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. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE BESTRICTED REPORT

. EIGH-ALTITUDE COOLING

III - RADIATORS
By Jack N. Nielsen

SUMMARY

A detailed analysis has been made tq take account of the
high cooling-air velocity occurring in high-altitude radiators.
Methods are developed for determining the heat-tranafer rate,
the pressure drop, and the drag power. Some effects of Mach
number are .shown. Radiator performance charts based on the anal-
yeis are presented for a wide range of the design variables. The
application of the charts is shown by an example. .

The performance chartg show that the heat-transfer rate for
a given total-pressure loss is not greatly affected by the high
airplane velocities but that the necessary total-pressure loss
and the resulting drag are both greatly increased at high alti-
tudes. Ao s - Lievirar

INTRODUCTION

Extensive literature 1s available relative to the perform-
ance of ethylene-glycol radiators in the normal range of oper-
ating conditions. At high altitudes, however, certain effects
that normally receive but little consideration acquire increased
importance as & result of the high velocities of the cooling air
through the tubes. The purpose of this paper is to describe and
evaluate these effects.

The theories are outlined on which are based the calcula-
tions of heat transfer, of friction pressure drop, and of accel-
eration pressure drop at high Mach numbers. A general differential
equation for the pressure drop and some epproximate solutions
for the equation are given. Radiator design charts based on the
simplest of these approximate solutions are included. These charts
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show, for a range of altitude up to 50,000 feet, the variation
of heat dissipation per unit frontal area with pressure drop as
well as the corresponding drag power. An example showing the
use of the charts is also included.

This paper is the third of the series on high-altitude cool-
ing. (See reference 1.)

SYMBOLS
v alrspeed, feet per second
v mean flow velocity in radiator tube, feet per second
L radiator-tube length, feet
D radiator-tube diameter, feet
A cress-sectional afea of radiator tube, square feet
X distance along radiator tube, feet
¥y distance from axis of radiator tube, feet

T absolute temperature, ©F + 460

Tw absolute temperature of inner surface of radiator tube,
o
T + 460
Ts absolute stagnation temperature,
V2
°F + 460, T + 4
2dJc
P
8 = T, T4

o) density of cooling alr, slugs per cubic foot

gas constant for air (53.3 x 32.2 Btu per slug per oF)

P absolute stétié pressure, pounds per square foot

q dynamic pressure, pounds per square foot
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U impact pressu¥e, poundd per square oot

H total pressure, pounds per sguare foot

ApF gtatic-preasure change due to shearing force at. tube wall,
pounds per square foot

APm gtatic-pressure change due to momentum change of cooling
air, pounds per square foot

y isentropic-expansion exponent (1.4)

k thermal conductividy, Btu per square foot per second per
(°F [foot) ;

c gpecific heat of air at constant pressure (7,73 Btu ver slug

i o

per °F)

J mechanical equivalent of heat (778 foot-pounds per Btu)

h heat-transfer coefficient, Btu per second per square foot
per I

Q heat-transfer rate, Btu per second

Pc heat-transfer rate, horsepower per unit frontal area of
radiator

PD drag power, horsepower per unilt frqptal area of radiator

o relative density of atmosphere (p/0.002378)

M absolute vigcosity of cooling air, slugs per foot per
gsecond

R Reynolds number of flow in radiator tube (VzpzD/u)

a speed of sound at temperature T, feet per sscond
()

Subscripte:

o) in free stream

2 Just inside radiator-tube entrance
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3 Just inside radiator-tube exit

4 Just outside radiator-~tube exit after sudden expansion

5 in cooling alr after air retufna to free-stream sgtatic
pressure

8 stagnation

ANALYSIS OF THE COOLING-AIR FLOW

The path of the cooling air through the airplane is con-
veniently considered in four parts. Between the free strecam and
the inlet to the radiator tubes the air undergoes a change, usu-
ally an increase, in static pressure and some loss of total prea-
sure, In flowing through the hot Hube the air undergoes a tem-
perature rise and a total-pressure drop. In passing out of the
rediator tubes the air suifers a further loss of total pressure.
Finally, as the air passes out of the duct into the frec stream,
the static pressure returns to free-stream static pressure at sub-
gtantially conetant total pressure. A detailed analysis of the
procegses occurring in these steps follows,

Adisbatic Compression
The temperature at the radiator-tube entrance is given by

a gtatement of the law of the conaesrvation of energy {or the
adiabatic flow of a perfect gas

" L [ve _ g2 1
Tahalil, ., & 5 (yo v2) (1)
P
i : -4 - Je ke it
where T = 0,832 x 10 slug. pex. F per foot-pound

°p
The pressure just inside the radiator-tube entrance, unlike
the temperature, is not uniquely determined by the airplane speed
and the tube-entrance velocity. If the flow from the frece stream
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up to this point were isentropic, the pressure pp, would be given
by

ol '
P 7 A 2} \'s F
0 A 0 2
rotd = 5 1 - i ' —+ 1 (2)
P2 2/ ! as

The full igentropic pressure rise is generally not developed
because of skin friction and flow separation. An estimate of
the pregsure loss must be made for purposes of calculation,

Heat Transfer

The usual equation for the heat transfer from a radiator
tube is derived by equating the heat lost from an elementary
length of tube wall to the heat gained by the fluid in flowing
through the element. The heat lost is

48 » h(TW . T)ﬂD dx (3)

where T 1is the temperature at any distance x along the
radiator tube. The expression for the heat-transfer coeffi-
cient from reference 2, with the value of the constant from
reference 3, is g :

| O 2 W g
h= 0.0247cp(%) (oV) (4)

The heat gained is given by

- Ak
Q = -Z—chp aT (5)

If any change in the kinetic energy within the element is neg-
lected, an equation relating T and x may be obtained dy
eliminating h and 4Q among equations (3), (4), and (5).

If the variation in the fifth root of the viscosity is neglected,
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the equation way be integrated for the initial conditions T = T2

when x = Q; thus

3 -0.2
-4(0.0247)R %

T - T (T, - Tple - (8)

The quantity of heat transferred ﬁer unit'time,up.td peint’ x" Ag

2
Q =_pr"% op(T - Tp) (7)

Combining equations (6) and (7) results in the ususl equation
for the hest transfer of radiators

a | L uO.Zx
. xD -4(0.0247 3
Q=7 o (T - Tp) 1o Ajamarin g (8)

The empirical formule for the heat-transfer coefficient given
by equation (4) is based on tests at low airspeeds for which ;
the heat developed in the laminar sublayer by viscous shearing forces
is small when compared with the total heat transfer. Because the
heat generated dy viscous shearing forces is quadratically depend -
ent on the cooling-air velocity, this heat becomss appreciable at
high airspesis, TFor such cases Crocco gives the following rule
in reference 4: "The transference of heat between any object and
a fluid ficwing by it, when it is no longer possible to disre-
gard the heat developed by friction, is governed by the same law
that applied when it is negligible, provided the temperature to
which the fluid is brought by adiabatic arrest is considered as
ite temperature," In equation (3), that is, the actual tempera-
ture should be replaced by the stagnation temperature

aQ = h(T, - Tg)nD &x (9)

The plausibility of equation (9), at least for the limiting
case of zero heat transfer, may be shown as follows: Consider
the flow in the boundary layer to be essentially two-dimensional,
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inasmuch as the radius of curvature of the tube is large com-
pared with the thickness of the boundary layer. Velocity and
temperature gradients in the flow direction may be neglected.
The change in the total energy of the fluid flowing through an
elementary volume is the net heat conducted into the volume

by the temperature gradient perpendicular to the flow direction
plueg the work done on the volume by the viscous shearing forces
resulting from the velocity gradient perpendicular to the flow
direction. In the form of an equation, the energy balance
becomes

oV .a._(f_P.T.E‘_.). = a., (kaE + u v B_Y. (10)
dx &y \ oy J dy

N

10 cp, k, and p are assumed to be independent of the tempera-

ture, equation (10) may be rewritten as

oT >e Ve
oVe AP [ gy 2 (11)

P ax Byz J 2

For the case ucp/k = 1, a particular solution of equa-

tion (11) is

2
v
Tt S Ty = Constant (12)

D '

The net heat conducted into the elementary volume is, for this
golution, equal to the work done by the volume against viscous
ghearing forces, so that the total-energy distribution is
uniform throughout the boundary layer. %t is apparent that

at the wall, where V =0 and T =T, gf; = 0; that is, the wall

is at temperature Ts and the heat transfer is zero.

i i
The validity of the assumption &EE = 1 depends upon whether

the boundary layer is laminar or turbulent. There will usu-
ally be an outer turbulent boundary layer adjoining a laminar
sublayer, part of the temperature rise occurring within each.

c
For the laminar sublayer EEE = 0.75. For the turbulent part of
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pe
the boundary layer, however —L2 = 1 because the effective values
) ’ k

of k¥ and p are greater for turbulent flow than for laminar o
flow (reference 4), The over-all effects of the variation of 305
k

with the nature of the flow and of the variation of u, cp, and

k with temperature on the equilibrium temperature of the pipe wall
as given by equation (11) are not very great. Frdssel in refer-
ence 5 observed that air accelerating from rest at atmospheric
temperature to supersonic velocities did not appreclably change

the tube-wall temperature from atmospheric temperature, even
though the temperature of the air dropped more than 100° F.

In the development of the heat-tranefer equation for high air-
gspeeds, the kinetic-energy correction must be added to equa-
tion (5) before this equation may be used in the high-velocity
range; thus

2 2
30« ’-‘%—-pv o, 4T + d(%)

or

dTg (13)

If the heat-tranefer coefficient is assumed to be the same at
high speeds as at low speeds, the solution of equations €15)
and (9) 1is analogous to equation (8):

2y

s . =0
. D -4(0,0247)R . =
Q = pV ra cp(’l‘w - TSZ) 1 -8 ) (14)

Equation (14) is recommended as a first approximation to the
heat-transfer rate at high airspeeds for which experimental data
are lacking. The assumption in the derivation that the heat-
trangfer coefficient remains the same at high speeds as at low
speeds is implied in the rule given by Crocco in reference 4, It
is an experimental fact (reference 5) that the skin-friction
coefficient is independent of the Mach number; and, because the
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mechanism causing heat transfer is essentially the same as the
mechaniem causing skin friction, it seems Justifiable to assume
in the absence of direct experimental data that the heat-
transfer coefficient is also independent of the Mach number.

Static-Pressure Losses 1in the Tubes
Linear axial-velocity distributions. - The primary cause

of gtatic-pressure drop in the i'low through a hot radiator tube
is the shearing force at the tube wall due to the skin fric-

~tion. According to reference 3, the static-pressure drop due

to skin friction is

] =2, ~0,2x%
ApF = 0.098pV R 5

or, in the differential form with due regard for sign,

__2 R"O .2

-dp, = 0.09867 dx (15)

Because the product pV must be a constant within the
tube, the density reduction within the tube results in an
acceleration that causes the further pressure drop

BV ]
= aly P
APy = 3% b/" nD2/4 (2ny) dyJ AX

- |
\

When the variable y is changed to ﬁ§%,‘ the expression

rewritten in the differential form is

1

-dpy = & 6T 2(%)2 57 ¢ (5}9 ax (16)

0
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For the Blasiua-%-power-law velocity distribution the value of

the integral is 50/49. A value of 1 will be assumed; that is,
the average velocity is supposed equal to the root-mean-square
velocity. In the rest ¢ the paper the bar has been omitted
from V and no distincti n is indicated between velocity,
average velocity, and roct-mean-square velocity.

The equation for the total loss of static pressure is given
by the sum of equations (15) and (16) as follows:

_ A |
i 1 098pV2 R_o78x + d\Pvi) : (17)

As pV 1is constant,

Vo
R-0.2 E
P, - Pz = 0.0960V e V dx + pV av (18)
O SV

&

The static-pressure drop in the tube may be approximated if the
axial-veloclty distribution is assimed to be linear, an assump-~
tion that will be justified in the following section. By this
assumption

JRE g N
i - ~o.2(izL___;i g %
By use of
Ba¥n s Ay
and
P,  Pg
2Tz - P3T3
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equation (19) may ﬁe solved for ?2 - p3' in terms of the known
quantities Dy, P, V,, Tz, and L/D:

en-y(-Fw)
where
v B A e
‘B_.-.: pz b pzvz (l ) §)
n i
) o% B R
C-= PoppVy ff'?‘(l‘“?)*(E l>

and P
‘ F 2(0.049%3' )

The value of ‘T, 1is obtained from equation (6).

f

Nonlinear axial-velocity distributions. - When static-
pressure drops exceed 30 percent of the absolute pressure at
the tube entrance, an error of more than 10 percent will be
made in determining the pressure drop from equation (20). 1In
this case the simplified solution of the differential equation
for the pressure drop based on the linear axial-velocity dis-
tribution is no longer valid. A more precise solution of equa-
tion (17) may be derived as follows: First, the axial velocity
ig expanded as a power series of the x/D ratio with coefficients
to be determined. This expression is substituted in equation (17)
and the equation is integrated for the pressure as a function
of the x/D ratio. By the use of the series development for the
stagnation temperature, the coefficients of the power series
are finally determined,

Expanding the axial velocity in terms of the x/D ratio gives

vV = Vg + a(%) ; b(%)z ; c(%)s + d(%§4 Sl o (21)

N
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which’ 48 substituted in equation (17) rewritten as

-dp = PV | mV + L d(%)

®)

where m = 0.098R"0:2, There is thus obtained for the axial-

pressure distribution

. N2 & 4
TR B RET N ST A i
e P VZ(D) 4 E(D) i 3(D) Z(D)

ol

(22)

If T is replaced by {Ts and @ %1s;def1ned as T, - Ty, there

18 obtained from equation (6):

=(3) ol G
9:6 8.0 1= a ik '-m(i)"‘ \D o "D .,;‘ :
: e .-

il i 5 ekl

From the definition of T -

- TR . et (pad
and jthe gas law
P .= pRGT
6. may be written as
W A%

(23)

(24)
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Linear equations for the coefficients in
of equation (21) are obtained by substituting
for..V, p, and 6 given by equations.(21),

13

the .powexr series
the. expressions
(22), and. (23],

respectlvely, in equation - (24) and setting the sum of the coef -
ficlents of the various powers of the %. ratio equal to zero:

8 A
Pa =m §§~ + 92
S TR

BmVEa . a®(y + 1) 'ngz

Y = i
H kR R e

]

3

~where

e e %XEE.+ 2 av(y + 1) f Oon
- T i sk 37

VocC
SRt ey sy ¥ Bt
Bd”R(é +6>+27R (2ac + %)

2Vod
_3m 2 ac 7 +
Be = RG( = + 4) + 7R (ad + bc)+

.
> (25)
B Gpmd
o}t ey
3R; 51 ¢

The coefficients a, b, ¢, d, and e are thus determined

in terms of T and the entrance conditions

m, V,, and 6,

The pressure drop for any value of x/D 1is found by substltuting
these values in equation (22) or in the following rearrangement

of equation (22):

x  {ma + 86N L2N2 i fubisiBokfE)"
L N R 0

. me + 4d X 4
4 By i
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The rapidity of convergence of the right-hand side of equa-
tion (26) has been investigated by a graphical integration of
equation (17) for specific initial conditions. In figure 1 the
results of this integration are compared with the results obtained
by use of equation (26). Mathematical accuracy compatible with
the other simplifying assumptions of this analysis is obtained
for pressure ratios down to 0,55 by using five terms of the power
geries.

Figure 1 is also useful for checking the accuracy of equation (20),
which was derived by assuming a linear axial-velocity distribution.
Equation (20) appears to be reasonably accurate throughout the present
design range and down to a pressure ratio p3/p2 ofs 0,7

Another approximate solution for equation (17), based on the
use of the stagnation temperature in the gas law, is

. | 2
T -7\ /T g : [1 ¥ (@Ef) ].
w 8 ( 8 FO ~
P2 2\\K? it b (27)

log, — =
e\ Ty - Tg / 8o (pV)ZRG (Ts + ng

W 3 3
where

L6
Ty, = Tg, + B |1 20 i

The accuracy of this solution, as indicated in figure 1 is between
the accuracies of the two solutions already discussed.

Bffect of Mach number on flow in radiator tubes. - Important
information concerning the effect of Mach number on flow in radi-
ator tubes can be obtained from equation (17). From equation (23)

-0.2x
8 = 6,070:098R &
which, when differentiated, is
-0.2
LARE ) (28)
e D
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Substituting directly in equation (17) results in

&p = (RpT)V %—9 + oV av (29)

If dp is now eliminated from equation (29) by means of the
two relationships

and
2
; SRR
2Jd¢ 8

the resulting equation in two variables is

: e
) o)
voli- + R g =7

—

av V.. 2
RGG + V

(30)

Equation (30) is important because it is independent of geometry
and Reynolds number. : :

At present no cloged solution of equation (30) is available.
A graphical solution, determined by the isoclinic method, is given
in figure 2. The curve for any particular radiator is the curve
that passes through the point (sz,ez corregsponding to the

given entrance conditions. The straight line in the figure sep-
arates the supersonic range on the right from the subsonic range
on the left. The equation of the gtraight line is found by
setting d6/dV equal to zero in equation (30)

O
il N B ol (Tw -9) (31)
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This equation may be easily reduced, from the definition of 0,

to = 1; that is, the line corresponds to a Mach number of unity.

wi<

If the entrance velocity V, -is subsonic, V will increase
along the tube and may reach sonic velocity, where %% = Q.
Tor the air to accelerate into the supersonic region, 6 would
have to increase; that is, the total energy would have to decrease,
which is contrary to equation (23), the heat-transfer equation. A
supersonic velocity may then never develop within a radiator tube
with subsonic entrance velocity. The limiting Mach number of unity
will be found at the tube exit.

If the entrance velocity is supersonic, V will decrease
along the tube, the change being now from right to left along the
curves of figure 2. The flow may not, however, pass continuously
into the subsonic region without violating equation (23). A
discontinuous transition may occur from the supersonic to the sub-
gonic region by means of a stationary compression shock if the
upstream flow is supersonic, depending on the tube length and the
exit pressure. Such phenomena, however, are of no importance in
current radiator technology and a discusegion of them is beyond the

scope of this paper.

Pregsure loss at thetexitﬁof'the radiator tubes. - For radi-
ators in current use the discharge of the air from the radiator tubes
i8 accompanied by a loas of total pressure of about O.qu (ref-

erence 2, p. 10). This loss somewhat exceeds that given by the
well-known Borda-Carnot formula for expansion loss

T2 Al T o TR ' (32)

which, for Ké = %, is only O.llqs. The difference ig probably
due partly to surface irregularities at the exit and partly to
the difference in kinetic energies associated with the upstream

and the downstream velocity distributions.,

Outlet flow. - For corivenience in computation, the air behind
the radiator is assumed to be brought to stagnation conditions.
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The stagnation pressure 1s then

/ o el
: =5}
b =pg|1 e Lt 2 77" =0,2q, (33)
4 2y Rgls :

and, from equation (6), the stagnation temperature is

-0.2g,
-4(0.0247)R o
Ts> 1.~ 8 ( ) D (34)

Ts4 = ’I‘S2 + (Tw -

The air is now assumed to expand isentropically to the free-
stream pressure, The velocity of the air at this pressure is

given by

T
y B %
Vs -f\/ZJcp (TS4 - Ts) - JZJGP By (1 T‘sf{) (35)

\

T P

8 3

T4 =(_ 4 (56)
5 Po

allows equatidn (35) to be rewritten as

| y-1
o 4 Ps,

The drag power pér unit open area due to the momentum change
of the cooling air is
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paVa(Vo - V5)Vy -
= : Ll 2 8
D 550 -(38)

It 18 to be noted that this power represents, in general, a prac-
tical minimum as this value neglects any further effects of the
low-energy cooling air on the external drag.

PERFORMANCE CHARTS®

For the radiator performsnce charte the pressure drops within
the radiator tubes were, for .convenience, calculated by the simplest
of the methods discussed, namely, the method that assumes a linear
velocity distribution along the tube. As has already been indi-~

. cated, the pressure losses are thereby slightly overestimated for

thoée,caaes in which the pressure drop is a large fraction of the
absolute pressure. The calculation of the flow path of the cool-
ing air to obtain the performance charts is outlined as follows:

Values. of alrplane gpced, altitude, and tube-entrance velo-
city arglassumed. The temperature T2 . at the tube entrance

follows ffom equation'(l); but the,pressure'_pz given by equa-

tion (2) is arbitrarily reduced by 10 percent of the freec-stream
dynamic pressure to account for flow separation and skin friction.
The heat-transfer rate follows from equation (14) by evaluating
the vigcosity in the Reynolds number at the mean air temperature
approximated by use of equation (6). The pressure at the radiator
exit Follows from equation (20), where T, ig approximated by

equation (6). The stagnation pressure and the temperature in the
duct behind the radiator follow from equations (33) and (34),
respectively. Finally, the drag power 1s obtained from equa-
tion (38) with the exit velocity of equation (37). The atmos-
pheric conditions were agsumod to be those of Army air and the
vadiator-tube-~wall temperature was assumed to be 240° F. A
ratio of freé-flow area to frontal arca of 2/3 was assumed;

for any othér ratio, the results merely change in proportion.

The calculhtions'covered the Ffollowing ranges of variables:

. 0 to 50,000

'Altith‘de, ft . . . . . . . . . . . . L] . . . . .
SO R R R R U L ey 0 to 500
Radiator-tube length, In. . ¢« « ¢ o o o o o ¢ o0 9, 12, and 15

Radiator-tube diameter, in. « o« ¢ ¢« o o s o o o o o o 1/4 and 1/5
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The six performance charts of figure 3 are for the six
different radiators. .In these charts the total-pressure loss,
defined as the difference between the stagnation pressures
ahead of and behind the radlator, has been plotted against
the heat-transfer vete per unit frontal area, The inlet pres-
gure logs is not included. The ordinates have been divided hy
0 for NACA standard air (see table I) merely for convenience
in separating the curvesg. Lines of congtant tube-entrance
velocity have also been plotted in figure 3 to aid in the quick
determination of.the cocling-air quantity at the radiator
face.

Although the calculations were . carried out:for airplane
speeds of 100 miles peyr hour to 500 miles per hour, the results
plotted in Figure 3 are only for an airplane speed of 300 miles
per hour. The ratio oi' the heat-transfer rate at several air-
plane gpeeds ho the heat-transfer rate at an airplane speed of
300 miles per hour for the same total-pressure loss has been
tabulated for different altitudes in table II, These cor-
rectiong, although appreciable in some cases, especially at the
lower altitudes, arc for the most part negligible. A similar
correction for the cooling-air quantity is given in table III,
where the ratios of the tube-entrance airspeeds at several
airplane speeds to the tube-entrance airspeed at an airplane
gpeed of 300 miles per hour for the same loss in total pres-
sure are tabulated for different altitudes. '

It may be remarked that the corrections in table II involve
two opposing effects of airplane speed: namely, increasgsed tube-
entrance stagnation temperature, which decreases the heat-
trangfer rate for a glven total pressure loss, and Increased tube-
entrance density, which has the opposite effect. At low altitudes,
the temperature effect predominates; but at high altitudes, where
the critical design condition ugually occurs, these effects
almost compensate each other and render figure 3 particularly
accurate.,

A comparison of figures 3(a) and 3(d) shows that sbout 50 per-
cent more heat may be dissipated per unit flow area by %rinch

tubes 9 inches long than by iyinch tubes 9 inches long for the

game total-pressure loss. In general, for tube lengths of this
order, the tubes of smaller diameter will permit smaller radi-
ators and/or smaller total-pressure losses.
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Figure 4 shows the drag characteristics of the radiators
as functions of the flight speed, the heat-transfer rate, and
the tube-entrance velocity. The heat-transfer rate and the tube-
entrance velocity are obtained from figure 3. No interference
effects or weight drag are included. It may be seen that, at
the high inlet velocities necessary at high altitudes with radi-
ators of reasonable size, the cooling drag power becomes very high,

In the past it was hoped that the Meredith phenomenon would
bring about very low drags at high altitudes. Appreciable decreases
in drag are due to this source; but the calculations, which auto-
matically take into account the Meredith phenomenon, show that
these decreases are not sufficient to keep the drag of small-size
high-pressure~-drop unite from appreciably Increasing at high
altitudes.

An example will illustrate the use of figures 3 and 4 and of
table II. The airplane for which the radiator will be designed is
assumed to have the performance shown in table I. The densities
and Mach numbers used 'in calculating q, ere for Army alr. The

radiator design is assumed to be for tubes of %-inch internal

diameter and 9-inch length.

The usual condition determining the radiator frontal area
will be either climb at sea level or climb at the maximum altitude,
that is, the condition at which the heat-transfer rate per unit
frontal area is lowest when the entire total pressure available
for cooling ig utilized. If the available pressure for cooling is
assumed- to be 0.9q,, tho values of the heat-transfer rate may be

read from figure 3(2) for both high speed and climb. The results,
corrected according to table II, are summarized in table IV.

An examination of table IV discloses that the frontal area of
the radiator is determined by the value of the heat-transfer rate
in climb at 40,000 feet, if the necessary heat-transfer rate for
satisfactory cooling is assumed constant. If 1000 horsepower is
to be transferred to the cooling air, the necessary radiator
frontal area is 1000/164 or 6 squere Teet.

Once the radiator frontal area is fixed; the operating line of
the radiator is the ordinate in figure 3 through e heat-transfer
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rate of 164 horsepower per gquare foot. The ratio of the drag
power to the heat-transfer rate may be determined from figure 4(a)
from the values . of the airplane speed, the tube-entrance

velocity, and the altitude. .The: regults are tabulated in table V.

 CONCLUSIONS

From the present gtudy of heat transfer, pressure drop,
and drag power cf radiators in flight at high altltudes, it
is concluded that:

1. At high altitudes, the density reduction within the
radiator tubes results in appreciable increases in both
friction pressure drop and acceleration pressure drop.

2. The usual hsat-transfer equatione may be retained at
high Mach numbers, provided that stagnation temperature is used
in place of actural temperature.

3. Heat-transfer rate as a function of pressure loss is
practically independent of airplane speed gt high altitudes.

4. Excessive drag 13 associated with the use of small
radiators at high altitudes; slight increases in radiator size
result in large decreases in drag.

S. The Meredith phenomenon becomes insignificant when the
radiator pressure drop approaches the total available pres-
sure.

Langley Memorial Aeronautical Lgboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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TABLE I. = ASSUMED AIRPLANE PERFORMANCE
[ﬁing loading, 40 lb/sq ft; heat rejection, 1000 hé]
Figh speed Climb
Altitude Rel“tiYe Alr- Free-stream | 0.9q Alr- Free-stream | 0.9q
density,o c C
(ft) (a) speed, V impact = speed, V impact 5
(mph) pressure, q, (mphs pressure, q.
(1b/sq ft) (1b/aq fb)

0 1,000 333 275 247 192 87 78.3
10,000 .738 367 247 301 218 84 102.4
20,000 +533 403 220 371 246 7 130.2
30,000 - 374 450 190 456 280 70 168.5
40,000 b 245 501 170 625 354 79 290.0

&The values of o are based on NACA standard air as in fig. 3.
TABLE II. - RATIO OF HEAT=-TRANSFER RATES AT SEVERAL AIRPLANE SPEEDS
TO HEAT-TRANSFER RATE AT AN AIRPLANE SPEED OF 300 MILES PER
P
HOUR FOR IDENTICAL TOTAL-PRESSURE LOSSES,
(Pe)
300
Po/(Pe) g0
Altitude -
A ft) 0 10,000 20,000 30,000 40,000 5Q, 000
(mph)

100 1.08 1.05 1.03 1.02 1.00 1.00

200 1.05 1.03 1.02 1,01 1.00 1.00

300 1.00 1.00 1.00 1.00 1.00 1.00

400 +93 .95 « 97 .98 «99 1.00

500 .83 .88 «92 «95 .98 «99

TABLE III. - RATIO OF TUBE-ENTRANCE AIRSPEEDS AT SEVERAL AIRPLANE
SPEEDS TO TUBE-ENTRANCE AIRSPEED AT AN AIRPLANE SPEED
OF 300 MILES PER HOUR FOR IDENTICAL TOTAL=-
PRESSURE LOSSES, ﬁl—?——-—-
2)300
Vo/(V2) 500
Altitude
v £t) 0 10,000 20,000 30,000 40,000 50,000
(mph)
100 1.05 1.05 1.05 1.06 1.06 1.086
200 1.03 1.03 1.03 1.03 1.04 1.04
300 1.00 1.00 1.00 1.00 1.00 1.00
400 .96 .96 96 | .95 .98 .95
| 500 .92 .91 91 | 1490 .89 .89

NATIONAL ADVISORY
COMMITTEE FOR AERQNAUTICS



TABLE IV. -« VARTATION WITH ALTITUDE OF MAXIMUM POSSIBLE

COCLING PER SQUARE FOOT

High speed . Climb_
P
ALbitydel  Atrspeed (Pe) 500 AR Fe atrspeed|  (Felgog e Fe
(from table I)|(from fig. 3(a)) (Fe)zog (hp /sq £t)| (mph) |(hp/sq ft) c)zo0 (hp / sq ft)
(mph) (hp/ sq ft) (from table II) (from table II)

(6] 333 3056 0.98 299 192 190 1.08 199
10,0C0 367 300 <97 291 218 200 1.03 206
20,000 403 282 <97 274 246 193 1,01 195
0,000 4850 235 o9 228 280 175 1,00 175
40,000 501 195 .98 191 354 164 1.00 164

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
TABLE V., - PLRFORMANCE OF RADIATOR OF 6-SQUARE-FOOT FRONTAL
AREA TRANSFERRING 1000 HORSEPOWER
v High speed Climb
Altitude & v, Pp/P, Pp Vo Pp
(£t) (from fig. 3(a)) (from table I) (from fig., 4(a)) - (hp) (mph) PD/Pc (hp)
{mph) (mph)

0 130 333 0.102 102 192 0.124 124
}0,000 135 3€7 .072 72 218 .108 108
80,909 145 40d .064 64 246 «102 102
30,000 e 4% .104 104 280 .200 200
40,000 220 501 +176 176 354 360 360
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