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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

ADVANCE RESTRICTED REPOPT 

A THE0RETICAL INVESTIGATION OF THE ROLLING OSCILLATIOrcS 

OF AN AIRPLANE lNITH AILEROnS FREE 

By Doris Cohen 

SUMMARY 

An analysis is made of tte stability of an airplane 
with ailer~nB free, with particular attention to the 
motions when the ailerons havo a tendency to float against 
the wind . The presen t M:.l.lysis supersedes thl3 aileron 
investigation contained in N i~A Repor~ No . 709 . Tho 
equations of notion a.:·'e fi.rst wr .tten to include yawing 
and sidesli ping , and it is demonstrated that the princi ­
pal efflScts of freeing the nilerolls can be determined 
wi thout regaro to these motions . If the ai l e rons tend 
to flo at agLl.ir.ist the wind and have a high degree of 
aerodynamic b~lance, rolling os illations , in addition 
to the normal lateral oscillations , are lik61y to occur . 
On the basis of the equations including only the rolling 
motion and the aileron deflection, formulas a~e derived 
for the stability and damping of the rolling oscillations 
in terms of the hinge-moment derivatives and other char -
acteristics of the ailerons and airplane . Charts are 
also presented showing the oscillatory regions and sta­
bility boundaries for a fictitious airplane of conventional 
proportions . The effects of friction in the control 
system are investigB.ted and discussed. 

If the ailerons tend to trail with the wind , the con­
dition for stable variation of stick force with aileron 
deflection is found to determine the amount of aerodynamic 
balance that may be used. If the ai lerons tend to float 
against the wind , the period and rlamoing of tho rolling 
oscill ations a r e found to be satisfactory (in a mass ­
balanc ed system) so long as the r es toring moment is not 
completely balanced out . Unbalanced moss behind the 
hinge , however, has an unfavorablE: offect on the damping 
of the oscillations and so shifts the boundary that close 
ae rodynarrac balance may not be attainable . It is found 
that friction may r e tard somewhat the damping of the 
aileron- freG oscillations but in no case causes undan~ed 
oscillations if the ailerons are otherwise stable . 
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J N'r:qODUCTI ON 

The problem of the stqbility of an all" lane with 
ailerons frea has b~Ln treated ~n reference 1 as an ad ­
junct to the investig&tion o-f elevator - and rudder - free 
motions . lfora recant devGlopments in ai l eron desisn 
have led to an !ncrensed inter1st in tho possible effects 
of posltivo floating tcnd0ncy , that is , a tendency for 
the ai lerons to move downward as the ~ngle of attac~ is 
increased . Oscillations observed in fliCht have been 
thought to arise from this condition and have uggested 
the present J11Gre thorough inve s tiga t). on I in wb l oh parti cular 
attention j s g':' ven to the Illotions when t!1e floatln6 
tendency is positive . The present analysis is intended 
to supersede cGmpletely the aileron investigation of ref ­
erence 1. 

In the present analysis the equations of motion are 
first written to include all l~teral degrees of freedom ­
sid8slippi~g , yawing , and roll~ng - and movement of the 
ailerons . A numerical example is thm used to show 
that tbe important inforrnbtion .oncernin~ the motions can 
be obtained by investigation of the ro lling and ai leron 
motions a l one , although a some \hot ~odified interpreta-
tion of the results may be indicete~ . 3eC9use most 
ailer ns are ~ass - balanced about the hinge axis to avoid 
flutter , tt.e n1ass - TI1GlY:ent parameter Y>enresentine; the e ffec t 
of rolling acceleration on thG aileron position is also 
omitted from the bulk of the ~n&ly3is . ~ith these 
simclificationo it then becomes possible to derive , in 
terms of the r emaining aiJeron and ai rDlane characteri~ ­
ttcs , e:;,3neral formulas for the rate of dUn1)ing of the 
oscill at1ons , where oscillet:'ons exi:'1t , and equations 
expressing the cond} t.L0Ds for stability . The hlnge ­
moment characteristics of the ailerons will be considered 
the principal variables . 

Charts will be pres . .';nted to SllOll" mrne ric!Jl r asul ts 
in certain cases . In these GJ:EUnph;[:l the eff i3cts of the 
mass characterist icf of the ailerons , whLch onnnot 
readily be expreSSed in g6neral formulas , will be Investi -
gat,(jd . A discussion of the (ffGct of friction in the 
control syst:rn will also be jncluded . 



SYMBOLS 

rl Airpl ane characteristics : 
~ 

m mass of ai rplane 

k 
X 

r adius of gyration of airplane about a i rplane 
X- axis 

r ad ius of gyrat ion of c irplane about airplane 
z - axi s 

b wing span 

c mean wing chord 

S wing area 

A wi n g aspect ratio (b2/S) 

l\. v'inl?; dihedral, r adi ans 

Ai l eron characteristics: 

ma ma ss of ai leron sys t em 

ka Ol .. ,- . ,~ ~._-\T~, ~" ,;, G.:tl)8 of uy J . .... lL ~Lo·~., () J~ ~~ il ,!. r0 . :':l ',-,31.,,, \j <- . "~ 01....1t 
. lL.. ;lb e ax i s 

x d:i s t s.nce fr om aile ron cen t er of gravi ty t.o hinge 
axis (positive when cente r of g~8vity is behind 
hinge ) 

y distance from aileron center of gravity to :.J l ane 
of symmetry of ai r p l ane 

-! 

Y spanwise distance used in computing 
-! 

the effect of !'olling j thus , ~ 
b/2 

b a span of ailerons 

c a root - mean - square ai leron chord 

C to include h 
_ ChDi ,' 
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S:F111Jols used in descr i b ing mctions ( a ll -wrng l es a r e :!..n 
rr~:H[lns ) : 

g acceleration of gravitJ 

p dsn tty of alI' 

q dyn::anic press1.1re (~pv2) 

V steady- flight opeed 

S di~to.nce aJon-:; f l iGht path 

P dIstance along fl-iCI:.t p8.th traver3'3c'l durj.ng one 

oscill:.:tt 0:1, se;n:~c.p[..ns 

\
1 ~11 ) 

n / , 
v sideslip velocIty <?oslti ~ to right) 

a anele. of o.ttaci., of wing 

a8 effect .ve [mg1c of o.ttaek du" to f13.1' drdlt.:ct:l.C'n 

p angle of slda.<31j.p (po,si ti ve vhen slde~1ip1 in(:) 1..0 
!'ight )) 

~ an6L~ of ~~p..w (:-'05 i c~ vo when nose turps to ri.';h t) 

¢ ang l fj cf 1'011 (rei'> it5.ve '.Jh0D l'ig,nt wing 1 s dO'NIl) 

o tOt[lJ. anc.:;lc c:f c:.~.J:::'()f1 dQl'le;~t~on (iJoslt].v8 \f,'itr~ 
r JeLl~ wing d()<,rn) 

p rolling v\..oJ.oclJcy (d.0/dt) 

r yawing vs loci.tsr (Q';/dt) 

si1e forco (nositivc to right) 

N yawin[ rnoM0nt 

L rollir.'.g :non:·.n~·s ::.n r·:).~1ing-!ilo'l1ell.t c08ffic~.,,=,nt ; Uft 
in lift coe.rfici0nt 

H hinge l];Omont 



Nondimensional quantities: 
m 

!J- ::: S pb a:rp l ane density paramete r 

T ::: 
-'X 

12 
--

T ::: .l.a 

S ::: 

D --

d 

, 2 
rr / 17..., ~ 1_'-

2Pb \ b/2) 

m (kzy 
\ b/2/ S (.b 

G )2 rna Ka ----- --
pca

21)a b/2 

9H/ oQ'!ii 
- 2 qC a b a 

airplane n:oment of ::"nertia about X-axis 

airplane moment of :nertia about Z-axis 

a~.lerQn re')ment of inertia ab')ut hinie 
a.,-v;:13 

mass - moment parameter , hinge axi s (1,1 0n ­
dimensional expression for effect of 
Inertia of aileron system In causing 
aileron deflection V'lhen airl)lane is 
accelerated in rol l. ) For aileroDs 
alone, 

Ie .L V2 
b/2 b/2 

ratio of flat hord to a1rf il chord at a given 
sec tion 

d b/2 d 
dJ. ff~I'ellti a1 o')erator . ::: In 

(b;,i) If dt pb pcrticular , :9/~ --
21J 

~ root of stability equation 

- ,1 real .::>art of ~, ~)roportional t') rate of da::nping 
of motions 

n magnitude of imaginary ~ar t of ~, prooortional 
to frequency of oscillations 
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yawing-moment coefficient 

rolling-momen t coefficient 

hinbe - mo,.lE'nt coeffici.ent 

lift coefficIent (L \ 
\qS) 

side - force coefficient 

(~~b) 

Subscripts attac~ed to ~oment caeffic.ents indicate 
the partial derivatlve of the c0efficient w th respect 
to the quantity denoted by the subscript . !n osrticular , 

ce· = n 
orr 

hinge- ~oment coefficient ~ue to unIt aileron 
dei'lection, or restoring tendency. Re ­
storing tendency is positive when surface 
is overbal '3.nced 

hinge - moment coefficient due t:-) ill1i t ch::mGe 
~n local angle of ~ttack , or floqting 
~endency . Floatj,ng tendency is positive 
when su:cface floats .agains t the relati ve 
wind 

hinge - moment coefficient due to unit rate 
of deflection of ailerons (generally the 
aerodynarr.lc damDing , but may jn~lude 
viscous friction ~n the control system) 

rolling moment due to Ui15 t ai loron deflec ­
tion , or effectivene ss of the ailerons in 
nroducJ.ng roll 
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part of additional 11ft due to angular velocity 
of flap caused by acceleration of potent~al 
flow ( - Tl of reference 2) 

L 

part of addttional lift due to a~gular velocity 
of flap caused by effective increase in 

ca::nber (~l l of reference 2) \ 211 I 

part of hinge moment due to anGul ar veloc ity of 
f l ap caused by acceleration of po t ential flow 

(\ ~I~, ~l~ , 0',;here T!,~ and '1\1 c<re~i ven in 
~~. rr t; f 

r eference 2 

part of hinge moment dU6 to ansul&r volocity of 
f l ap caused by effective increase in camber 

(

'TIl T12 
Err2 t 2 ' \~Vhere TIl a:::Ld T12 are ~;l ven in 

" f 
reference 2 

The vqr!&ble nj is h8ld const ~nt in t&king the 
partial 1erjvative with res~ect to 6 or DB , whtc~ Is 
equivalent to holdinz a constwlt . 

The following symbols 3.l'e adopted (J8GaUSe of com1.'[on 
usage: 

;:,. (' 
_ Cv L 
- --o pb 

2V 

oCn = --; 
a pb 

2V 

aerodynamic da.rr..ning ·')f the airplane in roll 

and G n 
r 

= oC n 
o rb 

2V 
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ANALYSIS 

Equations of Motion 

The ger.eral equations of lateral motion with ailerons 
free , cOl.:pling the rolling motic)TI of the airplane wi th 
the yav!:i ng and sideslipping motions and wi th the movements 
of the ai lerons following a small disturbance , are as 
follows : 

I • + v~) - [3 oY - ¢mg == 0 m\v 
oB 

( 1 ) 

mk
Z 

2 \j;- - ,ij 01-' (3 0] ~ (~; 5 or 5 oN 0 
o~-

== 
0(3 06 05 

( 2 ) 

2 
9J ¢ or., ~ oL . aT oL B OL 

mkX - - - 'If~ '5 - == 0 
oW I ' 0 (3 a'ljJ 06 05 

where the dot over a quantity denotes its derivative with 
respect to time . 

For small angles of sidesli-p, v = (W . Di viding 
equation (1) by qS , equations (2) and (3 ) by qSo, equa-

1-2 tion (4) by qC a ba' and introducing the nondimen8ional 

d operator D - --- yields the following nondimensional 

d (b/2) 
equations~ 

(L-f./.D- Cy (3) 13 - C T}} + 4:-1 "I) ~ = 0 

- Cn(3 f3 - Cn-p D~ + (21 Z 1) - CUr) DW - (CnDO D + ~Cno) 6 == 0 

- C1 (3+ (2IXD-C 7 )'>0 - C1 D\lr - ( C1 D + C1 ) 0 
1I f3' " P 1I r 1I Do 1I i) 

- G...n.[3+f\' -s') - C11- d.) D¢ - Ch DI!! + \(2I aD
2

- Cb D- C'n)O 
HI-' -:JyJ D',v "Do 0 



If solutions are assumcd to have the form 
)..~ 

Ce b/2 , 
the exponent "\ must satisfy the stability equa tion jn D 
obtuL'lO d b~. se ttj ng the de terminant con:.posed of the 
cooFficients of 13, 91, Dlj.r , and <5 equal to 2131'0 . In 
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tha general case desc ribed by equations (5), the stability 
equation is of the sixth degree in A 8.nd the six roots 
may indicate notions composed of as many ~S thrs8 oscil­
l atory components . By means of simplifyIng aasUJnDtions 
justified by the eX'1.rai.nation of numerical e.xltTIrles , the 
s r.t:llJili ty equa tion \'1111 8v0ntua11y be r educed to a cubic . 

Preli~inary Calculations 

It is first proposed to SiElplify the'1n'llysis hy 
ne~lecting t~8counljnJ bfitwGon tho rollin~ motion and 
t ho yawing and sIdeslipping motions . In order to test 
trw validi ty 'of' such a t1'8&t'ne!lt , two Sl3ts of calc J.L:tions 
118.'110 been mado for a spoclf'ic case, one :Jet including 
the cross-couplin(; , and one set cons:i.dcring only the 
rolling apd aiJ.eron motions . 

Num~rical values 8.SS lmed ~- Tbe air:"\::.nne chars.cte r­
istic::'1 ass umed. are given" intaJ:)ie I . A lift eoefficient 
of 1 . 0 VIas chos en to magni fy any di ffe renc 6s bebveon the 
tW() re~l1l1ts . The stability deri·v,_~tives we're obtai.ned, 
wI th tn') exception of CLp," fI'om table I of refeI'G::ce 3 . 
Tho valu~ of CLp was t~£en frum rGfe~ence 4 , 'on tho 
assumption of' 1:.1 2 :1 t:'l.p0red ·:.;j.n[~ o.f :..:. spect ratio 6 . The 
mass ch'1.ractorjsticR are :ntanded to bo renrasentutivG 
of a conventional pursuit. - type airIlo.ne . 

The aiJ.cron ch8.l"act.:;rlstic.s ::-..ssurn0.d are for J.Ci ­
perc8nt - chord ui18rons cover~ng the outer 40 pe rcs~t of 
the wing spal'! . Tho '119.1 ue s 0': the de ri va ti ve s a rc lls t ed 
in table II . The 8.iL;rol1s ':1·31'0 assu;,1od to '00 mass ­
baLncGd; conStqnentl.'T , S:= O. IjIlhe I!lO!H.mt of inertia of 
tho o.i1-.n'on8 vms' Iso tLl·~en 8'-.ilJ.al to Z.3J'O . ( ~Phe validIty 
of H crnnDari~on made on the ~usls of zuro m~nent of indrtia 
will b·.~ chocked in ;1 su~)SequO!1t 8 )ctiO:1 . ) 'l'llc hinge-:'!1omont 
p.'lI'amete11 s Ch a and ebo WC;I'C rot<::inod DS the princi'pal 
variab l es . 

Natu.re of the motions , four d(,r;T .... ~e:J of _Inrtledo~ . -

The composi ti on of th,; motioJ13 , as indicated by the roots 
of tho stqbl1jty equation for various conbinRtions of 
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C
h 

and G
h

, is described in figure 2. Wit~ Ia and 
a a S equal t o zero, the stability equation for this figure 

i s a quinti c and there are, therefore, five roots to be 
accounted for. It is possible to consider separately 
one real root; this root passes through zero along a line 
designated in .figure 2 as the spiral divergence boundary. 
In the region around the p ositive Ch -axis the remaining 

a 
four roots form two complex pairs, indicating that the 
motions have two oscill at ory components. Along the 
long-dashed curve one oscillation disintegrates into two 
aperiodic modes, dlvergent or convergent accordingly as 
the oscillations are stable or unstable; at all values 
of C

h 
and C

h 
outside this curve the motion is 

a a 
composed o f one oscillatory mode, which is almost always 
stable, and three nonoscll1atory c omponents. Inside the 
curve, the two oscillator~' components are stable so long 
as Ch is negative. As C'" bec omes positive, in-a i~ ' . 

stabi lity sets in , as indicated by the oscillatory sta-
bility boundary . In general, only one mode becomes 
unstable; the s ame oscillation breaks down into two 
aperiodic modes at a slightly larger value of eh . 

6 
In a small re gion (AB in fi gur e . 2 ) defined by the inter-
section of the two branches of t he boundary, both modes 
are uns table. This detail and others occurring outside 
the s tabl e region, or n e ar the boundary J a re not c~m - ' .: 
sidereo. .of any Dractlcal imDortanc e ~ they are rE :1.t5. 0 .-' E'cl i n 
ord0::' 'i~o ans V'! :)r quo:. st ions t h :?L: )":l2. ; ht oths rwi s0 b·:! .Jugg.:' sted 
by -;.l"lSp-'?c ·c:l. on of t he 1:'iS1;T 6 . 

~8te of dive r genc e , four degr ee s of fre edom.- Inas ­
much as fi gur e 2 indicates t ha t tr.e motions IIvil1 be un­
stabl e for most combinations of values o f Ch and Ch ' 

a 6 
it see ms advisable first to examine the nature of the 
di V B r ge n tin s t abi li t y , \/> ;.ci \ , )~!:, ar f' ~l:. "1 03 t ~",-, . lioiC:.J.b le • 
The condi tion for neutral staol11ty ( zero roo t) is that 
the constant ter~ o f t~e stability equation vanish; that 
is, 



rl 
' . .0 
1'1, 

~ 

The rate of divergence for the unstable values of e
h a 

and eh
6 

(for the specific case to which fig . 2 

11 

pert ains) is indicated by the lines of equal roots in fig­
ure 3. Although these l ines ap)ear to go through the 
o r igin , each has its inter~ept at a positive value of 
eh proporti onal to the value of the roo t . For small 

6 
values of the root , however , the i nterceoted distance is 
negligible , and L .e loci may be considered lines of COD -

6 _ eha stant floating ratio - -- -- . F~gure 3 shows that the 
a eh -6 

diverge~ce over mos t of the range of negative is e '1 
"6 

very slow. This divergence is , in fact , the so-called 
It spiral instabili ty " that is ge!1e rally a!1ticipated by 
airplane deSigners . In the fourth quadrant , however , a 
sudden raDid inJrease in the rate of divergence is ob­
served, which corres~onds to a change of sign in the 
coeffici ent of ~ in the stability equation . [rom the 
practical point of view the f l oating ratio a t which this 
sudden i I'cre&se occurs locates the sisnificant " divergence 
boundary.lI A line t hrough this r egion and the oscill a ­
tory stabtlity boundary may therefore be considered the 
cOIrDl ete boundary for stability of the airplane with 
a ll four degrees of freedom . 

Equations for two desrees of freedom .- The jnfor­
mation obtained from cnlculcltions neg l ect'ng the Y2wing 
and sidesliDDinc rrotions will no~ be considered . ~hs 
equations of r.:otion si~-iJlifled to in-::lude only coupling 
between rolling anc: aileron mot.i.nn are as follows 
(nondimensional fo rm) : 

/ , 1 i 21 D - 'J L \:lsO - 0r !) + CZ' J 6 = 0 

"X ~) Do 
( 6 ) ,.. 

(_ ;D - eh }'),0 + (2T D2 eh ') ShrJ 0 - 0 J . 1 a -D0 \ T)o 
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and the stability equation is 

.ature of the motions , two degrees of freedo~ .- ro r 
the case defined by tH""5Tec.r-a-nd ::r , tile motions are as 
described in fiGure 4. The st8bility e~uation is a 
cubic , and there is again one real root , which becomes 
zero at the divergence boundary . The rerna~ning two 
roots forr:l a complex pair , lncL:atin~ an oscil18.tory 
mode , inside the re~ion defined by the lone- dashed curve . 
rutside this reg~on all three ronts are reo 1 and no 
oscillations oc~ur . The oscillctions bec""'me ul1stahle 
at a small 1)osLtjve v[.llue of C, 1:'1h:ch is almost inde -n ' [) 

pendent of the value of 

Comparison of results , two bnd four degrees of 
freedom .- The results of "the two computations can now be 
tested for agreement . Comparison of figures 2 , 3 , and. 4 
suggests that the effective divergence boundary of the 
cross - coup16d motions (shown by the dotted line jn fig . 2) 
maJ be aSS"med to c0incide 1,11.'1 th ths true di vergence 
boundary in the sim')lified case . 'rhus , where t:he simp l i ­
fied fJr:alysis indicates a change from stabilit:l to in ­
stabilit~ there is actually a s~dden transition from a 
slow di vergenc('; to a rB'Jid one . 'Ih·.~ com;>nrison may be 
extended into the first q adrant of the ~harts . Here 
the di vergcnGe boundary a1Jpcars , .in the rt'.ore ex3.C t 
an&lysis , as a branch of the bound8ry between damped and 
undd.mped oscillations (line Of: , fig . 2 ). The oscilla­
tions ara , howe ver , on the point of breaking down into 
aperiodic modes &nd thG instab!lity would in p r ac t ice 
be indistinguishable from uniform divergence . In ac ­
co r dance with these observations the line of zero roo t s 
obtained from the si.mplified an~lys18 will be termed 
the II di ve rgenc r.3 boundary , tI vii. th the nnd e r standing that 
such a dasi€nat!on is strictly true only when the c ros s­
coupling is negllg ble. 
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Further compe.rison of fig1H'es 2 and 4 shows t hat 
the o~cillatory stability boundary of the simplified 
treatment , although shifted slightly by th6 introduction 
of the additional degrees of freedom , is so little alter ed 
t ha t it also may be retained as part of the stability 
boundary . Moreover , the position of the line enclosing 
the osci l latory region r emains essentially unchanged and 
sti l l indicates the values of the hinge moments at which 
one oscillation breaks down . It may thera fore be con­
cluded that , except for the pr8sence everywhere of an 
add i tional n:ode of osci11 etlen to be · d i scussed subsequently, 
the broad aspects of the solution for t he more complex 
case may b e deduced from the r esults of the simplified 
analysis . . 

Comp,u'ison of the r')()ts at a nQ'11ber of points 'shows 
that the results of the two calculations are in close 
quantitative agreement, also , with regard to the oscilla­
tory mode co~mon to both analyses . Thus , both the 
per~od and the damping of the )scillations of one mode 
can be obtained from tbe l'esul ts of the simpl i fied 
anal y sis . 

The oscillations of the second mode have ~oth 
damping and period virtuallJ~ independent of the hinge 
moments of the ailerJn~ . In the case chosen for 
illustration t~e period is of the order of 30 semispan9 , 
or , if tl:e f! _ an is 40 fee t and the wine loading ~,O 90unds 

, ' 1 
per square foot, about 3'2 seconds , throughol,t the r anr;e 
of eh with eh nee;ative ; the motion damps to half 

a 0 
amp l itude in the course of one oscillation . Because 
the aileron characteristics are not invslved an~ bec3use 
of the magnitudes of the period and darr.ping , this mode 
appears to be tho normal lateral oscillation of the 
airpl ane " i th controls fixed and 8.S such is treated 
elsewhere in the literature . For the assulT;ed airplane 
this mode does not beeome unstable an~:Twhere within the 
region indicat ed D S st obIe oJ the simplj,fi ed analysis . 

Effect of aileron ~oment of ine~tia on cross ­
couplIng .- It seems dGsirable to check tbe for agoing 
conc l usjon against results obtaIned with tho moment of 
ine r tia of the aileron s~stem r e tained in the equations . 
For t his purpose , the roots of the st2bility equations 
have been cqlculated at eh = 0 . 15 and eh = 0 . 02 , 

~~ 0 



- 0 . 1 , - 0 . 2 , and - 0 . 3 , _'itl-} I a = 0 . 025 . With fou r 
degrees of freedom , the stability equati on ha s six root s. 
Of thege , one root in~icetes the spiral mode and , in the 
unstable region , has the surrIe v alues as are given by 
figure 3 for the case with zero rnOll0nt of inertia . 
second real root cor~esponds to the real r oot of the 

A 

simol~fied equation . The four remaining roots fo r m, 
in general , two oscillato r y pairs . These roots are 
cOIDnared with those of the slmplified equation in the 
fo110 1f ''::' ng tClble : 

--~I-;:-: d~-gre e s - ' - -;--'o-u-r-' -d- e-e:.-r-ee- u-C' -o-f- f-r- e ~ dom , 
ho I of :'r-e8d0m, I = 0 . 02 5 

I 
Ia = 0 . 025 a 

0-.-0-2-+-' ---0-. 0037--'~-;~~'9i - 0 . 0044 ± J ~2: 1-0. 02L~6 + 
-. 1 - 1 . 043 + . 3431 - 1 . 053 ± . 851i -. 025 ± 
-. 2 -1. 0

cr? + 1. 6621 -1. 081 ± 1. 6641 -. 0245 ± 
-·3 -1 . J06 + 2 .186:. - 1 . 083 + 2 . 1391 -. 0241 ± 

I 

O. llOi 
. 199i 
. 199i 
. 1991 

At Cho = 0 . 02, where the periods art3 of the sarne orc1er of 

magnitude , the effect of ttlG cross - couplin~ is S'3en . El se­
where the period and damplng in both ~ a1culation8 agree 
within 1 .)erc8nt . It appears r(;asonab l e to conc l ude 
that the st atem~nts of the pr ec0ding section hold in spite 
of th0 omission of the.. aileron m8mt~nt; of inerti8. from t he 
calculations . 

Sim~1ifled An8.1ysis 

Using the r~duced form of the stabi l ity equation 
makes it possibld to investigate the effsJts on the 
stability of th~ air~lane of varying the al lero~ char ­
L'.cteristics , and G V(;J:l to /Sive ~'3rtain g:sl1oral f'orli:ulas . 
Because most mod e rn airplanes ar~ designed ¥lth ailerons 
c0mplete l y mass balanced , th6S6 formulas may be sti l l 
further simplifl ~d by assuming ~ equ~l to zero . 

Ailer!)n - fr -~G os~il1ations . - The oscilllt i ons as - . 
socia-:ceawrE11- frGt:ing thG ai1e1"')n c~:mtro1s can now be 
invest1g&ted in mo r a detail . If G P 11' ~f roots is 
ass~ed ill the> f )1']1 f... = - a ±ni , a relation C!:.ln 
be dGr~vcd l ivinG the fre ue cy n In terms of the coe f­
fici l;n ts of \. in e utltion (7 ). This relation is too 
lengtlly to be presented in its e:-:enera1 fOrlrl; ho',v'ever , 
calcul a ttons have been made from it and the results wil l 
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be shown in the forr: of l ines of equal period P = 2rr/n 
on the stability charts . 

The damping of the oscillations is mare readi ly 
expressible than is the period , particularly if a fixed 
value of the frequency is assumed . Poreover , calcula­
tions of the damping for zero frequency and for the 
highest frequency likely to be encountered in practice 
sbowed that the express ion could be still further simpli ­
fied by omitting the terms containing the frequency and 
Ch (since these terms ap~arently canceled each other) 

a 
without any aDDreciable loss in accuracy . Thus , with 
c equal to zero , tge damping a is , to a go od approxi ­
~ation , the smaller root of the quadratic 

a + ( G) 

which is independent of 

At the stability boundary , the damping a is zero , 
and , there£'ore , 

approximately . 

= 0Z,pOhDfi 

2Ix 

The more ac~urat e expression for this boundary is 
obtained by setting Routh ' s discriminant equal to zero . 
The r esul t is a linear relation between 0h and 0h; 

6 a that is , 

- (!;~) (10) 
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Figure 4, however, shows the variation ~ith C
h 

to be 
a 

actually quite small . 

stick-force criterion .- The divergence boundary is 
obtained bJ setting th.§ constant term of the stability 
equation equal to zero; then, 

(11) 

This condition for neutral ~tability is identical 
with the equation for zero slope of the hinge - moment 
curve : 

(12) 

and is therefore also identified with the coridition for 
zero stick force in pure roll or in a rO?id rolling 
maneuver . Inasmuch as the stick force DeI' unit deflec -

"dC 
tion of the ailerons is oroportional to --h, lin~s of .. dB 
const ant stick fcrce 8re obta ned by r eplncing the zero 
in equation (12) by appropriate constants. The rolling 

effectiveness , ~ = pb per unit aileron deflecti~n , 
dB 2V 

is independent of t~e hinge moments; the equation for con­
stant stick force therefore resul ts in a family of 
straicht Y1nes paralle l to the divergence boundary of 
equation (11) and the criterion for light stick force for 
given 8ileron dImensions und effectivenes8 is the close -
ness ~ith which that boundary is approached . A com-
parison of one aileron wi th another , ho'~ever , shows that 
the stic~ force will also be proportional to the value 

- 2 of c n ba . 

Ue thod of investigating the effect of friction. ­
Vlhen the effec t of fri c tion in the control S J stem is 
considered, it is necessary to distinguish between two 
types , viscous friction and solid friction . Viscous 
frIction , which var i es wi~h th~ spe~d of the flep de­
fl ec tion , is exac tl y equi val en t ta ::m in8 rease in e

h 
' 

Do 
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heretofore cons~.dered to be due only to the aerodynamic 
damping of the ailerons. Solid friction 1?,cts in a mor e 
c omplex way but may be approximated by an equi valent 
viscous d8.lTIping , the amount varying inversely with the 

-:6 amplitud3 of the deflection. (A more detailed dis -
~ cussion of this apDroximation is given in reference 7.) 
~ Thus, in the course of a damped oscillation, for example , 

the apparent Ch increuses and the question of ~h~;. 
Do 

eff ect of' the friction r educes to the question of whether 
an increase in Ch is stabilizing or destabJl:i.zlng. 

DB 

EXPLANATION OF CSARTS 

The stability charts (figs . 5 to g ) are intended 
both as illustrations of the application of the pre ­
ceding formul as and as worl{ing charts from which the 
behavior of a ~articular set of ailerons on a con ­
ventional airplane may be ')redicted. If the analysis 
is to be Ro·o lied to 8.n air-Diane having stabili ty char ­
acteristics that represent a considerable departure 
from those tabulated herein , it will probably be advisable 
to calculate the nature of the motions from the general 
formulas (equat:i.ons (7), (8), (1 0) , and (11)) . 

Figures 5 to 9 show the oscillatory regions and 
lines of equal period in those regions , as well as the 
stability boundaries for aileron-free motion . (The 
damping of the oscillati'Jns is sLown separately in fig. 10.) 
F'i gures 5, 6 , and 7 sho'v~ the results for l 5- percent- chord 
ailerons with three different mome nts of inertia covering 
a wide range of values. In all other res~ect3 the 
ailerons are those ore viously used as a bas is for the 
preliminary calculstions . The airplane characteristics 
are those gi ven in table I . :?ie:ures [; and 9 :.)res8nt 
stability r ogions for 30 - percent- chord ailerons of the 
same e ff e ctiveness Cz as the 15- percent - chord ailorons 

'6 
of figures 5, 6 , and 7 . The span for the wider ailerons 
would be 28 pcr~ent o f the wing span , as against 40 ~Gr­
cent for the narrower ones . The other characteristics 
of the 30 - percent - ch~rd ailerons are listed in table II . 
Two values of Ia are presented for compari son . The 

airplane characteristics are not changed from those of 
table T. 
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In figur es 5 to 9, t~e value used for the aerod~~ami c 
darrr;:>ing of the Qileron motion Ch is the theoretical 

Do 
value for unbal an ced flans (fi g . l} . The v9lue of 

actue.lly varies \'.'it~ the ayr,ount of ba12nco and i s there -
fore not COLst ant for an; one cbArt . Woreover , the 
var-'Lat i on c..epenos on the mh.f1ner jn which ehe balance is 
obtained. 'The V€.ri2i. ion is , ::"0V'.'ev3r , sli;.;ht in any 
case -- less, fOl ' exalnple, tr.an ttJ.e amount ·l. ntroduced by 
fri.ct.ion . (If b81'1.11"',ln:-~ Area j s 8.dr~ed aheed of the 
hi!1ge , ~o:nplet e balance involve:: app"'oximatcly 15 percen t 
r educ tion in r, from the theoreti cal value . ) 'l'he "hD6 
var iation of ('1 1. wlth C, and 

v 111)5 no 
no t b e in80rpOrEl t ed in to t):l E; charts . 
chang e in C' may be estimated oy 

DD6 

Ch ' there fore , need 
a 
The effect of a 

a comparison of fig -

ur e 5 with figure 8, and of fl oure 6 with f i gure 9, inas ­
much as the princioal differen~e between the calculat~ ons 

for t be narrow- and ?ide - chord ai lerons of the sawe 
effectiveness is an increase in Sh . 

. Do 

'lhe r e l a ti ve magni tlldes ,')r the sti'Jk forces for the 
narro~- and wide - chord aIlerons are indicated by the 
sp8cin~ of th~ lin e s of equal stick force in figures 5 
Bnd 8. The ~inge moments are exp r e ssed in these fi gures 
in terms of the mean wing chord in orde r to make possible 
13 direct c:on~')a:,lson of a~ tual forces . As previously 
noted , all the line3 are parallel to the line of zer o 
stick forc " that is , to the j·:vergence · boundary . 

ri f.;u r s 10 shows the di s tanc e r 3qui r (;·d for the 
oS~ 1_ ll a t i ons to da.:n'J to OllG-balf amnJ.i tude . This 
distRnce j,s O. 6') 3/a , who:lre a is " gi ven by' equation (8). 
A si ng l e v al'J e of Ie W3.S selected , and the distance to 
damp to one - llA.lf ampli tud0 a3 ~) l 0 t: t 0d_. agains tCh for 

o 
The figure was designed s everal values of ('I vhDo ' 

primarily to s erve as the basis for t he discussion of 
the c~f( ct of friction nnd i s , therefore , more 
general thfon the pr ecedi n t; cha,'tf;" . The do.rnping. for 
l5- pe rc en t - chord ailerons without frlction is A.lso shown, 
how 8ver, (to b3 8]]p11 '.2' d to i i g . 6) and the damping for 
30- p6rcont - chord ailerons , Ie = 0 . 025 , (to be us ed with 
fi g . 9 ) may bs und ers tood to coin~ide with the line fo r 



C = - 0 . 2 . 
hD6 

The incl usion of lines for other values 

of Ia would not affect the concl usions to be drawn 
from the figure . 
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In figure 11 the stability boundaries are shown in 
the same form as in f i gures 5 to 9 for values of ~ 
vary:i. ng from comple te bal ance (s = 0) to a value roughly 
corresp -::mcling to that for an aileron wi th center of e; ravity 
20 percent of its chord behind the hinge (~=-0 . 6 ). 
From eqJution (7) it can be seen that S does not enter 
into the s tick - force criterion . Routh ' s discriminant , 
however , is derivable as an es sentially linear relation 
between Ch and S . Al thouGh the boundaries shown 

6 
&re for Ia = 0 . 0125, they are practically invariant 
with the moment of inertia . The effects of increasing 
the d amping 'Jf tha ailerons or Gh a::-l(J of changing 

1 :)0 
S are substantially additiv~, neithe r change affecting 
the va r iation of critical Ch " with the other variable. 

() 

It may be gene r ally concluded fra:rn figure 11, therefore , 
that the presen~e of unbalanced mass behi nd the ail eron 
hinge r es tricts the oermissiblb d egre6 of aerodynamic 
bal ar...ce . 

Oscillatory ~'·odes 

Osc :llatory re gi ons .- It may be seen from the figures 
that in'al l cas e s -rolling oscill ations (i n ad,-H tion to 
the normal lateral mode) will follow a disturbance if 
Ch is small 8nd Ch is 1)09i ti ve . r.rom figures G and 

~ a · . 
9 it may be cO::-lc l uded that the r ange of Cho for which 
oscillations ~re possibl e increases with the ~i6th of 
the ailerons . As previously suggested , figures C and 9 
may also be unde rstood to indicate the increase in t~e 
extent of the oscillntory reb-Lon y.ith increased C

h Do 
due to any other caus e . 

Eff e ct of 1 a . - Somparison of' figures 5, 6, and 7 
and of figures C and g shows that the momen t of inertia 
of the ailerons introduc es a Se cond oscillatory r egion . 
On furth e r investigation , the oscillations in this 
region are found to be very ra:')id but well dam?ed . Both 
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cam~ing and pertod 
of the ailerons to 
Ch ' eh , and the 

o Do 

d0pend almost entire ly on the tendency 
rosist deflection , as expressed by 
moment of inert! a I <.l (See sec tion 

v. 

entitled "F,f fe~t. of ai l eron ~nOllent of inertia on cross -
co uplj ng " fo r value s of the root s 1 n tr.J.s re, ion. ) The 
matton is therefore ~llter)reted as a fla~0ing mo vement 
of the ails'ons uncoupled with the ~otion of t~e airp lane. 
Thi s mode 1.s so well rJwP?ed (m aximum eli stan8e to damp to 
half amulitude = 0 .63 se~i3pa~ !n the T8nge co~sidered ) 
as to be 0f no Dractic[~l l r.mortance an(~ furlher C.iSCU8 -
sian will therafore he limited to the ro l ling 08c111a-
ti.ons o C'J llrrind: in the ne~_ghborhoCld .).f" C].. = O. 

~1:') 

P e riod of the ai ler~n-tree rollin~ oscillations. ­
The peri0d of' the -rolJJ~·rlc osct l18tinns~deD8r.ds 'Eoal a r Ge 
E)xten t on nIe 1'108 tL'1iL: t ondf!nc y of tile ailerons . When 
Ch ="O . '.L , for example , thE; per:tod fOl~ narrow ailerons 

a 
may be of the ordor of 15 semispAns, or , if the &ir)lane 
i s traveling at kYJ f'ec t ;.~er 8,~cond and has a 40 - foot 
vitng 80&"''1 , thr8c - 4uartcrs of a sGcorld . In the c ase of 
wider ailerons or of ai l erons with s~~ller positive 
floating tendency , the period 1s considerably longer . 

Daml)i.ng of Osci.llations 

It is pe~haps nrcfernbl e to consider the period in 
c on,junctinn lNlth th8 dt'.m"ling o~ the oscill:J.tions . The 
distance r~quir~d for the oscillDtions to damp to half 
B:rr.pli tude is shoV'n;n fie:;ure 10. A')pli8ation of fig ­
ure 10 to 1'1:0 prGced:tng fJ../_ures indicates that , so long 
as Ch i 3 negati ve , ths moti '.'lYl ds.rn!)8 to half Elmp li tude 

~ 0 
in a fraction of 8'1 nscillatio'1 . ratio 

i s in tha noighborhood o~ 0 . 3 o~ gr3~ter , tho r a t io of 
period to dam;)"Lng dist~J.r:~.~ i8 so lare;e 3.3 to m3.ko tho 
motion in cffsct a -lnif'o:rn1 subsidt=;ncc . 

Effect of airnlane ~haracteristtc~ .- It should be r e ­
membered i.;ha t the )re c-edine:~nclU::'3ions are bJ.sed on com­
putations for a particular &irplrl.ne rmd are no'~ 

quantitatively apnlicnb l e in genera l. If the r e tio of 
damning in roll to mo~ent of inertia in roll Sz /Ix 

p -
is numeri.c8.l1y c re a.ter tll~Jn tho v",lu8 of - o . L~ aSS1.l~ed 
fo r the exarrol e , the d amplng of the osci 11 :" tions wi 11 be 
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more rapid than is shown by fi gure 10 . In addition, the 
boundo. ry will be shifted to the right, 1Nith the amount of 
positive Ch6 allowed increased pro~ortionately to the 

increase in CLp/ lx (equation (9 )) . 

With the exception of the considerable effect of un ­
balanced mass , shown in figure 11 , no f ae tors other than 
those just discussed enter critically into the damping 
or stability of the oscillatory mode . The effect of 
vari ations in floating tendency can be seen in figures 5 
to 9, vhere lines of equal damping would be very nearly 
parallel to the oscillatory stability boundaries . The 
paraneter 0L ' the aileron effectiveness, e nters into 

6 
the expr ession for the st~bl1ity bOlmdary (equation (10 )) 
in combinat i on wi th Ch and has similnrly little 

a 
influence on it . (It rnay be not ed here that the period 
of the oscillation is also affe~ted by a caange in 0L 

6 
in rougbly the same ~Jo.y a s hy a 1Jro,?ortiona te cha nge in 
C
ha

1 The moment of inertia of the ailerons ap~ears in 

equation ( 8 ) for the dampinG ' a e ting to r educe the t 1.1;1e 
r equired for dampine; to half amnlitude. The effect of 
Ia on the posi tioD of the boundar y (ze ro damping) is, 
however , ne gligi'ole , as mG."] be seen by comparing fig ­
ures 5, 6 , and 7 , and figures 8 and g. 

Effect of Friction 

The effect of vi s cous friction in the control system , 
as h as been noted , is merely to ausment the r6si 3t&~Ce to 
the aileron motion as expr'essed by 0" • Tr.J.e res'..l.l t 

liD6 
may be seen in the 
( i'i gs . 8 and 9) . 
of Ch than with 

o 

charts for increased aileron chord 
Oscillations oc cur over a wider range 
a frictionless system . Also (from 

fig. 10) tSe rate of damf: ing is ger.erally lO',A:er, Then 
C~~ is negative , because of t he phase lag between 6 

-10 

and. D6; however , if C is positive , the additional 
h6 

damping 
stable 

will retard the motion and ext '"' nd the range of 
Ch . 

6 

of 
If solid friction is present , the effective value 

C
hD5 

will gradually increase.e.s the osc5_l1at -l.on s 
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die down - accordi ng to the approxi 11late tl1sory , a proaching 
infini ty as the ar.:.pli t'J.de approachl:';s zero , but in ac tual 
practice causin~ the ailerons to stick at some small 
angle of deflection . While this change in effective 
Ch j.s ta1dng place , th"3 rate of d ::l.lnp in.; will slowl ':~ 

Db 
decrease or jncrease , accordin~ly as C is nebative ho 
or pORittve , and will approach the rate corresponding to 
the ailerons - fixed condition, as shown by figure 10 . In 
no case will oscillations of increa.sing amplitude occur 
because of the prEosence of friction if the o.ilerons are 
otherwise stab1e . l~oI'eoVer , because the damping ap ­
proaches a fin.Lt e ("~on - zGro) rate , there is no "Ooss i ­
bility of steady osci~lattons, such as occur in the 
tudder- free condition (reference 7) . 

CONCLUS:::OJ"!S 

1 . Th6 stability of an airp l a.ne with ailerons free 
may be determinDd to a ve TY la::--ge extent without regard 
to the cross-couplin~ between the rolling motion and the 
yawing and sideslip}ing motions . Nogl ectin~ the yawing 
and sideslipping leads to a sim::>lific)d analYSis that 
does not predict the occurrence of spiral instability . 
Tha simplified analysis does , however , predict the values 
of the hin8e mom6nts at which tho instability becomes 
violE-nt . Also , the simplified analysis will not include 
the nor~al lateral oscil18tion of the airplane wi th con­
trols fixed , but the stability of this mode is not af ­
fected by freein,s: the ailerons and that phase of the 
problem is outside thE) scope of the present investigati.cm. 

2. Divergence , or· an unst abl e variation of the 
control force with alleron deflsction , is the only form 
of instability Ii! ely to occur in the case of mass ~ 
balanced ailerons wit~ negative float!n~ tendency , 
except for flutter , which is not cons:ldered in this 
analysis . The use of ailerons with considerable ten ­
dency to f loat against the ~ind , however , introduces 
the possibility of oscillatory motion with the ai lerons 
free and , if the ailerons are aerodyn8mically overbal ­
anced , of oscillatory inst8.bility . 'I'he unstabl e osci l ­
lat ions exi~t In addition to the normal Tolling - yawing 
Oscillations ~ntrodUc0d by th~ dihedral angle and by 
the clirecti-:mul etabili ty of th8 a1rpla:1e . 
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3. As long as the restoring moment is not comp l e t ely 
bal anced out, the damping 8f the aileron- free oscillations 
in a mass - balanced system is so ~reat AS to ma~e the os ­
ci l lations appear to be of no practical concern . The 
presence of unbalanced mass behind the hinge , however , 
restricts some,hat the permissible de g ree of aerodynamic 
bal anCe . 

b, . ComparIson of the l~ -J)ercent - chord and 30 - percent ­
chord ail e rons shows that aerodynamic 0 ve rbal ance is per ­
mi ssi b l e , from conside:r'ati ons of stabili ty, in the case of 
shorte r, wider - chord ailerons if considerabl e positivff 
floatIng tendency is present . The permitted increase 
in aerodynamic balance is not enough , howe ver , to offset 
t he rapid increase in stick force v,'i th ailer n chord. . 
On the other hand , the oscillations are of considerably 
lower frequency for ,;,.;5..de aile.r'Ons than s.re ~hose that 
occur at the sa~e Etick force in the c ase of narrower 
ailerons . 

5· The presence of visc0us friction in the control 
system has the same effect ~.IS increasin g the aerodynamic 
damping of the ailerons . '.1.he presence of solid friction 
in an otherwise st able system has tl e effect of Gradually 
increasing or de~reasl.ng tl1e da.mping of t~e osc.illations 
as thelr a:r::pli tude decreases so as to cause tl-:e rate of 
damping ith ailerons free to approach the r ate wlth 
ai l erons fixed . reither instability nor steady oscilla­
tions will res ult from the presence of friction . 

6 . The stabi l ity of the control - free oscillation s 
is virtually independent of the moment of ine rtia , 
fl oating tendency , or effectiveness of the ailerons . 

7 · An airplane wi th a large rati.o of damplnE in 
rol l to mome nt of iner· tia about the X- axis Derrr.its a 
c l os e r de g re e of balance in tho ailerons before oscil ­
latory instability is incurre d and , v'ith ailerons fre e , 
suc h an airplane is generally more stabl'3 than one for 
which this ratio is small . 

Langl ey ~~emoriQl Aeronautical TJaboratorJ" , 
National P.dvi sar:, Commi t tee for ~e ronautic8 , 

Lsngley F10 ld , Va. 
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TABLE I 

AI RPL fI.J:·T:S CrtJ..RACTERI STI CS 

Wing Ch8.I'8 cte ristics ~ 

'raper rati o . . . . . . . . 
.t: ~ p'3ct r a tio , A ... 
Dih~dral ang l e , A, d cgreeo 
Lif t c urv e sloo0. 0_ . . . 

.. !.Ju 

Mass charecteris t i co : 

~ 

kx/~ 
I Z 

st ~btlity derivativGs : 

. . . 

. . . 2 :1 
6 
c, 

• .I 

. h. 3 

. . 

0.067 

- 0 . 055 

. . . - 0 . 109 

- 0 . 088 

-0.450 

0 . 250 

- O . ~.l 

25 

... 
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AI~E~0N CHAP.ACTE~T8TIC~ 
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Figure 2.- Character and stability of the components of the 
motions found by solution of the equations before the 
elimination of sideslipping and yawing. (Shading indicates 
the unstable region.) Aileron chord, l5-percent airfoil 
chord; S = 0; Ia = 0; dihedral angle, 50; CL = 1.0. 
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Figure 3.- Rate of divergence, as indicated by the value 
of the positive real roots of the stability equation. 
1fileron chord, l5-percent airfoil chord; ~ = 0; Ia = 0; 
dihedral angle, 50 ; CL ; 1.0. 
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NACA Fig. 4 

Figur e 4.- Character and stabil ity of the components of the 
motions with coupling qnly between aileron movements and 
rolling angle. Aileron chord, l5-percent airfoil chord; 
S = 0; Ia = O. 
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Figure 5.- Stability boundaries, lines of equal period, and 
lines of equal stick force for l5-percent-chord ailerons. 
S = OJ Ia = O. Period P 1s in wing semispans. 
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NACA Fig. 6 
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Figure 6.- Stability boundari es and lines of equal period 
for l5-percent-chord ai l erons. S = 0; Ia = 0.0125. 
Period P is in wing semispans. 
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Figure 7.- Stability boundaries and lines of equal period 
for l5-percent-chord ailerons. S = 0; Ia = 0.025. 
Period P is in wing semispans. 
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Figure 8.- Stability boundaries, lines of equal period, and 
lines of equal stick torce tor 30-percent-chord ailerons. 
S = OJ Ia = O. Period P is in wing semispans. 
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Figure 9.- Stability boundaries and lines of equal period 
for 30-percent-chord ailerons. S = 0; Ia = 0 , 025. 
Period P is in wing semispans . 
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Figure 10.- -Damping of the" oscillations measured by the 
distance required to damp to half amplitude, in wing 
semispans, for ailerons with various values of ChDo. 
Mass-balanced ailerons, Ia = 0.0125; Ctp/IX = -0.4. 
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F1gure 11.- Stability boundaries for 15-percent-chord 
ailerons, showing the effect of variation in the mass­
moment parameter s. Ia = 0.0125; ChDo = -0.011. 


