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HIGH-SPSED WIND-TUN~El TES~S OF THE 

NACA 23012 AND 23012-64 AIRFOILS 

Ey John V. Eec£er 

SUMMARY 

Force tests of the J~CA 23012 and 23012-64 airfoils 
'of 24- i~cc c~erd were ma~e in the 8- foot high-speed wind 
tu~nel at Mach numbers rangini fr6m C . IO to 0.75. Sup
ple~entar~ tests of a 5- inch- chord :ACA 23013 airfoil were 
made i~ the 24- inc~ high- speed tu~nel to obtain pitching
mument data at hig~er loadings than co~lc be attai~ed with 
tne 8-foot t'lnnel model s . 

The results, wLic~ ere 60~rected as far as possible 
f~r tunnel- , all ef~ects, show the variation with ~ach num
ber of l~ft, drag, a~d ritching - ~ornent coefficients at 
an g les of attack from _ 4 0 to GO . At positive lifts the 
JAU_ 23012-64 air~oil ~ad slightly higner critical speeds 
than the NAC~ 23012 airfoil . t the higher angles of at
tack in the snpercritical sreed region, large increases 
in the ma gnit de o~ the pitc~i~g-~oment coefficient oc
cu,red. 

Force tests o~ 24-~nch- chord NACh 23013 and 23012-64 
airfoils were made in t~e 8-foot ~igh-spee~ wind tunnel 
in 1937 . rne res~lts were ~ot pu~lished 0 ing to a lack 
of knowledge of the tunnel-wa~l interference e~fects o~ 
large models extending t~rb ug~ the tunnel walls. Since 
that time a seIarate , investi:::.a ion (unpublished) has indi
cated the nature of these effects and ~as established cor
re _tions for some of them . Alt~oJgL all corrections af
fecting the 3bsol~te ~agnitude of tu e res u lts are not 
kno~n, ' the corrections tnat vary wit~ speed are believed 
to be fairly well understood . ~he corrected res Its rr.ay 
therefore be considered a~eq~ate for indicating the ~rin
ci~al effects of com}ressibility . In vie~ of numero u s 
re1uests ~or cODrress:bility-effect data on the NACA 230 
se::-ies of airfoils, it nas been decided to iss'],e tnese 
partly corrected results ~ith a clear state~ent of their 
limitations . 
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I n orde~ to obtain ~ata apFlicable to the high-speed 
dive pUll - out condition it was nec6ssary to make supple 
mentary tests 'on a 5-i~ch- ch o rd NACA 23012 airfoil in the 
24- inch high- speed wind tunn el . These tests we re made in 
1940 . 

APPA.::tAr:US 

T~e, 8 - ~00t and t~e 24- inc~ high- speed wind tunnels 
are described in re~erences 1 and 2, respectively . 

A descri~tio~ of t~e NACA 230 series of airfoil sec
tions is g iven i~ reference 3 . ' The r ef ile ordinates of 
the NACA 23012 a~d 23J12 - 64 secti ons are shown in table I . 

Tae 24- ilch- chord models were co nst ructed , of wood 
and sheat~ed w~th 1!16- inch steel plate to prevent erosion 
at high speeds . T~e N~ C~ 23012 airfcil was co~pletely 
c o v e re d vit~ 'he metal plate . Tlle FACA 23012 - 64 airfoil 
was c 0 ere do,' e ro n l;r t ~l e f 0 ::- war d 3 1 1= ere e n t; the r e rr.a i n 
iu g surface ~as s 9 rai - ~aiLted . T~e surfaces rere ma de 
aerodynamica::"l~r S::lO ot!l. . It w.?s iE'l}:ossi"ole , h01J"ever, to 
elimina e slight waves in t ~ e metal s~eathing at the 
pOints of attach~e~t to the wood . It is also considered 
possib:'..e tnat t~e spanwise wood-:r.et.?l junct'1res on the 
NACA 230::'2 -64 ~odel may have sprung slig~tly at the higher 
IC c,dings . This method of airfoil constructioD has been 
fo und to be g enerally unsat~sfactory . 

T ~e 5 - inch-cn o rd NAC. 
inch t~nnel ~ s made from 

23 v 12 model tested in the 24-
so:i~ dura1u~in and rras both 

aerody.amical~y s~oe t~ and fair . 

I n both wind tunnels t~e mod~:s co~p1etely spanned 
t :'1e jet and passed throi1gb. the tial::'s to the balance at-
t a c ~ men t s (f is . 1) . 'I !1 ega 'P '0 e t v. eeL t II e IT; 0 del san d the 
wall was not u niform an~ varieds~i~htly wit~ angle of 
attack . Average values for t~e width of the gap are 3 / 1 
inch and. 2'/64 :nc~ for the 9- foot Rnd the 24-inch t''.nnels, 
re$rectivbly . As sho~~ in fi bu re :,the 8-foot tu~nel has 
flat s~rfaces on either side. Flat circular rot ating end 
plates atta~ned to the tu~nel ~allb mov~ with the airfoil 
w~en t~e angle of attack is changed . In the ?4- inch 
tu~ne l , flexible bra ss e~d plates that preserve the cir
cular section of the tunnel ~ere used. 

J 
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TESTS 

The t ests c onsi s ted of the measurement of lift, drag, 
and pitching fuoment . At constant angles of attack (a) 
tne speed was increased as far as possible, the highest 
speed attained at a given ang~e be~ng limited either by 
the maximum allowable load (in t~e case of the models of 
24- inch chord) or by the maximum attainable tunnel speed . 
Angles of attack ranginb f r om -40 to 60 were covered. 
Tue 24- inch- chord models were also teste~ t.rough the 
stal l at speeds ran~ing froill 75 to 170 miles per bour to 
permit compRrison with variable-density- tunnel results 
obtained at the same test Reynolds numbers . 

As a check of the critical s~eed indicated by the 
force test at a = 0 0 • the variation with .ach nu:nber of 
the total pressure at a point l/S inch above the surface 
at the 75- percent - chord station of the 5-inch-chord model 
was ;:neasured. . 

QQ.~~~!:.i£~lQ.L~f.[~£!. . - The 'lse of !:lodels of large 
size relative to the tunnel diameter results in a jet 
velocity at the airfoil appreciably higher th~n would 
exist if the flow ~ere not restrained by the tunnel ~alls . 

The magnitude of this effect vas determined in a seFarate 
investigation of tunnel- wall effects on AC_ 0012 airfoils 
in the 8-foot tu~nel by compari~g the c~ordwise static
pressure distribution with the distribution given by p o
tential t~eory, which had been verified in tests in t~e 
full - scale tunnel . In addit~on, a span~ise static-pressure 
survey at the lO-percent-chdrd location was made at vqrious 
lift coefficients . It was fqund that, within the limits of 
accuracy required for engineeri~g purposes, tLe wing could 
be assumed to be operating in a uniform air stream with a 
velocity greater than that indicated by tne standard tunnel 
calibration . 

At low ~ach ~umbers the magnitude of this conctric ion 
effect agreed satisf~ctorily with the results computed by 
Glauert (refere~ce 4) for i~compressible flow. The effect 
increases with .Aaen nudber . The air speed, V, the Mach 
nun.ber, M, th e Reyno lei s number, R, and the d;vnami c 
pressure, q, obt,ained from the standard tunnel calibra
tion in the present tests were corrected by use of th e 
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factors deteruined from the tests of the NACA 0012 air
foils. fhe force and the pitching- moment coefficients 
employed in presenting the ~esults are oased on t h e cor-

r ected Q.J-na:nic pressure, ~ p V
2

, where the values of p 

and V are corrected for the constr i ction effect. 

l~~~~~~._Q.~!:!.~~~!:~_~~_~h~_~~2..~.- As a f u rther conse
quence of t~e employment of airfoils of large r atio of 
the airfoil chord to the av erage dept~ of the t~nnel, 
c/h, it is shown in refer ence 4 that the lift and the 
pitching-moment coefficients are diffe~ent f rO ID the cor
respo nQing 7alue s for unrestricted t~o-dimensional flow. 
Thi s e:fect re's ul ts frQm an induced C'Hvature of the flovr. 
The v alid it y of , the t heoret i c a l correct:'on fa'ctors der::' v ed 
in reference 4 was sat i sf acto ril y establ is hed by the pre
viously mentioned unp'l·olisned tU~lnel- wal l-ef fe c t investiga
tion , in the 8 - foot high-speed t ~ nnel by com? arin g the re
s u lts obtained on 15-inch-chord a n d the 60 - inch-chord NACA 
0012 airfoi:' s. The co ,rrection t o the lift is given by 

whe re f' vL 
ref ers to 

is the lift coeffici ent and th~ stibscript t 

tunnel val ues . Th e ,pitching-moment c orrection 

(, 
2 " ' 2 

C - C ' :tL- (~ ') 
IDc/4 - \ m /. } , + 192 11 / , c f 4"t 

The r e sn l t s p re s ent ed in t hi" s 'r e :;;: o rt .have been co rrect ed 
accor ding to t h es e rel ations . 

!~~~~~~~~~_~~f~~~~.- T~ e fo~ce- test resu lts co r rect 
eQ for t h e con~triction and the ind~ced-cur7ature effects 

ould '·oe exp ected to ex}:..ibit infinite-as,pect-ratio O,r sec
tion c~a~aciteristics we r e it n o t for t h e interference , 
effects at e::.ther side of t~e model t~at res~ lt ma inly 
fro~ the l ea~age of air t hrough the cl e arance s p ace be
t ween tae mod e l and t~e tunnel wall . In order to indicate 
t t.e ap j:.. roximate ::lag,n ituc. e of thes e. ·eff e cts, the resuits of 
t he lIJACA 23J12 airfoil fo r M = 0 . 23 a r e co mpared in f ig
~r e 2 w~th c orrectec. s e c tion char~oteristics cibtairted fiom 
tests i~ the v aria ble- den sit y t u~nel (r s fer~ncs 5) at 
about the s a me test Rijnolds num~er. The l~~-spsea s ection 
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lift and the pitchinS-ffioroent ccefficients of the variable
d e!l s 5, t Y t 1). r. n e 1 Vi ere III U 1 t j }? 1 i e d b y ~ h e f act 0 r (1 _ H 2 ) - ~ 
(see reference 2) to o~tain res~ lts appropriate to the 
j{ach nu:r.ber at '\1I1hic:1 the 9-foot high-sFeea. tCln:1el tests 
Vl"ere run. 'Ih~ val'-:.e of this ractor VIas 1.027. corresFond-

~ ing to t~e Mach nu~ber 0.23 of tte high-speed tunnel tests. 
(Y) 
I 

H ~t is evident from figure 2 that t~e lift and the 
pitcLing-::.oment -al.les a:oe inaprreciabl~r affected ·0:- the 
en ' -lea:.cage effects at angles of a:.tack belo-.v go. The 
dras. ho~ever, ~as greatl~ increased . At angles of attack 
higher than SO an abrupt breakdown of the flow occurred, 
ap?arentl:: as B. res'1.1t of the end leakage . T~lis e:fect 
wa3 fou:1d. to OCC'l!r at an ar.gle of at:ac;,{ of SO for vari011s 
Y.ach nUillbcrs ranging from C.IO to 0.23. the ~ighest speed 
at which angles g r eater than 8° were ett~ined. Siroilar 
results 7e re obtaine~ wit~ the NACA 2:012-64 airfoil. On 
acco~nt of the large ~ag!litude of th~s effect and the lack 
of understanding of t~e factors involved. the data , resented 
in this !"Err,ort extend. onl;') to an ang:e of attack of- 6°. In 
this range the correctec lift and tee pitchinb-r.oment val
ues may be ta~en as arproximate sec~ion characterist~cs. 
but he drag coefficients include la:oge unkno~n increments 
due to end inter:ersnce . 

The investigation of tunnel- all effect of the ~~CA 
0012 air~o:'l includei a ll1.lInter of r"..lns t }:), rcugh the SPeed 
range ~ith var~ovs e.d- gap clearances. It was found that, 
although ~hG absolu~e magn~tude of the drag coef:icient 
jncreased with gap size, t~e variation wi~h Mach number 
~as essentially t1:e s~~e for all gap sizes. It ~ay be 
ass"..lmed, t~erefor€, that the resu lts ~or any gap size are 
useful in seo . tng changes :.th Mach n'l!~ter of the drag 
coef:icie:::.t . 

RESU~TS AND DISCUSSION 

D_~~_~.- T1:e ariat ion -,i h !lach num-Der of tne a.rag 
coef:icients obtained ith the 24-irch-chord models is 
shown in figure 3 . T~e cause of the large drag increases 
at the 1:ighe~ Mach n"..lmbers is due to the formation ofa 
compression shock at critical air speeds at whicn the ve
locity of sound is attained locally on the airfoil. ~e

tailed disc~ssion of th~s phenomenon is given in reference 
2 . Briefly. the critical air speed is dependent on any 
factor that affects the feak local velocity. particCllarly 
the angle of attack , t~e thickness. the thicknesS distribu
tion, and the camber . 
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The NACA 23012 - 64 airfoil (fig. 3(b) was included 
in this invest~ea~ion ~n the ~asis of nrevious tests of 
s~TI:1.met r ical airfoils ( reference 0), w~ich indicated that 
the 4J - pe r cent -cno r d lo c atio:'l of tr...e maxj. mu:n~ th i ckness 

s tati o ~ resulted i~ a h i gher cr iti c al speed than the other 
d i st r i bu tions t e sted . A more r ational method of ~redi c

t io n o f cr it~ c a l speed c~a ra c terist ic s based on static-
pre s s -.1 r e- d is t r i bu t i O:l C. a t a i s dis c u s s e din ref ere n c e 7 . 
Some in crease i n c rit i cal speed over the NACA 23012 air 
foi l i s i:ldi c ated fo r the NACA 23012- 64 a ir foi l at posi 
tive l ift s . ~t :legative l ifts, however, the RACA 23012~64 
airf oi: devel o p s highe~ l o ca l v elocities nea~ the nose on 
the lowe r sur fa ce tha n the ::JaCA 2,3012 and should , therefore , 
have the l o we r cr itica l speed . The critical speeds esti 
~ated frorr ref er ence 7 a r e ind i cated in figure 3 by arrow
heads . It is se e n that t he ::'a c h numb er s at whi c h the drag 
c oeff i cients ceg~n t o i nc r ease r ap i dly agree reasonably 
well with t~e p r edictions b~sed on the pressure- distribution 
data . ~he c~ i tic al sneed s ind icated by the 5- i:lch- chord 
f or c e - te st r e sul t s ( n;t s n o pn ) ag r eed s a ti sfact o r i ly with 
the 24- in c h - c ho r d re s~it s . ~ he to t al - p res su r e tube l ocat 
ed at the 75- Ie r cent-cho r d s tatio~ of the NACA 23012 air
f oi l s howed r aridly i ncr ea sing lo sses at Mach numbe rs above 
0 . 645 . The critical Mach n u mber ~redicted from the static
p r es s ure d ata at a = 0° was 0 . 36 . 

The va r iat i on with Mach nu:nbe r of the d r ag coefficient 
at subcritical speed s i s a con s equen c e of both scale and 
comp r ess i bility e~fe c ts . On smooth mode l s i n air s t r eams 
of lo ~ tu r buleLce such as t~at of the 8 - foot high- speed 
wind tunnel , the va r iation ~ith Reynolds number of the 
I 0 c at ion 0 f '00 u n d a. r y - 1 a ~T e r t ran sit ion i sa n imp 0 r tan t fa c
tor in determin i ng the scale effect and sho .1ld be consid
ere din any Po, t t e ,Dp t t 0 i sol ate the c 0 mp res sib il i t Y e f f e c t 
at subcrit ical speeds . Data on the trans i tion- point loca
t ion s on both su r face s of the NACA 23012 airfoil in the 
8 - foot hign- speed tunnel are available in reference 8 . 

k~t~ . - T~e va riatio n with Mach nu n ber of the lift 
coeffic i ent s obtained in the 8- foot hi g h - speed tunnel is 
shown in f ig~ r e 4 . The r ate of increase with Pach numbe r 
at subcritica l s ueeds "CiS somewnat greater t._ an t h e factor 

M2~, -~ -
(1 - ' .1, su a 11 y u s e d toe s t i:n ate t ,n. e inc r e fl s e . T his 
fa.ctor stri c tly applies onl y to airfoils of very small 
t h ickn es s - c h ord ratios end ~ould be expe cted to underesti
mate t~e a c tua l r ate of lift increase on 12 - percent - thick 
airfoiis . The rate of increa se of lift coefficient with 
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Mac~ numbe r shown in ref e rence s 2 and 6 for 5-inch and 2-
inch- c~ord models w~s leas tnan ~oted in t~e present tests 

1 
d - d 'th t' (1 - M1 2 'j'-2 a:1. more near ... y a g ree W J. !1e factor. These 

differe~ces may be attributab:e to the fact that the 
Reynolds r .. um'oel's in the prese:ut i!westigat io n were much 
greater than in the reference tes~s . 

T~e changes in lift coeffi cient t~at occur at super
cr:tical speeds dep end o~ t he location and t~e i ntensity 
of the corr..p ressio :1 s h ock . Either an increase or a de
crease in lift coe~ f icie t , correspondi ng to formation of 
t h e shock on the lowe~ or the up ~ er surfaces, might be 
expected, . At small an ,; les of att a ck w~'iere shocks form on 
both up ? er and lower S"l rfaces at about '"he same i,1acb. 1l11m
ber , no appr e ciable lift change s m~gLt be anticipated. 
This situation ev ~dently existed for the airfoils tested 
at 0 0 and -1 0 angle of attac~ (f ig . 4). At the highe r 
angles of attack t~e s ho ck for~s ~ear the nose o ~ the 
up_er surfac e and a loss of ~ift coe fficie nt (fi g . 4(a) , 
a = 60

) is uSlla ll :: r..oted . (See references 2 ar.d 7 . ) The 
decreases in lift ~oefjicient generally start to occur a t 
Mach ITlmbers abo~t 0 . 05 to 0 . 10 be yon d the est i mated crit
ical s peed s. The iift- coefficient decreases, in mo s t 
ca ses , a re not large e ~ ough to cause actual decreases in 
lift with increas ~ng s p eed . Changes in lift distribution 
across the wir..g spar.. due to _o ssible varia tions in criti
c al speec alon g tne s pan sho' ~ ld, :'lo'Tever, be considered 
in str~ctural de sign . 

r.~~f_t.i~g,,_~Q..~~~!..' - The ~TACJ.. 23~12 pitchi:1g - mo:.ler..t co 
efficie~ts ootained 'n Doth :n d t~nr..e13 are s hown in :ig-
ure 5 ( a) . Fo~ t~e angles of attac~ at which d ir ect c~m
parison is po ssi ble ( Oe and. 4 0

) , a. satisfaci;.ory I1gree:;1ent 
b etween t~ e ~esults for the t~o tu~nels will be noted. 
The NAC~ 23012- 64 results are give~ in figure 5(b) . 

T~e var iati on in p itch i ~g - mo mer..t coefficient at s ub
cr itical speeds was ne ~ ~i~ibly small for these lo ~- moment 
airfoils . 

C~anges in pitchi~g- moment coefficient occ~rri~g at 
s pe rcr iti c a l sFee~s ar e gove rr ed by t~e sa~e factors 
that affect ti .. e li ft , t hat is, the locat:'on ar.d tne inten
sity o f the co rp ressio n shoc~ . At the highe r aLgles of 
attack, lar g e inc~eases in the negative value of the 
pitching- ffi o men t co ef :ici ent occurred . These incr eased 
pitching- mome~t coefficients c ou ld be r eal i Zed in flight 
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i~ ~ull-ou ts from high- speed dives and should be accounted 
for in the str:ctura1 design of purs~ it a i rcra ft . 

COKCLUDI NG REYA3KS 

The cri t ical sleeds at w~icb :arge i~cr ea5e s in drag 
coefficient o ccurr et were sli~h tl y higher for the NACA 
23012- 54 airfoil t h an for tne JACA 230 12 air foi l, ~he n 
co rol-a r ed eith e r at a giver. a~g le of attack or at a given 
lift coefficient iL t he positive li ft regio n . At zero 
and nega tive lifts, the ~ACA 23012 airfoil na s t he higher 
cr~tica: speeds. The incicated cr:tica: speeds were in 
fair a ~reement with those predicted fro~ the theore ti cal 
p r es sur e p e '1Ks . 

A ~ the higher angles of attack in tLe s ~per critical 

re gion ' condition s corre sponding to a s h arp pul l-out fro m 
a high- speed dive) , large i n c:"ea ses i n the pitching
moment coefficient and A d e crease in lift coefficient 
occu rr ed . 

La ~g le y Memorial ~eronauti c al Laboratory , 
~a t ional Advisory Coremittee for Ae~onautics, 

Lang le y Field , Va, . 

____ J 
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TABL3 I - AI RFJIL ORDI NATES 

[s ta t i on s a nd ~ r~ina tes in perc en t o f w i ng chord ] 

-1'::J_lEOil!::l''EF:liEti~.WU'Lr::.::::::r:LO!Sc:::!5' S.~II~>-·~' ~~:.::!. ~ __ c:_ -1:.·N;lj!:A~C~A~12!l:il~:!~:J:;r>~~!![~:::;X;~X.i~4"~· '""O:;;'~:::::~ A=:JlIl::;--k""'''-2-3-0- 1- 2--- 6-4---' 

, I U"CF er I :' o vc e r 7J:r:;:re r lo\"'e r 
S ta tio::l i s -,~;- 'face ! s -.l r :a c e s urfa t::: e s'1. r face 

o 
1. 25 2 . 67 - 1 . 23 

2 . 5 3 . 6 1 -- 1. 71 

5 4 . 9 1 - 2 . 26 

7 . 5 5 . 80 - 2 . 6 1 

10 -:) . 43 - 2 . 9 2 

15 7 . 19 - 3 . 50 

20 7 . 50 - 3 . 9 7 

7 . 60 - 4 . 28 

30 7. fi5 - 4 . 46 

40 7 . 1 4 - 4 . 48 

50 6 . 4 1 - 4 . 17 

60 5 . 4 7 - 3 . 6 7 

70 4 . 36 - 3 . 0 0 

eo 3 . 08 - 2 . 1 6 

so 1. 68 -1. 23 

95 . 9 2 - . 70 

I - --------
i 
I 
I 

! 
i 

f 

2 . 53 

3 . 41 

4 . 59 

5 . 41 

:) . co 

6 . 70 

7 . 04 

7 . 23 

7 . 3 7 

7 . 32 

6 . 93 

ti • 21 

5 .1 7 

3 . 78 

2 . 09 

1. 1 5 

o 

- 1.20 

-1 . 6 1 

- 2 . 00 

- 2 . 2 7 

- 2 . 50 

- 3 . 02 

- 3 . 55 

- 3 . 96 

- 4 . 2 9 

- 4 . 6 6 

- 4 . 70 

- 4 . 42 

- 3 . 7 9 

- 2 . 86 

- 1 . 6 3 

- . 90 

I 
I 

I 
I 
! 

I 
l CO _________ . _1_3 __ ~ ____ -__ . _1_3 __ ~ _____ ._i_2 ____ ~ ___ -_._1_2~ 

IE ~d~~ ~ e ~g e ra~~u s : 

r aj i - ~B t n :o ug a e Ld o f 
1. 5 8 . S.or-e of 
c t 'Jrc. : 0 . ~ 0 5 I 



NACA 

/.6 

1.2 

.8 

.4 

V-
V 

o 

~_-t-1- r--

~~5e~f/~n 1 C~G)aclfe).../sl/c's 
from VDT. fesfs (referenceS) 

0---------08- foof h/yh-speed funnel 
./ 

I' 
I' 

/' 

o 

/ 
-I v-

/'f' 
/' 

/' 

~ 
~ 

/)1' 

f" 

.,.... V 
~ 

.r---
."--

I-

4 

f--

8 
d.,dey 

1/ 
L 

/ 
q / L 

/'" ! 
/ / / 

./ 
,/ / 

I 
/ 

/ 
/ 

/ 
j 

/ 

Cn V v 

1--I-- ---
I 

12 

Figs. 1,2 

..... 

./' 

IY 
.16 

I \ 
~ \ 

\ 
~. 

12 

08 

04 

o 

16 

Figure 2 . - Comparison of re sults from the 8- foot high-speed and 
variable-density wind-tunnels to show magnitude of 

interference effect due to end leakage in 8-foot high-speed tunnel . 
M , 0.23 ; R , 3 ,150,000. NACA 23012 airfoil. 

Figure 1.- The ~4 -i nch NACA 23012-64 airfoil mounted in the 
8-foot high-speed wind tunnel. 
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