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NATIONAL ADVISORY Cor)I lITTEE FOR A}i;RONAUTI CS 

ADVANC3 RSSTR IGTSD REPORT 

STRESSES AROUND RECTAjUULAR CUT- OUTS Il~ SKIIJ - STRINGER 

. PANELS u~jDER AXIAL LOADS - II 

By Paul Kuhn. , Jolm :2 . Duberg , and Simon H. Disk :i,.n 

SUMlvlARY 

Cut - outs in wings or fuselages produce stress con -

centra tions that pre sen t a . serious proble m to the stress 

ana lyst . As a par tial solution of the genera l p rob lem, 

this paper presents formulas for' c a lculating .the stress 

distribution aroill1d rectangular cut - outs in axially loaded 

pane ls . The f .ormulas are derived by means of the substitute -

stringer method of' shear - lag anal ysi s . 

In a previous paper published under t he same title a s 

the -prenent one , the analysis had been base d on a substitute 

structure containing only two stringers . The present 

solution is basad on a substitute strupture containing t hre e 

strings's and is plo re complete a s we ll as more ac curate than 

the previous one . It was found ,tha t the 1'e suI ts could be 

used to impr~ve the acc urac y of the p revious solution 

without app reciably reducing the speed of calculation . 

Details a:c'e given of the three - stringer solution as well as 

of the modif i ed two - stringer solution. 
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In order to check the theory against experinental 

results , stringer stresses and shear stresses were meas 

ured around a systemati c series of cut-outs. In addi 

tion , the stringer s t resses measured in the previous in

vestigation were reanalyzed by the new formulas . The 

three - stringer method was found to give very good accuracy 

in predict i ng the st r inge r stresses . The shear stresses 

c annot be predicted with a comparable degree of accuracy; 

the discrepancies are believed to be caused by local 

deformations taking place around the most highly loaded 

rivets and reliev ing the maximum shear stresses. 

INTRODUC 'rI ON 

Cut - outs in wings or fuselages constitute one of the 

most t r oublesome prob l ems confronting the aircraft designer . 

Because the stress concentrations caused by cut - outs are 

localized, a number of valuable partial solutions of the 

problem can be obtained by analyzing the behavior , under 

load , of simple skin- stringer panels . A method for 

finding the stresses in axially loaded pane ls without cut 

outs was given in reference 1 , which also contained sug

gestions for estimatine; the stresses around cut - outs . In 

reference 2 , these suggestions were put into more definite 

form as a set of formulas for analyzing an axially loaded 

panel with a cut - out ( fig . 1) . 

~-~' - --
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Skin- stringer panels , although simpler than complete 

shel l s , are highly indeterminate structures. In order to 

reduce the labor of analyzing such panels , simplifying 

assQmptions and special devices may be introduced . The 

most important device of this nature used in references l 

and 2 is a reduction of the number of stringers , which is 

effected by combining a number of stringers into a sub -

stitute single stringer . In reference 2 , this reduction 

'tlaS carried to the extreme of using only two subs ti tute 

stringers , one for the cut stringers and one for the uncut 

stringers , to represent one quadrant of the panel with a 

cut - out . The two - stringer structure can be analyzed very 

rapidly but , being somewhat over- simplified, cannot give 

an entirely satisfactory picture . In particular , the two -

stringer structure does not include the , region of the net 

section; and consequently this structure neither shows the 

effect of length of cut - out nor gives a solution for the 

maximum stringer stresses . These maximum stresses must 

be obtained by separate assumptions . In addition , there 

is no obvious relation between the shear stresses in the 

actual structure and the shear stresses in the substitut e 

two - stringer strncture as used in reference 2 . 

In order to obtain a more satisfactory basis of analysb 

than that of reference 2 , formulas were developed for a 
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skin - stringer structure containing t h ree stringers . lI.t the 

same time , a new experinental invest i ga tion was made con

sisting of strain surveys around a systematic series of 

cut - outs . Strin£er strains as wel l as shear strains in 

the sheet were measured in these tests , whereas only 

stringer strains had been measured in most of the tests of 

reference 2 . A study of the three - stringer method and of 

the new experimental results indicated that the accuracy of 

the two - stringer method could be improved by introducing 

some modifications which have no appre ciable effect on the 

rapidity of the calculations . 

The main body of the present paper deflcribes the ap 

plication to a panel with a cut - out of a simplified three 

stringer method of analysis as well as a modified two 

stringer method . Comparisons are then shovm between 

calculated and experimental results of the new tests and 

of the test of referSnce 2 . Aprendi~es A and B fliv e 

rna thema tical details of" the exac t and of the s tmplified 

three - stringer methods i respec tively. Ap. endix C g ives 

a numerical examp le solved by all methods . 

THEOR~TICAL AUALYSIS OF CUT-OUTS In AXIALI JY 

LOA DED SKIll - STRH GE:t PA. :-~LS 

General Principles and ~ssw~ption s 

The general procedure of ana lysis is ~imilar to the 

procedure developed for structures without cut - outs 
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(reference 1) . The actual sheet - stringer structure is 

replaced by an idealized structure in which the sheet 

carries only shea r . The ability of the sheet to carry 

norr.'1al stresses is taken into account b y a d ding a suitable 

effective area of sheet to the cross - sectional area of each 

string er . The idealized structure is then simplified by 

combining groups of stringers into sinGle strinGers, which 

are terne d II s ubs ti tute string ers \I; this subs ti tution is 

analog ous to the use of tlpha.ntom members ll in truss analysis . 

The substitute stringers are assmned to be connected by a 

sheet having the same properties as the actual sheet . The 

stresses in the substitute sheet-strL1ge r structure are 

calculated by formulas obtained by solving the differential 

equa tions g overning the problem. (See a pp endix A . ) Finally , 

the stresses in t he actual structure are calculated from 

the stresses in the substitute structure . 

It will be assQmed that the p anel is synmetrical about 

both axes; the analysis can then b e confin ed to one quadrant. 

I t is furthermore ass nned that the cross - s ec tional areas of 

the str n e ers and of the sheet do n o t vary spanwise, that 

the panel is very long , a n d that the string e r stresses are 

uniform at large spanwise distances from the cut-out . 
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S~~bols and Sign Conventions 

Al effective cross - sectional area of all continuous 

'stringers , exclusive of main stringer bordering 

cut-out , square inches (fig . 2 ) 

A2 effective cross - sectional area of main continuous 

stringer bordering cut-out , square inches (f i g . 2) 

A3 effective cross - sectional area of all discontirtuous 

stringers , sq nare j.nches (fi g . 2) 

cross - sectional area of rib at edge of cut - out , 

square inches (fig . 2) 

B = I-2K12 

+ K2 
2 + 2K 

K2 
2 + 2K 

K3K4 
hl + -~ 1'-' 

C stress-concentration factor (fiG- 7) 

Co stress - excess factor for cut - out of zero lenGth 

( .r.'~~, "2) 
. J. -- is . ,:) 

I 2 r 2 
D = /1.1 + /I.~~ = \ E 1 + h.2 

E Youne 's modulus of slas ti e i ty , kips per squa 1"8 inch 

G shear modulus , kips per s quare inch 

. 1 
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2 
Gto / I . 

A1~ t:., 

K2 = Eb2 \ A2 + 

C'J Gt
2 '-D 

i'C\ K3 I = Eb1h2 H 

K4 

Gt l = Eo 2A2 

o -

R = V IC1
21C2

2 - K3K4 

L half-length of cut-ou t , inches ( fig . 2 ) 

Y 2 (v- 2 _ A.n2) 

PI 
\.1 "\.1 . G = 

A.1(A.12 - A.22) 

P2 
K3K4 

= 
A_l(A.12 - A.22) 

1\12 (K12 - A. 2 ) 
P3 

1 _ 
= 

A.2 (A.l 
2 - A.22 ) 

P4 
K3K4 

= 
A.2 (A.12 

0 \ - ?'2'-'; 

Q1 force Ala acting on string er 1 at rib , k i ps 

Q2 force A2 a acting on stringe r 2 a t rib, k i ps 

R stress - re duction factor to take care of change in 

length of cut-out (fig . 4 ) 
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XR difference between actual force in Al (or A2 ) at 

the rib and the force Ql (or Q2) , kips 

a width of net section , inches (fig . 6) 

b half - TIidth of cut-out, inches (fig . 6 ) 

distance fron .£1. 2 to centroid of Al (fig . 2 ) 

distance from A2 to centroid of A3 (fig . 2 ) 

T2Rt2 

A.3(J 0 

thickness of continuous panel , inches (fig . 2 ) 

thickness of discontinuous panel , i nches (fig . 2) 

x spanwise distances , inches (For orig i ns , see 

figs. 2 a;;.d 6 .) 

y chordwise distances , inches (For orieins , see f:lg . 2 .) 

I 1\, 2 + K22 + \((;c12 + 2) 2 4~2 K2 -
A.l = \J .L 

2 

= JK12 + rr 2 J~12 + K22) 2 4172 \.2 1. 

A.2 2 



9 

00 average stress i n the gross section , kips per square 

inch 

co °1 stress in continuous substitute stringer , kips per 
'0 
N"\ 

I square inch 
H 

°2 stress in ma i n continuous stringer , kips pe r square 

inch 

03 stress in discontinuous substitute stringer , kips 

per sq u.are inch 

stress in rib , kips per square inch 

-
° average stress in net section, kips per square inch 

shear s tres s in continuous subs ti tute panol , Idps 

per square inch 

T2 shear stress in discontinuous substitute panel , kips 

per square inch 

Superscripts on stresses denote forces producing the 

stresses . Subscript R denotes stress occurring at rib 

station . 

Tensile stresses in stringers are positive . If the 

center line of cut - out is fixed , positive shear stresses 

are produced by a tensile force acting on AI ' 

Simplified Three - Stringer ! ,~ethod 

A principle for the effective use of substitute 

stringers 1IIaS stated in reference 3 substantia.l l y as fol -

lows : 

l 
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Leave the structure intact in the region of the stringer 

about which the most important actions take place , and 

replace the stringers away from this region by substitute 

stringers . In a panel with a c ut-out , the most important 

action takes place around the main strineer boundinG the 

cut - out . In accordance with the foregoing principle , the 

three - stringer method is based on retainine the main 

strine;er as an individual stringer in the substitute 

structure; one substitute stringer replaces all the remaliTIng 

continuous stringers , and another substitute strinGer re 

places all the discontinuous stringers . The three- stringer 

substitute structure obtained by this procedure is shown in 

figure 2 , wh:i.ch summarizes graphically the salient features 

of the "['!1ethod . The figure sho ilS the ac r.ual s true tUT'e , the 

substitute ~tructure , and the c:.istr·ibution of the stresses 

in the actual str~c;ure . 

The maximun strlnger stress aC'l well as the rlaximum 

shear stress occurs at the rib station . The 1'ormulu.s Given 

hereinafter for the stresses at t he rib statio and in the 

net section are based on the exact solution of the differ

ential equations presented in appendix A. The formulas 

derived from this exact solution for the stresses in the 

gross section are somewhat cumbersome and are therefore 

replaced here by formulas tha t are based on rna therm tical 
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approximations of sufficient accuracy for design work 

(appendix B) . The use of these approxir.la tions is the 

reason for calling this method the simp lified three -

strinee r method . 

Stresses at the rib station in the substitute 

structure . - The stringer stresses at the rib station are 

(1 ) 

(2) 

where the factor Co ' for a cut - out of zero l ength, is 

obtained from figure 3 and the factor R, which corrects 

Co for length of cut - out , is obtained from figure 4 . 

For practical purposes , the paraMeter B a ppearing in 

figure 4 may be assmned to equal unity . (See appendix A. ) 

The length factor R dep ends , therefore, chiefly on the 

paraneter This parameter is rou~hly equal to Lla 

for usual design proportions; in other words , the length 

effect can be related Mo re directly to the leng th- width 

ratio Lla of the net section than to the proportions of 

the cut - out itself . 

The runnine shear in the cont inuous pane l at the rib 

station is 
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T lRtl 1 .~ 
-aRC A K t"nh KIL o 2 - 1 u. 

The running shear in the discontinuous panel at the rib 

station is 

in which the factor D nay be obtained fron figure 5 . 

(3) 

(4) 

The stresses and are the mQxim\~ values of 

02 and T2 , respec.tively , 8.pd are the I'1axirnUI'1 stresses in 

the anel . rj~he s tres s 01 reaches its maxirmm at the 

center line of the Cl.t-out . The stress Tl reaches its 

rna ion.ll in the gross section at the station wbere 

Stresses L the net section of t h e substltute structure.-

The formulas for the fJtres3es :i.n the net section are ob -

tained from the exact solution (appendix A) • At a dls -

tance x fror'1 the center lin0 of the cut - out , the stresses 

in the continuous stringers are 

As the length of the cut - out - or , more precisely , the 



C) 
'-0 
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length of the net section - increases , the nagnitude of the 

paraneter KIL increases and the stresses 01 and 02 

converce toward the averaee stress ° in the net section . 

The running shear in the net section is 

and decreases rapidly to zero at the center line of the 

cut-out . 

Stresses in the gro88 section of the substitute 

structur~ .- The stresses in the g r oss section can be obtained 

from the exact solution ~iven in appendix A, but the for -

mulas are too cumbersome for practical 1.l.se . A simple ap -

proximate solution can , however , be derived (appendix B) 

that [ives good accuracy in the i mmediate vicinity of the 

cut - out and reasonable accura C~T at larGer dis tances from the 

cut - out . The approximate solution assumes the differ -

enees between the stresses at the rib station and the 

average stresses in the gross section to decay exponentially 

with rate - of - decay factors adjusted to give the in tikl rates 

of decay of the exact solution . 

The stress In the cut stringer by the approxir'late 

solution is 

( - rlX) 0=01 - e 3 0 
( 5) 
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The stress in the main stringe r is 

The stress in the c ontinuous stringer 1 follows from 

statics and is 

rrhe running shears i n the s heet pane l s are 

- r2x 
h r t2 - TIt 1 ) e 
\ oGR R -/ 

- r",x 
e v 

( 6 ) 

(7) 

( 8 ) 

( 9 ) 

Stre~se8 in the actual structure .- By the basic prin-

ci ples of the substitute 3tructure , the stres8es in the main 

c ontinuous stringer of the actual structure are identi c a l 

with the stre sses in stringer 2 of the substitute structure; 

the total fopce in the remaining continuous strineers of 

the actual structure is equal to the force in strineer 1 of 

the substitute structure , and the total f'orce in the cut 

stringers of the actual structure is equal to the force in 

stringer 3 . 

In the shear-lag theory for beams without c ut - outs 

( reference 1), the force acting on a substitute stringer 

is distributed over the c orresponding actua l stringers on 
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the assumption that the chordvdse distribution follows a 

hyperbolic cosine law . Inspection of the test data for 

panels with cut - outs indicated that neither tJlis nor any 

other simple assumption f'itted the data on the average as 

well as the assumpti on of uniform distribution . It is 

therefore recommend.ed , for the present , that the stresses 

in all continuous stringers other than the nain strin~er be 

assumed to equal 01 and that the stresses in all cut 

stringers be assillned to equal a'Z • o 
(See fie . 2.) The 

validity of these aS8w~ptions will be discussed in con-

nection with the study of the experimental data . 

Again , by the principles of the substitute structure , 

the shear stresses Tl in the substitute structure equal 

the sheilI' stre83es in the first continuous sheet panel 

adjacent to the nain stringer . In order to be consistent 

wi th the as s1Jr.1.ptlon tlla t the chordwi ,se dis tribution of the 

stringer stresses is uniform , the chordwise distribution 

of the shear stresses "'hould be assumed to taper linearly 

from Tl to zero at the edge of the pane l (fi g . 2) . 

Similarly , the chordVlise distribution of tho shear 

stresses in the c~t sheet panels should be asswned to 

vary linearly from T2 adjacent to the Main strinc;er to 

zero at the center line of the panel . Insgection of the 

test data indicated that tr~is assumption does not hold very 
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well in the imMediate vicinity of the cut- out s. The dis -

crepancy is of some practical imIJorta:nce because the Plaxi -

mum stress in the rib deper:ds on the chordvlise distribution 

of the shear stress at the rib . By plotGinc experiMental 

values, it was fo und that the law of chordwise distribution 

of the shear stress T o at the rib station could be approxi -
r.-

mated quite we ll by a cubic pax'abola . The effect of this 

local variation may be a3s~mled to end at a ~panwise distanc e 

from the rib equal to one-fourth the full width of the cut -

out. A straight line is sufficientl r accurate to repre -

sent the spanwise variation within this distance (fig . 2) . 

If the stress T0 is distributed accordin~ to cubic 
'-' 

law , the stress in the rib caused by the shear in the sheet 

is 

(10) 

Ifodtfied Two - Stri.nger l'1ethod 

The two - stringer nethod of ar:alysis civen in reference 2 

is more rapid than , ~ut not so accurate as , the threc -

stringer uethod previously described . It was found , how -

ever , that some tmprovements could be nade , partly by in-

corpora ting SOTae fe£'.. tares of the three- s trhlr:er neth0d, 

partly by other lodifications . 
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The main feature s of t he modi fied two - stringer method 

are sumrnc r i zed in figure 6 . The c ut string ers are re -

plac ed by a single subst i tute string er ; and all the uncut 

string:e r 8 , including the main one , are also replaced by a 

sing le stringe r . Contrary t o the usual shear- lag me thod , 

howeve r, the s t r :lnber substi tuted for the continuous 

str ing ers is l ocated n o t a t the centroid of thes e stringers 

but along the edg e of the cut - out . The substitute structure 

is used to e stablish t he shear - la[:, parameter I~ , VJhich 

determines the maxinlum shear stress , the s p anwi sG rate of 

de c ay of the shear s t ress , and the span1'Jise rate of chang e 

of stringer stress . The maxi mum s trin[~ er s tres s n us t be 

obta ined by an independent assumption , b e ca use a sin g le 

stringer that is substituted for a ll continuous stringe rs 

obvious l y cannot g ive any indicatlon of the chordwise 

distribution of stress in these st r inc srs . Ho solutions 

are obtained by the t wo - string er method for the shear 

stresses in the continuous panels , either in the net 

se c tion .or i n the g r o s s section. 

Stre s se s in the substitute stT'ucture .- Throughout the 

length of the net section , the stre ss i n t h e main string e r 

is 

(11) 

where C is the st r ess -concentr ation fact o r derived in 
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reference 2 . Values of C may be obtained from figure 7 , 

which is reproduced from reference 2 for c onvenience . It 

may be remarked here that reference 2 p laced no explicit 

restriction on the use of the factor C; wher·eas the use in 

formula (11) of the correc tion factor 2R , which varies fI'om 

2 for short cut - outs to 1 for long cut-outs , impli es th~t· 

the factor C by itself should be used only when the net 

section is long . 

In the g ross section, the stress in the main stringer 

decreases with increasing distanc-e from the rib accordlng 

to the formula 

(12 ) 

The stress in the discor..tinuous substitute stringer is 

(13 ) 

The stress 01 may be obtained by formula (7) when °2 and 

03 are known . 

The running shear in the discontinuous panel is given 

by 

(14) 

Stresses in the actual structure .- The stresses in the 

actual structure a.re obtained from the stresses in the sub -

stitute structure under the same ass1.Unp tions as in the 

three - strincer Method . 
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EXPERI1ENTAL VERIFICA':rION OF FORMULAS AND 

COMPARISON OF METHODS 

Test Specimens and Test Procedure 

In order to obtain experimental verificat i on for the 

formulas developed , a" large skin- stringer panel was built 

and tested . The panel was similar to the one described in 

reference 2 , but the scope of the tests was extended in two 

respects : Very short cut - outs wer'e tes ted in addi tion to 

cut - outs of average length, and ~hear stresses as well as 

stringer stresses vere measured around all cut - outs . 

The general test setup is sho1Jlm i!l figure 8 . A setup 

of strain gages is shown in figure 9 . 
I 

The panel was made 

of 24S-T aluminum alloy and ~vas 114 inches long . The 

cross section js shown in figure lO(a); fiGure lO(b) shows 

for reference purposes the cross section of the panel tested 

previously (reference 2) . Strains were measured by 

Tuckerman strain )ages with a ga g e length of 2 inches . 

The gages were used in pairs on both sides of the test panel . 

Strains were neasured at corresponding points in all four 

quadrants . The final figures are drawn as for one quadrant; 

each plotted point represents , therefore , the averaGe of 

four stations or eight gages . 

• The load was applied in three equal incroments . If 

the straight line through the three points on the load-stress 
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plot did not pa~s through the origin , the line was shifted 

to pass through the origin; however , if the neces sa ry shift 

was more t~an 0 . 2 kip per square inch, a now set of read-

ings was taken . 
s 

A.n effec tive value of ""!oung ' s modulus of l(; . 16 x }(\, t, i .. S 

per square inch was derived by neasuring the strains in all 

stringers at three stations along the span before the first 

cut - out was made . 1~is effective modulus ~ay be con-

sidered as including corrections for the effects of rivet 

holes , . averag e gaGe calibration fac tor , and dynarnometer 

calibration factor . The individual gage factors were 

known to be within ±-k percent of tho average . 

The average strain at anyone of the three stations 

in the panel without cut - out did not differ by more than 

0 . 05 percent from the final total average . The maximurJ. 

deviation of an individual stringer strain from the 

average was 5 percent; abo It 10 Je rcent of the p oints 

deviated from the average by more than 3 percent . A 

survey was also made of long itudina l and transverse sheet 

s trains atone s ta t .ion near the center . The average 

long itudinal sheet, strain differed from . the average 

stringer strain by 0 . 05 percent . The average transverse 

strain indicated a Poisson ' s ratio of 0 . 323 . • 
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Discussion 

The results of t~8 tests are shown in figures 11 to 33 . 

Calculated curves are Given both for , the exact three-

stringer method and for the sim:;Jlified three - stringer nethod. 

It may be recalled that either method assumes that the 

stresses in all ,continuous strin '-;ers except the main stringer 

have the magnitude 01 and in all cut stringers, the magni -

,tude 0''2 . 
v 

Bscause ~18 va l ues of 0'1 and 0'3 do not dif-

fer very much for the two method;;; , the eurves for them eom-

puted b:y- the s i mp lified method are dra'wn only once in each 

fi e:ure. 

A qualitative Qtudy of figure~ 11 to 32 indicates that 

the stress dist~~~ ~t i~n calculated b~ the theory agrees 

suffic iently ,-'eJ.l v, i th the experir:'lental d is Jcri butlon to be 

acceptat:e for moot scres s - a nalysis purposes - in particular, 

t he ma~ir'l~ 5tresses in eaeh panel agree fairly well wi th 

the calr ulat2d ones . The ~os t consistent discrepancies 

are ch9.rgea>J.le to the simplifyinG e..ssmnption that the 

stringer st~e3ses ere identical in all the strin~ers repre -

sented by one !c"u~J 'vitute stringer . As a result of this 

assumption , the calculated stresses tend to be too low for 

the stringers clos e to the main stringer and too hi~h for 

the stririgers near the center line and near the od~e of the 

panel . The fact that the ~ alculated stresses for some of 
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the cut stringers are lower than the actual stresses is of 

little practical importance because these stringerI'.) would 

probably be designed to carry the stress 00 rather than 

the actua l stresses . On the uncut stringers , however , 

it may be necessary to allow some extra marg in in the 

stringers near the ma in one . Aside from the consistent 

discrepancies just noted , figures 11 to 32 show that the 

stress es in the Main stringers sometimes decrease spanwise 

more rap idly than the theory indicates. It is believed 

that this discrepancy also will seldom be of any consequence 

in practical analysis . 

Of paramount i nterest to the analyst are the r~aximum 

values of the s tresseA . The quanti ta ti ve study of er1'o rs 

in the maxir.nlJi1 stresses is facilitated by table 1. The 

highest stresses occur th£oretically at the rib station 

but , for practical reasons , measurements had to be made at 

s ome small distance from this line . 1'he compari sons are 

made for the EtC tual gage loca tJ.ons . The calculated values 

for the three-strinEer nethod are ba ed on the exact solu

tion but , in the region of these gage locations , the exact 

solution and the slmplified solution a e;ree within a fraction 

of 1 percent. 

The errors shown by table 1 for t he l'!1aximmll stringer 

stresses conputed by the three - str:i.n g er method are but 
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little larger than the local stress variations that were 

found exper~mentally to exist in the panel without cut -

out . Presum-aoly these variations are caused large l y by 

failure of the rivets to enforce integral action of the 

structure . 

The errore_n the maximum I3hear stresses computed by 

the three-stringe r nethod are consistently positive . The 

discrepancies are possibly ca.used by the sheet around t he 

most highly loaded rivets de fo~ning a nd thereby relieving 

the ~aximml shear stresses . The errors are higher than 

those on the ~ tringer stresse and corrections to the 

theor: appear des irable in some cases . '1'be cri terion that 

determines the a ccuracy of t he theory c anno t be definitely 

established from the t es ts . A rough rule appears to be 

that the error increases as the ratio of width of cut- out 

to w:dth of pane l decreases . 

The errors g iven in table 1 for the two - stringe r 

method show tha t t~1.is ~ethod is de c idedly les s accurate 

than the three - stringe r ~ethod for comput ing maximum 

stringer stresses but t hat there is little difference 

between the two methods as far as the computation of the 

maximum shear stresses is concerned . A general study 

of the two the ories indicates that this conclusion drawn 

I • 
I from the tests is probably Generally valid . It may be 
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recal l ed here that the two-stringe'r me thod gives no solu

tion for shear stresses in t he continuous panels . 

Comparisons of the nlRximum observed rib stre sses and 

the computed stresses are ["iven in table 2 . Two values of 

computed stress are shown. The smaller value was obtained 

on the assumption that the filler str'ips between the ribs 

and the sheet were effective in resistin~ the load a pplied 

to the ribs; whereas the larl2;er value was obtained on the 

assm~tion that the filler strips were entire l y ineffective . 

In figure 33 , the chordwise variation of the observed and 

computed rib stresses is shown for three cut-outs. Because 

the chordwlse d:i.stribution of shear st ress in each s hee t 

panel betvleen two stringers is essentially c onstant , rib 

stresses computed by forMula (10) will be too small when only 

a fe w stringers are C.l.t . The computed values of rib stress 

were therefore determined by calculating the shear stress 

at the center of each panel according to the cubic 18.w and 

assuming this all ar stress to act in the whole pane l. 

The agreement between calculated and observed rib 

stresses is not al l that could be desired . The discrepancy 

may be attributed to the approximation used fOI' determining 
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the shear stresse '1 and the uncertain t y of t h e e ffective 

are a of t he r i b . 

~ 1af'E le y ~:iemo -(' i a l Ae ronautica l Labora t ory , 
~ Na tio~~ ~ P~viso ry Committee f o r Aeronaut ics , 

LQLgJ0y Field , Va . 
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~~-C~ SOLUTION OF THR~F.-STRINGLR STRUCTUR~S 

Por a two-stringer panel constitu.ting one half of a 

sy~~etrical stru.cture , the application of the basic shear-

l ag theory yields the differential equation 

(A-l) 

which is given in sliGhtl y different form in reference · 4 . 

In tho analyris of a skin-s trin )er panel with a out - out , 

a three - strj.nr-er substi tute Cltruet'..lre is used . (See fig. 2 .) 

Application of th~ basic equati0ns of reference 4 to a 

three-stringer str'ucture yields in place of the single equa

tion (A-l) the sinultnneous equations 

d2T 2 l 1 
0 

dx2 Kl Tl + K3 T2 .-

2 
> (A- 2) 

d T2 -- 2 + Z:4 T 1 0 J -- 1\.2 T2 ::: 
dx2 

On t~e SiMplifying assu~ption that the panel i~ very long 

and that it is ~~ifolY.11y l oaded by a 8tress CJ at the o 

f a r ends , the general so l ution of t"!1.6 equat ions (A- 2 ) is 

(A - 3 ) 

(h -4) 

in whi ch and are arbi trary constants . 
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Becau"'e the structure is assumed to be symmetrical 

about the longitudinal as well as the transverse axis , 

the o.nalysis may be confined to one quadrant as shown in 

figure ;:·4 (a) . The analysis can be simplified somewhat by 

severing the structure at the rib and considerine peparately 

the net section and the eross section . The solutions for 

the two-stringer structure representing the net section can 

be obtained from reference 4 . The solutions for the 

three - strinGer structure representinG the gross section are 

obtained conveniently by considering two separate cases of 

loadinr · In the first case , stresses 00 are asswued to 

be applied at the far e-nd , and the stresses at 1~he rib 

station are assumed to be uniforr.J. and equal to the average 

stress ° necessary to balance the 8tresses 00. The 

forGes at the rib statlon~xisting in the strin~ers are 

called the Q- forces ( fig . 34 (b)) . In the second loading 

case , a group of two qual and opposite forces is assumed 

to load the stringers I and 2 at the rib station . ~J.1hese 

forces are called X- forces (fig . 34(c)) . 

In the net section the boundary conditions are as 

follows : 

At x = 0 , 

Tl = ° (from symmetry) 
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At x = L , 

The S lbe. ti tutio" of these condi tions in the so l u ticm of 

equation (L- l ) :Jj.E_lds 

= 

C J~ 

1 

sinh Kl :,{ 

cosh ElL 

;·~R (jor;h }~lJ ---_ ... _. 
A2 cosh 1\11, 

(A - 5) 

(A- G) 

(A - 7) 

The snperscript ~r 

A inaica~8s that the stresses are those 

causeQ by the action of the X-forces. In order to obtain 

-the total stresses , the nvrrage stress ° must be added 

to 
. 

(J J\. or 
1 is the total 

stress because the un5_i' r T,l ctreClS ° is not accompanjed by 

any S}lF'&l~ st-r~'Js ~ 

~h3~ The Q- forCAS ore ppp lied to the cross section , 

the bour.. :la:.y c:-I!~ditions at x - 0 are -

f~ 

° 2 
""2 0" - -- . --b2 

\c.-I -= 
/'1 

- (J 
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Applying these conditions to equations (A-3) and (A - 4) gives 

the follo~ing solutions for stresses : 

(A - 8) 

~ [P2(K12 "- 2' P4 (K1
2 - "-2 2) 

T2Q = 1 ) - "- 1 x -A. 2X 
tl K3 

e . -
K3 

e (A-g) 

01 Q = 00 ~C2 - "- 1 x P4 e -'-2Y
) 

- Ai "'1 
e - x-;; 

<.-

(A-10) 

The superscrlpt Q indicates that the ~tresses are those 

caused by the action of the Q- forces . 

The b01mdary conditions due to the applica tion of the 

X-forces are , at x = 0 , 

X XR 
° 1 

R 
°2 °3 0 = - Al = A2 = 

and the corresponding equatlonfr for stress are 

(A-ll) 

-~-----~-
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y 
0" J\. 

1 

( 

., 
J\.R 

0" X - XI{ i (P1 
2 - An . 

. G . 

'-

. , -
- ;"lx CP3+P'4) " (It12 _) "82) 

e ------ . 
f... -::> K-z 
~ v 

If the shpar str>ai'1s in the net sect.io~and in the 

(. - 12) 

ti " . t . df .1... . ( ~c:: \ gros. sec · on, VvDJ.C. .. are Cl.e errll~e rom equat-_ons H - ,)" 

( A - e,) , a d. C.-ll) , are eq1.ated at the rU." the fo110vling. 

re1ati~n~hip bn~~een XR and Q2 results : 

('A-13 ) 

FoY' tr~ CLl': · ()':t of zt'::r':J Jeng:,h, L = 0 , . equation (A - 13 ) 

J 
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') 

I 
-=l 

For any length of cut - out , -

where 

X R 
1 

:= Q2C~ 1 + B tanh KIL = 

31 

Values for Co can be obtained from figure 3 . In 

figure 4 , the factor TI is plotted for various values of 

The value of B !'lay be aSSl . ed equal to 

unity with little l oss in accuracy in the determination of 

stress; but, if a more e xact solution is desired, the actual 

value of B nay be computed and the curve in figure 4 cor-

responding to this value used . 
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APP3~mIX B 

'3D1PLIFIED SOLUTION OF THREE-STRINGER STRUCTURES 

~he so l utions for the stresses in the gross section 

given in appendi~ A are too involved for practical use , and 

a sh1plified !1'lethod was developed . This method asstlJ"TIes 

that the differences between the v a l ues of and 

T2R ' obtained by the exact solution , and the corresponding 

average stresses in the gross sect i on decay exponentially 

with rate - of-decay factors adjusted to give initial rates 

o f decay eqlal to tho8e of the exact solution . These 

r a-ces can be written .'3iY:'lply in terms of the stresses at 

the rib and the properties of t~e panel . The solutions 

f or 01 and Tl arc then derived from tle solutions for 

If it is assumed that the stresses in the cut strinGer 

can be expressed by 

then 
d03 - rlx 
dx = 0 r e -o 1 

but , from the basic shear- lag the ory , 

dx 

Therefore , at x = 0 , 

(B- 1) 



33 

The stress in the main continuous strinber can be 

approximated by 

which y ields 

(B- 2) 

but , from the shear- lag th eory , 

= 

Therefore , at x = 0 , 

The value of 01 can be obtained by statics from 02 

and 03 and is 

(B- 3) 

If the value of T2 i~ assumed to decay exponentially , 

t hen 

and 

- r3x 
~ TC'1 e GR 

but , from the shear - lag theory , 
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Therefore , at x = 0 , 

The shear stresses in the con tinuous panel can be 

dete~ined from the rate of change of °1 0 F rom the shear-

lag theory , 
C<0 1 _ T 1 tl 
dx - A"l 

Differentiation of form~la (B- 3 ) yie lds 

Substitution of the derivatives (B-1) and ( B- 2 ) already 

obtained in ( B- 5 ) g ives 

Finally, sUJstitution of (3 - G) in ( B- 4) yields 

( B- 4) 

(B- S) 

(B-6) 
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APPENDIX C 

1 UUCRICAL EXAMPLE 

Analysis by the Exact Three - Stringer Method 

The structure chosen for the numerical example is the 

16-stringer panel tested as part of this investigation . 

The particular case chosen is the panel with eight stri.ngers 

cut and with a length of cut - out equal to 30 inches . This 

c ut - out is the one slw\ffi in fiBure 8 . The cross section 

of the pa:1el is shown j.n figure 10 (a) . The basic data are : 

. ~ . . . AI, sq in . 
A2, sq in . . 
A3 , sq in .. 
tl , in. 

. . · . . . . . . . . . . . 
0 . 703 
0 . 212 
1 . 045 . . · . . . . 

t2, in . · . . 
bl , in . . . . . . . . 
b2, in . . . . . . . . . . . . . . 
L, in. . . . . . . . . . . . . . . . . 

These data yield the following values : 

K12= 0 . 01295 

y 2-\.2 - 0 . 00944 
I~~ = O. 0099~} ..... 

K4 = 0 . 00785 

K = 0 . 00664 

0 . 0331 
0 . 0331 

5 . 96 
7 . 56 · 
15 . 0 

From these parah eterR follow the factor~ for the rate of 

r." 2 + K~2 + 1\.1 ;.:; 
0 . 1421 

0 . 0467 

.-~ ._-----
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T~e cOMpttations of stress may mo re easily be made in 

of which are 

= 

0 . 012n5 (0~ 01295 - 0 . 00218) = 
0 .1421(0 . 0202 1 - 0 . 00218 ) 

0 . 0545 

0 . 00995 x 0 . 007P5 ----
O . 142 1( O . 02~81 - 0 . 0(210 ) 

= 0 . 0 305 

0 . 00995 x 0 . OOryS5 = ------------------------- = 0 . 0927 
0 . 0467(0 . 02021 - 0 . 00216) 

The reduced stress - excess factor i s 

= 0 . 0927 - O. Oc05 = 0 . 296 
0 . 0545 + 0 . 0305 + 0 . 1117 - 0 . 0927 + 0 .1 055 

With a force of 7 . 5 kips acting on the half panel , 

0 0 - 1?9~g = 3 . 82 kips/sq in . 



C:) 
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K\ 
I 

H 

---' ----~----~~------~~---------------, 

and 

7.50 / ° = ---,---- = 8 021 kips sq 
O. S 1.5 i n . 

Therefore , 

= 

t 1 

Oo5!4 x 0 . 1138 sinh 0 .1138x 
0 . 0631 cosh 1. 707 

= - 0 . 620 sinh 0 .1138x 

At the rib station, x = 15 . 0 and 

TIR = - 0 . 620 s i nh 1 . 707 = -1. 65 k i ps/ sq in. 

The strinrer str esses a re found by subst i tuting in 

equa t ions (A- 6 ) and (A- 7 ) and adding the average stress 

~R cosh K1x 0 . ~14 c osh 0 . 1138x 
01 - ° -- _ ._-- = 8 21 - --'-- - Al cosh KIL • 0 . 703 c osh 1. 707 

= 8 . 2 1 - 0 . 257 cosh O. 1138x 

8 . 21 + 0 . 514 c osh 0 .1138x 
0 . 212 cosh 1. 707 

= 8 . 21 + 0 . 850 c o sh 0 .1138x 

37 
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The maxir.mm stringe r stress occur8 in the main stringe r at 

t e r ib , x:::- 15. The nearest gage location was at 

x :::- 1~ . 5 , wl:ere 

02 :::- 8 . 21 + 0 . 850 co:.:h 1. 536 :::- 8 . 21 + 2 . 05 :::- 10 . 2C kipe/sqin. 

c)tresses i n the p;ross sect i on .- The stresses in the 

gross section are obtained by adding the solutions for the 

stresses due to the: x- and Q- fo rce s . '1111e shear stress in 

the continuous panel is obtained by adding equations (A- 8 ) 

and (A- ll ). The final solution tr ... us obtained is 

n gn - O. 1421x 4 57 - O. 046?x 
T 1 :::- ~ . t..-e - . • e 

At t he rib station , x :::- 0 and 

Tl = 2 . 92 - 4 . 57 = - 1 . 65 kips/sq in . 
R 

This value of Tl checks the one previously obtained n 
for this saMe stat. on n the net section . 

Sub s t i tuting the cons to.nts in equations (A·· 9 ) and (A-10) 

and cOPlbining giveR 

T0 = _2 . 13e - O. 1121x _ 4 . 95e - 0 . 0467x 
(c.. 

At x:::- 1 . 50 , the point of maximum obser ved shear stress , 

T2 :::- ( - 2 . 13 ) ( 0 . 809 ) - (4 . 9G ) (0. 031 ) .- - 6 . 33 k i ps/sq ir.. . 
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The stress in the continuous substitute stringer is 

found by combining equations (A- IO) and (A - 12 ) . The 

final res u lt is 

Simil~rly , ·,the stresses in the main stringer and in 

the cut stringers are found by adding the proper values of 

the ,X- and Q-stresses . . In the main stringer , 

and, in the cut stringQre , 

. - 0 . 42lx 
03 = 3 . 82 - 0 . 46e 3 . 36e - o . 0467X 

. Plots of t~e computed ~tresses in the panel for this , ... 

cut - out are shown in ficures 82 and 39 . 

Analys i s by , the Approxima ~$ Three - StrinGe r f.lethod 

The ba-sic data are the same as for the exact three -

stringer metho~ . 

From fir;ure 3 , 

ComDute , .. 

0 . 01295 x 0 . 00944 = = 1 . 565 
0 . 00995 x 0 . 00785 

K 
K 2 

2 

0 . 00664 = 0 . 704 = ----
0 . 00944 

Co = 0 . 600 
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From fi gure 4 for KIL = 1.707 and the exact value of 

B = 1.10, there is obtained R = 0 . 492 . 

The stresses in the continuous strinGers at the rib 

are , by formulas (1) and (2), 

a lR = 8 . 21[1 - (0.492 )( 0 . 600 ) (~:;~;)J = 7 . 48 kips/sq in. 

a = 8 . 2 1 [1 + ( 0 . 492 ) ( 0 . 600)J = 10 . 63 kips/sq in . 2R -

The running shear in the continuous panel at the rib 

is, by formula ( 3 ), 

TIRtl = - 8 . 2 1 x 0 . 492 x 0 . 600 x 0 . 2 12 x 0 . 1138 tanh 1.70 7 

- . - 0 . 0547 kip/l 'i . 

The maxi~um running shear in the cut pane l is computed by 

formula (4). The value of D is obtained from figul' .e 5 ~ 

with K = 0 . 00664 and K12 + K22 = 0 . 02239 , D = 0 . 189 

and 

T2Rt2 - - 8 . 21 x 0 . 212 x °O~~~~5 2 + ( 0 . 492)(0 . 600)+ g : g~~~~J 
- - 0 . 234 k i p/Ln . 

0 . 234 / = - 7 . 08 .kips sq 
0 .0321 

in. 

The stresses in the net section a re computed as for 

the exact solution. 

~-- -- -- ---.~-

l 

~ I 
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The rate - or- de cay fa cto r s for the stresses in the eross 

section can now be cOTIputed 

- 0 . 234 = - 3 . 82 ' x "::-1-. -::"0-'-4=5 - 0 . 0587 

T2Rt2 - TIRtl 

A2\.02R - (0) = - 0 . 234 + 0 . 055 0 12~6 
~~~~~~~~~~ = . v 

0 . 212(10 . 63 - 3 . 82) 

0 . 380 x 1 0 . 63 ------- = 7 . 56 x - 7 . 08 
0 . 0755 

The stress in the cut stringers by formul a ( 5) is 

and in the Main strincer by forTIula ( 6 ) is 

02 = 3 . 82 + 6 . 93e - 0 . 1236x 

The stress in the continuous string er can be found by 

formula ( 7) . 

The running 8hears are , by formulas (8 ) and ( 9 ), 

- 0 . 0755x 
T 2 t 2 = - 0 . 234e 

At x = 1.:30 , the point of maximum obs~I'ved shear stress , 

T2t2 = - 0 . 234 x 0 . 893 

-- - 0 . 209 kip/in . 

---- - - -



~~--~--~- ---- -- -- -----~ ~------~ 
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In the net section the stringer stresses are assumed to 

be constant and equal to the stresses at the r ib . For the 

~ gross section , by formula ( 12 ), the stress in the main 
"\ 

~ stringer is · 

02 = . 3 . 82 + 6 . 03e - 0 . 0585x 

and, by formula (1:5), the stress in the discontinuous 

strinGers is 

The stres in thG contlnuous strinGers may be found by 

us ihg formula ( 7) . 

The running shear in the cut panel is,by formula ( 14~ 

T2t2 = - 3 . 82 x 1. 045 x 0 . 0585e - 0 . 0585x 

- _0 . 234e - 0 . 0585x 

At x = 1. 50 , the point 0:0 maximum ob served shear stress , 

and 

T2t2 = - 0 . 0234 x 0 . 916 

= - 0 . 214 kip/in . 

0 . 214 
0 . 0331 

= - 6 . 4 7 kip s/sq in . 
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Number of Ha l f - Load Obs e rved 
st r ingers l ength on maximum l Total 

cut-out panel stress 
Cut (In. ) (kips (kips / sq in. \ 

r 
I 
I 16 

I ! 1.5 15.0 6 .82 
I 16 1.5 15.0 0.69 
, 16 1.5 15.0 10.71 

I 
16 8 1.5 15 .0 13.20 
16 8 8.0 15.0 11.00 
16 8 15 .0 15.0 10 .37 
16 10 15.0 15.0 13 .30 
16 12 15 . 0 15.0 19.61 

15 T!8 .3 8.94 3 . 56 
15 3 8 . 3 8 .94 4.74 
15 ~ I 8.3 8.94 5.A2 
15 8 .3 8.94 7.00 
15 b~ \ 

8 .3 8.94 9.02 
15 8.3 10.85 5.83 

7 1 5.0 20 .0 18.85 
7 3 5.0 20. 0 29.40 
8 2 5 . 0 20.0 20 .25 
8 4 5.0 20.0 30.60 

LL1 _ _ l_~ 
aErrors are 

b 

Calculated - Observed 
Observed 

Area of main stringer increased. 

TABLE 1 

COMPARISON OF OBSERVlID AND CALCtl'U'PED MAXIMUM STRESSES 

Stringer s t re s ses Shear stresses 

Three-s t ring er Two-stringer Observed Three-stringer 
sol llti on solution maximum solution 

stress Calculated Error Calculated Error (klps/sq in.) Calculated Error 
(kips/sq in. ) (percent) (kips/sq in.) (percent) (kipe/ sq in.) (percent) 

(a) (a) ( a ) 

16-stringer test panel, length = 144. 0 in. 

7.02 2 .9 7.76 13.8 -2.97 -3.91 31.7 
8.86 1.9 8.52 I -2.0 -4.19 -5.03 20.1 

10.49 -2.1 9.50 -11.3 -5.34 -5.90 10.5 
12.33 -6.6 10.90 -17.4 -6.55 -6.68 1.9 
10.63 -3.4 10.00 -9.1 -6. 00 -6.40 6.6 
10.26 -1.1 9.85 -5.0 -5.90 -6.33 7.4 
13.14 -1.2 12.80 -3.9 -7.20 -7.62 5.9 
19.34 -1.4 19.43 -.9 -9.41 -9.77 3.9 

15-stringer test panel, length = 141.6 in. 

3.67 3.2 4.1)0 29.5 ----- ----- ----
4.76 .4 5.19 9.5 ----- ---- - ----
5.71 -2.0 5.72 -1.7 -- --- ---- ... ----
6.79 -4.1 6.70 -5.4 -- --- ----- -- --
8.36 -7.3 8.23 -8 •. 8 ----- ----- ----
5.92 1.5 6.31 8.2 ----- ----- ----

7- and 8-~tringer test panels, length = 62.5 in. 

18.39 -2.4 21.40 13.5 19.20 19.70 2.6 
27.95 - 5.3 29.00 -1.4 12.40 12.80 3.2 
19.21 - 5 .4 21.30 5.2 16.80 19.70 17.3 
27.91 -8.8 29.60 -3.3 8.60 10.60 23.3 

Average of absolute errors for all tests 

3.4 8.3 11.2 

X 100. 

L-368 

~ 
> 
(") 

> 

Two-stringer 
solution .-

Calculated Error 
(kipe/sq In.) (percent ) 

(a) 

-3.85 
-4.71 
-5.47 
-6.47 
-6.47 
-6.47 
-7.73 
-9.80 

--------- ... 
-----
-----
-----
--- --

19.40 
13.50 
19.80 
10.20 

29.6 
12.4 

2 .4 
-1.2 

7 .8 
9. 7 
7 .4 
4.1 

i ----, 

----
----
----
-- --
--.-
-- --

1.0 
8.9 

17.8 
15.7 

9.8 

tP
(J1 
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TABLE 2 

COI\5PARISO ,T OF OBSERVED AND Cl,.LCULA TED T'iAXn'iUi.1 RIB STR::0SES 

[Load on panel , 15 kips] 
r-

l;umbe r of stringers Half-length 
f - cut -out 

Total 

I 
Cut ( in 0 ) 

1 6 2 1.5 
16 4 1.5 
16 6 1. tj 
16 8 105 
1 6 8 8 .. 0 
16 8 15.0 
16 10 15.0 
16 12 15.0 

aFi ller strips ineffective . 

bFiller strips ef~ective . 

Observed Calculated 
stresses stresses (ldps/ sq in .) (kips/sq in . ) 

(a) I (b) 

_ . 57 2 . 51 1 . 48 
2.20 3 . 29 1. 94 
2 . 73 4 . 42 2 . 60 
2 . 89 5 . 73 3 . 38 
4 .30 3 . Z:2 2 . 91 . 
4 .77 3 . 28 2 . 88 
s . 49 4 . 48 3 . 94 
6 . 75 I 6 . 49 5 . 70 

1 : 
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Q) • t. .; -- ,,------j---I- - -+---- ,- - \ --1---------'---1 ------+ 
H -- v 0 I " - I ' 1 -P i ~ iii I, I I I 1 , 

U) : ~ 1 I I I \: I I I " I 
: I 1 ,I I ! \ I i ll ' 

2 ---r--T- ~!-T--- ---r--l---+- \r:-T--- r--' ---i--1" ~, 

(a) - -~ --- - -I ,'1--I---t~l r----t---t-X--T-- (c) T-r--
o 8 lr-:, o 8 If. o 8 

Distance from c ent e r line of pane l , in . 

(a) IS- s t ringer panel , 8 stringers c;J.t ; L = 1. 5 inches . 
(ll) I S-stringer panel , It) s trir..g::;rs C-llt; T_ = 1 5 . 0 bcllo s . 
(c) I S-stringer panel ; 1 2 stri:lgers cut ; L = 15 . 0 inches . 

Figure 33 . - J;xpe r i rG.ental a:ld cal cul ated r ib stre s s ~ s . Panelload = 151cips. 
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