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THE EFFJCT OF EXT:a~AL SHPFZ UPON THE ~RAG OF A SCOOP 

By Irven Naiman and Paul R. Hill 

SUMMARY 

The principles of N~CA cowling ~esign may be applied 
to s c oop fairi.g . Six scoops were built and tested to 
show the advantage of u3i~g these p~inciples. Three of 
the scoops had a good nose co~tour with different after
body lengths, and three were o~ inferior nose shape. 

The best scoo, tested increased the ~rag coefficient 
of the airplane by C.0013; althou8~ its frontal area was 
over o~e - fift~ that 0: the fuselage. The critical speed 
with the beat nose tested was ~CG niles per hour. The 
poorest scoop, with same entraLce area ~ut smaller frontal 
area , practically doubled the drag of t~e air?:ane. 

The drag with long afterbodies was fo~nd to bc "fairly 
insensitive to large chanbes in length. The longest after
body tested , with a length 0: eleven ti~es its de~th. ap
peared to be most favorable . 

An appendix gives a methoa 0: obtaining the dimensions 
of a scoop that will give the lowest drag for a given ap
plication . In the determination of these dimensions the 
powe r cost of frontal area is balanced against the rower 
cost of interlal exransion losses. The analysis shows that 
a low form drag scoop with low velocity entra nce gives the 
best practical compromise . 

13TRODUC~IO~ 

In the pest, air~lenes have been designed with a great 
many scoops upon tLe surface; some have fai~ly bristled 
with scoops. It is generally realized today that these 
protuberances are a source of cons:dereble drag and that 
the number an~ size should therefore be reduced as much as 
possible . il~ile the most efficient ~ay to take in the 
cooling and e~gine air required by an airplane is at the 
front stagnation point (fuselage or nacelle). in many air
coo l ed engine installati6ns, due to inadequate frontal 
o pening , additional air must be brought in through scoops 
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for aux i liaries such as intercoole~sand oil coolers. It 
is also current practice on most liquid-cooled engi n e in
stallations to house the glycol and oil coolers in a duct 
under the fuselage or n~celle. The p res ent inve~tigation 
was un1ert ak en to determine the cost of a scoop installa
tion on w~ich t~e princip:es of the NACA cowling (reference 
1) had been applied . Tnese p~i nc iples include a nose shape 
of sufficient curvature so that breakaway does not occur 
over the lip of the duct at any fli gh t attitude, and an 
entrance large enough to :nsure small internal expansion 
los s; T~ere a re presented herein severa: desig~s of ducts 
i n wh ich the nose and afterbody shapes were varied. 

APPARA~US AJD T3STS 

The scoop test s were made on a 0.4-scale model of the 
XP-41 air p lane witil a revised fuselage 25 percent lon ge r 
than t he original one. The model included canopy and open
nose cowlin g with air flow, but no tail surfaces . It was 
assumed that tail surfaces would have no effect o n the 
test s . 

Tile tests were run in the 19-foot p ressure tunnel at 
a dynamic pressure of 50 p ounds per square foot and at a 
Reynolds number of approximately 3 x 10 6 base d on the mean 
wing c h ord. ~he model was supported on the usual airfoil 
suppo rt s and on a 3pe c i al tail support having a high fine
ness ratio to minimize buoyan c y effects. Lift and drag 
measurements were made over an angle-of-att ack range from 
-2 0 to 20° . 

Six scoops, designated A to 7, were tested on the 
bottom of the fuselage. The layout of the test arrange
ments showing the contours of these scoops is given in 
figures 1 and 2. All of the scoop s had the same area of 
nose opening, appr oximately 47 squa re inches . Scoops A 
to D have well-rounded noses, increa s ing the projected 
frontal area to 113 s quare inches. (T h e p rojected fuse
lage frontal area is 502 square inc he s.) These scoops in
crease the over-all depth of the fuselage 7 Y4 inches. 
This large size was used in order to obtain accuracy in 
testing . Scoops A t o C have t he same nose with afterbodies 
of successively decreasin g lengths (fig. 1). Tr.e nose con
tours may be seen in figure 3 . As the nose contour ap
proaches the intersection with t he fuselage all radii of 
curvature greatly increase. A streamline ' nose is also pro -
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vided and was tried on scoop A (fig. 1). Th~ 2fterbodies 
are t apered mos tl y in 1epth and ve~y little in wi1th. 
Scoo p A was ?rovided with an exit sJot :0 inches long and 
widths of 0.3 inch , 0.6 inch, and a sao fIe? opening to 
1 . 7 i nches (figs. 1 , 4 , and 5). ~DC exits fo~ scoops B 
and C were obtained by an alternate tail with the end cut 
off (fi ~ . 6) . 

Sco op D (fig3 . 6 an~ 7) has the medium afterbody of E, 
but has a ~harp- edge nose resulting froD a simple sheet
metal construction. ho~ever , the lcngit~dinal CQntours of 
the nose-lip a re well r ounded on both t~e bottom and sides. 

Scoop Dl is the same as scoop D except that a strip 
of metal is cu"'" f!'om t :1.e side of t~"le :::coop nose. This 
strip tapers from nothing a~ t~e corne of the scoop to I 
inc hat the i Ie t e !' sec t i a ::. vJi t 11 the :: 1A. s e 1 age ( fig. 2 ~ • 
Scoop Da is similar except that the st~ip ta~ers from no
thing ~o 2 inches. The scoop nose was trimmed back to see 
what drag penalty is imposei by decreas!ng the nose radius 
at the intersection with the fusel~ge. 

Scoop E ( fi gs . 2 and 8) has straight sides, so that 
the maximum area is t he same as that of the nose opening. 
Scoop F is ap~roxiffiately conical in sha~e wi~h a ratio of 
length to depth of 3 . It was designed to test the form 
drag only , having no e xit passage to pr0vide for air flow . 

The noses of SC08pS A to F were directly below the 
leadine edge of the wing . Scoop D was ~lso tried with its 
n ose" 8 inches be~ind the laRding edge to see if the prox
imity of the wing had any stabilizing effect on tLe flow 
over the scoop . In this position it is designated Dx. 

A baffle plate with twonty l-inch holes (conductance 
a rea = 10.2 sq iL.) o bst r ucted t~e internal air flow for 
scoo ps A t B , C t and D. Scoop E had no baffle plate and 
scoo p F was not tested with air flow . 

The additional drag due to the cooling air (reference 
1) is g iv en by 

For this model with KF = 10.2 sq in., this equation becomes 
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= O. 002 : 2)'\ 
\ Q 

Pitot and static p~essu~e measure~ents we re made to 
d e termine t ~e total pressure in t ~ e nose, the pressure 
drop across the ~affle, and ~ h e velocity in ~he exit. In 
the nose of s ccop A, t hr ee ro ws of surface s~atic pressure 
orifices were inst alled to determine the pressure distri 
bution along the surface. T~ese fere located on tt.e bo~
tom c en t e r 1 i n e, 0 i''.. t ~ e cor n e r w her e t l1 esc 0 0 p t II r ned up
ward, and in the fillet at the body juncture, and are desig
na t ad a , b, and c, respectively, in figure 3 . 

SY£.130LS 

A conductance area of baffle 

Al area of entrn ~ce 

A2 a r ea of exit 

c mean aerodynaMic chord of wing, 2.49 feet 

c loss coefficient due to 3ngle of expansion 

drag co effi c ient (Din S' 
\ I ':I.C I 

6C n increase in drag coefficient caused by scoop 

c al culated increas e in drag coefficient caused by 
air flo". 

Of drag coefficient of sco op , based on its frontal 
a.rea 

C 
l!l 

lift coefficient 

pit chin g -mom ent c oefficient 

D drag force 

F area of duct at ba ffle plate 

k ratio of scoop frontal area to entrance area 

K conductance of baffl e plate (AI F) 
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conductance o~ ent~ance 

conductance of exit (Aa!Ji') 

lift force 

moment about quarter-chord point 

hach number 

static pressure on surface, referred to stRtic 
pressure of air strea~ 
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tot al pressure in front of baffle plate, ref~rred 
to static pressu~e of air strea~ 

tot al pressure in rear 0: beffle plate, referred 
to st~tic pressure of air stream 

static pressure at ezit, referred to static pres
sure of air st r ean 

pressure drop across baffle 

press~re drop in e~trance 

pressure drop in exit 

over- all pressure difference wh en no air is floving 

i mpact piessu=e of air stream, referred to static 

pressure of air stream [1/2 pV2 (1 + 1/4 M2 + ••. )] 

qF dynamic pr es3ure in duct (1/2 pYla) 

~ quantity of air flow 

S win g area , 35 . 8 square feet 

V velocity of air stream 

V
1 velocity in e~trance 

vel ocity in exit 

velocity in duct at baffle plate ( G./ F) 
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a a ngle of at~ack 

p mass density of air stream 

RESULTS A~D DISCUSS:ON 

Drag.- The li';:-·;:;, drag, an d pitch ing - nioment co e:':f i 
cients as fu n ction s of all~l e of attack are given in fig 
ures 9 an d 1 0 for the bas ic ~odel a~d the model with 
scoop D ';i t l1 a ir fl01-:, re s p ectivel;;, . Figure 1 1 gives the 
dr a g co ef f ici e~ t ~ n for t~e various te st arrangements 
plotted i n pol~r ~o~m as a fu~ctio~ of the lift coeffi~ 
~ient CL up to 0L = 0 . 4 . At the lift coeff i cie nt cor 
re s p ondi u g to hi g~-sfeed flight, Q.1 1 7 , table I gives t h e 
d r ag coeffici ent a~~ the i~crement 6C~ over the basi c 
dr a g . 

~h e d rag c c efficient of the ~o d e l i n t h e b8si ~ con d i
t ion i s O. 01J 8 . De Qu c ting t~e in duced drag and the pr o
file d r a g of the e~p ose d po rtion of t~e w i ng, ~s g iven in 
ref e rence 2 , th e fuselage drag may be taken as 0 . 0 0 60 . 
~~e ed~ ition of s~oop A incre ased the frortal Erea by 22 . 5 
per ce .:l t . The ex ::; ecte:i d ra.g i Lcre ase is thus 0 . 0013, -.. ::1.8 -,r,.lue 
3';1";j'::- -' - ·:';."~:r·.:;. " fOi~ s coo :? A with the st:-eEl mline nose (run 2) . 
';[hen ·~ ' le blu::?j nose is uS6 'i , ho"vever , the drag is increased 
s!ightl y . Sco ops A , 3 , C, a~d D7 each a&d a d rag increme nt 
o f 0 . 001? and BCOO , ~ , 0 . 0019 . ~~ e d if~erenc esbe tween 
t hese drag values a ra ~ ot E~ g~i fic an t , being within the ex 
per i me n t e l e r ror , and i t a ~ p 9 ar s ~~a t t he re wa s no particu
lar stabilizing effect ~ue t o the p res sure g~&dient at the 
leadin ~ edge of the win ; . ~~ e d r ag of the blunt nose at 
zero a i r flow is not the tr u e me a s~re , for t h e bluntness 
i s present to accommodate air flow. In several cases the 
o pen i ng of the exit to allo w air f low re duce d the drag , 
thou gh n ever below t he basic value of 0 . 001 3 . Inasmuch 
as t h e c al c ulat ed coolin g d rag increment at max i mum air 
flow i s onl y 0 .0 002 , app ro ximately t~e experimental error, 
t he s coop dreg i ncrements wit h coo li n~ ai r s h ould be 0 . 0015 
± O . 0002 . T· e re sults in tabl e I are the re:ore considered 
a very go od check , an d indicate that an external scoop in
stallation for an oil co oler or irtercoo1er can be made at 
lovi cos t . 

Sc oop s E and F we re t es ted to show that an attempt t o 
li mit the frontal area of t he scoop to the inlet area re 
sults i n very hi ~h drag i ncrements because of the poor nose 
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shape . Scoop E with a d~ag i~crement o~ 0 .0085 has five 
times t~e drag of scoop 3 , and scoo~ F ~ith 0.0137 has 
eight tiMes the drag of scoop E, almost ~oublinc the model 
d :- a g • S coo p S :D1 a:::! d D z (s coo P D 'd:; h cut S TIl a 'e at t J:. e 
juncture) further illus~r&te the ~ecessity fo~ gooJ flow 

~ over the leading edGe of the scoop. SC00 P Dz almost 
';"' d 0 u '0 ]. edt ted. r 2 g 0 f S coo p :;:) . 
H 

.Q 0 o~j.~~..§.~~~. - :'[, e pre s s '~r," r eaa. in gs at V ""1' i ous 
places in t~e e~trsnce of the scoop, betlind t~e b8~fle, 
and in t~e ex~t ar~ ~i7an as frec~ions of the dynamic pres 
sure in t.s,bles II a:"lci. 1:11. Tl1e re i.E a co!'sid.e::-able vari.
ation i n the vElue of tn~s ~ressure at ~he s3veral loca
tions in the entrance . ~he boundary l~yer at the surface 
of the fusel age C a'~.s e s .:-.. lo \,, ~J.· pr~sc:ur~ at th'O:! top of t:'le 
s~oop t~an at the ~otto~ . B~c2usa of ~h~s pressure differ 
ence t !l e:.:-e is set ~::!l a s\-l:'rl or cross ::"Oyl in trie entr-'3..1r.e, 
such t ~at the air enters along the cent:-al and bottom por
tions 0: the scoop , pa3 ses toward ~hE baffle. turns up~ard, 
co~::es fC ~' ·.~r,-~~c(? C~·~Oj'l!..: t~1e to n 0f tI>3 8:1jr~':.1':"c..:: • .... _.~: ,r; i.l~·s out alon~ 
the fillet . Be ~~uEe o~ this flow ~Eiter~,-tae s~r7ey tubes 
are not alined wit~ the local flow, givi ~~ an Erroceous 
presEure re af ing . It is for this re~son tha~ the front 
pressures a?~ear to t8 such a small ~ro~ortion of t~e stream 
q. Table IIi shows that at high rat~s ;f air flow (which 
tend to eliminate the sw~rl ~attara) the froat rressure 
readings come almost to stre am q. At high a~gles of at
tack , the air floWE obliquely &cross the fuselage, reducing 
the boundary layer un~~rneath the fuselRge. T~is smaller 
boundar~ l ayer rsduces the crOSE flow in the scoop en
trance , resu~t:'rg in a highe r vel~e cf ~he front pressure. 

T~e swir! in the ent r an.e is ~n undesirable feature 
from the stan~poin~ of cooling, and an atte~pt saould be 
made to eliminate the effect of the bounaery leyer by a 
plate seper a ting the high and lo~ energy air • 

. /ith air flow the pressure drop across tle baffle is 
given in tabl e I II. The pressure drop was taken as the 
difference ~otwean tha baffle pre~sure Dhd the re-'3.r pres
sure . The static pressure in th9 exit is omitted for 
scoop A because of faulty measuremsnts. rho exit area was 
apparently too small for adeq~at 9 air flow with scoop A. 
However , the effect of ~he flap in increasing the pressure 
drop is notable . For the larger caffle conductance ap
proximately O.7 q was obta i ned . It is realized that the 
drag increase with flap was expensive from the standpoint 
of drag. but in the take - of: and climb it is the cooling 
tha t is all important . 
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Su.rf a c.E...._ure E S-'-l::~..£Jlr~l..§~r . - Ob s erv G'- t i on of the pre s sur e 
distrib~tion over t:e nose of scoop ~ was made without 
internal air flo';"! . T!lis cond"tion gives the rr:azimmn ex
ternal velocities and t~erefore t~e most severe surface 
pressure conditions . Su~~acB ~ressures are presented for 
angles of attack 01 1.1 0 and 8.7°, representing the high
speed and cliDb conditions . ~he rnaximuo negative pressure 
on the scoop nose occurs at the lovest angle of attack . 
Figure _2 shows t~~t for an angle of att ack of 1 . 1 0 the 
maximum negat:'ve piC!- is 1.5 , occu:cring on the center line 
o~ the scoop . 7his value of p/q corresponds to a criti
cal speed of 420 m::'les per hour at sea level and 395 miles 
per hour at 20 ,000 feet altit~de. By reducing the curva
ture at the point of mazimu~ ~egat:ve pressure, the veloc 
ity at this· point can ~e red~ced, t~ereby increasing the 
critical spee~ . In t~is manner a centour may be obtained 
satisfactory !or a·y desired desi~n spded. 

~~e most desirable place to teke i n cooling ai r for 
accessories, suc~ as oil coolers, intercoole~s , etc. , is 
at the ~ose of tne fusela~e o~ nacelle, even if it is ne 
cessary to increase the cowling are? ~oweve r, if it is 
~ecesSRry to ~ake ai r in t: roug~ a scoop or underslung 
duct , low scoop drag ~ay be secured by utilizing the design 
principles of the ~~ C_l c01·,lin g . T_ is design involves the 
use of ~ell -rou~~ed nose co~ ~ours , thus giving a frontal 
area much lR~ger than the i~l~t area. Scoops tested with 
this t ype of DGSe gave not onl~ a low dreg increase but 
a critical speed of 400 miler per hour with no air flow . 

Scoop drbg was found to be quite insensitive to 
change s in afterbody length in t he range of four to eleven 
times the scoop depth . r.o'r!8Ve r, lith air flo\'!, the drag 
decre ased sli[i~ly with increasin g length, the lowest val 
ue being ob~aine1 vith scoop A. ~his sc oop was of such 
len gth that it practically merged into the body without a 
break in the contour lines. COID21ete disre~ard of the 
principles of fairing resulted in a scoop which almost 
doubled the drag of the model . 

Langley Memorial Aero~autical Laboratory . 
National Advisory Co~mittee for Aeronautics, 

Langley Field , Va . . 

~~~----~ 
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Analysis of Scoop Dasign 

rl The results of this study may be incorpor~ted into 
(Y") 

~ t he known principles of scoop design. The design of a 
~ seoor may be d!vided into two parts: the design of the 

duet and the des ign of the external shape. 

ThL9.uct.- The c.u.ct co nsiuts 0: an entrance area, an 
expansioil region , the "lorking i''''gion, and the exbaust 
re gion . For a car~uretor duct the CErbaretor is the work
ing region and there is ~o ex~a~st region to be conaiderGd . 
The VJorking region :;.~ tQ<3 one :l.r. "211cb the oil coole::-, 
prestone cooler, i~tercooler, or ai~-coo!ed engine is 
placed . The cooling specificatious for this ~egion in
clude a certain quantity of air fl~v ~ at a certain al-
tit u c_ e ( d. e t e r .: i n i n g t; : := 3. 1 r d '3 n sit ;;- p). 'I h e 1:1 eat ex -
chan~er has a frontal area F and its internal resistance 
is such that a press~re differance 6p is required to 
secure t~e re l uired quan~ity of a~r flow. Tnese elements 
may ell be included in one qua~tity. the conduc~ance, 
given by 

or 
1 / . \2 

1 2 . ~ 

2 P '3 j 2 P VF K2 = = ----- = 
.6p b.p 

ltlhe r e if ~ = .• 1 F and .t' "ttl •. is t~e dynemic pressure in the 

duct at t~3 heat exchanger . For oil and prestone coolers 
K is approximately O. E , !or intercoolers 0.2 to 0.3, de
pending upon design. Tig~tly ~~iflad air-cooled engines 
vary from C.IO to 0.18 depending upon the number of c~l
inders ; loosely baffled engines may be as hign as 0.5. 

The over-all pressure di ff erence .6P is equal to the 
differe~ce between the total pressure at the entrance to 
the d1.'..ct system and the static ~:;ressure at the exit. In 
additio~ to t~e pressu.re loss 6p across the heat ex
changer , there is aa additional loss 6Pl due to expansion 
in t he entrance. 6Pl and 6p are total pressure losses 
and appear as drag of the cooling system. The pressure 
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difference r em~ inillg after dad cting 6~, and Op from 
OF is the differe nc e be~veen t he ~ ot al ~res3ure in t he 
exit passage a~d the static p~essure a t th e e~it. Th is 
pressure difference may be d e sign~~ed 6P a and is, of 
course, equal to the iY3Bmic ~res3 ure of the air at t he 
exit . The pressu!'0 eCl'~2.t io:J. is t ~lll.S g iven as 

t.p + L..Pa 

If the duct s~stem is v3ry lon g , a furth 5 r a llowanc e will 
have to be made fo~ fri~tion and bend losses . 

In a smuc h as the ent=an ce loss 0Pl is a total pres
sure 10 3 s, w~erea5 6?a is the iyna~ ic presaure of th e 
exit a ir, it is s ee~ t~at any throt~ling of the flow 
should oc cur by constristion of t he exit. Throttling in 
t : e entr~n ce region c an be accomplished only by pressure 
loss with a conse quent increase in drag. 

3 n tranc e and ex it c onductanc es may be defined in a 
manner s i mi l a r to equati on (2) . 

'r' a 
1"' 1 = 

(5) 

E1uation ( 3 ) may b e r awritte n as 

liP up 1, L'- Pa - = 1 + + Lp t.p Lp 

+( 7.: :2 ( X ,2 
= 1 - + i i: 1 i ,Ka ) ;' 

I n order to secure th e pr oper apportionment of th e 
over - all pressure OF, it is thus ne~essary to make Xl 
as lar ge as p ract i cable (to reduc e the entrance lO BS ) and 
to make Ka as s mall as is ne ce ss~ry to balance the equa
tion. 

Th e entrance conductance Kl may be determined as 
follows . The expansion lo s s in the entrance region in 
passing from e n area Al to a n area F is 'g iven by 
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(Y) 
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, 1 

1- 2 / A ~ \ 2 
6p = c pV~ 11 ) ~ G \ :? , 

Upon sub s tituti~g A~V 1 = F VF , t :1eI:. 

2 ( .1'_ 
, Z 

1 1 
\ 

6 Pl := c PVF - ) 
2 \ .A 1 / 

f l :a 
= c ::.J.F - 1 I 

, A 1 / 

where c i s a f a c to r iepende~t U~0n the &ngle~ of 
e n ceo f the ',J a 11 s ( :: i g • ::. 3) ( r e :: e r 5 ~1 C e 2), ani V 1 

velocity a t AI ' an d Vp is t~3 ve~o~i+y at F. 

1 6:9 I i .., 
1\ 

2 
.I: 

= := C -
Kl 2 A / 

qF I 

1 1 

ci.iverg
is t~e 
Tl~en 

(7) 

Th is fu~ctio n is gi v e n in f i~ur e 14. The range of c is 
fro Q O . l~ t o 1 • .21 ap p r o x i ma t ely 1: IC ; that is, the '.forst 
inte r nal expans i on will h av e t e n times ~te e~trance 103s 
tilat a :;>e r fect ons y'ould h av e . The effect of an expansion 
angle la r ge r than t ~e opt i mum can be ea:i1y compensated 
by incr easing t he en tra;ce ar ~a sODe~h~t . (See fig . 14 . ) 
Th us , an open i ng on l y sl i ghtly la~ger thEn tho minimum 
will pe r mi t a sho r t en tr an c e l e ngth. 

Fr om e qua tio ns ( 2) and ( AI 
- I 

1 
= K 2 

Thus, wi t h K and Op s p ecifi ed , selec tion of 6Pl de 
termi n e s K1 • Con v e r se ly , if t il9 geometric design is 
sel e c ted , 6P l is d e t e rmi ned . Fo r example, for a radi a to r 
wit h a re qui red p r e ssure d r op of 40 pounds per square foot 
K 2 6p = 10 p ou n ds p e r s quare foot. If toe ~ntrance area i s 
0 . 45 F, t he e n tr an c e l os s i 3 b e tween 2 ani 18 pounds pe r 
squa r e foot . An incr eas e of a r e2 to 0 . 55 F sets a loss of 
8 po und s pe r squar e f oo t a s an u~per limit with 3 or 4 as 
a more p ro babl e v a lue . 

The p robl em of t he p e r missibl e en tr ance loss i s t i e d 
up wit h t he p robl e m of sec urin~' ~d e qua t e ai r flow i n th e 
c limb cond itions . Because of t he l ow a ir speed the entranc e 

------------ - --------- ---
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loss must be made Sf .9.11. The OV Gr '~all ?ressuro difference 
maJ be i ~prov3~ by pl~ci~G thJ cntra~ce and exit in the 
propeller slipstre ~m . ~~ fitting a flap t o t he extt u nd er 
tnese con d itions , ov e r - all pressure d i ffe r en c os four or 
five t i mes the dyn am ic pr&siure may be ob tBine~ (refer e nce 
3). 

The exit co nductanc 8 K8 ma.y be determL1ecJ as fol -
lo ws : 

t.P2 1 pVa 
2 

= 
2 

1. 2 ( -v' a z 
TT = P ' p V ) 2 ? 

= q .. (~ )Z 
" "2 

for F V J! = A zV z · T:1G exit. COLl ctuctan c€: is thus given as 

or 

(8) 

~~ exact me t hod of d t~rmining the d i me nsions of A z 
for a ll f_ow c ona i t~ons is r athe~ di~ficul t. Howe ver, 
hlo genera.l r u:!..es .Ci.~T be ,1Eed as a :"::' rst E;sti mat6: (1) 
If LPa > 0.51. t~e m i n i~um area of the exit perpen~icu
lar to t he flow lines out of t~e slot is a g ood estimation . 
(2) If i::;P2 < 0 . 5 q , an area larger' than tha. t com:;lUt e d by 
th e ebove for mula wi ll have to be used sin c e the velocity 
di s tribu t ion across the slot is not uniform. 

:2xt cnn'3.1 c,es i 'fll. -- T:18 flo'" pat-~ern of the 8.ir ap
proaching t he entrance dete r mi nes the external design of 
the scoop. If t he ent ranc e ve ioc ity appro xim a tely equals 
stre c.ID velocity the str ~aml tn <:s will be nearly straight . 
A she~p l oading edge would be permissib l e under t hese co n 
ditions . Wh e n the r a tio of entrance velocity to stream 
velocit y is lo w , the stre 2mli n es tur n s harply outw a rd a nd 
after passing the edGe of the s coop entrance mus t again 
turn through approximat~ly 90 0 t o resume their originsl 
direction. Tnis low ratio is usually the cond ition with 
high flight speeds , since the u p per limit of this rati o 
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is determined b y t h e coolin g requ i rement in climb. A 
we ll - round e d no se conto ur is ne c essary to prevent the oc 
currence of h ieh n ega ti ve p r ess ur es with attendant c om
pr oss ibi l ity an d s epa r at i on l osses. Th i s des i gn , of 
cour s e , ne ces s itate s a p r ojec ted f r onta l area much larger 

rl t han t he int ake op e ning in or de r t o se c ure the proper 
(Y) 

(Y) fairin g . Jus t as in th e c a s e of t he NAGA cowling, the 
I 

~1 radi u s o f c urv a tur e of the lo ng i tud i na l nose cor tours 
shoul d g radual ly i n c r e a se to ward tho r ear to avoid a sudden 
d e crea se of n e g a tive p r e s s ure. 

Afterbo die s mus t be o f suffic ient l ength to preven t 
t ~e oc cur re nce of separati on. An est i mate of the proper 
l eng th may b e obt a i ne d fTo m ~ he t 8S: r esults . It may be 
we l l t o com p l e t e l y me r ga the a f terbody i nto the rest of the 
air pl a ne . 

Al though the p r o p e r e n t r an c e size will p r obably be 
d ete r mi ned while des i g ni ng t he du c t, it is of interust t o 
kno ~ t he e ntT ance a r e a or scoo p s i ze which will ma~e the 
s um of the i n~e rn a l an d .ex ter na l drag a minimum in cruising 
o r h i g h - sp e ed f li gh t . Thi s may b e found if the form drag 
c 0 e f fie i e n t bas e d. 0 n fr 0 n t al a re a C +' i s ~;n O:Tn for the par -

.1 

ti cular shap e of the sco op . The frontal area may bo con-
si de r ed to b e the max i mu m s e c ti o n area bou~dea by the scoop 
a nd the or i gina l l i ne s o~ the air~lQne. T~a scoop drag is 
e qua l to t he fo r m drag plus the drag chargeable to inte r nal 
fl ow lo sse s • . Exp r ess i ng the fr o ntBl area as a coefficient 
t i mes t he e ntranc e a r ea k A l t he erag equat ion i s 

( F \2 
D = GfqkA l + c qF ' -- - 1 : 

A 1. / 

~ + Q,6p 

V V 
+ • 

The r a t e o f ai r fl ow . ~ a nd DBxim u m duct area F ~ i l l 

be co ns i de re d as f ixed quan ti ties . Di fferentiating with 
r es pe c t to t he &nt r ance area , we o bta i n the relation fo r 
mi nimum d r ag : 

k C G A d k 
f + f 1 - - -

d A l 

( Q. '\ 3 (F)2.. ( F 
2 c -- -- -- -

\ FV ) A " _'>., 1. -

dk Th e v a l ue o f i s unk nown except for the c ase where 
CA l 

t he s co op f ai r ing r emains ge omet ri cally simi l ar with chang-

i n g s i z e. Here a nd the second te r m drops out . 

I f. ~n additio n , we sub s titut e 
t ion take s t he form 

Q 
for . FV t the equa-
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Design Illustrations 

The application of the above formulas to the design 
of a low d rag scoop is illustr a ted in tab!e IV. The opti
mum scoop design is obtained when th e sum of the power 
loss due to extern~l drag and the power lo s s due to the 
internal expansion is a minimum. If the form drag of the 
scoop is large , it is best to decrease t h e frontal area 
at the expense of increasing t he int e rnal expansion loss; 
while, if the form dreg is lo~, a small int ernal loss 
gives t he best design. If the internal expansion loss 
can be kept s mal l by perfe ct expansion ducts, high velocity 
entran ces may be uge d ; but the amount to bo gained by im
proving the int e rnal expansion loss is v e ry small if ~ 
low form drag scoop is ~sed in the design . The above ob
servat ions l aad us ~o selact a scoop that has !ow form 
drag and a low velocity entrance. 

The tab 1 e i s con s t r 11 c ted. for a f 1 i gh t s pee d 0 f 4 0 0 
miles per hour and an altitude of 20 ,000 feet . Rates of 
flow are determined for an int ercoole r with a conductivity 
of 0.2 and a r equir ed pr0ssure d rop of 60 pounds per square 
foot, and for a radi a tor with a conductivity of 0.5 and a 
pressure dr op of 4 0 pounds per square foot. .The expansion 
co efficient to be u sed depends on the angle 'of divergence 
betwe en thb duct walls and cons equently on the dist an ce 
betwee n the scoop entrancS and the heat exchanger. For a 
roun d. duct I'lith an angle of divergen c e of 51/2°, figure 13 
gives a loss co e ffic.ient of 0.13. A great duct leng th 
woul d be necessary to i ~stall such a duct for usual values 

Al 
fAd o 1 a n . p. Alsd , expanding ducts are usually neither 

roun d nor str aight . The value of c = 0.13 is used in the 
tab le to repr e sent a limiting cond ition rather than one to 
be attained . The v a lue of c = 1. 0 represe n ts a sudden 
expansion. 

The for m drag coef f ici e nt based on the scoop front a l 
area, Of' de pe nds on how well t he s co op is faiTed and h ow 
much frontal area it ' adds t o the body on which it is 
pl a ced. ~he lowest value obtainab le is t he increase due 
to cre at ing · a nose o p enin g in a streamli ne bo dy without 
i ncreasing the fro nta l area . Ref3r cn ce 4 gi v es a value 
of Of = 0 . 008 for this case . This value may be regarded 
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merely as a lower limit for an entrance locate~ Bpproxi
mately at th e forward stagnat ion point . F or a well 
f aired scoop ~laced so that the frontal area of the air
plane is incr eased by an amount equal to the frontal araa 
of the scoop, a value of Cf = 0.05 9 ob tained with scoop 
A may be used. The values of Cf = 0.79 and Cf = 1.5 

obtained with scoops E and F are included to show the ef
fects of high form drag. 

The ratio of proje ct ed frontal area to entrance 
area, k , is determine d from the fairing layout. It3 value, 
of course , depends on whether the scoop is faired for a 
low- or a high-spee d entrance. Values of 1.0 and 2.4, 
correspo nd in g to t he scoops tested, are used in the table . 

Column 7 of table IV is ~o mputed f rom the relation 

Q, = KV fZi 
if Jq 

Rearrang ing th e equation for minimuw d r ag by putting all 
known constants on t h e ri gh t side gives 

The solution fo r may be obtained from figure 15 and 

is g iven in c o lumn 8. The b9st entrance velocity, given 

in col umn 9, equals ( Q. j Al '\~. 
F F) 88 

The external form dr ag and the internal e7pansion 
loss way be expressed as a parasite drag coefficient based 
on \"f i n gar ea. 

The first term represe nts t he ferm drag, the seco~d the 
expansion l ~ss , and CD their sum . Numerical values 

p 

compute d for F = 2.5 square feet and a ~ing area of 300 
s quare feet ar e g iven in columns 11, 12, and 13. 
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~ablD IV Rho~3 the shift of the opti mum entran ce area 
and ve 1 oc i t y ':li th c~J. 8.n.ge in ~.t:'. In exampl e s 1 to 4, as 

Cf decreases from 1.5 to 0 . 008: the optimum ~ L1c:ceases 
F 

from 0.112 to 0 .411. ; -, 
V 

varyi ng inversely with 

dro ps f rom 0 . 94 to 0.25. This means that , as the form 
dra g is ~ecreased , it is most efficient to lower the in
terna l lo ss by i n cr ~as ing the size of the scoop . 

The ef f ect of c h anging c from 1.0 to 0.l3, as 
exam~ les 5 t o 8 , is approximately to cut tte op timum 

in 

A:.. Vl 
i n i1 8.1 f an d dou"'.:): e -. 

7 ] ' 
In exam?les 9 to 1 6 , the co n -

d i t ion s c t~ 0 s en for '.;}oe a~proximately do ubled t he 

fl 0\'1 ; 
A _1 
]; 

v aries nearl~T as or is nearly doubled ; 

is almost 

It may be obs e rve d that the parasite dr ag coefficient 
CD has the same trend ~s t he for m d r ag co e fficient Of. 

F 
In exa~ple s 1 to 4, as Cf is reduced from 1.5 to 0.008, 
CD dro~s from O . 002~ to 0.0001. P -

Re1ucin~ c fr om 1.0 to 0 . 13 by i ~tr oducing a gradual 
expan si on is sho~n ~n e XEmp19s 5 to 8 to reduce On over 

p 
40 percell.t. 
r ed.uction is 

mal place . 

However , in cO~;Qring examples 4 ~nd 8 , this 
too inci gn i fi c ant to show in t ha fourth deci -

:rl: x a..J pIe 4 vr i t 1:1 = 0 . 25 is simil a r to the · 

open -nose cowlin g . Evidently . with thi s lo w entran ce ve
l ocity jt is immate ri al whether a s ud d en or a gradua l ex
pansion is used . On the ot ho r hand , with a high entrance 
v e locity a gradual expans ion m~st be us e d ~nd the utmost 
c are must be teken with duct design to prevent excessive 
lo sses . Irr egu l a riti e s in tho en trance r e g ion easily upset 
the flow , and an i ~ea l expansi on is thus difficult to 
r ealiz e in p r e ctic e . If the lcsi~n calls for' a small en
tran ce and ideal ezpanRi on i s n o t reeliz~d, t he inte rnal 
loss will b e ~uch gr eate r t han t he Bxternal d r eg saving . 
It is the r efore dasi r c ble to u se 8S good an expansion as 
convenient alld to use an expansion coeffici ent of unity in 
the d esign comyutat io ns . 

It is ahrays ne c essary to CO llpa re the int e rnal pres-
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sure drops with the over-all pressure drop available for 
all flight conditions. This comparison mbY deLand the 
use of a scoop larger than opt~ mum. 

CO~CLUDING REMAR~S 

The illustrations show that the optimum scoop is de
termined by a compromise between the power losses asso
c!ated with external drag and internal losses so that the 
sum of these los ses is a minimum. ObviouEly. if the scoop 
has a l a r ge form drag, t ~e siz e will be r rd uced and the 
in ternal 10s38s will be increRRed to obt ~i n th~ best com
promise. Converse1y, if the scoop has a lov form dreg, 
the frontal area will be made relatively large thereby 
reducing the inter~a l losses to give tho best compromise. 

In the latt~r coniition involvin g the scoop having 
lo w for m drag , a trivial reductio n in powLr can be ob
tained by re duci ng the frontal area Que to employing ducts 
having ideal expans ions. However, the experience an~ 
knowledge re ~ui r Jd to obtain this trivini gain are out 
of al l pr oportion to the advantage to b3 obtained. 
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Figure 3.- Nose for scoops A,B, and C. Static pressure 
orifices at. a, bo t toD! center line; b, corner: 
and c, fi 11 e t. 

Figure 4.- Model with scoop A. exit closed. 

Figs . 3, 4 
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NACA Figs . 5 , 6 

Figure 5.- Model with scoop A, 300 flap. 

Figure 6.- ~xit of scoops Bend D. 
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Figure 7. - Model wi th scoop D, exi t closed . 
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Figur e 8 .- Mode l with scoop ·E, exit open. 
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