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NATIONAL ADVISORY COMMITTEE FOR AERONAUTILS

ADVANCP RESTRICTED REPORT

ON THE PLANE POTENTIAL FLOW PAST A
LATTICEAOF ARBITRARY AIRFOILS

By I. E. Garrick
SUMMARY

he two-dimensional, incompressible potential flow
past a symmetrical lattice of airfoils of arbitrary shape
is investigated theoretically. The pvoblem is treated
by usual methods of conformal mabﬁlng in several stages,
one stage corresponding to thes mapping of the framework
of the arbitrary line lattice and another significant
stage corresponding to the Theodorsen method for the
mapping of the arbitrary single wing profile into a circle.
A particular feasture in the theoretical treatment is the
special handling of the regions at an infinite distance
in front of and behind the lattice. Expressions are
given for evaluation of the velocity and pressure distri-
bution at the airfoill boundary. An illustrative numerical
example 1s included.

INTRODUCTION

This paper treats the problem of determining the {low
pattern, or the velocity and pressure fields, assoclated
with the uniform flow past an infinite row of symmetrically
placed zirfoils of the same shape. This airfoil-lattice
problem occurs in the design of turbine blades, wind-tunnel
vanes or grids, and elsewhere. There is a purely mathe-
natical interest in the problem that concerns the field
of conformal mapping of infinitely connected regions.
Analogous two-dimensional "lattice" problems occur in the
oteadv flow of heat and electricity.

Considerable ingenuity has been devoted to the
airfoil-lattice problem, especially in the turbomachine
studies in the German literature and more recently in the
British studies; nevertheless, a survey of the available
literature indicates that nearly all the treatments



employed and the results obtained are of a special or
indirect nature which involve, for example, lattices of
thin lines or approximate graphical procedures, Re~
cently, however, A. R. Howell in a British paper of
limited circulation has written briefly on the theory of
arbitrary airfoils in cascade. Howell applies a special
“transformation to an airfoil lattice to convert the lattice
region to a somewhat random, simply connected reglon and,
with the aid of several stages of conformal mapping, ob-
tains a region about a tircle.

The problem of determining the incompressible poten-
tial flow past an arbitrary single wing section was
studied by Theodorsen (reference 1), who gave a practical
procedure for its solution. The case of two wing sections,
or the arbitrary biplane, was later treated in reference 2.
The determination of the flow past an infinite lattice of
airfoils of the same shape 1s a problem intermediate in
difficulty in comparison with the afore-mentioned ones.
The treatment for resolving this problem given in the
present report is similar to that for the arbitrary single
wing section but the calculations are.more involved. '

The problem will herein bs studied by the usual
method of conformal mapping. It 1s convenient to ac-
complish the result in three or four stages: The airfoil
lattice is first replaced by its skeleton, or framework
.of line segnents. The initial mapping function emploved
transforms the lattice skeleton into a circle. In the
plane of this circle there are two singular points, known
as branch points. These points have dual significance:
They correspond to infinite regions in front of and behind
the lattice of 1ines, and they enter in the problem of
reducing the lattice region (multiply connected region)
to the region of a single body {simply connected region).
If now an arbitrary airfoil shape is generated or given
around the framework of lines, then in the plane of the
circle a circular-like contour is generated around the

original circle, This contour may be transformed into
an exact circle by the well-known procedure given in ref-
erence 1 or 3. The original two significant points are

then traced by a transformation due to H. A. Schwarz.

A final elementary transformation will bring the circle
into a standard circle for which the two characteristic
branch points are symmetrically placed. The region of
this circle is considered the standard region for deter-
mining the filow. pattern.



For illustrative purposes an outline of a procedure

for calculating pressure distributions is included. The
method may be followed without reference to the theory
by readers interested mainly in numerical results. For

convenience, a list c¢f symbols is given in appendix A,
ANALYSIS

Initial transformation for lattice of straight
lines.- Consider the transformation (reference ))

a2\
b + z! TS \
cl = £ leg ———— + log -——:.; (1)
21 \ b - z! . . a
N Z' - —

where g, b, and -a are real numbers and b > a.
Introduce coordinates ¥ and 6 by means of the relation

Y+ig
ae

and ‘let

Equation (1) may théen be expressed as

[cosh v, + cosh (¥ + 18)]
¢ = £ 10g | Q (L)
2m {cosh Yo = cosh (V + i8)

If ¥ =0, according to equation (2), z' 1lies on a
circle,of radius a (fig. 1(=)). According to equa-
tion (), 5, = x, + iy is the logarithm of a real posi-

o

]...1

tive function and consequently represents a real function
(its principal value) and the infinite sequence of values

differing from this function by j’g ‘2kmii. where k is
any integer. The transformestion illustrated in fig-

ure 1(b) is that of an infinite lattice of unstaggered
lines of gap g in the Ql-plale into the circle of
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radius a in the 2z'-plane. The points 2!' = b and -
z!'! = <b correspond to infinity in front of and behind 5
the lattice, respectively. The inverse points z!' = %r
and 2! = -%; are inside the circle of radius a.

In order to introduce stagger, it is convenient to
cansider the transformation

2

z 1 +_a.._

¢ = _ih log b + z! - log b
2 2 Jb_z' z' -—a—-g_
b

where h 1is real. This transformation can be written
with the use of equations (2) and (3) as

-

h sinh vy, + sinh (¥ + 19)

(5)
sinh v, - sink (Vv + ie)__j

If ¥ = 0, the expression within the brackets is a coem-
plex number of unit magnitude; hence, the logarithm 1s a
pure imaginasry number plus an infinite sequence of numbers
differing by - 2wi. Then §2 = x5, + 1y, represents a

sequence of real numbers differing by h and the lattice
is one of horizontal lines displaced from each other by.
h (fig. 1(c)). .

The transformation for the general staggered-line
lattice is a combination of equations (ly) and (5)

£ =ty + L, - (6a)
or
2
b + . A +§'.... .
-3 z

t = L [1P log + otP log i, (6b)
2 b - z! . a“
2! - -
b
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where

gap g = d cos (B

stagger h = 4 sin 8
stagger ratio h/g = tan B

the parameter d may be called the slant gap (fig. 1(d)),
and B the stagger angle. ‘

The geometry of the lattice may be expressed in terms
of the parameters «, and { Dby noting that the chord

- length may be obtained from the (singular or critical)

values of 6 which correspond to the end points of the
chord and are solutions of the equation df/dz' = 0.
This equation gives the result

tan 6 = tanh vy tan { (72)

or, for later reference,

cosh vy, cos @3 i

cos O = - '
) } (7b)

sinh v, sin f |

where

: A 1/2
Q= (coshdyo - sin2ﬁ)

Relations (7) may be employed in two ways: (1) YWhen the
parameters Yo and { are glven, the relation determines
the two critical values of 9, GL; and Gt, where the

subscripts 1 and t refer to leading edge and tralling
gdge, respectively, and et = GL + . (2) When 8, or
tan SL and the stagger angle (¢ are given, the relation

determines the parameter. ¥ .

o
The chord c¢ may be obtained by putting 8 = 8,

and © = 8, in equation (6a) and taking the difference

in abscissas x; and x_. From equations (l) to (7),



C:XZ:-Xt

= 2d (}oé B log Q+ cos B, sin B tan~1 SiN B) (8)
m sinh vy, &

By means ol equation (8),.th& parameter s can be
presented directly in terms of given values of %he gap-
chord ratio for any stsgger ratio. A representative
chart relating gap-chord ratio, stagger angle, and

is shown in figure 2; some values are given in table I.

Inversion of equations (}) to (6).- The initial
transformations may be thought of as mapping a framework
of chords of an arbitrary lattice. into a circle, if a
shape is generated around the chords in the z'-plane, a
contour 1s generated around the circle of radius a.

This contour, which rmust exclude the points 5' = -b and
z!'! = b and must enclose the points gz' = - %; and

2
z! = %;, may be considered to be completely defined by
the function V(8). If a lattice of airfoils is pre-
assigned, the function V(€) must be found from the given
coordinates of the airfoil shape. In order not to inter-

rupt the sequence of main ideas, the details of this
problem are relegated to appendix B, with certain remarks
on the practical achievement of a nearly circular contour.

Transformation of contour in z'-plane to circle in
z-plane.- It is assumed now that the circular-like contour
in the z'!'-plane which corresponds to the airfoil contour
of the lattice is either given or determined; that is,
the function VY(8) is known in the boundary expression

Y+1i86 .
ae

z!' = . By the procedure of reference 1 or 3, the
transformation
z! = zef(z) (9a)
where
C?.-C Al
flz) =5 B = 1og = (9b)
1zt 2

.

and c¢n are complex coefficients detérmined by the

boundary, is then employed to transform the z'-contour
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into a circle 2z = ae in the z-plane. The trans-
formation (%9a) keeps the regions alike at infinity in the
z'- and z-planes; that is, z = z' and dz'/dz = 1 at
infinity. The correspondence of the boundaries is deter-
riined by the functional equation

21
. .
:l—f 7(01) cot T2 qo (10)
27 Jg 2

for which a convenlent numerical solution has been out-

lined in reference 3. The radius of the circle R = ae ©
is determined by the relation
1' 2m
Yo = = [ o) a0 (11)
21 Jo

For consistency, the functional symbol U(®) is here used
to denote the gquantity V expressed as a function of © -

that 1is, W[B(@[j. In reference % the notations W(Q)
and WI?(@X] are used. .

It is necessary also to trace the correspondence of
the points 2z' = b and z' = -b. Let =z = {9 corre-

sporrd to z!' = b and let 2z = -52 correspond to z! = -b.
The values Bl and {» may be determined by a relation

(due to Schwarz) 'that expresses the value of & complex
function in terms of an integral of the real part of the

function along a circle, A simple derivetion of the
desired relation is shown in appendix C. The expression
is
1o0p 2!
log =— = f(z)
v4
1 217 4
=1 (o) :d (12)
™
Vo



The values of Bl and 92 may be determined from .
equation (12) by an iteration process that converges
extremely rapidly. The . process may be described as
follows: 1In equation (12), let the zeroth approximation
to f; be 2z = 3z35 =Db and let the corresponding value
bef(b), where T©(b) 1is
the evaluation of equation (12) for 2z = b. It is
actually desired, however, to have 2' = b but, because

of 2' Dbe written z!' = zo' =

z! ': Zg' = h + ZO' - D
the initial value of 2z' differs from the desired value.
by zg' - b, Furthermore, 2z = zy differs from 2z = By

by approximately the same amount; hence, reducing 2zg
by the quantity z5' - b gives

zZy] = zb + b - 25!
"b& -eﬂbﬁ

which may be considered a first approximation to ;.

If it is desired to check this result or to obtain a
second approximation, the process may be repeated; thus,
from equation (12), find f(z3) and :

z1! = zlef(zl)

L }le n 9

which i1s a second approximation to Py and, in general,
the nth approximation is

_— t
Zy = Zp.y t b -z

It is clear that, should 2z, correspond to Zn-l" Zra1’

must correspond t¢ b and the process automatically stops.
The numerical process is given in appendix C; relatively
elementary steps are involved. In order to determine

-B5, the process 1s applied with b replaced by -~b.
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Transformation to standard circle in w-plane.- In
order to obtain the flow pattern, it is desirable to
introduce another function which transforms the circle
in the z-plane into another circle in the w-plane in such
a way that the characteristic points 2z = 87" and

z = -B5 map into w =Db and w = -b, respectively.

The region of the circle in the w-plane may be considered
the standard region. The deslired transformation may be
written as (see appendix D)

B, -z
b ‘i’i:K(—-l- ) (13)
b + w Bo + 2

where
2 - 8% BBy + R
K = 5 5 __f" 5 (].LL)
< + 8% B818; - R
and
Vo .. .. . . s . e
R = ae 1s the radius of the original circle in the

z-plane, B, 1is the complex conjugate to By, and S
is the radius of the new circle in the w-plane. The
radius S 1s determined by

S = be 1 (15)

where 4, 1s obtalned from
cosh ¥, = =|———== (16)

Complex velocity potential in w—plane.; Consider the

flow function £(w) = @ + 1¥, which is defined as

2\ b
. W+ — W - e
vd i =3 3
QO (w) = - -= {10 10g b+w, ~ia log _ il log . (17)
2w b=-w 82 LUT- 2 2
W = e b -W
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The flow pattern may be regarded as due to a combination
of singularities, sinks, sources, and vortices, placed at

2
the points w = *b and w = i%r as indicated in figure 3.

It may be readily verified that the circle of radius § -

that is, w = Seio - is part of a streamline and it may
further be observed from figure % that the circulation

around any contour which encloses the points w = patsind

b
and for which the points w = *b are exterior points,
is T' (positive if counterclockwise). The parameter a

will be interpreted later as an angle of attack.

The value of the circulation .I' may be determined
by means ol the KuttazJoukowski condition for smooth flow
at the trailing edge of the lattice. Let 0, be the
value of 0 on the boundary circle Se*% that corre-
sponds to the trailing edge of the lattice. The
Kutta-~Joukowski condition then requires that the flow
separate at 0 = Oy, or that a stagnation point exist
there.

With aQ/dw = 0 and w = Se Y0, the following
relation for I' is found:

D= Livsa [P-Sin (o, + a) + §£ sin (o, - aﬂ (18)
————ba o 5 g
] b2

If S/b is replaced by e 1 (equation (15)), equa-
tion (18) may be expressed as

cos O . sin o
I' = -2v4 {———2 sin a + ———= cos a (19)
cosh 1 sinh v :

Expressions for velocity in lattice field.- In order

to obtain the flow pattern in the lattice field ({-plene),
the component factors of the following expression are
required: ‘

Q ; 7 1
a _ d dw dz dz! (20)
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These terms may be obtained from equations (17), (13),

(9), and (6).

It is of particular interest to evaluate equation (20)
explicitly for the regions et infinity in front of and
behind the lattice and also on the lattice boundary itself,
It is recalled that { = « corresponds to z' = b,

z = Bl, w=D>b and that { = -» corresponds to z' = -b,
z = -62, w = =b. By combining terms according to equa-

tien (20), the (reflected) inlet-velocity vector is
obtained as

aql co

= - Ve - %g. oif (21)

and the corresponding expressicn for the outlet-velocity
vector is

agl .
— = V -~ iV <
[d zlm e

i(a+8) + il eiﬁ

= - Ve > (22)

By addition of equations (21) and (22), it becomes clear
that the velocity vector of magnitude V and angle of
attack a + 8 with respect to the x-axis is ons-half the
vector sum of the inlet- and outlet velocities (fig. l).

If the angle of attack of the mean velocity vector
with respect to the x-axis (chord direction) is denoted

by ay = a + B, the velocity components in equations (21)

and (22) are

I

Vx -V cos ayx + — sin B

1 24

cos B

Vyl = -V sin ay + —
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and

Vx

5 = =V cos qx - gﬁ sin B

Vy, = V sin ay - %é cos B

The conventional angle of attack a 1is measured
with respect to the normal to the gslant line of the
lattice. The components normal to and along the slant
line of the lattice, sometimes refeérred tc as "axial"
and "whirl" components, respectively, are found by rotating
all vectors in the xy-plane by angle B (fig. L). These
components are, for the inlet velocity, ' '

V,. = -V cos a
Nl

T

Vp, = Vosin o+ o=

and, for the outlet velocity,
VN2 = =V cos a = Vi

VL2:VSiHQ~§a

The squares of the magnitudes of the inlet and outlet
velocities are

2]
2 2 r o, T\
v = V-]l + 2 s a + | —
1 ova o <2Vd)

.

IP \?T
V22 = V2 1 -2 —E— sin a + <——— .
vd 2va |-

no

—

where T[/2Vd may be obtained from equation (19). Observe
that the inlet and outlet speeds are cequal, Vl = Vo,

when a = 0° for any value of I, The inlet and outlet
angles of attack with respect to the normal to the lattice
line are
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sin a + —
a; = tan™1 2¥d
cos a
&
2 sin a - 1
H a, = tan™1 2Vd
cos «

and the angle through which the streamn is turned 1is

2‘—2— cos a

_- NE
1 - (-
2va

The component factors in equation (20) are now to

a; - ap = tan

be evaluated at the lattice boundary and, as the boundary. - .

itself is part of a streamline, only the magnitudes of
the factors are of interest.

From equations (17) and (19) and with w = Se10,

_z2vd 1 [?inh y1 .sin a(cos O -cos Op)

-~ W8 cosh 2y -cos 20

B
aw

+ cosh yy cos a(sin C - sin OO)] ' (2ly)

where the parameter y; 1s definsd in equation (15).

In order to obtain dw/dz, it is convenient first
to express equation (13) explicitly in w as

b(1 + K)z - b(kBy - B,)

w =

i

A standard form for the>transformation of & circular
region Jz]2 R into |w|2 3 is



w = RSelX

0 (25b)
- 52

=y
[ROR AN

Comparison of equations (25a) and (25b) make§ it clear
that the complex parameter & and the real parameter A
may be obtained from the following relations:

— (26a)

- or, as a check relation;
2w - 1
g= U - 1) (26b)

and

i (1 + Kb

B, + 8,

1%
(U]
[

or, by equating angles on both sides,

L+ By) (27)

A = arg(l + K) - arg(KB
From equation (25b), the explicit correspondence of

i0

a point on the circle w = Se to a point on the circle

i . A
Z = Re ® can be obtained as Tollows:

- 8 o710
5 3 R
el0 = o1(o+h) — (28)
1 --g-elw

[

1

iT
Let the complex number & be expressed as 16e and let

1 - 8 6710 = peth (29)

o]
R
where

_ 2
m{(¢) = 1 =2 51 cos (® - T) + Bﬂ_

fat

2y
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and
4 D sin o
p(®) = tan y
1 - %; cos (® - T)

Observe that the denominator In equation (28) is the con-
jugate of equation (29) and is therefore equal to me 1H,

-There results for the correspondence of "0 and ©

C=O + A + 2u : (%0)
In particular, if the (trailing-edge) value of @ that
corresponds to B as determined by eqguaticns (7) is
written as @, = £ + €., where €. 1s the value of
e(®) at 8 = et £ '

<oct

O ot

rom ecuation (10), then
L 3

Op = 9, + A o+ 2u,

aw _ ne{®® - §8)et (1)
dz <R2 - .8-7:\2 ’

ig ; ; .
On the boundary, put 2z = Re O; then, the magnitude of
equation (31) is - '

2\
taw S 6y 1
—_—)= =1 - ..l_..i_.)\—.... : (52)
dz! R 32,/ m '
The expression for ééﬁl on the boundery is obtained
dz

from equation ($) in terms of the functions €(®) and
V(o) of equation (10) as follows (see reference 3):

and, because f(z) on the boundary is
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where
6 - o= elg)
then
R - 11/2
1 t 2 2
dz'|_ Z_i(l _ éﬁ) L (A (53b)
1 dz ! 2 ao \d(P |

The last factor of equation (20) is expressed from equa-

W+i8 -
= ael{

tion (6) on the boundary 2! as

where

E:=F0325 cosh2Y0<§osh2¢-00328)-Fsingﬁ:ﬁﬁhayo(coshaw- sin26>

o

. 1/2
- L sin 28 sinn 2y, sin 26 /
N o

D =|cosh 2y, - cosh 2(¥ + 18)]

“z 1/2
='Zbosh 2y - cosh 2y .cos 29)£-+(sinh 2¥ sin 29)2J

Finally, combining in equation (21) the factors
given in equations (2l), (32), (33b), and (3lL) yields

aQ|_
—i= v
= ARCD = V (35)
B
where
A = -—_—-m4?-w"m--%inh vy sin a(cos O - cos 0,)

cosh 2y - cos 20

v oes 10l 3
+ cosh vy ¢cr 2 sin O - sin Oo)]



Ly=O 1D

L7

2
B = ]_...'_5.!__1_
Rd m2

’)‘ -'l 2
_de¥, (dw) /2
)

D==R§m¢x2yd-cosh 2V cos 29)2-+(sinh 2Y sin

=

)2]1/2

E=

/ 2 A . 2 . 4 .2 .2
00525 cosh2vokcosh‘w-60$26/-+51n“5 31nh270'cosn°w-81naa>

An application of equation (35) for the purpose of
illustrating the various steps involved in a calculation
of the surface velocity and pressure of the airfoil lattice
is given in anpendix E and illustrated in figures 5 and 6.
For the sake of comparison, the single-airfoil.case 1is
given in fig I - ' ’ '

Some special results from equation (
f lines.- In the cage of a latlice of straight 1lines, the
z‘—, z~, and w-planes nierge; hence 6 = © = 0 and

%25) for a lattice
i

From equations (19) and (7) and with a + B = a.
which is the angle of attack with respect to the chord,

T sin a. '
= — ' 172 (%6)

2Va (eosh27 - sin

The 1irt per unit span on a single member of the lattice
is given by

pvl
where p 1s the air density. The 1ii{t vector 1is per-
Ao H a
pendicular to the mean velo 01tv vector (fig. Ii). This



result is general and not limited to a straight-line
lattice, The 1ift coefficient is

T 2T 1 g
op = ——— = - = L /4 2va (37)
. (% pvz) cV c v

where I'/2vd 1s given in equation (36) and c/d can be
found by equation (3). .

The local velocity on the surface (equation (3%5))
becomes

v = V(cos ax + % sin O‘x>' (38)
. g _
where
N = 1 ’ cos B cos 9 +'sin-6 sin 6
(Costho - Sin25>l/2 cosh Yo sinh v,
0 = cos B sin 6 _sin B cos 8
sinh (o . cosh Yo

In the special cases in which B ='0° and B = 90°, the
relations (36) to (38) are simpler.

For stagger angle B = 0° and with d = g,

r _ Sin G'X

2Vg cosh x
From equation (8),

e
cosh ¥, = coth —
2g

and

2pVcg tanh gﬁ sin a

]

;_ 7 o
vpcV2 =2 81n ay

i
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The 1ift coefficient, according to equatlon (37), is

tanh 2%
. 2g
Cp, = &m —8 sin ay
e o
28

C . 1 4 e .
For £ = 07, therefore, the slope of the 1lift curve is
elways less than 2w.  Note that, for large gap,. c/g— 0
and the 1ift coefficient is C g

When the gap g is sriall compared witih the chord c,

The local velocity at ths surface

S PR 8 s
v o= V(;os Gy + tanh y, cot % sin ax)

. . \\\‘
v =V <cos 0, + cot = sin a.;
/
N - - 0 \
For stagger angle B = 90" and with . d'= h,
- 81in .
T 3 Sin O'X.

2V sinh T

From equation (8),

. e
gsinh 4 = 20t =
fo 2h

and

) :
e .
2pV°h tan =— sin oy

-l

=
1

tan %9
2 2h
= neeYy~ ——— sin a.
e e X

2n
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The 1ift coefficient, according to equation (37), is

e
tan —

Cp, = 2w ——— sin ay
2h
For B = 900, therefore, the slope of the 1lift curve is

always greater than 2. The local velocity at the
surface 1is

v = Vicos oy + coth y, cot %@ - -271> sin ax:\

It may be noted in passing that, for ¢ = %h,
CL: 8 sin Q.X-

as compared with

CL 2m sin 0y

for the single alrfoil.

For -the limiting case in which b and d approach ej
the transformation (6) becomes

a -iB al
fee G, 'e <+ ————
2mb -1iB
z'e . .
. . e . ad - ] . . W -i8 -
and, with limit —— — 1 and a new variable z"=2z2'e .
2mb
p
<
g = Z” + a........
Z”
which is the familiar Joukowski transformation. If the

variables ¥ and 6 are introduced, the corresponding
result 1s expresssd as

t = 2a cosh[? + i(6 - BU
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=
(¥

I~

where the limit, as y, — «, -of d has
2ma cosh vy
0

put equal to 1.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Asronautics,
Langley ¥ield, Va. ~ :

been
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APPENDIX A
- MAIN SYMBOLS

complex plane of airfoil lattice (x + iy)

complex planes of airfoil lattice for stagger
angles B = 0° and B = 90°, respectively
(Xl + iyl H 2{2 + iy2)

. s .. W+ie)
complex plane of circular-like contour (ae
]

v, +ig
circle of radius R = ae © in z-plane (ae © )

circle of radius S be Y1 in w-plane

(be-Yl+iO>

=b, z= Bl, w=b corresponding points

' = <b, z=:-B2, w=-b corresponding points

reference lengths

gap-chord parameter (b = aeYO)

stagger angle

lattice‘épacing, or Yslant® gap for any value of B
lattice spacing, or gap for 3 = 0°

lattice spacing,'or stagger for B = 900

magnitude of mean of inlet- and outlet-velocity
vectors (fig. L)

angle of attack with respect to x-axis of mean
velocity vector

angle of attack with respect to normal to slant
line of lattice of mean velocity vector

inlet and outlet angles of attack with respect
to normal to slant line of lattice, respectively

magnitudes of inlet and outlet velocities,
respectively
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APPENDIX B

INVERSIOI OF ESUATIONS (L) 70 (6)

AND CHOICE OF COORDINIATES

It is desired to find from a given alrfoil lattice
in the {-plane the contour defined by WV(8) in the
z'-plane. This problem corresponds to an inversion of
equations (l}) to (6) and can be exactly treated for the
cases in which B = 0° and 8 = 90° (equations (l)
and (5), respectively) but an iteration or successive-
approximation method is required for eguation (6).
Furthermore, although the parameters g and I are
fixed by the geometry of the lattice, a choice exists
in the definition of the chords and the origin of coordi-
nates. This choice is discussed following equation (Bl7).

Stagger angle B = 0°.- From equation (3), there is
obtained

cosh (V + i€) = cosh ¥, tanh g él (BR1)

Putting ,ﬁl = X1 * iy and denoting the real and imaginary

parts of equation (Bl) by & and Wy, respectively,
leads to

cosh y, sink 2m %y

cosh ¥ cos 8 = él = g
2T 21
cosh =— X, + cos — ¥y
g * g "1
s (B2)
cosh v, sin an 1
, . ° 8
sinh ¥ sin 8 = n, =
L em + 2
cosh = Xq cos z ¥y

.

The expressions containing %y and vy in equation (B2)

are considered given since these quantities are known
from the coordinates of the airfoll lattice. If v
and 9 are eliminated successively,



2h

cos 8 sin ,

and : > ' (B3)

2\ c
cosh V. sinh Vv /.

From equation (B%), there result the following expres-
sions, which serve to define the function WV(8) in terms
of the airfoil coordinates:

sin2e = p + V%Z + “12.
A (Bly)
inh®Y = -p + 2 + ﬁia
where .
1/ 2 2\
= ={1. - & - mn.
Pesl- st m)
For small values of 0,. the relation sinh ¥V = _%EL_‘
may be used. : sin 6

It is useful for computational purposes to record

the real and imaginary parts of equation (3)
- & (1, F’l‘2
LT o \z2 "8 T2
NI
(B5)
[y
.= == - @
7735 (% - %) )
where
pl2 = (cosh Yo * cosh ¥ ccs 6)2 + (sinh V¥ sin 9)
p22 = (cosh ¥, = cosh V¥ cos 8)2 + (sinh V¥ sin 9)2
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sin 9 = L sinh ¥V sin 6
1

1 .
sin ¢, = - — sinh ¥ sin 6
. P2
The angles are to be chosgen between -m and 1w, and
the quadrants may be determined by noting also the
relations

cos @ = g; (cosh v, + cosh ¥ cos 9)
1 N

cos @2 = g; (cosh Yo = cbsh Y cos 8)
2

Stagger angle B = 90°.- From equation (5), there
is obtained

sinh (v + 19) = sinh f, tan % §2 (BE)

With §2 = Xp * 1y, and the real and Iimaginary parts of
equation (B6) denoted by &, and To, respectively,
. wia 2T . B
sinh ¥o Sin Py x5

sinh ¥ cos 6 = &s =
cosh %? yo t+ cos %F Ko

1 4

> (B7)
A sinh Yo Sinh em NP
. h
cosh ¥ sin 8 = m, =
2T 27
cosh w v + cos T x2 )

If ¢ and O are eliminated successively,
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2
CORCORE
cos 6/ sin 6

() () =
sinh V¥ cosh ¥ J

From equations (B8) there result finally the following
expressions, which serve to define the function V(8)
in terms of the airfoll coordinates:

> : (B8)

\
1 cos®8 = q + vﬁz + &
| > (B9)
sinh®y = -q + A% + :22
S/
where
_ 1 e 2 2
: q*zl“~2‘ﬂ2>
| d
For values of 6 near *¥90°, the relation sinh V¥ = 2
may be used. , - cos 9

It 1s useful for computational purposes to write the
real and imaginary parts of equation (5)

xp = 5= (05 - )

NS (B10)
X ._.-._l:.l... ._].'. log Eé._
©2 2w\ 2 2
Py
>
where
| 'p52 = (sinh ¥, + sinh ¥ cos 8)2 + (cosh V¥ sin 9)2

(sinn Yo - Sinh V¥ cos 8)2 + (cosh V sin 8)2

2
[
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sin @, = 2L cosh V sin 6
3 95
. 1 .
sin @ =--— cosh V¥ sin 6

i

The angles are to be chosen bestween “-w and 1w, and the

quadrants may be determined by noting also the relations

cosg CPB =

>
\n’“

(sinh v, + sinh ¥ cos 8)

=y (sinh ¥, = slnh V¥ cos 8)

5]
'COS Q/LI_ ph‘

Arbitrary stagser angle B and choice of coordi-
nates.- Because of the transcendental nature of equa-
tion (6), a direct inversion expression seems unobtainable;
however, the valuss (¥, 6) that correspond to coordinates
(x, v) may be obtained without difficulty by an iterative

process, For this purpose and for the purpose of choosing
the coordinate axes, expansions of xq, Xp, V1, and ¥y

in powers of V¥ are useful. The Tollowing expansions
may be readily veriflied:
[
a . cosh ¥4 + cos §
X1 = —— cos:B|log
2 : cosh y - cos 6

2

PRIV, .
2 sinh®y, - sin®g
+ V" cosh y, cos 8 9 + ...] (Blla)
( 2. 2,)2
cosh Yo ~ COS e/
: % > sin B2 tan™t sin
* Xp ¥ 5= osin n i Yo.
- 2

2 cosh

o]
1 . Y, *+ cos“8
+ ¥~ sinh ¥, sin 8

; 5 * ... (Bllb)
<cosh270,- cos28) ;

L
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2 cosh vy, sin 6

= 4d |
y1 ® 57 cos 8 ‘ 5 L (Bllc)
cosh™y, - cos<H
2 sinh . cos 6
v »-9 sin B To v (B114)
2 2w .2 2
cosh™4, ~ cos 6
Then
TEyL TV
~d _ .
~ = VF(8) (B12)
where

cosh vy, cos B sin 8 - sinh vy, sin B cos 8

F(B) = 3 P
cosh®y, - cos=H

If the x-coordinate of the straight-line lattice, which
is considered the skeleton of the airfoll lattice, is
denoted by Xgys then Xq is given by the value of

X = Xy *+ x5 for V¥ =20, or

' cosh y,+cos O - i \ '
xo=-d— cos B log - Yo +2 sin P tan 1 sin@ (B13)
e cosh y, -cos 6 sinh y,
and
d

X = xg * 5 Y oa(8) (B1L)

where
cosh vy,  cos B cos 8 + sinh Yo sin B sin 0

6(9) = '

cos}12Y0 - cos0
(cosh y, cos' B sin 6 - sin y, sin § cos 8) 2 sin 9 cos 8

(co.shgy‘o - c0529>2

=F'(9)
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In particular, the leéding- and trailing-edge points
X = x; and X = Xy, are determined by the values of
8 = eL and 0 = Bt that may be obtained from equa-
tions (7b). Then,

wore o+ S % g B15)
X X0y T o 0 , B15
where
" cos2p sin°p
GO = Q > + 5
sinh™« cosh™

and Xg denotes the leading edge of the line given by
A .
v = 0. A similar expressicn holds for Xxi.

From equation (Bi2), for constant V,

(0%
<

o

WE'(8)

|

o
«©
2l 3o

VG(9)
In the neighborhood of the leading edge, therefore,

v xSy - e) (B16) |

For x5 near XOL, there is obtained from equation (Bl3),

(e - 8Z>2 1
xg = xg, * (8- 8) xg 1+ Sy xg, ¥

where the follewing relations are found to hold:

; - d -
AAOLv = F!%(G)JG:GL =0
3 d .
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Hence,

a , 2
Xy ® XOZ - Go(e —GL)

Then, from equation (B1l),

X - X9, ¥ Xg = Xgy * 4 wa G(9)

t
|
D]
1
—~
a
1
D
o~
RN
n
+
&=
n
—

It follows from equation (B16)that, for x = X0, s

_— ~ \ 2 H

With this value of Yo, and equation (Bl5),

If the total ordinate for both upper and lower sides at
X = XOL 1s denoted by Vi

Vi
;{———_—:{— I~ Ly (B17)
IA 0y

This result leads to a simple and convenient way of
choosing axes of coordinates in order that (8) will
behave smoothly at the edges; that is, that the value

of ¥ at the leading edge is approximately the mean of

the values of ¥ at nearby ordinates on the upper and
lower surfaces. For a parabola the latus rectum, or
ordinate through the focus, 1s four times the distance

from the vertex to the focus. Equation (B17) states

that the end point of the skeleton chord should be approxi-
mately the focus of a parabola at the nose.
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The scheme for choice of axes is as follows: Locate
a point ¥ near the leading edge where the ordinate
through F 1is four times the distance of F from the

leading edge. Similarly locate a point F' near the

traiiing edge. The origin of coordinates then bisects
the line FF'!', which is on the X-axis and represents the
chord of the skeleton line airfoll V¥ = 0. (To the order

of approximation employed, the afore-mentioned choice of
axes coincides with that given for the single wing section
in reference 1 or %.)

Procedure for finding (¥, 8) from (x, ¥) for
arbitrary stagger angle B.- An iterative procedure is
given herein for finding V(&) from (x, y) for arbi-
trary B8, in which the knowledge of the case for B8 = 0°
is employed to help in formulating the initial approxi-
mation. . In brief, values of 6 are obtained for stagger
angle B = 0° for both the airfoil end its line skeleton.
Values of e are then found for tne skeleton, in the case
of stagger angle B, These functions permit approximate
values of 6 to be found for the airfoil, for stagger

angle B. Equation (Bl2) then enables approximate values
ef V¥ to be. obtained. These values of (v, 6) are then
readily checked and improved, if necessary. The steps

are as follows:

(1) Choose the axes as outlined and express the air-
foll coordinates in percent chord, where the chord for
this purpcse 1s the part of the x-axis intercepted by the

airfoil. Denote the coordinates thus obtained by

(xp, yp). Find k = FF' in percent chord. Plnd._'
Xy, - on’ the distance from the leading edge to F . in

percent chord, and denote. this value by e. Obtain the
ratio c¢/d, where ¢ means here FF' and d is the
spacing between corresponding points on adjacent airfoils
of the lattice. Find conversion factor m by

m=2r

o9 e}
=i

(2) Convert coordinates of'the air fo¢l from (xp, yp>
to (217 X om i d/ as follows: '



N
no

X k
w—-=m + = -
2m 3 rrGa 3 X?)
v L=
21 1 myp

(3) Find the parameter vy, that corresponds to
the determined value of c/dr for the given value of B
from graph or by calculation (equation (8)). Also find
for later use the value of c¢/g corresponding to this
value of y, for- 8 = 0°.

(lt) Consider, for this value of y,, the two :
strailght-line cases (¥ = 0, 8 0°) and (Vv =0, B8 = B);

associate values of -8 = 80 for B8 = 0° with values

8 = 95 for the stagger angle B by referring associated

values of © to geometri oally olMl ar points of the lines
(equation (Bl13)).

(5) Multiply coordinates in step (2) by the ratio
(c/8) o
c/d

B = OO and for B
values of 6 for

where the chord-gap values are from step (3) for

B. 5 Using equation (Bl.), find
= O . . :

w 1

(6) With the aid of step (li), obtain approximate
. values of 85 associated with the values of 6 obtained

in step (5). Then, with 6 = 95, use equation (Bl2)
to obtain an approximate value of V¥, where

_ 2my F(8)
Vo= d 2

and the leading- and trailing-edge values of V¥ are
obtained from equation (Bl5). :

(7) Calculate, from equations (B5) and (Bl0), exact

7 " ‘A
values of (2w fi—, 2 -‘d->, associated with the initial
values of (y, 6) in step (6) where x = x7 + x

y=7,+ Vo

2 and
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/C S
"p = cos B[;inh V' cos 8 £+
. 1

35

(8) If, on comparison c¢f the coordinates in step (7)
with the coordinates in step (2), it is deemed necessary
tc approximate (¥, 68) more closely for several of the
points’' (x, y), one procedure is the following: An ex-

pression for---~§$—-- can be found from equations (li)

d(y + 19)
to (6) as
at ! C sioh (v + i8) ' . sirh (y + i8) ]
_— = — cos -
a(y +18) 2w cosh y,+cosh (¥ +18) cosh y,-cosh (¥ + iG)J
s i'sir . cosh (Y + i8) . 1cosh f\\:!,/+ i8) .
2w lsmwh Yo+ sink (¥ +19) sinh y, - sivh (f + 19 )-

iith the notatiocn of equations (B5) and (B10), this ex-
pression may be writien ‘

21
dail <
—~——~————-< 9/ =p+ iq
a(y + 19)
-0 ~310-
= cos B sinh (w-+19)(:L-e L e @a>
\pl s
.. , 1 -io 1 -i@h’

- 1 8in B cosh (¥ + i8) =~ e 5+ = ¢ .

where

os ®, cos @2\

a s

L

: . sin ®, sin 05
.+ cosh V¥ sin © = + )
- “1 92

| os @ cos @),
sin Bl;inh ¥ sin 8 <c 3 4 ®%>
L P3 n

cosh U cos 6 <i;§ ¢z , sin @h:ﬂ

Pz Py /]

+




3k

and

qQ = cos B

cos @l cos @2
cosh ¥ sin § | ——= 4 — <&
P2

/s sin @
- sinh V¥ cos 6 Kﬁln A + '2\}

cos @ cos @
- s8in B{éosh v cos B ( 5 7+ . )€>
L N D h
“sin ¢z sin w;
+ sinh V¥ sin 8 ( :
\ P3

The following relatioﬁ mav then be noted
d

p + iq

AV + 1.0 =

(B18)

Let

21X\ _ x\ X\
@)= (r3), - (),
2TyY = N y
A(T) (217 d>O 217 dfl

where the subscripts 0 and 1 refer to the coordinates
given in steps (2) and (7), respsctivsly. If the values

(v, 9) obtained in step (6) are used, evaluation of equa-

tion (B18) gives values (AY, A9), and (y+4y, 6+ A8)
represents the next approximation to the desired coordi-

nates. The process in steps (7) and (8) can be repeated
if deemed necessary.
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APPENDIX C
DERIVATION OF EQUATION (12)

The transformation (equation (9)) from the z'- to
the z-plane may be rewritten

o !
log =— = (2}

A

co
= Cn (c1)
SLon
Z
1
where the complex constante c, may be defined as
= +
Ch 8y, ib, | |
v+ 18 Vot
On the boundaries, =2z' = ae and z = ae ; hence,
lo al . ! F
B = Y=Yy +1i(g-9)
and
‘...9.3..,4. a b \
N 2B
VR AiﬁiRn cos nop -+ o sin n% (c2)
9 r .
where
W
R = ae'©

With ¥ considered as a function of ¢ denoted by
y(@), the coefficients in equation (C2) are obtained as
2T M)

1Y_/ | y(®) cos np do

\

O
j ¥(w) sinnp dop ) (c3)

1

o~
—

1
B
n 1
'rr"

F v(cp) einq)dq)




36

Substituting equation (C3) in equation (Cl) yields

r2) =L [ e & | (cly)
) |

s - Z
1

For l§‘<:l, the geometric series in equation (Cl) can

be sunmed and

217 ' i o
p(z)y =2 [ y(p) —28 do (c5)
Jo

U

z - Rel@
which can immediately be expressed as in equaticn (12).
For computational purposes, equation (12) nay be

separated into real and imaginary parts. Let
f(z) = p + iq and 2z = x + iy (where, for example, in

the zeroth approximation x = b, y = 0). Then,

1 am Ny

p == U(e) == a9
v JO D
2m il
1 2

q = = r U o) 5 40

vo

where
. _ X YV .
Ny = =1c¢c0os QO + £ sin © - 1
1 7R R

x . 7
No = = 8in © - < cos @
2 7R R

s 5
D=1-2{%Xcos ¢ + L gin @) + X T T
R R ne

4l

and the integrations can be conveniently performsd by
Simpson's rule.
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APPENDIX D

TRANSFORMATION FROM z-PLANE TO w-PLANE

The linear fractidénal transformation

az + b
W = e————
cz + d

on which the derivation of equaztion (13) is based, has
the following well-known properties:

(1) When =z traverses a ¢ircle Cz, Ww traverses

a circle Cye

(2) Two points w, and W, Inverse with respect
to a circle C, correspond to two points zy and zp
inverse with respect to the circle Cye

(3) The anharmonic ratio of four points is pre-
served; that is, if 21, 23, 23, and Zh correspond to

Wy, Wo, WB’ and wu,
(21 - 2)(2p = 23) | (- wy)(va - w3)
‘(gl - z2>(25 - Zh) (Wl - w2><w5 - Wh)

For the desired correspondence it is known that four

points wy = b, w5 = -b, and thelr inverse points
2 _al : .
W5 = %r, wu = —g- are to correspond. to 2, = 51,
' 2 2
Z5 = —82 and their inverse points 25 = =, z = :ﬁ—.
By ®s

Property (%) yields a relation that may be used to solve
for the radius S and that can be expressed by equa- )
tions (15) and (16). When the radius of the ciréle in .
the w-plane has been determined, property (3) can again
be used by replacing - say, w), by w and Zh by z.

This procedure will 'yield a result that is equivalent to
equation (13).
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APPENDIX E

OUTLINE OF CALCULATION PROCEDURE

(1) List airfoil-section coordinates in percent
chord.

(2) Choose axes (appendix B, paragraph following
equation (B17)).

(3) List stagger angle B and find ¥, _and value
of c¢/d for the skeleton line lattice (table I, rig. 2,
and equation (8)).

(lt) Find (¥, 8) (appendix B).

(5) Find ¢€(@) (equation (10)) by method given in
appendix of reference 3. : ‘
(6) Plot WV against @ where © = 8 + ¢. Find

constant Wo (equation (11)) and R = ae.©,

. (7) Find complex constants Bl and 32 (equa-~
tion (12) and appendix C),
A (8) Find constants cosh Yy1s Y1, S, and
K = kq + ik, (equations (16), (15), and (1l))
(9) Find complex constant & = |6lel” (equation (26))

and real constant A (equation (28)). Also obtain
functions m(®) and p(9) from equation (29).

(10) Find O and, in particular, O, (equation (30)).

(11) . Evaluate factors B, C, D, and E (equation (35)).

(12) Evaluate factor A in equ&tion (35), first
choosing the angle of attack a as indicated in the
folluwing paragraphs:

The 1ift coefficient is as in eguation (37)

L =

c/

; r
L oV

o
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Here c¢/d refers to the value of x/d at O-percent chord
minus x/d at 100-percent chord. By using equation (19)
for T/2v4a, C;, may be expressed as

Cr, = H sin(a + m) ‘ : {E1)
where
H = | é cos O e 'sin o 211/2
' c sh s sinh y. Y1
and

This relation may be used to find a for any desired
value of CL ead it is further noted that a = ~-n 1is
‘the angle of zerc 1ift.

The "ideal angle of attack, introduced by Theodorssn,

is defined for a thin section as +hc angle of attack for
which a stagnation noint exists not only at the sharp
trailing edgs but also a% the sharp lema¢ng edge. Fer
thick airfoils, the ideal angle of attack is defined in
the same manner (the pressure difference at the leading
edge vanishes) although the point that is considered the
leading- eugs point is not precisely defined. If this
point is taken to be the intersectlon of the x-axis with
the airfoil leading edge, the ideal 1ift and ideal angle
of attack are found as follows: Let 04 be the value
of o© COPP“S’OnOan to the leading-edge point. The
quantity &/« in equation (2l) (or the factor A in
equation (,7)) vanishes for 0 =0,. The relation that
glves the value of the ideal angle of attack « = as ‘
is then

.. . s} ir - . o
sin a _ cosh #y sin 0y - sin O
— - )
cos a sinh #y cosg 01 ~ COS QO
and the ideal 1ift coefficient, from equation (El), is



Lo

where

| ~2 S2
3° = [:osh vy €OS %-(Olf Oo)“ + [sinh v, sin %(01 + 00>J

-

(13) The surface velocity ratio v/V is now found
from equation (35) and the (mean) superstream pressure is
found from Bernoulli's esquation as

v 2

\4
The angle through which the stream is turned may be found
from equation (23).

Qs
I

A remark may be inserted here regarding an inverse
calculation procedure. Instead of starting with a given
lattice, it may be convenient to start with given func-
tion Y(®), (quantity V¥ as-a function of ®) and given
parameters Yo and B. Then both the lattice arrange-

ment and the flow properties follow uniquely, and in this
way, systematic families of lattices can be studied.
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