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ULMARY

w2

The absolute viscosity of exhaust gases from a gaso-
line engine was measured at temperatures from 76° to
890° ¥ and at compositions corresponding to fuel-air
ratios ranging from 0,C625 to 0,167, The viscosity was
found to be nearly independent of the fuel~zir ratio and
within 6 percent of the value for dry air at the same
temperature, During the calibration tests measurements
of the viscosities of air, Nz, Oy, and 00 were also
obtained.

INTRODUCTION

Measurements of the viscosity of high-temperature
exhaust gases from an internal~-combustion engine were
undertaken as part of a program to establish wvalues of
certain physical properties of these gases, These prop-
erties - viscosity, thermal conductivity, heagt capacity,
and density -~ are necegsary in order to evaluate the heat-
transfer moduli used in the predictions of the performance
of exhaust gas and air heat exchangers.

The heat capacity and density of gaseous mixtures
can be closely approximated from calculations based on
measurements of these properties of the pure components,
There exists no experimental evidence, however, to prove
that any of the equations proposed for the calculation of
viscosity or thermal conductivity yield the correct re-
sults for an exhaust gas mixture at high temperatures.
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Measurement of the viscosity of exhaust gases was first
undertaken, With the viscosity known, the thermal con-
ductivity can be approximately computed by means of a
relation derived from the kinetic theory of gases (refer-
ence 1).

The necessity of determining the viscosity at condi~-
tions of elevated temperatures eliminates the use of many
of the precise methods already devised for use at room
temperature., The presence of water vapor in the gases
further reduces the number of available methods because
of the difficulty of retaining this component in making
volumetric flow measurements, The method of measuring
the time of viscous flow of a gas through a capillary
placed between two reservoirs, one at a continuously de-
creasing pressure and the other at a lower and constant
pressure, was selected as being most likely to meet all
the requirements,

A preliminary viscosimeter was constructed in order
to test the accuracy of the method, Tests at room tem-
Perature on air, O,, and CO; indicated that the method
was satisfactorily accurate. A second piece of apparatus
was then made to obtain measurements of viscosity at ele-
vated temperatures. The apparatus constant K was deter-
mined by calibration tests on air, 05, and N,, and vis-
cosity determinations were made on exhaust gases for sev-
eral fuel-air ratios at temperatures up to 890° F,

The present work is not considered complete, but the
results indicate that the method is satisfactory and that
the preliminary data may be useful.

This work was done at the University of California,
sponsored by and conducted with financial assistance from
the National Advisory Committee for Aeronautics,.

SYMBOLS
e atmospheric static pressure (1b)/(sq ft)
¥, static pressure, in excess of P,, of gas in
viscosimeter at time €, (1b)7(sq ft)
Py static pressure, in excess of Py, 0f gas in

viscosimeter at time €, (1v)/(sq ft)
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ANALYSIS

In the case of the experiments reported herein, the

fluid flows from a reservoir in which the pressure is con-
tinuously decreasing through the capillary tube into a re-—

gion of constant pressure (atmospheric). The pressure in
the upstream reservoir decreases only because of the flow
out Lnrough the capillary,

Based on the Navier-Stokes differential equation of
motion for viscous flow and neglecting acceleration fac-
tors, which are negligible for the condition of small
pressure gradient along the capillary tube, the expres-
sion for the variation of pressure in the reservoir with
time as derived in reference 2 is:
/Eﬁ~+ 2.\ By mr4

1

—=— log A = ———— (6, - 8 1

T LR 161V, (62 1) i
/

\
i

Solving equation (1) for the gas viscosity p yields:

[ 4 P. (B.w8.)
-( ot 4 BASGIETY (2)
\81v2 ; Py + 2P\ 'Py]
oz, |.
ke
where 2 b
4
mr o
= K
81v v

Solving equation (2) for X yields:

" | Py % SR, P
X = lOge' (_i_~ 2l gt (4)
Poo{85=18,) APy 2B PO

The term K is a constant for the particular piece
of apparatus used for the determination of the wviscosity
of the gas. The magnitude of K may be established in
two ways: (1) By directly measuring r, !, and V., and
computing K from equation (3); and (2) by calibrating
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the apparatus with tests on a gas of known viscosity and
computing X from equation (4),

APPARATUS AND METHCDS

Description of apparatus,- The final viscosimeter
(fig. 1) was constructed entirely of Pyrex to fit it for
medium—-temperature measurement. The volume of the cylin-
drical reservoir was 50,1 cubic inches; the capillary was
35 inches long and 0.0183 inch in diameter before coiling.
The capillary was wound into & 2~inch diameter helix so
that the entire viscosimeter could be placed inside an
insulated cylindrical hot-air furnace, Because it was
impracticable to measure directly the gas temperatures in
the reservoir and capillary, these temperatures were ap-
proximated by means of three (chromel-glumel) thermocou-
Ples which were inserted into wells in the reservoir, %two
more thermocouples in the hot-air stream around the cap-
illary, and one thermocouple in each of the ducts that
carried the hot air in and out of the furnace. Two small-
bore tubes with stopcocks were added to provide a separate
evacuation line and inlet for the gas samples, Both the
volume V, of the tubing between the manometer and the
reservoir, and the volume YV, between the capillary and
outlet stopcock were held to minimum values by the use of
small ftubing in order to reduce the corrections %o the
final measured pressure; the corrections depend on the
magnitudes of these wolumes and on the corresponding tem-
peratures of the gas in these volumes. (See the appendix,)

The values of capillary radius 2 and length 1,
and reservoir volume V, necessary for determination of
the viscosimeter constant X Dby the direct method involv-
ing equation (3) were obtained by measuring the length
before coiling and by calculating the reservoir volume
from the weight of water and the capillary radius from
the weight of mercury contained., The value of r o0b-
tained in this manner for a tube with bore irregularities
is not exactly the value which should be used in the
capillary-flow equation since the equation involves
and the method of measuring 2, The value of X obtained
by this method, however, was used only as a check on the
value obtained by the indirect method (equation (4)) which
consisted of calibration of the apparatus with tests on a
gas of known viscosity: namely, air,

re
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The viscosimeter was fastened to a wooden stand for
convenient handling and thoroughly cleaned with alcoholic
potassium hydroxide, hot nitric acid, and distilled water.
The reservoir was packed in an insulating material (ground
asbestos) and the entire apparatus was set up in a
constant-temperature room. The air used in the calibra-
tion tests was dried and purified before it entered the
reservoir, The samples of O; and N, wused in other
runs were introduced directly without purification,

Preliminary runs,- The first two series of runs, one

on air and one on CO0p, were made at room temperature, at
initial pressures of 2 to 7,5 inches of mercury (measured
above atmospheric pressure with a mercury manometer), and
with times of efflux of 105 to 210 seconds., The results
showed a decrease in the apparent value of X with an
increase in pressure, The value approached a constant,
however, at the low pressures and concomitant low efflux
rates,

In order to obtain more accurate measurements at low
pressures, the mercury manometer was replaced with one of
similar design but with a longer column and using Ellison¥*
fluid, A series of runs was made at room temperature on
air at a range of pressures equivalent to 3 to 25 inches
of water., These runs showed that there was no apparent
deviation in X over this initial pressure range, Tests
on COp were not carried out because of the slight solu-
bility of CO; in Ellison fluid.

Medium-temperature runs on exhaust gases.,- A series

of runs on exhaust gases then was made at a temperature
range of 78°% to 890° F, at a range of fuel=-air ratios
from 0,0802 to 0,158, and at pressures equivalent to 3
to 28 inches of water. The composition of the exhaust
gases at various fuel-air ratios was determined by Orsat
analyses,

Calibration runs at room temperature.- A series of

calibration runs then was carried out to determine if the
medium-temperature runs had affected the apparatus con=-

stant K. These runs were made on air, O,, and ¥N; at
room temperature, at a pressure range equivalent to 3 to
28 inches of water, and at times of efflux from 60 to 315

seconds,

*A minetral oil plus.red dye, ep, gr. = 0,835 gt 78° T,




Check runs at medium temperatures.- A series of runs
also was made to check the value of X at medium tempera-
tures, The runs were made on air, O, and N, at a tem-
Perature range of 75° to 868° F and with pressure condi-

tions and times of efflux similar to those of the calibra-

tion runs,

RESULTS AND DISCUSSION

Preliminary runse.~ The results of the preliminary
runs with the mercury manometer indicated wvariation in
the apparent value of X with change in pressure. Thisg
variation may be attributed to Reynolds number effect for
flow through curved passages, When X 1is plotted as a
funetion of Remax (fig. 2) the results of the runs on
CO; coincide with the results of the two series of tests
: on air, This relation between X and Rep,x shown in
figure 2 agrees qualitatively with the work of C, M, White
(reference 3) on steady flow of fluids through curved
pipes., From a study of the data on the flow of three dif-
ferent fluids (air, oil, and water) White concluded that
the static pressure drop along curved pipes could be cal-
culated from the laminar-flow equation for straight pipes

1/2
if the value of the dimensionless ratio Re<:%\\ were

/£
less than 11,6 where Re is Reynolds number, 4 is the
inside diameter of the pipe, and D is the diameter of
Lhielhconn o From this relation the maxXximum value of Reynolds
number for which X should be constant was about 120,
although for the case of flow under decreasing pressure it
might be expected that the value of Reppx at time 064
could be somewhat higher than 120 before the effect on K
was apparent., The experimental data show that ¥ does
decrease at values of Repax Only slightly above 120,

Calibration runs at room temperature,- The variations
in pressure and times of efflux in these tests (see table
1) resulted in no discernible effect on the values of K
obtained, The average deviations of the individual runs
from the mean of all runs of the three series was 0.35
pereent for 85 rune an air, 0,26 percent for BO runs on
Nz, and 1,0 percent for 19 runs on O,, The mean value
of X for each of the three series was the sames namely,
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K = 14,7 X 107'3; while the value obtained by direct meas-
urements was 15,3 X 1073, The value of X used in the
viscosity calculations for other gases was that obtained
by indirect mcasurement - that is, 14,7 x 1073,

Checlt rune at medium temperatures.- For purposes of
comparison, the value of X determined from low-pressure
(difference) measuremens on air at room temperature was
used in conjunction with the pressure~time measurements
of the medium tempmerature rung to calculate the viscosi-
ties of XN,, O,, and air at higher temperatures. (These
values are compared in fig. 3 with curves drawn through
the points obtained by previous investigators.) This
value of i

X was used because it is based on the viscos-
ity of air at room temperature, a subject that has been
very carefully investigated, and because room-temperature
measurenents are subject to less error than higher-
temperature measurements. The curves of the values ob-
tained for the viscosities of ©O; and N, at room tem-
perature coincide with the curves obtained Dby previous
investigators, but at higher temperatures, the curves for
O, and ¥, as well as for air, lie slightly above the
curves of previous investigators. The maxXximum deviation
of the experimental curves from the curves obtained by
previous investigators are approximately 1 percent for
air and O, and 2,5 percent for N,. (See table 2 for
summary of data.) .

Exhaust gas measurements.,- The results of the exhaust
gas measurements are given in table 3 and figure 4. These
results indicate that up to 890° F the viscosity of ex-
haust gases from gasoline engines is less than 6 percent
below that of air at the same temperature and is only
slightly affected by changes in fuel-air ratio, The pur-
pose of the following discussion is to indicate: (1) Why
the viscosity of exhaust gas mixtures should be approxi-
mately the same as the viscosity of air at the tempera-
tures of these measurements and closer at higher tempera-
tures, and (2) why changes in the fuel-air ratio produce
only slight changes in the viscosity of the exhaust-gas
mixtures,

Over the range 75° to 1600° F the viscosity curve
for oxygen lies about 10 percent above that for air;
while the curves for all the gases that replace oxygen
in the combustion mixture lie below the air curve. (See
fig. 5,) Although the exact viscosity of the mixture of
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gases cannot be accurately determined from a knowledge
only of the composition of the mixture and the viscosities
of its constituents, the data clearly indicate that the
viscosity of exhaust gases should be close to and probably
below that of air at the same temperature, Furthermore,
the percentage deviation in the magnitudes of the viscos-
ities of the principal combustion products, CO; and

wvater vapor, from air at the same temperature decreases
considerably with temperature while the viscosities of

05, W, CO, and H,; retain their relative positions with
respect to air, This relation indicates that, at higher
temperatures, the values of the viscosity of air and the
exhaust-gas mixtures should tend to converge slightly.

Further evidence that at high temperatures the vis-
cosities of the exhaust gas mixtures are only slightly
below the viscosity of air at the same temperature is o0b-
tained by use of the Sutherland equation

1/2
BT i
W S (5)
1L*g

where B and C are constants for each gas or mixture
and T is the absolute temverature, This equation, which
has been experimentally verified over a wide range of
temperatures for pure gases by several investigators,

also appears to hold well for mixtures (reference 4).

3/3\

m R
T = 3B <J ) - C (8)
B/
gives a straight line, if the equation is valid, when T

ik

is plotted against ——, Plots of this type for aiy and
el

the exhaust gas mixtures (fig. 6) give straizht lines

which, when extremolated to 1500% F, indicate that the

viscosity of the lean mixtures is only 2,0 percent below,

and the rich mixtures 3,6 percent below, the viscosity of

air at 1500° F,

The slight effect of the fuel-air ratio on the vis-
cosity of the exhaust gases is made apparent by a con-
sideration of the effect of the fuel-air ratio on the
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composition of the exhaust gases, as shown in the fol-
lowing table:

Percentage composition
by volume

Fuel-air ratio | CO, % ¢o | 0, [=,0 (calculated)
e i
0.167-0,143 4.32 12 | 0.7
.100- ,091 8%} *.v71 2.4
.063- , 08 15,84 0 3] A 12

If the fuel~air ratio is decreased beyond the opti-
mun, the CO, content is increased at the expense of the
CO, This change tends t0 raduce slightly the wviscosity
of the mixture, but the reduction is opposed by the in-
crease in the O; content., If the fuel-air ratio is in-
creased beyond the optimum, practically all the Oy is
removed from the air, ard the steam and H,; contents are
slightly increased. This change might tend to reduce the
viscogsity, but it is opposed by the decrease in the
€0,-C0 ratio, 1In general, although these changes in com=-
position do not produce opposing effects of equal magni-
tude, all the changes in composition are small and their
net effect on the viscosity are so negligible that the
viscosity of the exhaust gases is practically equal to
the viscosity of air at the same temperature.

CONCLUSIONS

1, Measurements of the wviscosity  of exhaust gases
from a gascline engine at temperatures from 75° to 850° F
give values that are 3 to 6 percent below the viscosity
of air at the same temperatures

M

Extrapolation of the results by Sutherland's equa-

icates that at the temperature at which the ex-~

ses leave the engine, about 15000 &, the wviscosity
i st gas mixtures is only 2 to 4 percent below that

f air at the same temperature,
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3. Variation of the engine fuel-air ratio from 0,063
to 0,167 had very little effect on the viscosity of the
exhaust gaseg.

University of Califorania,
Berkeley, Calif., April 1944,
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APPENDIX

ACCURACY AND CORRECTIONS
Accuracy of the lleasurements of Viscosity
The accuracy of the viscosities obtained from the pres-
ent measurements is determined by the following fTaegbors:

l. The accuracy of the viscosity value used to deter-
mine the apparatus constant X

The validity of the postulates made in the deriva-

2

~Ne
tion of the flow equation (2)

3. The accuracy of measurement of the quantities Pos
Py, P2, 0, ana 6,

4, The magnitude of the temperature variation during
the test runs

5., The temperature gradient along the capillary tube

An analysis of the magnitude of these estimated errors -
indicates that at room temperature the individual runs
should be within 0,3 percent of the mean of all the runs Of
the series and that the error in the mean value should be
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less than 0,3 percent, At higher temperatures, where tem-
perature gradients and fluctuations are larger, the maxinum
deviations from the mean value and the error of the mean
value both may be of the order of *2.5 percent, if there is
only a small number of runs in the series. The experimental
results (figs, 3 and 4) indicate that the deviations and the
errors are of approximately the magnitude estimated, except
that at medium temperatures the errors always appear to be
positive, Comparison with other investigations indicates
that the experimental values obtained herein are slightly
higher than previously reported, On this basis, the viscos-
ities of the exhaust gas mixtures are probably about 1 to 2
percent above the true value.

Correctiong Applicable to Equation (2)

Bquation (2) postulates that the static pressure drop
at any point between the reservoir and the atmosphere is due
only to the viscous drag at the wall of the capillary tube,
Actually other mechanigsms cause additional energy losses and
contribute to the over-all pressure drop, Briefly, these
additional mechanisms are manifested as:

(a) Initial acceleration of the gas in the capillary at
time (6,) of opening of stopcock 3

(b) Inlet Pressure drop which includes loss due to con-
traction and also pressure drop due to acceleration

(¢c) Pressure drop due to change in velocity distribdu-
along entrance length

(a) Pressure drop due to acceleration caused by change
in density of fluid along the tube

(e) Pressure drop due to expansion at end of capillary
tube

An analysis of these prressure-drop components indicates
that their magnitudes are small (less than the experimental
error) and that equation (2) can be used without appreciable
TP 0T

Correction to l{easurement of Final Pressure

The measured final pressure Py had to be corrected to
0btain the value of P, to be substituted into equation (2)
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for caleculation of the fluid wiseosity, This sovreetion ds
necessary because it is impossible to measure the gas pres-
sure P, existing in the reservoir at time 65, At time
62, as the outlet stopcock was closed and the watch simul-
taneously stopped, the gas in the bulb continued to flow
through the capillary until the pressure in the small volume
Vs was raised from P, to Pg., When stopcoek 2 in the

manometer lins was opened in order to measure the reservoir
pressure at the end of the run, part of the gas in V,

which was still under pressure P,, escaped into the reser-
voir, This flow continued until the pressure Ps was es-

tablished throughout V,, V,, and Vs,

The correction to be applied to Py 1is obtained by ap-
plication of the perfect gas law to the pertinent volumes,
pressures, and weights of gas. Because the pressure differ~
ences and volumes V, and Vy were small, the maximum corr~
rection of Pe to Pz was only of the oprder of 0,1 ineh of

water,
TABLE 1,- RESULTS OF CALIBRATION RUNS
Num- Tem- | Viscosity, u|Range@
ber | Gas |pera- 1b/sec\ |0of Fi| Range K Mean
of jused| ture :;r?%—\ (in. | of 8 ; deviation
runs Cr) * 2% | |water) (v) (percent)
g5 | Air | T4 | 3.83x1077 |3.0-28| 60-215/14.7x 10713 0.35
19 | 05 79 | 4.29 6.3-25 {120-180{ 14.7 1.0
20 | N 5 T 3.67 5.4-25 [120-315|14.7 .26

a b}
Ellison fluid was used in the manometer for the measurements.

c 3
The value of X calculated from direct measurement of r, 1,

and W was K =500 X 10713  The value of K = 1R.7 % 1070 e
taken as the viscosime
t

ter constant,

°The measurement of r was made before the capillary was coiled,
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TABLE 2,~ RESULTS OF CHECK RUNS AT MEDIUMN TEMPERATURES

24

Gas | Temper-
ature@

(°F)

Number
of runs

Adr 256

Oy 401
474
594
761

=
Q
1A
OO )y

~I G U1 ¢
010 OO

|

O O O oy O

Nl O -ao®

12

10

Bl e fenine : A
Temperature indicated by thermocouple number 4 in

reservoir,

bm; 2 - g
inrese measured values were obtained by unse of vis-

cosimeter constant KX based on air measurements at 76° F.

Yean deviation

(percent)

gd oonu

:

H'HldquJH}J

]

-

o ;P> o O,(DNO‘}H ar

[ X N ;]
MO~
S0 IV Ie YR ¢ o]

o

average




NACA ARR No, 4F24

aV]
(e

TABLE 3,- RESULTS OF MEASUREMENTS ON EXHAUST GASES

Temper- | Number Fuel-air | Viscosity, n | Mean deviation
ature of runs ratio 1b/sec
(°rF) gq . £4 > (percent)
S P——
g 8 0.158 B85 % 1077 0.8
ang 3 . 075 B.BE b
S0l 2 82 5.01 518
DL g o GO DO 150
378 6 . 060 5.14 » 8
488 4 <O78 5,62 2.0
490 4 L 5,47 ¥ed
490 B o] e 5.54 Tl
502 s .06 Bie 66 )
590 L1 . D8t 6,01 e
598 A . 060 6,14 .9
599 ) L2 Bl 91 il
gre | 4 .106 6,30 el
695 8 = g0 6.47 Tu
800 10 R 6.74 2.4
828 8 «1:06 6.83 1.4
890 e R 7,08 .9
; 1.3 (average)
|

8The preliminary viscosimeter was used for the two room-
temerature tests; all other measurements were made with the
final viscosimeter,

bThe three sets of measurements that have a fuel-air
ratio denoted as R were very rich mixtures for which the
fuel-air data were not recorded,
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Figure 1. Medium temperature viscosimeter.

T *3nd




TTI‘4>
81V,

(

18 x 10~13 =~ T
0 €0,
1
WW: -_—— ~__—.-_-..4_.-___—_‘_.._..>_..-—-}..._—__-4..- -
le] do 3 ?—Q\ T
14 g~ \\Lz
1
100 100 200 300 400 500 600
Unaxdp
Remax =:-_T

Pigure 2.~ Viscosimeter constant as a function of Reynolds number.

*ON ¥4V VOVN

At

2 *Fug




W=

NACA ARR No. 4Fa4

Figs. 3,4

8.00x30=" i | P
Curves|drawn from
76O 02+ data available
/ %» in| literature
: 7 O @ // ir f //
:; ; i - P
7 iV QP SI"
&=6.5 I 1
3 ASR
@ 6.0 R P
S */
= r
Ss.s B! e
& /4?/’
> W
= 5.0
" Mean
5 ¥ EXperimenta deviatipn
a5 / points (r )
; @ ¥| Air 15
h| Oxygen 150
4.0 f/ Nitrogen 1.!2
3.50Z

0O 100 200 300 400 500 €00 700 800 900 1000

Temperature,

oF

Figure 3.~ Viscosity of air, oxygen, and nitrogen.

7.50 X 10T >
1
g oL
o~ 3  ohIih |5 > 5
> Sagd —
Saed | Ipa S
e Curve for lair taken ¥ ' Exhaust gas | '
= from data available | //‘* T== |
~ 8.0 in literature --- 34
@ : 3 -+
3 ¥ ¥ |
g » /‘ /,lﬂ 3 | Me?.ﬂ 1
%= 77 Experimental [—(devia.ion
- 5.0 ’J points F/A ratio (Lgrge.ut) |
3 2072 R =30 O -+
K ava $ . - “100 13| average
gl i . " .167 1i3 [ value
@
o ’ N | | I Rl
e (Mean dleviatiion oints indicafted by 1/2/ length
4.0 7 of] vertical [Ii e?%lp
=
7
3.5Q<

Temperature,

oF

100 200 300 400 500 600 700 800 900 1000 ¢

Figure 4.- Viscosity of air and exhaust gas at various temperatures and
fuel-air ratios.



22

NACA ARR No. 4F24 Fig. 5

IR 3077

oy
44
g0 ////,/'
= i eo
S 1// ,///:’ 2
3 ey
Ei 8 ///// P Aé‘;éf ‘
Y Y - 7z
- ;i;f4 : ;99
2 o R PRV
o 4,4,’ K
£ 6 //‘// 2
///:,/,/’ 2
N /

//1/

/ s /--Hz

G g

& Pt
9 1 v
/
//
2>
0 400 800 1200 . 1600 2000

Temperature, °F

Pigure 5.- Viscosity of principal exhaust-gas constituents.
(Data from reference 1l.)




NACA ARR No. 4F24

Fig. 6

= 2,30 . 1ond LineC B = 2.32 x 10-8 _lb-sec
ft2.0p1/2 £12+0gl/ 2
= 260 °R C = 200 °R
2000 :
/ /
/" ]
1800 :
l, II
/ 4
1600 : y
/ /
: 7
/ ‘
1400 :
: 4
o 1200 p /
E ; i
~
2
o 1000 Fuel-air I
: . ratio fe
5 A 0 = 0.167
. 800 5
© A = 0.063 [
:5,3 / /
s 600 /
® 45 ‘/
Q.
5 /
& 400 /
200 /
0 //
pa () Exhaust gas (b) Air
-400
4 8 12 16 0 4 8 12
512 JE
12, a0 13/2 , 15-10
W B
' 3/2
Figure 6.- Sutherland-equation plot, T = <BT / )—C
5]




