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to
	 ON THE PLANE POTENTIAL FLOW PAST A 

H
LATTICE OF ARBITRARY AIRFOILS


By I. E. Garrick 

SWvMARY 

The two-dimensional, incompressible potential flow 
past a symmetrical lattice of airfoils of arbitrary shape 
is investigated theoretically.	 The problem is treated 
by usual methods of conformal mapping in several stages, 
one stage corresponding to the map p ing of the framework 
of the arbitrary line lattice and another significant 
stage corresponding to the Theodorsen method for the 
mapping of the arbitrary single wing profile into a circle. 

particular feature in the theoretical treatment is the 
special handling of the regions at an infinite distance 
in front. pf and behind the lattice.	 Expressions are 
given for evaluation of the velocity and pressure distri-
bution at the airfoil boundary.	 An illustrative numerical 
example is Included.

INTRODUCTION 

This paper treats the problem of determining the flow 
pattern, or the velocity and pressure fields, associated 
with the uniform flow past an infinite row of symmetrically 
placed airfoils of the same shape.	 This airfoil-lattice 
problem occurs in the design of turbine blades, wind-tunnel 
vanes or grids, and elsewhere. 	 There is a purely mathe-
matical interest in the problem that concerns the field 
of conformal mapping of infinitely connected regions. 
Analogous two-dimensional lattice problems occur in the 
steady flow of heat and electricity. 

Considerable ingenuity has been devoted to the 
airfoil-lattice problem, especially in the turbomachine 
studies in the German literature and more recently in the 
British studies; nevertheless, a survey of the available 
literature indicates that nearly all the treatments
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employed and the results obtained are of a special or 
indirect nature which involve, for example, lattices of 
thin lines or approdmate graphical procedures. 	 Re-
cently, however, A. H. Howell in a British paper of 
limited circulation has written briefly on the theory of 
arbitrary airfoils in cascade.	 Howell applies a special 
transformation to an airfoil lattice to convert the lattice 
region to a somewhat random, simply connected region arid, 
with the aid of several stages of conformal mapping, ob-
tains a region about a èircle. 

The problem of determining the incompressible poten-
tial flow past an arbitrary single wing section was 
studied by Theodorsen (reference 1), who gave a practical 
procedure for its solution.	 The case of two wing sections, 
or the arbitrary biplane, was later trated in reference 2.

 The determination of the flow past an infinite lattice of 
airfoils of the same shape is a problem intermediate in 
difficulty in comparison with the afore-mentioned ones. 
The treatment for resolving this problem given in the 
present report is similar to that for the arbitrary single 
wing section but the calculations are more involved. 

The problem will herein be studied by the usual 
method of conformal napping.	 it is convenient to ac-
complish the result in three or four stages: The airfoil 
lattice is first replaced by its skeleton, or framework 
of line segments. 	 The initial mapping function employed 
transforms the lattice skeleton into a circle. 	 In the

plane of this circle there are two singular points, known 
as branch points. 	 These points have dual significance: 
They correspond to infinite regions in front of and behind 
the lattice of lines, and they enter in the problem of 
reducing the lattice region (multiply connected region) 
to the region of a single body (simply connected region) 
If now an arbitrary airfoil shape is generated or given 
around the framework of lines, then in the plane of the 
circle a circular-like contour is generated around the 
original circle.	 This contour may he transformed into 

an exact circle by the well-known procedure given in ref-
erence 1 or 3 .	 The original two significant-points are 
then traced by a transformation due to H. A. Schwarz. 
A final elementary transformation will bring the circle 
into a standard circle for which the two characteristic 
branch points are symmetrically placed. The region of 
this circle is considered the standard region for deter-
mining the flow pattern.
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For illustrative purposes an outline of a 'procedure 
for calculating pressure distributior.is is included. 	 The

method may be followed without reference to the theory 
by readers interested mainly in numerical results. 	 For 
convenience, a list of symbols is given in appendix A. 

ANALYSIS 

Initial transformation for lattice of straight 
lines.- Consider the transformation (reference )) 

a2 \ /	 z+_\ 
=	

(iog H-!-H 
+ 
log z, ---)
	

(1) 

where g, b, and a are real numbers and b > a. 
Introduce coordinates '4i and 9 by means of the relation 

jJ+ i zae	 (2) 

and let

b/a= efO	 (3) 

Equation (1) may then he expressed as 

= •& log	
os1i yo +cosh ()jJ + j9) 

2u	 Jcosh 
0 - 

cosh ( + j9)	
(Lb) 

If lJ = 0, according to equation (2), zt lies on a 
circle of radius a (fig, 1(a)).	 According to equa- 
tion (u),	 = 11 1 + iy1 is the logarithm of a real posi-

tive function and consequently represents a real function 
(its principal value) and the infinite sequence of values 

differing from this function by 	 TT 21 	 where k is 

any integer.	 The transformation illustrated in fig-
ure 1(b) is that of an infinite lattice of unstaggered 
lines of gap g in the 	 1 -lane into the circle of
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radius a in the z'-plane.	 The points z'	 b and 
= -b correspond to infinity in front of and behind 2 

the lattice, respectively.	 The inverse points z' 2b 
and z' = -	 are inside the circle of raditis a. 

b 
In order to introduce stagger, it is convenient to 

consider the transformation 

7	 zt+ 
ih( log	 log 

b+z'	 b 
--	 -  

2	 2\	 b - z'	 z'-
b 

where h is real.	 This transformation can he written 
with the use of equations (2) and (3) as 

hlog inh Y. + sinh ('4i + iUf 

	

= -1 -	 ( 5) 

	

2ir	 sinh Yo - sinh (\uI + 

If 4J = 0, the expression within the brackets is a cm-
plex number of unit magnitude; hence, the logarithm is a 
pure imaginary number plus an infinite sequence of numbers 
differing by 2iri.	 Then t2 =	 + iy2 represents a 

sequence of real numbers differing by h and the lattice 
is one of horizontal lines displaced from each other by. 
h	 (fig. 1(c)). 

The transformation for the general staggered-line 
lattice is a combination of equations () and (5) 

	

+
	

(6a) 

or

/ 

	

/	 zi	
a2 

+_
-iP= -a-- (e	 log b + z' + e	 log	

b	
(6b) 

	

21r\	 b - z . .	 ,
b )



where 

gap g = d cos 1 

stagger h = d sin 

stagger ratio h/g = tan p 

the parameter d may be called the slant gap (fig. 1(d)), 
and P the stagger angle. 

The geometry of the lattice may be expressed in terms 
of the parameters yo and	 by noting that the chord 
length may be obtained from the (singular or critical) 
values of e which corres pond to the end points of the 
chord and are solutions of the equation d/dz' = 0. 
This e quation gives the result 

tan e = tanh Y tan P	 (7a)


or, for later reference, 

cos U = cosh Y
O cos 

Q	
(7b)


sin e = s inh yo SLfl

J 
where

1/2 
Q = cosh 

2 
y0 - sin2 

Relations (7) may be emplo yed in two ways: (1) When the 
parameters yo and	 are given, the relation determines 

the two critical values of U. G. and 8t' where the 

subscripts I and t refer to leading edge and trailing 
dge, respectively, and e	 @, + ii'.	 (2) Vlhen 0 1 or 

tan 81 and the stagger angle	 are given, the relation


determines the parameter. y • 

The chord c may be obtained by putting 0 = 

and e =Ot, in equation (6a) and taking the difference 

in abscissas x 1 and xb.	 From equations (It ) to
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C = X1 - X  

= Ld co	 log 
+ COS	

+ sin	 tan 1 	 (8) 
iT	 slnhy0  

By means of equation (8), the par.meter y 	 can be

presented directly in terms of given values of he gap-
chord ratio for any staggcr ratio.	 A representative 
chart relating gap-chord ratio, stagger angle, and 

is shown in figure 2; some values are given in table I. 

Inversion of equations (Lb ) to (6).— The initial 
transformations may be thougitof as mapping a framework 
of chords of an arbitrary lattice. into a circle, 	 If a 
shape is generated around the chords in the z'-plane, a 
contour is generated around the circle of radius a. 
This contour, which must exclude the points z' = -b and 

z'	 b and must enclose the points z' = - - and 

ZI	
2	 b 

=	 , may he considered to he completely defined by 

the function 4i(0).	 If a lattice of airfoils is pre-
assigned, the function i(0) must be found from the given 
coordinates of the airfoil shape.	 In order not to inter-
rupt the sequence of main ideas, the details of this 
problem are relegated to appendix B, with certain remarks 
on the practical achievement of a nearly circular contour. 

Transformation of contour in z_plane to circle in 
z-plane- It is assumed now that the circular-like contour 
in the z t_plane which corresponds to the airfoil contour 
of the lattice is either given or determined; that is, 
the function iji(3) is known in the boundary expression 

= ae	 .	 By the procedure of reference 1 or 3, the

transformation

= ze	 (9a) 

where
CO 

f(z)	 -fl	 log	 (9b) n	 z 

and cn. are complex coefficients determined by the 
boundary, is then employed to transform the z'-contour.
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into a circle z	 ae 0	 in the ---plane.	 The trans-
formation. (9a) keeps the regions alike at infinity in the 
z'- and z-planes; that is, z . = z' and dz'/dz = 1 at 
infinity.	 The correspondence of the boundaies is deter-
mined by the functional equation 

	

f2ir

 (')cot d'	 (10) 2 Tr 	 2 

for which a convenient numerical solution has been out-

lined in reference 5 . 	 The radius of the circle H = ae0 
is determined by the relation 

2ir 
^fo = 	 r	 ) d 

2 1T jo 

For consistency, the functional symbol qf(cp) is here used 
to denote the quantity 1' expressed as a function of cp - 

that is, iJ [O(cp) ..	 In reference 3 the notations 't'() 
and 1j1 I 8 ( cp )J 	 are used. 

It is necessary also to trace the correspondence of 
the points z' = h and z' = -b.	 Let z =	 corre-

spond to z' = b and let z =	 2 correspond to Zt	 -b. 

The values P, and P2 may he determined by a relation 

(due to Schwa'z) 'that expresses the value of a complex 
function in terms of an integral of the real part of the 
function along a circle.	 A simple derivation of the 
desired relation is shown in appendix C.	 The expression

is

I 	 .- = f(z)

211 
= -	 I 

r	

( c)	
d	 -	 (12) 

1
H

(11)
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The values of	 andP2 may be determined from 

equation (12) by an iteration process that converges 
extremely rapidly. The.process may be described as 
follows: In equation (12), let the zeroth approximation 
to p be z = z0	 b and let the corresponding value 

of z' be written z t = z 0 ? = he	 , where 1(b) is 

the evaluation of equation (12) for z = b. 	 It is 
actually desired, however, to have z' 	 b but, because 

z i = z 0 ' = b + Z0' - b 

the initial value of Zt differs from the desired value 
by z0 1 - b.	 Furthermore, z = z 0 differs from z = Pi 
by approximately the same amount; hence, reducing z0 
by the quantity ZQ'	 b gives 

zl =	 + b - 

= b[2 - eb0j 

which may be considered a first approximation to p1. 

If it is desired to check this result or to obtain a 
second approximation, the process may be repeated; thus, 
from equation (12), find 1(z 1 ) and 

z 1 ' = z1e f(z 

Then,

= z 1 + b 

which is a second approximation to 	 and, in general,


the nth approximation is 

z = z 1 + b - zi' 

It is clear that, should z 	 correspond to Zn_i, Z_1' 
must correspond to b and the process automatically stops. 
The numerical process is given in appendix C; relatively 
elementary steps are involved.	 In order to determine 

the process is applied with b replaced by -b.
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Transformation to standard circle in w-plane.- In 
order to obtain the flew pattern, it is desirable to 
introduce another, function which transforms the circle 
in the z-plane into another circle in the w-plane in such 
a way that the characteristic points z = and 

Z =	 2 map into w = b and w = b, respectively. 

The region of the circle in the w-plane may be considered 
the standard region.	 The desired transformation may be 
written as (see appendix D) 

b -w 
= 

(P l
	

z)	
(l) 

b + w	 ,	 2+Z 

where

b2 - 2 21 
^	

0-10K =	
.2	

- 

and 

R	 ae0 is the radius of the original circle in the 
z-plane,	 is the complex conjugate to Pi , and S 

is the radius of the new circle in the w-plane.	 The

radius S is determined by

S = be- YJ	 (15) 

where yj is obtained from

i	 + 32 B 1 cosh yj = -	 . 	
(16) 

R	
+ 

Complex velocity potential in w-plane. - Consider the 

flow function	 (w) = ID + i1 , which is defined as 

	

S2 	 Q4 

(w) = -	 (e	 log b+w+e_ia log	
b	

log	 (17) 
27T	 b w	 - 2 / L.u.	

- 

\
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The flow pattern may be regarded as due to a combination 
of singularities,, sinks, sources, and vortices, placed at 

the points w = ±b and w '	 as indicated in figure . 

It may be readily verified that the circle of radius S - 

that is, w = Se 10 - is part of a streamline and it may 
further be observed from figure 	 that the circulation 

around any contour which encloses the points w = 

and for which the points w = ±b are exterior points, 
is F (positive if counterclockwise). 	 The parameter a

will be interpreted later as an angle of attack. 

The value of the circulation .F may be determined 
by means of the KuttaJoukowski condition for smooth flow 
at the trailing edge of the lattice.	 Let o, be the 
value of o on the boundary circle Se lo that corre-
sponds to the trailing edge of the lattice. 	 The

Kutta-Joukowski condition then requires that the flow 
separate at 0 = 0, or that a stagnation point exist 
there. 

With dQ/dw 0 and w = Se '°, the following 
relation for F is found: 

F = - b2_	

[b sin ( o + a) +	 sin (o - a]	 (18) 

b2 

If s/b is replaced by e ' - (equation (15)), equa-
tion (18) may he expressed as 

/cos a	 sin	
(19) F -2Vd	 sin a + Cos a) 

\cosh y1	 sinh 1-

 Expressions for velocity in lattice field.- In order 
to obtain the flow pattern in the lattice field (-pl2ne), 
the component factors of the following expression are 
required:	 S 

dQ	 dQ dvi dz dz 	
(20)


dvi dz dz' d
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These terms may b .e obtained from equations (17), (13), 
(9), and (6). 

It is of particular interest to evaluate equation (20) 
explicitly for the regions at infinity in front of and 
behind the lattice and also on the lattice boundary itself. 
It is recalled that	 co corresponds to z' = b, 
Z =	 w = b and that	 = -	 corresponds to Z t = -b, 

Z	 2'. w = b.	 By combining terms according to equa-

tion (20), the (reflected) inlet-velocity vector is 
obtained as

F1 
[dj	

11 xi- iv 

= -	 - ir eip	 (21) 
2d 

and the corresponding expression for the outlet-velocity 
vector is

IdQl 

[JOD 
=	 - ivy2 

- Ve 3
 + in

e	 (22) 

By addition of equations (21) and (22), it becomes clear 
that the velocity vector of magnitude V and angle of 
attack a + B with respect to the x-axis is one-half the 
vector sum of the inlet and outlet velocities (fig. !). 

If the angle of attack of the mean velocity vector 
with respect to the x-axis (chord direction) is denoted 
by	 a + , the velocit y components in equations (21) 
and (22) are

V 1	 -V cos a	
r 

+ - sin 
2d 

V
Yl	 2d
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and

V2 = -V cos a,. -E- sin 

	

VY,2 	 2d 
= V sin a - - cos 

The conventional angle of attack a is measured 
with respect to the normal to the slant line of the 
lattice.	 The components normal to and along the slant 
line of the lattice, sorrietimesrefrred to as "axial 
and 

'
"whirl" components, respectively, are found by rotating 

all vectors in the xy-plane by angle P (fig. Lu).	 These 
components are, for the inlet velocity, 

V. N = -v cos a j 

VL	 + 1 1=Vsina 2d 

and, for the outlet velocity, 

	

VN2	 -T cos a = V1 

VL = V sin a - 

	

2	 2d 

The squares of the magnitudes of the inlet and outlet 
velocities are

1	 /\21 
V1 =	 1 2	 sin a 

L	 2Vd	 2Vd 

2	 2	 r	 /r\2 
V2 V 1 - 2 - sin a + - 

L	 2Vd	 \2vd - 

where r/2vd may be obtained from equation (19). 	 Observe 
that the inlet and outlet speeds are equal, V1 = 
when a = 0 for any value of F.	 The inlet and outlet 
angles of attack with respect to the normal to the lattice 
line are
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p sin a + - 
a1 = tan- -2Vd 

COS CL 

LO

s1na--F 

-1	 2Vd •	 a2 = tan	
a 

and the angle through which the stream is turned is 

	

2	 cos a 

Cl	

-1 2Vd - a5	 tan /	 \ I •1 

1 - I ---
\2 Vd 

The component factors in equation (20) are now to 
be evaluated at the lattice boundary and, as the boundary. 
itself is part of a streamline, only the magnitudes of 
the factors are of interest. 

From equations (17) and (19) and with w = Se icy 
'0 

1	
nh i sin a(cos a - cos 

j dQj

 dw	 3 cosh 2i - cos 2o L 

+ cosh yj cos a(sin a - sin 00 )]	 (24) 

where the parameter y j is defined in equation (15). 

In order to obtain dw/dz, it is convenient first 
to express equation (1) explicitly in w as 

	

b(1 + K)z - b(K1	 2)	
(25a) 

(1 - K)z + K1 + B2 

A standard form for the transformation of a circular 
region	 R into IwI S is



iL

ix z  

R2 	 sz 
w=HSe

-
(25b) 

Comparison of equations (25a) and (25b) makes" it clear 
that the complex parameter 6 and the real parameter X 
may be obtained from the following relations:

(26a) 
l+K 

or, as a check relation, 

= R(K - I)	
(26b) 

K131 + 

and

R	 K1 + 

or, by equating angles on both sides, 

= arg(l + K)	 - arg(ic31
+	 2)	 (27)

From equation (25b), the explicit correspondence of 
a point on the circle w = So lO to a point on the circle


	

z	 Re1	 can be obtained	 as follows: 

1 - 

	

e -0 = eX)	 -	 (28) 

1 - --- e 

Let the complex number 6 be expressed as töIeT and let


	

1 -	 e 	P =i	 (29) 

where

::	 - 2	 cos (ço - 1) + 
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tO 
H 
tO

and

sin ((p - T) 

= tan

-	 003 ((p - T) 
R 

Observe that the denominator In equation (28) is the con- 
jugate of equation (29) and is therefore equal to me1. 
There results for the correspondence of u and (p 

	

a = cp + X + 2i
	

(0) 

In particular, if the (trailing-edge) value of (p that 
corresponds to °t as determined by equations (7) is 
written as	 =	 +	 where	 is the value of 

c((p) at U	 U	 from equation (13), then 

=	 + + o 

By differentiation of eq 

dv = 

dz	
(n2 

On the boundary, put z 
equation (i) is

u.ation (25h), 

- öOe	
(31) 

_)2 

Re; then, the magnitude of 

f	 2\ 
= 

dz,	 R
(2) 

dz' The expression for
I dz 

from equation (9) in terms of 
4r (cp) of equation (10) as fol 

= L ( + 
dz	 z \

on the boundary is obtained 

the functions c(cp) and 
lows (see reference 3): 

df 
z 

dz	
(33a j 

and, because f(z) on the boundary is 

f(z) = i(p) -	 + 1(0 - cp)
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where

	

B - cp =	 (cp) 

then

L[(1 -	 + ( 22 

dz I	 z L\	 i —CP)	 d(pJ
(h) 

The last factor of equation (20) is expressed from equa-

tion (6) on the boundary z' = ae	 as 

2d E 1	 (3L) 
dz	 ii D  

where

2,3 cos:2y0cosh2 -	 + sin2 SL - sin2e) E=Fos  

-	 sin 20 sinh 2yo sin 2e11/2 

D	 cosh 2y - cosh 2(r + j8 )I 

= Rc osh 2y - cosh 2.cos 2e) 4 + ( sinh 2 sin 2e)2] 

Finally, combining in equation (21) the factors 
given in equations (21), (2), (3b), and (34) yields 

-= V

1 
= ABOD	 v	 (35) 

where 

A=	 [sinh y1 sin a(cos a - cos 00) 

cosr	 e3 20 

+ cosh	 c,-.	 .(sin o - 	 0s)]
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R/m2 

2	 --1/2 

c= [(l_ !\ +(k 
dc	 rdJ 

=F(Cosh 2y - CoSh 2' cos 20)2 + (sinh 2r sin 28) 21 / 0 
E=[co S 2 cosh2y0 (cosh2 -	 2e) + s±n2 sinh2 0 (cosh2\v - sin20 

i	 11/2 
- sin2P sLim 2y s In 20 

14	 0,	 - 

An application of equation (35) for the purpose Qf 
illustrating the vai'ious steus lnvolved 'in a calculation 
of the surface velocity and presure of the airfoil lattice 
is given in appendix E and illustrated in figures 5 and 6. 
For the sake of coniarison, the single-airfoil -case is 
given in figure 7. 

Some special results from equation (35) for a 'lattice 
of lines.- In the case of a lattice 'of straight lines, the 
z T -, z-, and w-planes merge hence 8 =	 = a and 
H = S = a. 

From equations (19) and (7) and with a + '= a, 
which is the angle of attack with respect to the chord, 

\Td	 (ccsh2i0 - T1/2
	 (36) 

The lift per unit span on a single member of the lattice 
is given by

L = 'pVi' 

where p is the air density. 	 The lift vector is per-
pendicular to the mean velocity vector (fig. i).	 This
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result i general and not limited to a straight-line 
lattice.	 The lift coefficient is 

pvr	 2F1 1	 F 

c (l 
0
2) cV	 c/d2vd	

. 

where F/2Vd is given in equation (36) and c/d can be 
found by equation (8). 

The local velocity on the surface (equation (35)) 
becomes

V(C

os 	 + N s in ai).	 ( 38)

whore 

IT =	

.	

+	 +	 sin 

(cosh lo -	
cosh yo	 sinh 

N 
= COS	 S	 -	 COS 

nh yo	 cosh 10 

In the special cases in which P = 1 00 and	 = 900, the

relations (36) to (38) are simpler. 

For stagger angle	 O	 and with d = 

F	 sina7 

2Vg	 cosh y. 

From equation (8),

ITC cosh	 =coth 2r 
10

and

2pV2g tanh 
Trc

 sin 

2tith2 
= TrpcV	 c sin 

irc 
2g
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The lift coefficient, according to equation (37), is 

tanh IL' 

CT = 2 	 sin 
irc 
2g 

For P = 00, therefore, the Elope of the lift curve is 
always less than 2n.	 Note that, for large gap, c,"g -4 0 
and the lift coefficient is 

CL = 2ir sin a7 

When the gap g is snail compared with the chord C, 

Cr —4 ).. - sin a Li	 c 

The local velocity at the surface, by equation (38), is 

	

= Vcco q. + tan 	 cot	 sin a7) 

This result may be compared with that for id-ie sing1eiine 
airfoil (I =	 - 

V	 V(cos a, + cot- sin a 
2 

For stagger ange 9Q 0 and with. 

p	 sin a7 

2Vh sinh y 
.0 

From equation (8),

snh vo = ot ire 

and

L = 2pV2h tan	 sin a,, 

tan 

= irpV2	 2b s in a7
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The lift coefficient, according to equation (7), is 

tan irc- 

CL	 2ir
Tic 

2h sln 

2h 

For P = 9Q0, therefore., the slope of the lift curve is 
always greater than 2Ti.	 The local velocity at the 
surface is 

v	
vHs 

a7 + cotli y cot	 -	 sin 

It may be noted in pass i ng that, icr c 

CL 8 sin a7 

as compared with

CL = 2ir sin 

for the single airfoil. 

For the limiting case in which b and d approach co, 
the transformation () becomes 

d (zle-ia  +a2-

2irb 	 -i 
z'e 

and, with limit	 I and a new variable z	 z'e. 
2 Tib

=ztt+ 

which is the familiar Joukowski transformation. 	 If the 
variables \4J and 8 are introduced, the corresponding 
result is expressed as 

= 2a cash	 + i (e -
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where the limit, as	
-	 d	 has been 
2a cosh 

put equal to 1. 

H

Langley Memorial Aeronautical Laboratory, 
NationEil Advisory Committee for Aeronautics, 

Langley Field, Va.
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APPENDIX A 

MAIN SYMBOLS 

complex plane of airfoil lattice (x + iy) 

2	 complex planes of airfoil lattice for stagger 
angles P= 0 0 and	 = 900 , respectively 
(xi + 1 i ; x2 + iy2)

f z'	 complex plane of circular-like contour 	 ae 

( z	 circle of radius R	 ae*o in z-plane \ae 

w	 circle of radius S = be1 in w-plane 

(be
-y1+i1 

h 

	

z =b, z=	 wb	 corresponding points 

	

-, z' = -b, Z	 2' W = -b	 corresponding points 

a, b	 reference lengths 

YO gap-chord parameter (b	 ae'1'o) 

stagger angle 

d lattice spacing, or 'slant" gap for any value of 

g lattice spacing, or gap for	 5 00 

h lattice spacing, or stagger for = 900 

V magnitude of mean of inlet- and outlet-velocity 
vectors	 (fig.	 t) 

CIX
angle of attack with respect to x-axis of mean 

velocity vector

a	 angle of attack with respect to normal to slant 
line of lattice of mean velocity vector 

a1 , a2	 inlet and outlet angles of attack with respect 
to normal to slant line of lattice, respectively 

V1 , V2	 magnitudes of inlet and outlet velocities, 
respectively 
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1 rj	 DiX B . 

INVERSION OF EQUATIONS (4) TO (6)


AND CHOICE OF COORDINATES 

It is desired to find from a.given airfoil lattice 
in the	 -plane the contour defined, by i(B) in the 
z'-plane.	 This problem corresponds to an inversion of 
equations (Lu) to (6) and can be exactly treated for the 
cases in which	 = 00 and 81 = 90 0 (equations (LL) 
and (5), respectively) but an iteration or successive-
approximation method is required for equation (6). 
Furthermore, although the parameters g and h are 
fixed by the geometry of the lattice, a choice exists 
in the definition of the chords and the origin of coordi-
nates.	 This choice is discussed following equation (.517). 

Stagger angle	 = 0_ From equation (3), there is 
obtained

lT 
cosh ('V + je) = cash

	

	
c- 

tank - 
g 

Putting	 . .x1 + iy1 and denoting the real and imaginary 

parts of equation (Bi) by 	 and rl
, 

respectively, 
leads to 

2ir 
cosh sirih x1

cosh 'V cos e =
	

=
2 TT 

cosh:1 +

(B2) 
2 T 

cosh y9 si	 -- 
- sinh 'V sin

2 
cash x1 + cos -

The expressions containing x 1 and Y	 in equation (B2) 

are considered given since these quantities are known 
from the coordinates of the airfoil lattice.	 If 'V 
and 0 are eliminated successively,

(Bl) 



2 L

()2 -( r\)2 = 

cos U	 \sin U, 

and	 -	 (B5) 

 2 )2(	 l)= 

\cosh t4.	 \sinh 

From equation (B5), there result the following expres-
sions, which serve to define the function 11(0) in terms 
of the airfoil coordinates: 

	

sin2ep+\/p2+	 I 

	

sinh2 \	 _p +	
+	 I 

where

1/'	 2	 2\ pl.- - 

For small values of 0, the relation sinh = 
may be used.	 -	 sin 0 

It is useful for computational pur poses to record 
the real and imaginary parts of equation (5) 

	

/	 2 

	

X ,	 log

P2 
2

(B5) 
/ - a. ic.p	 - cc) 

• l2Ir . ].	 2 

where

p12	 (cosh y0 + cosh )' cos 0)2 + (sinh ji sin 0) 2 

p 2 2 = (cosh y	 cosh j cos 0)2 + (sinh i sin 0)2
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sin	 -i--- S. 
1	 p1	

nh \4J Sin e 

Sifl CP 2 -	 sinh i sin e 
P2 

The angles are to be chosen between -11 and îi, and 
the quadrants may he determined by noting also the 
relations

cos CP = 4-' (cosh y0 + cosh \I CQS9) 
Pi 

cos 2 =	 (cosh	 - cosh ii cos e) 
1-2 

Stagger angle	 = 90 0 . _ From equation (5), there 
is obfed	 - 

siiih ( i + i9)	 sinh yo tan
	

(B) 

With 2 =	 + iy2 and the real and imaginary parts of 
equation (B6) denoted by 2 and r 2 respectively, 

sinh Y sin 2ir 

sinh\fr cos	 =2=
2rr	 2 T cosh	 V') + cos --- x 

n

(B7) 

COSh \fr Slfl 8
sinh yo sinh

h Y2 

	

2ir	 2 T 

	

cosh
T	

+	 - x2 

If	 and U are eliminated successively,
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( ) 
2 _\21 

\cos e)	 (si n 0) 

(22(22	

(B8) 

sinh	

+ 

 )	 cosh J = lJ 
From equations (B8) there result finally the following 
expressions, which serve to define the function iIf(e) 
in terms of the airfoil coordinates: 

cos20 = q + /2 +

(B9) 

	

sinh2'/ = -q +	 + 

where

11	 2	 2 q = 2•\
	 2 - 

For values of 0 near ±900, the relation sinh j = _2 
may be used.	 cos B 

It is useful for computational purposes to write the 
real and imaginary parts of equation (5) 

h/ 
X2

h Ii	 2\	
(BlO) 

TTr	
log -)


P4J 

where

P3 2
	 (sinh yo + sinh	 cos 0)2 + (cash 4' sin 

= (sinii y0 - sinh 4' cos 0)2 + ( cosh 4' sin 0)2



cos h2 ' '0 + cos26 

(cosh2 y0 . - Cos 2 )2 . 
•il

d 
- sin 2	

tan..J.sin 8
-, x2

£1r sinh

2 
+ ijj sinh Yo sin 8 (Blib) 
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sin cp =----cosh\!J sinO 
3	 p3 

to 
H 
V)	 cosh	 sin 

The angles are to be chosen between -ii and rr, and the 
quadrants may be determined by noting also the relations 

cos (P3 = _._ (sinh Yo + sinh ' cos e) 

cos CP ) = J (sinh yo - sinh 'JJ cos o) 

Arbitrary stagger angle P and choice of coordi-
nates.- Because of the transcendental nature of equa-
tion (6)., a direct inversion expression seems unobtainable; 
however, the values, 8) that corres pond to coordinates 
(x, y) may be obtained without difficulty by an iterative 
process. For this purpose and for the purpose of choosing 
the coordinate axes, expansions of x 1 , x21 yi , and 

in powers of f are useful.	 The following expansions 
may he readily verified: 

d	 I	 cash v + cos 8 
- cos:flog	 .-
2ir	

L	
cash Yo - cos 6

2 
+ 2 cosh Yo cos 8	 - sine + ...j (Blia) 

(
2 cosh	 - cos 6) 
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d	 2 cosh y0 sin B
Cos 0 (Bile) 

cosh 2 Y - cos28 

d	 2 sinhcos B 
Y2	 2 Tr 

- - 	 sin	 (Bud) 
cosh 2 y0 - cos20 

Then

Y = y1 + T2 

F(e)	 (B12) 
IT 

where

F(O ) = cosh yo cos P sin 6 - 	 yo sin 3 cos 8 

cosh2 y0 - cos26 

If the x-coordinate of the straight-line lattice, which 
is considered the skeleton of the airfoil lattice, is 
denoted by x0 , then	 is given by the value of 
xx1 +x2 for \!Q, or 

x0—(Cos d  '	 log cosh y0 + cos8 2 sin p tan'	 Slfl 8 '\ 
2Tr	 cosh 10 -cos 8	 sinh 

and

x	
+ _ 2 ((9) 

where 

G(9) cash
	 cos	 cos B + sinh	 sin	 sin 8


oh2y -

(Bl) 

(BlL) 

(cosh yo cos- sin B - sin y0 sin f. cos 8) 2 sin B cos B 

(cosh2yo -

=F'(e) 
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In particular, the leading- and trailing-edge points 
X = x 1 and x = Xt, are determined by the values of 

9 =0	 and 9 = 8 . that may be obtained from equa- 

tions (7b).	 Then,

d 2 
_ 

X 	 ' GCj	 (B15) Tr 

where

/•	 _______ 

•	 2 \slnh	 cosn 2 "^O) 

and x.	 denotes the leading edge of the line given by 

= 0.	 A similar expression holds for xt. 

From equation (B12), for constant 

- IT 

=	 \JG(9) 

In the neighborhood of the leading edge, therefore, 

TT 
iG(G - eL)
	

(B16) 

For x0 near x3 , there is obtained from equation (El), 

	

= x01 + (e - e) x0 ' +	 2	 x0t + a.. 

where the following relations are found to hold: 

= [Fe1	 0 

d 

	

xC)
, 	 ,	 1	

= - d Go = - -Gte)j	 - 

	

1'	 iT-	 8=97	 IT
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Hence,

2 X0 Z X0 - f-- G0 (B 9) 

Then, from equation (BlL), 

- X0 	 - X0  +	 iJ G(e) 
2 TT 

00 [-(3 - e) 2 + 21 
2 Tr 

It follows from equation (B16) that, for. x = x0; 

e -	 '4.r 

and

y = y0 z 
d2 

1 

With this value of 	 and equation (B15), 


YO 

x 1 - 

If the total ordinate for both upper and lower sides at 
X = x01 is denoted by yt, 

yt	
(B17) 

XL- 
'Ji 

This result leads to a simple and convenient way of 
choosing axes of coordinates in order that Ji(e) will 
behave smoothly at the edges; that is, that the value 

at the leading edge is approximately the mean of 
the values of ii at nearby ordinates on the upper and 
lower surfaces.	 For a parabola the latus rectum, or 
ordinate through the focus, is four times the distance 
from the vertex to the focus. 

I
Equation (B17) states 

that the end point of the skeleton chord should be approxi-
mately the focus of a parabola at the nose.



The scheme for choice of axes is as follows: Loc.ate 
a point F near the leading edge where the ordinate 
through F is four times the distance of F from the 
leading edge.	 Similarly locate a point Ft near the 

to trailing edge.	 The origin of coordinates then bisects 
the line FF', which is on the x-axis and represents the 
chord of the skeleton line airfoil 	 0.	 (To the order

of approximation employed, the afore-mentioned choice of 
axes coincides with that given for the single wing section 
in reference 1 or 

Procedure for finding ('4', 8) from (x,) for 
arbitrary stagger angle	 .- An iterative procedure is

given herein for finding 4i(8) from (x, y) for arbi 
trary	 , in which the knowledge of the case for	 = 00

is employed to help in formulating the initial approxi-
mation.*	 In brief, values of 0 are obtained for stagger 
angle	 = O for both the airfoil andits line skeleton. 

Values of 0 are then found for the skeleton, in the case 
of stagger angle P.	 These functions permit approximate

values of 0 to be found for the airfoil, for stagger 
angle	 .	 Equation (B12) then enables approximate values 
of '4, to be obtained.	 These values of (it', 8) are then 
readily checked and improved, if necessary. 	 The steps

are as follows: 

(I) Choose the axes as outlined and express the air-
foil coordinates in percent chord, where the chord for 
this rurpose is the part of the x-axis intercepted by the 
airfoil.	 Denote the coordinates thus obtained by 
xp , yr).	 Find k . FF' in percent chord. 	 Find 

X L - x0 , the distance from the leading edge to F in 

percent chord, and denote.this value by e. 	 Obtain the 
ratio c/d, where c means here FF' and d is the 
spacing between corresponding points on adjacent airfoils 
of the lattice. 	 Find conversion factor m by 

cl 

(.2) Convert coordinates of the airfoil from Xp, Yp) 
to c21r, 2ii	 as follows:	 .

dJ



32

2 i = rn(e + - x) 

2 I	 my 

(3) Find the parameter y0 that corresponds to 

the determined value of c/d for the given value of 13 
from graph or by calculation (equation (8)). 	 Also find 
for later use the value of c/g corresponding to this 
value of y o for 13	 00. 

(Lb) Consider, for this value of y0 , the two 

straight-line cases (4i	 0, 13 = 00 ) and (' = 0, 3	 13); 
associate values of 0 = 0	 for 13 

= O with values 
0 = O	 for the stagger angle 13 by referring associated 

values of 0 to geometrically similar points of the lines 
(equation (B13)). 

(5) Multiply coordinates in step (2) by the ratio 
(c/g) 
--.-	 where the chord-gap values are from step (3) for

cc /d) p 

13 = 00 and for P = P.	 Using equation (BL), find 
values of 0 for 13 

= 

(6) With the aid of step (Lv), obtain approximate 
values of 0p associated with the values of 0 obtained 

in step (5).	 Then, with e = Op, use equation (B12) 
to obtain an approximate value of 4J, where 

- 2ny F(e) 
d	 2

and the leading- and trailing-edge v 
obtained from equation (Bl5). 

(7) Calculate, from equations 
(  

values of	 2ir x , 2rr	 associated 

values of	 e) in step (6) where 
= 71 +

alue s of iji are 

(B5) and (BlO), exact 

with the initial 

and 
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(8) If, on comparison . of the coordinates in step (7) 
with the coordinates in ste p (2), it is deemed necessary 
to approximate (, e) more closely for several of the 
points' . (x, y), one procedure is the following: An ex-

pression for	 - can be found from equations () 
+ 10) 

to (6) as 

- d	 -	 sinh (+ 19)	 sinh ( + 10)	 1 -	 --cos 
+ 10) 2 T	 cash y. + cash (4i + 10) cash y 0 -cosh (iij +10) 

d	 cash (i4i+ 10)	 +	 cosh (!'+ iO) - 
1 2i 

Slfl	
y0 + sinh (i + 19) si.nh y o - sir--h (& + 19) 

With the notation of equations 
pression may he written 
d ('2ir' --

=p+iq 
d(4i±iO)

cos	 sinh ( + 19	 ei1 + - e2) 
\Pl	 p2

(P 
- I sin 0 cosh (' + 10 )(J_ e3 + i 

P	
)


where I	 /cos (p1 
P = cos	 s1	 4' cos 0 - + 

L	 \ 1	 2/ 

/sin p	 sin 
+ cosh. 4i sin 0 (	 + 

\ p
1 	 p2 

+ sininh 
IS	

4i sin	
(p3 + 

L	 2 
- cosh	 cos 0 (sin_
	 + sin 

\ 
p3	 P	

/j 

(B5) and (BlO), this ex-

I



3)4. 

and

CO 

Sq = cos * Ic 	 sin G	 + 
cos_c22\ 

"sin_(p1 + si n _CP 
- sinh j co 	

2"\l 
e	

p2

 sin
( p	 p 

-	 osh 'dJ cos B	 2. + Ic 	
COS (P7	 cos 

7sth (p	 sin cp)\ 
+sini\4J s

i
n B(	 •_L+_.	 'H 

\P3	 PLJ 

The following relation may then be noted 

, J2n'x" +(i 

fr + -. AB	 .L.  
p + iq 

Let

(B18) 

= (2

\d/	 \ dj 

= ('2ii 
\dj \ dj

(2TT x \

 Lt/1 

(2 -" 
d,1 

where the subscripts 0 and 1 refer to the coordinates 
given in steps (2) and (7), respsctivelv. If the values 
(ifr, o) obtained in step (6) are used, evaluation of equa-
tion (B18) gives values (t'	 ü), and ('i+L, O+B) 
represents the next approximation to the desired coordi-
nates.	 The process in steps (7) and (8) can be repeated

if deemed necessary.
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APPENDIX C 

DERIVATION OF EQUATION (12) 

The transformation (equation (9)) from the z'- to 
the z-plane may be rewritten 

log	 f(z)

(C 1) 

where the complex constants c nay be defined as 

a
r.

 

On the boundaries, z' = ae	 and z = ae	 ; hence, 

lOG=..0+i(O-cp) 

* and

-= ^_, (- cos nq + - sin n	 (C2) 
H	 / 

whore

H ae0 

With	 ii	 considered as a function of denoted by 
r (cp),	 the coefficients in equation (C2) are obtained as 

a 
- /c(c) cos ncp	 dcp 

bn 
fl r(co) sin np	 dp /	 I	 (C3) 

2Tr 

- i'(cp) e 
Rn 	 TT
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Substituting equation (03) in equation (Cl) yields 

2ir 
1(z)	 ) > —°	 dcp	 (cLv) 

IT	 z 

For	 < 1, the geometric series in equation (cJ) can 

be summed and

r2ir	 "P
1(z) = ! 	

— Re 
irj0	

z - Re 

which can immediately be expressed as in equation (12). 

For computational purposes, equation (12) may be 
separated into real and imaginary parts.	 Let 
1(z) = p + iq and z = x + iy (where, for example, in 
the zeroth approximation x	 h, y	 0).	 Then,

(05) 

1 
p=- 

TI'

r2Tr 

IT 
q=

LIO

N 
'IJ ( p ) -	 dq 

) 
( cp ) .- ll dcp 

where

x	 y N 1	 - cos (P + - sin (P - 1 
R	 H 

7	 V = - sin (p -	 cos ( 
R	 R 

D = 1 - 2 +	 ) + 2 + 
H	 H 

and the integrations can be conveniently performed by 
Simpson's rule.
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APPENDIX D


TRANSFORMATION FROM z-PLANE TO w-PLANE 

H
The linear fractiOnal transformation 

az+h 

cz + d 

on which the derivation of equation (13) is based, has 
the following well-known properties: 

(1) When z traverses a circle C, w traverses 
a circle C. 

(2) Two points w	 and w2 inverse with respect 
to a circle Cw correspond to two points z 1 and 
inverse with respect to the circle C. 

(3) The anharmonic ratio of four points is pre-
served; that is, if z 1 , z21 z 3 , and z	 correspond to 
w1 , w2 , w3 , and WL1, 

(z 1 - z)(z 2 - = (w1 - w)(w2 -	 vi3') 

- z 2) (z 3 - z) (w1 - w2 )(w7 - wj)

F)r the desired correspondence it is known that four 
points w1	 b, w	 -b, and their inverse points 

S2	 2 
w= -, w1 = 

b	
are to correspond to z1 

3	 b 
H2 z2	 -	 and their inverse Doints zz =	 , Z = 

1	
Lj 

Property (3) yields a relation that may be used to solve 
for the radius S and that can be expressed by equa-
tions (15) and (16).	 When the radius of the cirle in

the w-plane has been determined, property (3) can again 
be used by replacing - say, w 	 by w and z	 by z. 

This procedure will yield a result that is equivalent to 
equation (13). 
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APPENDIX E 

OUTLINE OF CALCULATION PROCEDURE 

(1) List airfoil-section coordinates in percent 
chord.

(2) Choose axes (appendix B, paragraph following 
equation (B17)). 

(3) List stagger angle P and find yo and value 
of c/d for the skeleton line lattice (table I, fig. 2, 

and equation (8)). 

(Lb) Find (hf, 8) (appendix B). 

(5) Find c(cp) (equation (10)) by method given in 
appendix of reference 3. 

(6) Plot i against CP where	 8 + E.	 Find 
hi ãontanc '1i	 (equation (11)) and R	 ae. 

(7) Find complex constants	 and	 2 (equa-
tion (12) and appendix C), 

(8) Find constants cosh y1, 
y, S, and 

K	 + ik2 (equations (16), (15), and (14)). 

(9) Find complex constant 6 = jô!elT (equation (26)) 
and real constant	 (equation (28)).	 Also obtain 
functions rn(cp) and 1i(cp) from equation (29). 

(10) Find G and, in particular, Go (equation (30)). 

(11) Evaluate factors B, C, D, and E (equation (35)). 

(12) Evaluate factor A in equation (35), first 
choosing the angle of attack a. as indicated in the 
fo1lwing paragraphs: 

The lift coefficient is as in equation (37) 

-	 1 F 
CL - - 

c/d 2Vd
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Here c/d refers to the value of x/d at 0-percent chord 
minus x/d at 100-percent chord. By using equation (19) 
for 7/2vd, CL may be expressed as 

CLHsin(a+) 

where

r	 2	 211/2 

H = 
	 + sin 0 

C 
L\.001	 )	

\ sinh 
t'rJI_L 

and

• /sin a,-, cash y r=tan1— 
\cos 0 sinh 

This relation may be used to find a for any desired 
value of CL and it is further noted that a 	 is


the angle of zero lift. 

The "ideal" anle of attack, introduced by Theodorsen, 
is defined for a thin section as the angle of attack for 
which a stagnation Point edsts not only at the sharp 
trailing edge but also at the shar p leading edge.	 For 
thick airfoils, the ideal angle of attack is defined in 
the same manner (the pressure difference at the leading 
edge vanishes) although the point that is considered the 
leading-edge point is not precisely defined.	 If this

point is taken to be the intersection of the x-axis with 
the airfoil lea-ding edge, the ideal lift and ideal angle' 
of attack are found as follows: Let 0'	 be the value 

of u corres,ponding to the leading-edge point.	 The 
quantity d/dw in equation (24) (or the factor A in 
equation (35)) vanishes for a = 0 1 .	 The relation that 

gives the value of the ideal angle of attack a 	 a1 
is then

sin 'a - - cosh y j sin 01 - sin 00 

cos a	 sinh yl cos 01 - cos 

and the ideal lift coefficient, from equation (El), is 

-	 cii	 1, - -a - - Cos - ( 0 - 0

I	 c 	 2\1	 0

(El)
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where 

=o s h 11 C°S 1 (a ++00 
2 

+ 1-9inh Yi Sin	
-12 

 JJ 

(1) The surface velocity ratio v/V is now found 
from equation (5) and the (mean) superstream pressure is 
found from Bernoulli's equation as 

E -i 
-(1^ 2 

q

11 ) 

The angle through which the stream is turned may be found 
from equation (2). 

A remark may be inserted here regarding an inverse 
calculation procedure. 	 Instead of starting with a given 

lattice, it may be convenient to start with given func- 
tion i(p), (quantity 4i asa function of 	 ) and given 
parameters y and	 .	 Then both the lattice arrange-

ment and the flow properties follow uniquely, and in this 
way, systematic families of lattices can be studied.
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