-

ARR No. Lh4I27

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED
November 1944 as
Advance Restricted Report LLI2T
BENDING AND SHEAR STRESSES DEVELOPED BY THE INSTANTANEOUS
ARREST OF THE ROOT OF A MOVING CANTILEVER BEAM
By Elbridge Z. Stowell, Edward B. Schwartz,
and John C. Houbolt

Langley Memorial Aeronautical Le&boratory
Langley Field, Va.

LABORATORY L(BRERY
OF JET PROPULSION
L E PROPERJ;(UFORNM INSTITUTE OF TECHNOLOGY

.
i ¢
&

Gt

C’@p

\

NACA

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of
advance research results to an authorized group requiring them for the war effort. They were pre-
viously held under a security status but are now unclassified. Some of these reports were not tech-
nically edited. All have been reproduced without change in order to expedite general distribution.

L -63




NACA ARR No. LLT27 RESTRICTED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

BENDING AND SHEAR STRESSES DEVELOPED BY THE INSTANTANEOUS
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By Elbridge Z. Stowell, Edward B. Schwartz
and John C. Houbolt

SUMMARY

A theoretical and experimental investigation has been
made of the behavior of a cantilever beam in transverse
motion when its root is suddenly brought to rest. Equations
are given for determining the stresses, the deflections, and
the accelerations that arise in the beam as a result of the
impact. The theoretical equations, which have been confirmed
experimentally, reveal that, at a given percentage of the
distance from root to tip, the bending stresses for a
particular mode are independent of the length of' the beam
whereas the shear stresses vary inversely with the length.

INTRODUCTION

When an airplane lands, the vertical component of the
velocity is rapidly reduced to zero. In the absence of a
thorough analysis of the stresses that arise from such
shocks, it is customary for engineers to assume that the
landing loads are static and independent of the elastic
properties of the structure. As an initial step in the study
of elastic structures under shock loads, an investigation has
been made to determine the effect on a simple structure of
the sudden arrest of its motion and the effect of the
geometry of the structure on the stresses that result. The
particular case treated in this report covers the basic
problem of the instantaneous arrest of the root of a moving
cantilever beam. The solution of this problem gives the
energy consumed in exciting the different modes of vibration
and the stresses, deflections, and accelerations that result
throughout the beam.

This investigation is based on the usual engineering
beam theory in which the deflections are considered to be the
result of bending alone and shear deflections are neglected.
The theory, as applied to ordinary beams, gives reasonably
good results as long as the distance between inflection
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points is greater than a few times the depth of the beam.
WWhen this theory for beam action is used in vibration
problems, such as the problem in the present paper, the
results are satisfactory for those modes of vibration for
which the nodes are not too close together. This report
summarizes the results of a theoretical solution, given in
the appendix, and presents an experimental verification

of these results.

SYMBOLS

E modulus of elasticity
W weight density of material
A coefficient of equivalent viscous damping of

material

, I : Eg

© velocity of sound in material =
g acceleration of gravity
L length of beam
i moment of inertia of cross section of beam about

neutral axis
A cross-sectional area of beam
P radius of gyration of cross section of beam <&G§>
X coordinate along beam measured from root
y distance from neutral axis of beam to any fiber
v time, zero at impact

/é\
P operator —_—
&%)

n integers 1, 2, 3, etc. designating a particular

mode of vibration
Bn nth positive root of 1 + cos B cosh 8 =0
wn undamped natural angular frequency of nth mode,

0,°
radians per second pec ——
12
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wn'! damped natural angular frequency of nth mode,

radians per second (wpn (/1 - =

LE®
/ NCw, @ :
\?hen 0D_ > 1, the "frequency" is defined
LE®
Kawna .
(T Ny -

v velocity of beam prior to impact
w(x,t) deflection of beam at station x and time t
wn(x,t) deflection of beam at station x and time ¢

for nth mode of vibration
g% ) acceleration of beam st station x and time t

an(x,t) acceleration of beam at station x and time t
for nth mode of vibration

o(x,y,t) Dbending stress in beam at station x, distance
from neutral axis Yy, and time ¢

On(x,y,t) bending stress in beam at station x, distance
from neutral axis Yy, and time <t for
nth mode of vibration

Ti{x,;b) average shear stress over cross section of beam
at station x and time &

Tulx, ) average shear stress over cross section of beam
at station x and time  t_rfor nth mode of
vibration

An bending-stress coefficient

Bn shear-stress coefficient

Cn deflection coefficient
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RESULTS AND CONCLUSIONS

Theoretical

When a cantilever beam under uniform translation in
a direction perpendicular to its length has its root
instantaneously brought to rest, there is excited a
theoretically infinite number of modes of vibration.
With each successive mode, damping has an increasing
influence upon the frequencies and amplitudes of vibration
and, for sufficiently high modes, even changes the type
of motion from oscillatory to nonoscillatory motion. In
the lower modes, however, damping has little effect, and
only terms of the first order in damping need to be included
in the equations. Only the equations applicable to the
lower modes, which alone are of importance in any practical
case, are presented in this section of the paper. For a
more complete treatment of damping, see the appendix.

The angular frequencies (2w times the frequencies
in cps) are given by the equation

0y~
wp = pc —= 1

where 8y has the following values for successive modes
of vibration:

By = L:87510l 85 = 1L.127168

0, = L.69L098 8 = 17.278759

85 = 7.854757 6n :%— (2n-1)m, n > 6
8L, = 10.995541

The energy that the beam possesses before impact 1is
consumed in exciting the various modes of vibration and
is distributed among the modes as follows:
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Mode, n Percentage of energy

61.
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This distribution of energy among the different modes of
vibration is presented graphically in figure 1.

(2]

All stresses, deflections, and accelerations are
damped sinusoidal functions of time and vary along the
length of the beam. The bending stress on(x y,t) and
the average shear stress ?n(x,t), associated with the
nth mode of vibration, are given by the equations

ku
Un(X,E’,t) 2 An ‘}:" % 2 sin (L‘,nt (2)
k 2

The variation of the dimensionless coefficients Ap
and Bp with x/I. 1s given for n =1, &, and' 5 in
figures 2 and 3. The highest values of Ap and By,
and hence the highest stresses, occur at the root of the
beam. These values, for the first six modes, are

Mode, n An at root Bnh at root
1 1.566 2 146
2 .868 I, 1&3
-209 99
é Zg% g 00
5 2] [[.00

The foregoing values of An and B at the root are
presented graphically in figure L.

The maximum values with respect to time of on(x,y,t)
and Tn(x,t) associated with the nth mode of vibration,
when the effects of damping are neglected, are
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on(x,y) = Ap g 3B (L)
Tn(x) = By % % (5.

The deflections wp(x,t) for the nth mode of
vibration are given by the equation

Aw_2
ity
e 2B ~ sin wpt (6)

Wn(X,t) = Cn

ol
Tl
¥

The accelerations ap(x,t) for the nth mode, when
damping is sufficiently small, are given by

an(x,t) = -wp2 wn(x,t) )

The variation of the dimensionless coefficient Cp
with x/L is given for n =1, 2, and 3 in figure 5.

The equations (L) to (7) for stress, deflection,
and acceleration give the values associated with the
nth mode of vibration. Since all modes of vibration
occur simultaneously, the net results are the superposition
of the effects of all modes. This supervosition gives
the following equations:

For bending stress,

le2
-—zf—t
O(X,Y,t) o % %E Ale E sin wlt
Kw22
—-—Z—t
+ Ape E sin wpt + ... (8)

For average shear stress,

T(x,t) =

ol

leat
%E Bje 2E = sin wjt

Kw22
+ Bae- g sin wpt + ... (9)
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For deflection

Kw22
- t
+ Cpe 2E ° sin wpt + ... (10)
For acceleration, when damping is sufficiently small,

v lea
5 -t
a(x,t) = % % Clwlae 2 sin wlt

A 22
--Z——t
+ Czwgae 5 sin wot 4 ..9 (11)

The equation for bending stress (equation (L))
reveals that, at a given percentage of the distance from
root to tip, the bending stress for a particular mode 1is
independent of the length of the beam and depends only
on the velocity before impact. The equation for shear
stress (equation (5)) reveals that the shear stresses at
any station vary inversely with the length of the beam.
These results are contrary to those that might be
expected on the basis of experience with the static
behavior of structures. For this reason an experimental
investigation was made.

Experimental

A circular steel tube of l-inch outside diameter
and 0.028-inch wall thickness was mounted symmetrically
on the end of a pendulum to form a pair of cantilever
beams. (See fig. 6) The pendulum was permitted to start
its swing from a predetermined position and was suddenly
brought to rest at the bottom of its swing against an
electromagnet used to prevent rebound. The effect of
length was studied by reducing the length of the tube in
successive tests. The bending and shear strains were
measured by electrical strain gages that were mounted on
the tube as shown in figure 7. Each pair of gages was
{ncorporated into a Wheatstone bridge circuit as shown
diagrammatically in figure 8. The outputs of the bridge
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systems were fed through a strain-gage amplifier intoe a
multichannel oscillograph that recorded the strains on
moving photographic paper. The amplitude of the components
of strain due to the modes of higher frequency was

reduced, however, because of the response characteristics
of the oscillograph. The frequency-response curve for

the oscillograph used is given in figure 9.

Typical records for tubes of two lengths are shown
in figure 10. 1Inspection of the record for the cantilever

beam 263 inches long shows the superposition of the

second and third modes upon the first mode. The record
shows that, in the case of the bending strain, the
contribution of the second mode is small; whereas, in
the case of the shear strain, the contribution of the
second mode 1s large. This observation confirms
qualitatively the theoretical results shown in figure L.
The same effect is not shown, however, in the record for

the cantilever beam llg Inches long because of the

comblned action of damping and reduced response of the
oscillograph to the higher frequencies associated with
this short length of tube.

The bending stresses computed by use of equation (8),
in which only the first three modes are used, are given
by the solid-line curve of figure 11 for the cantilever

beam 26% inches long. Comparison of this curve with the

record obtained during the first % cycle of the first

mode (see fig. 10) shows good agreement as regards the
wave shape.

Because of the damping present in the tube and the
response characteristics of the oscillograph, the only
component of vibration that could be satisfactorily
recorded for all lengths of cantilever tube was the
fundamental or first mode. The quantitative results of
the tests consequently were based upon this mode of
vibration. This procedure 1s sound because the effects
of the various harmonics are independent of one another.
In the analysis of the results, the data had to be
corrected for the influence of the magnet.

The observed frequencies are compared with the
frequencies comouted from equation (1) for the first
mode in the following table:
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Frequency
Length Observed Computed
(in.) (cps) (cps)
uéi 17.5 17.5
L
262 27.9 28.2
L
e .1 % o
L 5 5
162 131 1
L b L
112 272 277
L |

The experimental values of extreme-fiber bending
stresses and the shear stresses at the root, for Gthe
fundamental mode, are plotted in figure 12.
are also shown the corresponding theoretical curves of
equation (L) for bending and equation (5) for shear with
It 1s observed that the experimental
points follow the trend of and lie close to the theoretical

n taken as 1.

curves.,

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.

In figure 12
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APPENDTX
THEORETTCAL DERIVATION

General analysis.- Consider a beam of uniform cross
section in equilibrium. If a portion of the beam is
suddenly disturbed, as by a shock, in a direction
perpendicular to its length, the beam 1s set into damped
bending oscillations. The equation of motion for these
bending oscillations is given by the differential
equation (reference 1)

a2 (\) (\2
pp2dte | pp2 W, #-0- (A1)
axlt Bxliot 5t2
The damping term AP _d%w is derived on the
éylh\t

assumption that the longitudinal damping force per unit
area at any point on the cross section of the beam 1s
proportional to the rate of change of longitudinal strain
at thet noint. (See reference 2.) This type of force is
analogous to ordinary viscous drag, in which the tangential
force per unit area is provortional to the rate of change

of shear strain. With the use of the notation c¢@ = Qf,

equation (Al) can be written

dbw A 30w 1 d%w _

+ + (A2)
éxu- E (.\/XLJ'(\)‘[Z 02p2 dte

In accordance with the Heaviside operational methods
(reference 3), equation (A2) may be reduced to an
ordinary differential equation of the fourth order by

(\
writing p = —; thus,

ot
by b2
<é + p%> d L+ + B = 0 (43)
%/ ax c2pe
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The general solution of equation (A3) is

w = P cosh 9% + Q sinh e% + R sin e% + S cos e% (Aly)
where
ip
8 =L =
cijl + p—
ol + 2

The coefficients P, Q, R, and S are to be determined from
the boundary conditions. The case under consideration is
that of a cantilever moving with uniform velocity v and
having its base brought instantaneously to rest. The
boundary conditions for this case are

<:‘> x=0_: v - vl
Aﬁ\ > ¥ /%5 = 0
OX /x=0 axa e \\XB

The velocity of the root as given by the first boundary
condition is represented granhically in figure 1%(a).

The rules of the Heaviside calculus, .however, have been
devised for a disturbance, called the unit function? 5
shown in figure 13%3(b). By the principle of supnerposition,
the velocity function shown in figure 1%(a) may be
considered as a suverposition of those shown in figures 13%(c)
and 13(d). The velocity therefore consists of a constant
velocity v (fig. 13(c)) added to the solution of the
problem obtained by the Heaviside expansion theorem for
the disturbance shown in figure 13%3(d). On the basis of
this procedure, the first boundary condition may be

written
dw p.: , i y
<f;>x:0 * p¥izag= -vi
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With the application of the boundary conditions to
equation (Al), the operational form of the solution for
the velocity (that induced by the disturbance) is found
to be

=
V&

PW = >TT ¥ cosh § cos §)

" i s
ﬁl + cos B cosh 8) <;Ooh 8T + cos ei)

. . b 4 T
+3in 9 sinh 8 (cosh BT - CcOS 6?>
% ]

+ (sinh 6§ cos 8 + cosh 8 sin 8) (sin e% - sinh a%)J (A5)

Interpretation of this operational expression and addition
of the constant velocity v gives for the total velocity

( - M,
Mxt) o vt e o F(epE)e 2B [eos gt -
Ct 1. 5. L
n=1
where
Oy nth positive root of 1 + cos 68 cosh 8=0
8.2
L
wp = “c—fz- undamped natural angular frequency of

nth mode, radians/sec

damped natural angular frequency of
nth mode, radians/sec




5 s X X
sin 8, sinh 6, — - cos 0,~

- <cosh Bn sin 8, + sinh B8, cos 8n> <sinh On

8 (cosh € sin B - sinh 6§, cos 9n>

Integration of equation (A6) with respect to the time with the condition
gives for the deflection

The contribution of the nth mode to the deflection 1is

sin wn'ti

Wn(X:t)

: P& =
sin eﬂf} (;1:;
=3
5
o]
=
(@]
e
=
H
o
.-Q
(A7)
(A8)

¢T
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A
When £ > 1, equation (A8) may be put in the form

: Kwngt
- ¥ I 1 20 .
\An(x’t) .C— -—5 HW—V Slnh (Dn't.z (A9)
-+ A |
=2
where now
NEry, &
n
wnl wn -
LB

Aw
The form indicated by equation (A8), where 75? < 3,2 1
characteristic:of the lower modes and represents damped
oscillatory motion. The form indicated by equation (A9),

Aw
where 75? > 1 (damping greater than critical), is

characteristic of the higher modes and represents
subsidence motion.

From equation (A6) for velocity and equation (A7)
for deflection, the complete behavior of the cantilever
may be determined. The quantities of interest are the
bending stresses, the shear stresses, and to some extent
the accelerations. iWhen damping is present, the equations
representing the contribution of the nth mode to these
quantities may be given in the two forms indicated by

equations (A8) and (A9). In subsequent equations, however,

only the form indicated by equation (A8) is given because
it is characteristic of the mocdes that are of practical
importance.

Bending stresses.- The bending stresses o(x,y,t)
at any fiber distance y from the neutral axis are




w

By e

o(x,y,t)

N

=
e
Q
R
, b
o oy
=)
=
o

25 Ao 2
, - ==t
=B 2 %ZAH P e §1 BT Ffin 0,1t ] E
A 2w,2 N
n=1 \1 - 2 ~
[;Ea

where

sin 8, sinh 8, (cosh Gn; 45 COB en%)- (oosh 8, sin B8, + sinh 8, cos 6n> (sinh en%— 4% san 9n%>

An = 2
9 (cosh 6 sin 6y - sinh By cos 8n>

The bending stress due to only the nth mode is

op(x,y,t) = E % % Ap—— 1 e <k sin wn'ti
- %
B

2. 2
wn
LES

—
1
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Shear stresses.- The average chear stress over the cross section 7T(x,t) 1is
’

B
- = W
T(X,t) = ‘“C = 3
o
N 2
@0 _/L(,L-n t
= E % % B ] e <E sin wn't.Z
] 2.2
n=1 : Awn
b?ﬂa

where

: X : : X X
- sin en'f‘) - (cosh 8, sin g, + sinh 9, cos 9n> (cosh enf + cos an_>

cosh 8, sin @ - sirh 3, cos g,

: A X
sin 8y sinh Hp <51nh Qn?—

Pn=2

e .

The average shear stress due to only the nth mocde 1s

- 4
sin wp't 4

Accelerations.- From equation (46), with the aid of the relation

L2IfT *oN ¥¥vV VOVN

1l
I
o
5
(X%
+
£y
o
ot
~ Q

pF(t)Z
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the acceleration anywhere on the beam is found to be

= m
2
a(x,t) = é_vﬂzé.i). l 2 F@HL>
ot L
-
i . >"2mn2 .2 / Ay, e )\gu)n
T A E LE2
-_C_;F.)_Z_Cn = e cE sin W't + cos W, 't |1
dae 2
=i o N, v x%?
Lre 2R°

With the aid of the orthogonal properties of the

functions F<?n%> it is possible to show that the

X
3 to ze ) = 1.
quantity 2 Z G) ) reduces to zero when 0 < T 5

At

B

= 0, the quantity 2:§j~ 63——> equals zero, and only the

n=1
term -vpi remains. This term indicates that at t =0
an infinite acceleration of zero duration exists at the
100t .

The acceleration due to only the nth mode is

: W2 1y g Nap,[ Mo 2
- 5 joies: 11 N
2 > £ )
an( x,t) = ";:T- L;—w_nz c —:;;—2-}-—-~e €% flginWu't + Lt cos Wp't b 4
AN @ . _K%M
LE® 2B°

Comparison with the exoression for wp(x,t) (equation (A8))
shows that the acceleration for each mode is out of phase
with the deflection. When damping is sufficiently small,
however, the relation between the acceleration and the
deflection reduces to the well-known result for undamped
vibration

ap(x,t) = —wnawn(x,t)
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