.)
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Figure 2,- Character and stability of the components of the
motions found by solution of the equations before the
elimination of sideslipping and yawing. (Shading indicates
the unstable region.) Aileron chord, 1l5-percent airfoil
chord; & = 0; I, = O; dihedral angle, 59; Cp, = 1.0,
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Figure 3.- Rate of divergence, as indicated by the value
of the positive real roots of the stability equation.
Alleron chord, 15-percent airfoil chord; & = O I ='0:
dihedral angle, 5° ¢; = 1.0,
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Period P 1is in wing semispans,

lines of equal stick force for 1l5-percent-chord ailerons.

Figure 5.~ Stability boundaries, lines of equal period, and
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Fig. 6

Figure 6.

- Stability boundaries and lines of equal period

for 15-percent-chord ailerons. & = 0; Iy = 0,0125.

Period

P 1is in wing semispans.
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Fige. 7
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Figure 7.- Stability boundaries and lines of equal period

for 15-percent-chord allerons. &
Period P 1is in wing semispans.
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Fig. 8
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.- Stability boundaries, lines of equal period, and
Period P 1is 1ln wing semlspans,

lines of equal stick force for 30-percent-chord ailerons,
g; = C); ]:El = 0,

Figure 8
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Figure 9.- Stability boundaries and lines of equal period

for 30-percent-chord ailerons.
Period P 1s 1in wing semispans.
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Figure 10.,- Damping of the oscillations measured by the
distance required tc damp to half amplitude, in wing
semispans, for allerons with various values of chD&'

Clp/Ix = =0, 4,

Mass-balanced ailerons, Ig = 0,0125
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showing the effect of variation in the mass-
moment parameter &,

Figure ll,- Stability boundaries for 1l5-percent-chord
aillerons,




