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NAT I ONAL AD VI SORY COMMITTE E F OR AERONAUTIC S 

ADVAli CE RESTRICTED REP ORT 

STRENGTH TES~S OF TEIN-WALL TRUNCATED CONE S 

OF CIRCULAR SECTION 

By Eug ene E . Lund qu ist and Even H. Schuette 

SUlv:MARY 

The ends of thin- wa ll tru n cated cones of circula r 
sect i on rere clam~e d to r igid bulkheads and the . cones 
s ub jected to ytreng th t ests . Th e recults fro m torsion 
tests 0:: fiv e , co m!)_e ssion tests of three , and te st s in 
comb ine d transver se shea r a nd bending of 18 truncated 
co~ es a re g i ven herein. Th e resul~s o f t he te s ts are 
c orrela te d with t 1e p reviou sly publ i s hed re sults of cor 
r espondi ng te s ts of circu l ar c yl ind e rs and are presented 
in charts suitab le for us e in design . 

I NTRODUC~ION 

The streng th of thin-wall cylinde r s ha s been under 
i nve s ti g ation by t h e National Advisory Committee for Aer o
nau tics for a number of yeers . Previous papers have given 
the results of va rious s t re ng~ h te s ts of thin-well cylin
ders of circu la r a_d elliptic sectio n . 

Becau se mono c oque fuselages usually have some tap er, 
tests were also mad e to determin e the streng th of thin 
wall truncated cones of circular section in torsion , com
pression, and co mbined traL sverEe sh ear aLd be ndi ng . A 
preliminary s umma r y of the re sult s is biven in reference 1 . 
Th e present repo rt g ives these ~ata in f u rth e r deta il and 
wit greatLr attention to t h0 conclusions . 

MATERIAL 

i h e 17S- T alumi~um alloy u sed in these t e sts was o b
tain ed in s heet for~ with n ominal t hi ckn e ss e s of 0 . 011 , 
0 . 01 6 , and 0 . 02 2 i nch. The p roperti e s of this material 
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as determined by th8 National Bureau of st~ndards from 
s~eci~enB selected at random are given in refer ence 2 . 
Because all the test co~e s failed by elastic buckling of 
the walls at stres ses conridarably below the yield-point 
stress , the modu lus of elasticity E . vhich was substan
tially constant for ell sheet thicknesses . is the only 
property of t h e material that need be considered. For 
all sheet material used in these tests , an average value 
for E of 10 . 4 X 10 6 pounds per square inch was used in 
the analysis of the resul ts. 

SPECI MEN S 

The test specimens were truncated cones 7 . 5 inches 
long wi th end radii of 0 . 0 and 7 . 5 irches. (s ee fig . 1.) 
The taper of t.e C0 n es was se:ected to a g ree roughly with 
the taper of a monocoque fusela~e . The cones were con
structed in the followin~ manner : An aluminun- alloy sheet 
was first cut to t h e dimensions of th e develop ed surface . 
The Rheet was then , r2 ~ped 9bout and clamped to end bulk
heads . When the truncated co~e was thus assembled , a 
butt strap 1 inch w"de and of the same thickness as the 
sheet was fitted , d rilled, a nd bolted in place to close 
the seam. In the assemb ly of the specimen , c a re wa s take n 
to avoid havi "g either a loo s e ess of the skin or wrinkles 
in the ~alls when finally con s tructed. 

Each of the end tulkheads, to wlic~ the loads, ere 
applied. wa s constr~cted of t wo steel plates t inch ~hick . 
separated by a p lywood core 11 inches thick . These pa rts 
were bolted to ge t he r and turned to the s pec ifi ed outside 
dlameter. Steel bands approxiruetely linch thick and ma
chined to t he same diameter as the bulkhe ds were used to 
clamp the alQminum-alloy sheet to thu bulk heads . In or
der to keep the band s frbn sliding parallel to the axis 
of the co ne . a tonGue a~d 5 roove was p rovided between the 
bulkhead and the band . 

APPARATUS AND METHOD 

The tl ick ness of eac h sheet was measured to an esti 
mated ~recision of ±O.0003 inc h at a large number of sta-

• 
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tions by a dial b abe ~ounted in a s~ecial jig . In gene ral, ~ 

the variation in thickn e ss throughout a g iven shee t was 
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not more than 2 ~erce n t o f t ho a verag e thickness . Th e 
average thick nesses of t he s h eets were u sed in all calcu
lations of radius-thick~ess ratio and stress . 

The loads were applied to the truncated cones with 
the same a ppa ratus as tha t us e d in the c orre s pondi ng tests 
of circular c:linders . Descri p tions and p hoto g rap hs of 
the a p par a t u sus e di n th e tor s i o n , c 0 ID"? r eG s io n , and co m
bined tr a nsverse shear a nd b end ing tes t s are given in ref
erences 2 , 3 , and 4 , r e s p ecti rely . 

In all case s loads wer e ap~ lied i n i nc re men ts of 1 
percent of the est i mat e d load at failu re. 

DISCUSSION OF RESULTS 

Fro D the photo g rap h s of i g ures 2, 3 , and 4 , it will 
be noted that failllre al wa y s occu r;::) over a lar g e area of 
the co ne wall and not at so me p articular s tatio n between 
bulkh eads . T~e s yub ols a p pe a ring in fi g ure 4 will be de
fine d later in thi s repo rt . Th e p roperties of the cone 
and hence the comp uted stresses for any load i ng condition 
vary from point to point alon6 the cone . Thus, in the 
pre s e n t a tion of th e t e st r e s ~ l t s for each of th e lo a ding 
conditions CO i si d ere d , a curve is d~awn that describes the 
stress co ndition th r oug hou t t he f u ll leng th of the trun
ca ted cone . 

Torsion 

The shear s tress at ~ailure fs in t he ~ lpne of the 
skin at an) s t ation is as sumed t o be g iven by the formula 

fs = T ( 1) ---,...--
2n r<" t 

whe re 

T applied torque at fail u r e 

r radiu s at the ~8rticu lar s t at i on 

t thickness 

At t h e lar E,e 
the v alue of 

from equation 

nd of th e CO :D.8 , wh - re tl e r a dius is r
1

, 

fs i s dc si g . Fl L .! d f s . Th e n , it follow s 
1 

( 1) t h a t 
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= f (:.~)2 
S). r 

(2 ) 

Results of the torsion tests are presented in figu r e 
5, which is the same type of figure as that used by Donnell 
(reference 5) to present torsio~ data on circular cylinders . 
In this figure. ~ is Poisson ' s ratio for the material . 
The data for e ach truncated con e te s ted are represented by 
a short line that describes the variation of stress along 
the length of the cone accordi g to equation (2) . Th e re
sults of torsion tests of circular cylinders. taken from 
reference 2. are also plotted in figure 5 . 

The lines reure s enting t h e truncated cones in figure 
5 lie across the ban~ of poi n ts representing the circula r 
cylinders. The enJ s of the lines marked with large cir
cles. re~ resenting the lar g e ends o f tne truncated cones . 
lie approximatel y alo~g the cu rve that has been recommended 
in reference 5 for desi g n of circular cylinders vrith clampe d 
edges. If the torsional streng th of a circul a r cylinder is 
assumed to be establish d by this curve . the shear stress 
at failure fSl at the l a r g e end 0: a truncated cone in 
torsion is equal to the shear stress at failure for a cir 
cular cylinder of t his radius and of the same length as 
the truncated cone. Th e s he8r stre s s at failure for any 
other station along the lang th of th e truncat e d cone is 
then given by equation (2). 

Compression 

The compressive stress at failure f c • directed along 
the conical surface. is assumed to be given by 

f = c 
p 

2nrt 
sec ex. (3 ) 

where P is the applied comp ressive load and a is the 
ang le between the axis of th e cone and the longitudinal 
elements of th e surface . At t h e lar g e end of the cone 
where the radiUS is r

l
• the value of fc may be desig

nated f Cl . It then follows from equatiori (3) that 

fc - (4 ) 

• 
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Results of the com~ression tects are p r esented in 
fi gu re 6 , which i s the same type of fi gu re as tha t us ed 
in refer en c e 3 to p rese nt compression data on circ~lar 
cyl inde rs . The data fo~ ea c~ truncated cone tested ar e 
re9res e nted by a short line that describes t he variation 
of stress along the length of the cone a ccording to equa
t ion (4). T ~1 ere suI t s 0 f c 0 mp res s ion t est s 0 f c ire u 1 a r 
cylinders . ta~en from r eference 3 , ere also plotted in 
f igur e 6 . 

Th e lines r e~resen~jng ~he truncat e d cones in figure 
6 lie e s sent ial ly pa ra lle l to the band of points represent 
ing the circula r cyl inders . Consequently. if the strength 
of the tru ncated cone i s t o be co mput ed, for pur~ose s of 
design . on the basi s of an e quivalent cylind er, either end 
of t h e trunca te d CO P 8 ~)ay be sele cted . The assumption that 
the co mp ressive s tress ~ t failure f Cl at the large end 
of a truncat ed co~ e is equal to the co mp r e s siv stress at 
failure for a c ircular cyliude r of this radius and the same 
thi ckness as the well of the truncated cone is, however , 
so mewhat co lservat:'ve . The compressive stress at failu re 
for any other station along the length of the cone is g iven 
by equation (4) . 

Co ~b ined ~ransverse Shear and Bending 

The max i mum bend i ng stre ss at failure fb i n the 
plane of the sk in at any st ation is as sumed t o be g iven 
by the fo rmula 

Mr M sec a = - -?r-

I I. r"' '\; 
sec a ( 5) 

where M is the applied moment at fa i lu r e and I is the 
mOillent of inertia of t e cros s section at any s tation, 
nr

3
t. TIe maximum shea r stress at fa i lure fv in the 

plane of the skin at any s tatio~ i s asslllie d to be give n 
bv the f or-mu la 

where 

V lr2 
f = --

v I 
V' 
nrt 

VI ef fectiv e shear at failure (V - Vb) 

V a9plied transverse shear 

shear res iEted by bs nd i n~ st r e s se s I. tan a. 
r 

Equat ions ( 5) and ( 6 ) are derived i n appendix A • . 

( 6 ) 
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For the analysis and th6 nresenta tion of da ta on com
bined transverse shea r and bending , a parameter is desired 
that is descriptive of a definite load i ng condition as wel l 
as a definite stress co ndit ion for the specimen in the same 
manne r t ha t torsion or compression is de sc ript ive of def
inite l oading and stress conditions . Su c h a paramete r is 
obtained if equation (5) is divided by equation ( 6 ) . Thu s 

fv rV' 
sac a ( 7 ) 

The term 
M 

s e c a is, physica ll y , the dist a nce a l ong 
rV' 

an eJement of the C0ne from the secti on u nd e r investiga
tion to the plan e pe r pendicular to th8 axis of the cone 
in whi c h the r esultant s hea r ~orce V acts , expressed in 
terms of the ra dius of the cone at the p l an e of this re
sUltant shear fo rce. In order to show t hat this interp re-

ta tion of M ___ s e c a is correct , r efe r ence may b e made to 
rV' 

f i gure 7. At station x , the mom nt M = V(h-x) . From 

the def i nit ions that follow equation (6~ 
M tan a 

V' = V - ------- . 

Substitution of these v aluo s for M and V' 
hand side of equa tio n (7) g ives 

M 
rV' 

sec a. 

(h-x) sec ex. 

r - (h-x) tan a 

r 
in th e ri gh t-

( 8 ) 

( 9) 

s ( 10) 
ro 

Thu s, a pRrti clllA r value of M 
rV' 

sec a is descri~tive of 

a definite loading condition as well as of a definite 
s tres s condit io n. I n the nalysi s of the results o f th e 
te s ts , the v ariRtion of the stresses a t failure with 

s ec a is studied . 
rV ' 

Re sul ts of the tests in co mb in ed s he a r and bending 
are gi ven in figure 8 , which i s simila r to th e figu re use d 

• 
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in reference 4 to present data for thin-wal l circular c y l
inders in combined transverse shenr and bending . The data 
for each truncated cone tested are repre sented by a line 
that describes the va riation of bending stress in terms of 
the modulus of el a sticity E and the r a tio tlr along an 
element of the cone . An ins~ectioll of this figure and of 
the photographs of the typ es - of failure (fi g . 4) reveals 
a transition from a shear typ e of failure at s mall v a lues 

of 

of 

M 

rV· 
M 

rV' 

sec a to a bendi ng type of failure at large v alues 

se c a . I n the following d iscu ssion separate con-

sideration will b e g iven bending failure . s h 'ar failure . 
and the transition from bending to shear failu r e . 

Bellding failure (.La r g e r(?lues of _~_ sec a) .- At ___________________________________ !:.I2. ______ _ 

large values of _~_ sec a . 
r V· 

failure occurs by a sudden 

c ollapse of the outermost compression f ibers in the same 
manner as in the ~ure- b e nd i ng tests of circula r c y linders 
rep orted in reference S. It is therefore reasonable to 
sup pose that , a t these values . the bending s t rength of a 
truncated co e should be com,e rable to the strength of a 
c ylinder of some s im ilar dimensions in ~ure bending . 

For comp arison of the present results with the r esul ts 
of the p ure- bending tests of circular c ylinde rs reported 
in r eference 6 , lines a and b have been drawn on figure 
8 r ep r esen ting th o upper and lo wer limit s of th0 strength 
in pure bonding of circular cylinders. Thos e limiting val
ues repres en t the di spersion of the results of the pure 
bending tests of cylinders and we re obtained from figure 5 

fb r of reference 6 . Use of the expression as ordinate 
E t 

in figure 8 makes the location of the limiting lines a 
and b independent of r/t . provided the maximum bending 
s t ress at failure in Dure bend i ng is given by an equati on 
of the typ e 

= kE t 
r 

(11) 

wher e k is a coefficient , th e variation of p hich describ e s 
the s c atter of test data. The lines a and b in fi gure e 
si mp l y represent th e limiting value s of this coefficient. 
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Equation (11) may be considered valid over the small range 
of values of rlt repr esented by the truncated cones 
tested. Hence the lines a and b should r ep r e sent rea
so nably wel l the conditions for bending failure over the 
full leng th of a truncated cone. The condition of pure 
bending for a truncated cone is. from considerations of 
inte rn~l stresses (VI = 0), given by a transverse shear 
force V located at the apex of the cone. Figure 8 shows 
that the test results represented by the bending-stress 
diagrams lie between lines a and b at large values of 

M 
rV' 

sec a. 

Shear failure (small values of 111 sec a) .- At 
rV ' -------------a------------------------------

small values of _~_ sec a, failure occurs in shear by 
rV' 

the fornation of diagonal s Dea r wrinkles on the sides of 
the co nes . (See fig. 4 .) It is t herefo r e reasonable to 
suppose that, at these values, th shear str ength of a 
thin-wall truncated cone should be closely rel ated to the 
strength of a truncated cone of the same di~ensions in 
torsion (pure shear) . 

For comparison with the results of the torsion tests 
includ ed in the present paper, li nes c and d have been 
drawn in figure 8 representing the strength in ~ure s hea r 
for the small and for the large ends of a cone, respec
tively. These lines were obtained by p lotti ng the equation 

~§.!:' M 
E t rV I 

sec a (12) 

Equation (12) is obtained from equation (7) by trans- · 

!)osing terms, multip lying by 1.!:., 
- - E t 

and substituting Ss 

for fv' 
trunca .ed 
lines c 

whe re Ss is the shear stres s at failure for a 
c one of the same dimensions in torsion. The S 
and d in figure 8 represent the values of _§. r - E t 

determined from f i gu re 5 for the two ends of the truncated 
co nes of the same thickness as the cones tested in combined 
tr ans verse shear and bending. 

M For low values of --- s ec a, the bending-stress di-
rV' 

a g rams lie above lines c and d. ~his fact indicates 
that the tra~ sverse shear stress on the neutral axis at 

.. 
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failure is hi gh er t~an the shear stress at failure in tor
sio n . Th e rel at ion det e r mined f or circul a r c y linders in 
co mbined tr a nsverse she a r and bending (reference 4) can be 
used to take account of t h is dif fe r ence . I f Sv is the 
shear s t ress on t ~e neu tr a l ax is at failur e 
verse shear and Ss is th e shear strass a t 
co n 8 of th e s am e d imen sio n s in torsion , Sv 
be rel ated by the a pp ro ximate e quat ion 

Sv = 1.2 5 S s 

in pure trans 
fElilure for a 

an d Ss may 

( 13) 

values of _~ sec a) .- fi gure s 4 and 8 r evea l that the 
r V' -------------- -------

tr ans ition fro m s hea r to b0nding failur e is not 
as the inters0ctions of lines a ~ ith c a n d 

so ab r up t 
b with d 

i ndicato . At the int~r~8diate values of _M_ scc a , 
r VI 

tho 

transition fro m failure b y s~ e a r t o fa i l u re by b ending is 
a cco mpani e d by a r educt io n i n stren~th t bat is of the same 
or d er o f magnitude RS t he corres90nding r eduction f or th in
wal l c yl i nd ers i n co mbi ned transverse she a r and bending . 
(See re f erence 4 . ) An analysis s i mila r to tha t used for 
t h in-wall c yl irder s reveals tha t t he design cha rt ure sented 
i n fi gure 8 of r ef renc e 4 als o applies to thin- wall trun
c ated COlles in co mb ined tra nsve rs e s hea r and bending if 

M is r ep lac ed by 
:eV 

M --- sec a . This des i gn chart i s p. r e -
rV I 

s e nt ed i n fi gure 9 of th e p r 0 sont repo rt. 

I n fi gu r e 8 t h e two lines e and f we re obtained 

from fi gu re 9 , i n one case t he va lue of Sb 

Sv 
corres~ onding 

to lines a a d c bei n~ u se d a nd in the other ca Ge the 

va l u e of correspond i g to lines ar.d d . 
Sv 

tio 1 of the figure i nd ic ates t hat tl1e se t r 0 cur v es r ep r e -
sent r easonab l y wel l the limits of the ex~e ri mellta l data 
p lot ted . 

I no r d e r t 0 u s e t h G cur v (;3 s 0 f f i gu r e 9 i n des i g n • i t 

is n e c o ssary to k.ow t ho load i ng co ndi ti on M se c a. and 

to b e able to n redic t the valu es of s v and f or the 
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cone . The value of M 
rV' 

se c a is established by the d i-

mellsions of the tr1'l.ncated CO:1e and the external loads . 
The allo~able stress in tranzvs rs e shear Sv depends upon 
tha allowable stress in torsion, that is , pure shea r , ac 
cording to equation (13) . In the absence of test data on 
the strength of trunc ted conb e in pure bending . the value 
of Sb t o be used sr.o'11d be -D<..sed upon test data for thin
wall cylinders of co~pareble rlt ratio in pure bending . 
Such data are contained in reference 6 . These data scat 
ter widely a~d some judument Dust therefore be exercised 
in the selection of a value for Sb ' 

I f the t~1.ree quentities _M._ sec a , Sv ' and Sb a re 
rV' 

knoV!n, tr..e maximum "'lJ. 071atle 1 oluent or the bending stress 
on th e e~treme fibar caa be resd from the chart of figur e 
9 as a ~ercentege of t h e value for pu re bending. The 
s t r e r.. g t 1:1 ins he a r, the n, nee d lot 0 e i n v est i g 8 _ ted ·0 e c au s e 
it s effect has been taken iuto account by a reduced bend
i g stre ng th . 

W~e~ the strenGth of any section between adjacent 
bulkheads is t o be chec~ed, th~ largest absolute va lue of 

M sec a. should be used to enter the cbart of figure 9 rV' 
whenever _M_ sec ex. lies Detween --esc a. and + co. For 

rV' 
value s of II sec a. between - esc a. and -ro, the low-

r V' 
est absolute value should be u~ed . T1i s procedure give s 
con servative values and may e verified from appendix B. 

C OlWLU 81 mrs 

The strength of thin- wall truncated cones ~ay be com
puted by tl e forrr'llas used for hin- all cylinders , if 
proper account is taken )f the engle a. betwe ~ n the ele
ments and the axis of the cone. For cylinders , a. = O . 

_1( _l:..) 
In the t est s rep 0 r ted her e in, a. = tan 5 . T h (J f 0 11 0 w-
ing conclusions may therefore be co ns idered valid provided 

. d t - 1 ( .!.) that a. aoes not excee an 5 : 

1Q~~iQ~~- For torsion, the sheDr strecs fs in the 
plane of the skin at any station is given by the formula 
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fs =-
T 

where 

T applied torq\le 

r r adius at the pprtic~lar steti0ll 

t thickness 

The shea r s tress at fail u re fs ~t the larg e end of a 
' 1 

tru~cated co ne in torsion is equal t o the she a r stress at 
failure f o r a c i rcula r cylinder of this r adius and th e 
s8me len~th as the trunc~ ted c one . The shear stress at 
failure for any other stat50n aJo~g t h e length of the 
t r \lncated cone is given by the formula 

f 
s 

js the raQi~ s at th~ larg e end of the con e . 

COID?r c ssion . - On t~e aB surn~tion t~at t~e internal 
com~)TcsslvZ'-strcss fc act::: i n tho di rcl c 'e ion of the 
c l e8er.t, 

s ,~ c a. 

whero P is ti1C a?pli e d co mprt.;ssivo load. The com~J rcs
sive stress at failure f c at the lerge end of a trun-

1 
cated cone i s eq~al to the compressive stress at failure 
for a circular c~liud er of this radi\lS and of 
thickness s the ~all of the tr ncsted co ne . 
sive stress at failure for any other station 
len~t~ of the cone is g iven by the formula 

r 

the s ame 
The c omp res

along the 

Q.Q.~Qin. ~Q,,_:tr.f!.r:, Q.Y.E.L .;l~ _.agQQ..r.._.9..l.\.9,._Q~ilQ"in.g.·-~ 1f t he ben d 
i ng s t rossd9 are es s um~d to a ct in the dir e ction of the 
elements , a portion of the transve rs e shear V is resi sted 
by the bending stres ses. A moment M on a truncated cone 
of circular c ross s6c tio n reducJs the s hear by an amount 
Vb whe re 

Va = M ': an a. 
r 
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In combined transverse she~r and b endi nb , the effective 
sh ea r V I is, t her efore , 

Th e effective tra nsve rse shear caus es a sh ear s t ress f v 
in t h e p la ne of the skin a t the ueutral axis tha t is giv e n 
oy t h e fo r m111a 

V' 
nr t 

The bending st ress fb in the -pl cu.e of th e sk i n a t any 
statio n is ~ i v en by t he formula 

M 

nrClt 
s e c a 

For large values of SJC a. , failure occurs in 

bonding . For s mal l v c:ilues of M s ec a. , failure oc cur s 
rV ' 

in shea r . For int e r rn,:::G.iat0 va. l ues of M s e c Ct , the 
rV ' 

failure is a co m- ination of ebea r e.nd o endi ng . The a l low
able strength in c om bi ned transv e r se shea r and bend i ng i s 
g iven by a d ~s i g n chart simi lar to that p r eviously uub
lishea for thin- wall circular cy li nders . 

Lan g ley Me mor ial AeroilRut ical La b orato ry , . 
National Advi sor ~ Commi t t ee for Aeronautics , 

Lang ley Field , Va . 

APPEiiJDIX A 

BE ND I NG AND S:::EAR STRE SSE S I F A CO NE 

The rel a tio n s between tl e in te r nal str es s and th e ap 
plied f orces in a ta~ored beam ar& sli gh tly diff0 r ent f rom 
the correspor:di n' relations fo r a u niform bee.m . In t hi s 
a P f en d i ;: , for mn I a s for the ben din g and she a r in 5 s t res s e s 
due to the app li cat ion of a si ngle tr a nsver se fo rce on a 
hollow circulF r con e o r e derived . 
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Figure 10 shows a truncated cone of constant fall 
thickness with the larg e end fixed in ~osition end with a 
tr a nsverse force V a pp lied at the sma ll e n d . At any 
ty~ical station, the ~eun radius of the cone is r . 

Tne assumptions are : 

1 . Beudirg stres s e s are d irected along the surface 
of the cone t owa rd the apex 

2 . Bending s t res ses are p roport i onel to the distanc e 
from the neut ral a ~ is , as in the ordinary th e
ory of bending 

3 . Shear stre ss es are directed parallel to the sur 
f ce of t!le cone 

~~QQ,.i~~_§_.t!:.~.:i'§>_~§'-=--- An e 1 e IT. e:1 t 0 fa r e a 0 -: the 'c r 0 s s 
sec tion rt dB loca~e ~ at an angle measured ~rom the 
neutral axis , a s sho,-;n in fi C', re 10 , i8 con s i de r ed . By 
a 3sumptio n 2 . th-3 st r e ss on : .h", o.)l",rr:ent is fb sin 8. 
whe re fb is th e stress on t . e extreme fi b e r . The forc e 
dF on this element is . the "afor e, 

dF = (f b s i i 8) r t d 8 

The moment of dF about tne neutral axis is 

dM = (cos a ) (r sin C)) (f b sin 8) r t d 8 

The total moment M is 
the circumferen c e of th 

= fb r 2 t 

;: 
- f bTTr t 

obtained by i nte~ r ation around 
CO ~10 . '1'hn 6. 

£'TT 

n, j~ sin 
8 

B de cos 
· 0 

cos a 

(Al) 

(A2 ) 

(A3) 

Thu s . t h e bending streas fb <t tne ext=eme fiter in term s 
of the applied beld i ng ~o~ent M is 

where 
at any 

l.1 Mr 
--54

------

n r '" t cos a I 

I is the nOL61t of 
statio n and e qual s 

in e rtia 
nr ' t . 

sec o. (A4 ) 

of the cr oss sect ion 
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£h.Q§:'!:._'§'~!:.~'§'~~2~- From the as sump tion that the bend
ing stre s ses a re directed along the surface of the cone 
to wa rd t h e 3.uex , it fo_lows that the' an di 'is str esse s 
have a co mponen t i1 t he direc Lion of the s hea r force V. 
This co mp onent r esis ts a part of t he shoa r force V and 
th e refore r educe s the shea r str o ss u s . 

The s h08 r for ce rasist ~d by the bonding forc e dF 
L an <ll cIDcnt of t he c ono is 

dV b = (si n a sin e) dF 

= (sin a sin 8 )(f b sin 8) rt d R (A5) 

Tl eta tal 
tained 0 

s hea r r esisted by th e banding stresses is 00 -
i nteg ra ~ion a r ound the c i rcumfere n ce of the 

Ca lle . Thu s, 

8TT 

V fb r 8 
d '3 = rt sin a sin 8 0 Jo 

= fb TTrt sin a (A 6 ) 

subst itution of the value of 
eo ' ation (A o) g ive s 

f b from e ClUa t ion (A4) in 

M tan a (A7 ) 
r 

The effective sh ea r VI that causes sheer stresses in 
t h e wall s of the cone is t herefo re the total an~l ied 

shear V minus the sh ear r e s i st e d by the bending s t resses 
V ; that is , 

V' = V - Vb (AB) 

In order to dete r mine the she a r stres se s in a cone , 
t he part elemen t of 8 cone s h a nn in fi g ure 11 is cOi si d
ered. T' le x-co mp oneLts of the forces due to bend i ng are , 
at st.ation x , 

TT /8 

(F b ) = r fb sin 8 cos a rt d e 
x 'e 

(A9) 

and , at statiun x + dx , 
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( F ) 
b x+d..<: 

8 cos a (I' + d r dx) t d s 
dx 

(A10 ) 

By virt ue of symmetry th e s~e a r stre ss at t h e e xt r eae 
fib e r i s zero . Th e x- c o ponen t of fo r c cl du e to shea r is 
t he r e f o r e 

( All) 

Th e e qua tio~ of equ ili b ri um f or t ~e fo r c e s in the x- d i re c
tio n is t h er efore , i f te r ms o f h i bh e r order are ne g l ected , 

TT 1 .'3 TI /a 

(fv) S + , fe~ df b r> 
se e a. si n 8 l ' d e 

+ ,~ fo si n A dx-

fC'on: wh ich 

(fv) = -co s a co s 
e 

,.. b + f r ( df- d ') 
~ \ r d~- -b d~ 

By dif : ere nt i a tion of e quAti on (A4 ) , 

= - ----- - - - - -
TI r 2 teo s a. 

dr d 8 dx 

At s t ation x , t h e mODe n t Iv! = V( h - x) . Therefo r e 

d.M 
~ x 

Also 

dr = 
d:{ 

s u bst i tu t io n of eq~a t i o n s 

equa tio n (A1 3 ) g i ve s 

( f v ) G = ( ; ;t-
\. 

= - V 

- t e.n a 

(A1 4 ), (A 15) , and (A1 6 ) in 

, - ~-. -.!.~~-~) cos 8 
8 

Ti r t 

= V' 
Ti!' t 

co s e 

= 0 

(A1 2 ) 

( A13 ) 

(A1 5 ) 

( A1 6 ) 

(A1 7 
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The maximum shear strese fv , 
is given by tl e formula 

which occnrs at the neutra l axis, 

2 
V' = y~_!:._ 

nrt I 

AJ?PENDIX 13 

EFFECT OF VARIATION IN THE POI ~T OF APPLICATION OF 

THE SHEAR FORCE ON THE LENDING STTIE SSES IN A CONE 

(A18) 

Be!lding- st r ess diag ra rr, s for cones in combined trans-

verse shear and be~d ing for wii ch the value of M --- sec a 
rV' 

is positive are sho D in figure 8 . Reference to figure 7 
and equation (10) shows , howeve r. that the qu a ntity 

M 
rV' sec a can also have ne gat ive values . Thes e negative 

values occur wh en tn a r sultant she a r force V is located 
either to the ri ght of ~he apex of t he con8 (negative ro) 
or to the left of station x , the section at which bend
i ng stress is determin ed (ne ga tive s). 

A diagram si milar to that of fi ~ure 8 but including 

the negative valu es of _~._ sec a iss 11 0 r n i n f i gu r e 12. 
rV' 

A few hyp ot~etical bending-str ess di &g rams for cones of 
the typ e studied in this p aper are pl otted in f i gure 12 
to indicate t~eir shapes. T~e bou ndary lines corresuond 
to t~e two lines e and f used in figure 8 to represent 
the scat~er of test data. 

Three distinct regions can be defined in fj ~ura 12. 

The r egion in ILich _M_ sec a varies from a to +00 
rV' 

is the same as that shown in fi gure 8 and corresponds to 
a variation in tLe locatio ~ of t he resultar.t eh ar force 
fro!!l C! tat i 0 r, x tot :1 e a"') e x 0 f t bee 0 n e . As the she a r 
force moves from the apex out to infi n ity on the ri ght , 



J 
I 

>-1 

M 
r V' 

sec a v.''l_ries fr om to a value of 
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- cs c a ( i n 

t his case , - 5 .1) aId defines the left - hAnd region of figu re 
12 , i n IThich the be~d i ~g stresses Dre s~own ns positive . 
As the shear fo r ce mov ~s to the left from station x t o 

i nf i n i t;v , _~L s e c a va r ies from C to - cs c a and d e
rV ' 

fin e s the r~ g ion in fi ~~re 12 in whi ch the bendi~g st r es ses 
a r e s hovrn as n egativ e . The p1' r e - ue llding c ondit io n , for 
which the ef~ective shear V' is eoua l t o z e r o , i s ob
tained by plac i ng the r8sultant sha a r force V at th e apex 

of the cone; that is , };~ 

rV ' 
s :::c a .. - ±:-r e 

1 . Anon. : str e ng th of Aircraft El~ffients . Aiif C- 5 _lrmy-
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Figure I. - 'side view of te5t specimen. 
~------ h - - - ---..-j 

"'1-<~- X - ----;04----- h- x - ---../ 

r 

v 

station x. 

Figs. 1.7 

Figure 7. - Sketch of cone and resultant shear force . 
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FI8URE 2. - TRUNCATED CONE AFTER 
FA.LURE IN TORStON. 
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F.eURE ,. - TRUNCATED CONE AFTER 
FAILURE IN COMP~(SS'ON. 
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Figure 4.- Truncated cones after 
failure in combined 

transverse shear and bending , 
showing transition from shear to 
bending failure as (ll./rVI) sec a. 
varies from small to large values. 
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Fig. 4 
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Figure 10.- Truncated cone subjected to combined trans
verse shear and bending. 

Figure II. - Part element of Q cone , show
·,ng longitudinal stresses due to 
shear and bending. 

Figs. 10,11 
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