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NATIONAL ADVISORY COMMITTEE FOR AERONAUTIGCS

MEMORANDUM REPORT

for the
Army Air Forces, Air Technical Service Command
BENDING AND SHEAR STRESSES DEVELOPED BY THE
INSTANTANEOUS ARREST OF THE ROOT OF A
CANTILEVER BEAM WITH A MASS AT ITS TIP

By Elbridge 7. Stowell, Edward B. Schwartz,
John C. Houbolt, and Albert K. Schmieder

SUMMARY

A theoretical and experimental investigation has been
made of the behavior of a cantilever beam in transverse
motion with a mass at its tip when the root is suddenly
brought to rest. Equations are given for determining the
stresses, the deflections, and the accelerations that arise
in the beam as a result of the impact. The theoretical
equations, which have been confirmed experimentally, reveal
that for a beam with a given cross section and velocity at
impact and for a given ratio of tip mass to beam mass, the
bending stresses for a particular mode at a given percentage
of the distance from root to tip are independent of the
length of the beam; whereas, the shear stresses vary
1nversely with the length.

The addition of a mass to the tip of a cantilever
beam increases appreciably the stresses produced by the
first mode of vibration but changes only slightly the
stresses contributed by the higher modes. The tip mass
increases the maximum bending stress much less than might
be expected on the basis of experience with the static
action of structures. For practical engineering analysis
the maximum bending stress developed in a suddenly arrested
cantilever beam can be found by a simple addition of
stress amplitudes in the first few modes without regard
to phase relations between modes.
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INTRODUCTION

When an 2irplene lands, the vertical component of
the velocity is rapidly reduced to zern. The shock of
the sudden change in motion gives rise tc vibratory
stresses in the airplane. As 2 beginning in the study
of these stresses a previous report (reference 1) dis=-
cussed in detail the behavior of a cantilever beam in
translational motion when its root is suddenly brought
to rest. 1In that paper equations are given for deter-
mining the stresses, the deflections, and the accelera-
tions that arise throughout the beam as a result of the
impact. The present report extends the basic problem of
reference 1 to include the effect of a concentrated mass
at the tip of the cantilever beam.

As in reference 1, the present paper is based on the
usual engineering beam theory. In this theory the
deflections are considered to be the result of bending
alone, shear deflections neglected. The theory as applied
to ordinary beams gives reasonably good results so long
as the distance between inflection points is greater than
a few times the depth of the beam. When this theory for
beam action is used in vibration problems, such as that
in the present paper, the results are satisfactory for:
those modes of vibration for which the nodes are not too
close together. :

This report summarizes the results of a theoretical
solution given in appendix A and presents an experimental
verification of these results. A numerical example for

the calculation of the maximum stresses near the root of
the cantilever beam is given in appendix B.

SYMBOLS

E modulus of elasticity

weight density of material

A coefficient of equivalent viscous damping of
material
T
c velocity of sound in material\/jf
¥
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g acceleration of gravity
L length of beam
I moment of inertia of cross section of beam about

neutral axis
A cross-sectional area of beam

Ej
p radius of gyration of cross section of beam <p2:
X coordinate along beam measured from root
y distance from neutral axis of beam to any fiber
time, zero at impact
o)
operator =

§ | ot
n integers 1, 2, 3, etc., designating a particular

mode of vibration
f nth positive root of equation 1 + cos 6 cosh 6

+ r@9 (sinh 9 cos 8 - cosh gsin @) =0

i ratio of tip mass to beam mass %
@, undamped natural angular frequency of nth mode,

radians per second (pc =

L2
wn damped natural angular frequency of nth mode,
\

v velocity of beam prior to impact
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w(x,t) deflection of beam at station x and time t

wn(x,t) deflection of beam at station x and time t
for the nth mode of vibration

a(x,t) acceleration of beam at station x and time t

an(x,t) acceleration of beam at station x and time t
for nth mode of vibration
o(x,y,t) bending stress in beam at station x, distance
from neutral axis y, and time t

Gn(x,y,t) bending stress in beam at station x, distance
from neutral axis <y, and time t for nth mode
of vibration

T, L) average shear stress over cross section of beam
at station x and time ¢

?h(x,t) average shear stress over cross section of beam
at station x and time t for nth mode of
vibration

An bending-stress coefficient for nth mode of
vibration

Bn shear-stress coefficient for nth mode of vibration

25 deflection coefficient for nth mode of vibration

RESULTS AND CONCLUSIONS

Theoretical

When a cantilever beam with a mass at its tip is under
uni form translation in a direction perpendicular to its
length there is excited & theoretically infinite number
of modes of vibration when its root is instantaneously
brought to rest. With each successive mode, damping has
an increasing influence upon the frequencies and amplitudes
of vibration and, for sufficiently high modes, even changes
the type of motion from oscillatory to nonoscillatory
motion. In the lower modes, however, damping has little
effect and only terms of the first order in damping need
be included in the equations. Only the equations applicable
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to the lower modes, which alone are of importance in any
practical case, are presented in this section of the

paper. For a more complete treatment of damping,

appendix A.

The - angular frequencies (2m times ' the
in cps) are given by the equation

6 &

Wen = Pe) ==

2
L

where 6, 1is the nth positlive root of the

see

frequencies

equation

1 + cos g cosh 6 + rB (sinh 9 cos 6 - cosh 6 sin 6)=0

In this equation r 1is the ratio of the tip mass to the
mass of the beam. The values of 8, for the first three

modes are given in the following table for several values

(R i

v 9, 0, 95

0 1.8751 L. 6941 7.8548

1

T 1.5738 lL.2250 7.2813

1

> 1.44200 l..1105 2 190k

% 1.3202 L. 0602 7.1539

1 1.2447 LL.o311 7.13%%9

2 1.097k 3.98326 7.1026

n 9171, 3.9557 7.0859

6 .8328 | 3,91,60 7.0802
Figure 1 shows graphically the variation of 8, with the
mass ratio’ ¥ for ‘= 1, 2, apd 5. For &ach walue of

n the wvalue of en,

and consequently the frequency,

decreases with increasing values of the mass ratio r.

(1)

—
)
~—
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Expressions for the bending stresses, shear stresses,
deflections., and eccelerations are the same &as the expres-
sions given in reference 1 for these quantities except
that the coefficients A, By, and Gy, which characterize
each mode, are functions of an additional variable r,
the mass ratio. The bending stress, average shear stress,
and deflection are, respectively, for the nth mode of
vibration: '

Aw e
= ? t
o (x,y,t) = A, % % E e 2B sin wy t (3)
Kw_a
- n +
Totzt) = B, % % Ee °F sin w, t (L)
anZ
2 el
v L
Wn(x,t) :Cng?e 2k sin (Dnt (5)

The acceleration for the nth mode, when damping is suffi-
ciently small, is

an(x,t) = =0 w(x,t) (6)

The variation of the dimensionless coefficients Ap,
B,, and C, with position along the beam x/L 1is given
in figures 2, 3, and l;, resvectively, for the first three
modes, n = 1, 2, eand 3 and for values of r from O to 6.
Figures 2 and 3 irndicate that for all values of the mass
ratio r the highest values of A, and B, and hence the
highest stresses occur at the root of the beam. These
highest or root values of A, and B, are shown for
r=0sand r =6 in figure 5 for the first 5 modes. Root
values of A, and B, for mass ratios between O and 6 are
given in figure 6 for the first 3 modes. Both figures 5
and 6 show that the addition of a mass at the tip of the
beam (r > 0) increases appreciably the values of the stress
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coefficients A, and B, for the first mode (n = 1) but

has a very small effect upon these coefficients for the
second and higher modes.

The tip mass increases the maximum bending stress
much less than might be expected on the basis of -statie
considerations. For example the addition of a tip mass
6 times the mass of the beam increases the mass moment
about the root 1200 percent whereas the first mode
bending stress coefficient A, is increased only 18l per-

cent (from 1.566 to L.L,50). (See fig. 5.)

The maximum values with respect to time of On(x,y,t)
and ?ﬁ(x,t) associated with the nth mode of vibration,
when the effects of damping are neglected, are

on(%,y) = Ay g % - ()
Falx} 58, =lp (8)

Equations (3) and (l;) for bending and shear stress,
from which equations (7) and (8) are obtained, and equa-
tions (5) and (6) for deflections and accelerations give
the values associlated with the nth mode of vibration.
Since all modes of vibration occur simultaneously the net
results are the superposition of the effects. of "2all modes.
This superposition gives the following equations:

AW e
L
v
o(x,7:8) =g 58 Ay o B dinlw ¢

2

AW

“;dt

+ A <E
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For average shear stress,

Aw =
I
+ B2 s ©°E sin w2't+..) (10)
For deflection,
AW e
il B o
t) = - = '
w(x,t) s p C1° sin W, t
kw,z
‘“7%"t ,
+C, e ¢ Bin W, £+ .. (11)

For acceleration, when damping is sufficiently small,

e E sin Wy, t + ... (12)

For a beam with a glven cross section and velocity
at impact, the egquations for bending stress reveal that
at a given percentage of the distance from root to tip
and for a given mass ratio, the bending stress for a
particular mode is independent of the length of the beam.
The equations for shear stress reveal that the shear
stress at any station varies inversely with the length
of the beam.
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Experimental

The apperatus which was used to provide for the
instantaneous arrest, of a cantilever beam is shown in
figure 7. In this apparatus two cantilever beams are
formed by centrally clamping a steel tube in a heavy split
block. The block is attached to a carriage which is
permitted to run with known velocity over a horizontal
track. The carriasge is accelerated by a weight acted
upon by gravity in the initial portion of the run and is
kept in a state of uniform translation by an additional
small weight used to overcome friction in the latter
portion of the run. Instantaneous arrest is achieved
by permitting a tapered plug projecting from the
carriage to ram into a fixed chuck. The effect of a tip
mass was studied by increasing the weights on the tips
of the beams in successive tests. The velocity at impact
and the dimensions of the cantilever beams are given in
appendlix B.

The apparatus described herein provides for a much
more rigid clamping of the tube and gives a better control
over the instantaneous arrest than the apparatus described
in reference 1. With the more rigid clamping, less
oscillatory energy was lost by the cantilever beams to
adjacent parts of the apparatus. The damping present,
therefore, more nearly approached the damping of the
material of the beam.

Extreme fiber bending stresses near the root of each
cantilever beam were measured by means of electrical
strain gages and a recording oscillograph as described
in reference 1. A typical record of the bending strains
at the roots of the two cantilever beams with the mass

ratio r = = 1is shown in figure 8. No measurements were

made of the shear stresses since their values were too
small to be measured accurately in the presence of the
vibrations set up by the rolling of the carriage.

The three quantities that were obtained from the
tests - the frequencies of the first three modes, the
maximum contribution of the first mode to the total
extreme fiber bending stress at the root, and the
maximum extreme fiber bending stress at the root -
are plotted against the mass ratio r in figures 9
and 10 for comparison with the theoretically computed
values. Since inherent local variations in the beam
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properties do not appreciably affect the frequenciles,
which are associated with the over-all action of the
beam, and since frequencies are easy to measure, it is
reasonable to expect the observed good sgreement between
theoretical and experimental frequencies, (See fig. 9.)
When consideration is given to the fact that stresses are
directly affected by the local variations in the beam
properties and are not readily susceptible to instantaneous
accurate measurement the observed agreement between the
experimental and theoretical stresses is also considered
to be satisfactory. [(See fig. 10.)

The contribution of the first mode to the total
stress was estimated from the records. (See fig. C.)
It is clear from figure 10 that the first mode contributes
more than half of the total stress. It is also clear from
figure 10 that for practical engineering analysils the
maximum bending stress developed in a suddenly arrested
cantilever beam can be found by a simple addition of
stress amplitudes in the first few modes (in this case %)
without regard to phase relations between the modes.

Langley Memorial Aeronautical Laboratory
National Advisory Gommittee for Aeronautics
Langley Field, Va., November 30, 19LL
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APPENDIX A

TEEORETICAL DERIVATION

sls.
>r beam with a mass at its free end. If the root
of the beam is suddenly disturbed, as by a shock, in a
directlon perpendicular to its length, the beam will be
set into damped bending oscillations. The equation of
motion for these bendirg oscillations is glven by the
differential equation (reference 1)

| -
- \\4 2D Dv AZ i
Ef&$+-mf-%i-+gi£~:o (A1)
F dx ot ot
o i . 2 gE
With the use of the notation c¢< = i; equation (Al) may
be written
éhx R i 1w
oy k. E = + il 0 (Ad)
dx T ' X TAE el 2t°

rential equation is reduced to an
‘ferential equation of the lith order by

ordinery di
A =
writing p = ethiasl
AT

n\ d'w
<i s %7) —“% + —g~r w =20 (A3)
: E Al ;ﬁd

The general solution of equation (A3) is

= % o S X ' X
W =P cosh 6<% + Q sinh 6~ + R cos 6= + & sin §= (AL)
x E 7 L =
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s
wnere

The coefficients P, Q, R, and S are to be determined
from the boundary conditions. The case under considera-
tion is that of a cantilever with & mass at its free end
moving with uniform velocity v and having its root
brought instantaneously to rest. The boundary conditions
flor thils case are

%¥> = p(w) =v - v{

bl'i) = (20
3 X 2
0%/ 4=0 0X"/ &

2
T Ly

B (&%) - =¥ 2wy .
0%/ x=1, i

The fourth boundary condition, which is an applica-
tion of Newton's third law, equates the shear force at
the tip of the beam to the inertia force of the tip mass.
The velocity of the root as given by the first boundary
condition 1s represented graphically in figure 11.
Tollowing the procedure adopted in reference 1, the
solution will be obtained for the boundary condition

w o
(‘é"‘ = p(w)
Ot/ x=0

and to the resulting velocity will be added the constant

O

velocity w.
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With the avplication of the boundary conditions to
equation (AL), the overational solution for the velocity
(that induced by =-vZ) 1is found to be

Mo T N
ek 4 _f_ge L/

2 1+cos0cosh8+ r6(sinh 6cos 6 - cosh g sing)j

/

bw =
(A5)
where

X
f(@;— = (1 + cos B cosh §){(cosh 9—+ cos J—)

x x
+ sin @ sinh @ (cosh = - cos 9= )
L L7

- X ] x
+ (sinh B cos 6 + cosh g sin @) (snl 8 = sinh e;—>

%
+ 2rf [sinh § cos f§ cosh Bs - cosh B sin @ cos 9%

b, N\
+ cos O cosh 9<sin 9]';‘ - sinh 8%]

- - Tip mass ~
and r 1is the ratio o ~==F ~—— ., Interpretation of
: Beam mass

this operational expression and addition of the con-

stant velocity v gives for the total vellociihey

>\.(L)2 AW

@r(—:i}l-v-v1+ Z_’V; <aDI Cos W, t——-—=~"81nw>
RV ‘

il
L AEQ k/)
(46)
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where
8, nth positive root of the frequency equation
1 + cosBeoshg+rg(sinh gcos 8 - coshpsin 8)=0
{all roots, namely %6,, iien, have been considered
in the interpretation)
g <
w, = pc ~é; undamped natural frequency of nth mode,
L radians/sec
e
2
A W,
Wht = W1 - Senchntaces dampned natural angular frequency
LE® of nth mode, radians/sec
\
X X
(/ 55 (,_ i il
| (1 + cos 8n cosh 8)) cosh o T *+ cos By L>

|
’ . : / x X
<1, + sin Bn sinh Bn\\cosh Ba T - cos B f)

|
i e x : x
i * 2rf, L51nh 8, cos 9, cosh By r- - cosh B, sin 6, cos enrm

6D

enﬁl*'r)(sinhencos Op - cosh 8, sin 8,)-2r6, sinh 6, sin en]

: : ¢ S
+ (sinh 6, cos 6, + cosh 6, sin 8,) (sin 6, T -sinh 8, %)

L“"'|>4

X\
4o . 1 o e g e
+ cos B, cosh en sin 8, sinh en L}

Tntegration of equation (A6) with respect to time with
(W)t

the condi tion
when t 2 O

= 0 gives for the deflectlion
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where
oF (e x

ad

AW e
n
e 1 "EET“t : ' s
Wn(yyt) = 5 'p Cn /"'"“}\2"& g e S (Dn T (A )

W
When —2 5> 31 equation (A8) may be put in the form

i

Ao 2
Simcs L SN i )|
WalZ,t) = : 5 S =55 e sinh w 't f (A9)
n
-1
LE®
where now
/Kawna
wnv W : -1
LE

Aw
The form indicated by equation (A8), where 7;? <1, 1=
E
characteristic of the lower modes and represents damped
oscillaﬁary motion. The form indicated by equation (A9),

where ?ﬁ§'> 1 (damping greater than critical), 1s

characteristic of the higher modes and represents sub-
sidence motion.

From equation (A6) for the velocity and equation { A7)
for the deflection, the complete behavior of the cantilever
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may be determined. The quantities of interest are the
bending stresses, the shear stresses, and to some extent
the accelerations. Where damping is present, the equa-
tlons representing the contribution of the nth mode to
these quantities may be given in the two forms indicated
by equations (A8) and (49). In subseguent equations,
however, only the form indicated Ly (A8) is given, because
it is characteristic of the mcdes which are of practical
importance.

Bending stresses.- The bending stresses O(x,y,t)

at any fiber a distence §y from the neutral axis are

Ao 2
0w v jw < b
gz, 5,5) = EY — Bl = L A e <E dgin 0w "5t
& c P n n
O X rel
where
( / N X o) X j
(1 + cos 6, cosh@pj)lcosh B, T - cos Oy &
i B . 5 /i 0 x XN
+ sin O sinh n‘\COb o 1 cos en L)

< -( sinh Gn cos en + cosh 6, sin Gn)(%inh iy §-+ sin 8, %}

+ 2ro, [sinh On cos B, cosh en‘% + cosh B, sin @, cos IXT

X ge 3 X—!
(- cos B, cosh 8, \s:th pf * sin @ —_J'- .

A =2 =
en;(l +r)(sinh 6, cos 8, - cosh g, sin g ) ~orf. '8ik 6, sinheé]

The contribution to bending stress of the nth mode is

2
A

2E

ol

on(x,y,t) = E e gim wy ' b4

Average shear stresses.- The average shear stress
on the cross section is
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" Awp©
-—=
T{xyt) = EP2 i:g = E-g Ecji: B, o sln w ' o
ox n=1
where
f(]_ * cos 6, cosh 9,) (sinh 0, %“L sin @, ;) hi

N Shn en sinh en’(sir:h Gn .f( - sin en %)

X X ! X x
-(sinh 8, cos 8_ + cosh 6. sin 8 cosh B_ = + cos 0 P
n n n n T

i s X 7 o X
+ 2r6n551nh 8, cos en sinh en -l cosh en sin en sin enf
.

e - cos Gn cosh Gn cosh On ]J'f'+ S en %)] J
=

(1 + r) (sinh 8, cos 8, - cosh g, sin 6n) - 2rf, sin §, sinh 8,

The contribution to average shear stress of the nth
mode 1is
Ao <
E b 7 p 2n t
Tn(X,t) ZEgiBne E sin w18

-~

Accelerations.- From equation (A6), with the aid of
the relation

pF(t)Z = F(O)pd + F'(t)Z

the acceleration anywhere on the beam 1s found to be
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o / ZO\ etn
tions F @n T ) it 1s possible to show that the quantity
S
- X 5e
2 :/8 =) -1 reduces to zero when 00X =< 1.
- vn Ly L
n=1
(o0}
Sty
- ‘ N - .
At % equal to zero the quantity 2 / L‘@H ?> is zero
4 A 1
n=1
and only the term -vp{ remains. This term indicates
that at £t = O there is at the root an infinite accelera-

tion of zero duration.

The contribution to

acceleration of the nth mode 1s

2 - n
v I‘L' - m.q‘z - — t
B (X,t) = - = — w.° ¢ e 2E  lsin w !
n( 24 y [ n n /’ >\2w > e sS1n (.un iF;
Vl B n
| B2
Mo, N X
—Hify -
. e
LB
+ cos wn't 1
= T
. A O
2
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Comparison with the expression for wn(x,t) (equation (A8))
shows that the acceleration of each mode is out of phase
with the deflection. When damping is sufficiently small,
however, the relation between the acceleration and the
deflection reduces to the well known result for undamped
vibration

&

an{x,t) = -w," wy(x,t)
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APPENDTX B : .

Numerical Example

Problem.~- To calculate the theoretical bending and
shear stress at the position of strain gages on the steel
tube beam used in the experimental investigation of the
present paper for a mass at the tip equal to the mass of
the beam, r = 1,

Length of beem, L, 10e 5 s & o o of o = w0 @ « w & 129,80
Cutside diameter of tTube, 1n. . s o « » » &2 w905
Distance to extreme fiber, maximum value

o3 U ¢ 1 S T T e 2
Wall thickness of tube, in. S e s G S (O
Radius of gyration of cross section, p, in. s DSBS
Distance from root of beam to strain

geges, Xy, LUS o o & © & # s o e 8ok 5w o 0.5% |
Modulus of elasticity, E (assumed),psi . . . . 29 x 10"
Veloclty. ot Impect, ¥, D8 o & « o » sosk o+ =ik » 178
Velocity of sound in steel, ¢, fos « +« + . . . . 16,600 d

The effects of damping will be neglected so that equa
tions (7) and (8) may be used. From the foregoing da
of this problem

= L g = L500 psi
c p

vV £ = .
__"E = o U Sl
T I 550 p

The values of A and Bn for the different modes are

n

. 5 ’ . : X

obtained from figures 2 and 3 for r =1 and T = 0.0167.
ad

The computed stresses are given in the following table




2 .89 L. 1,010
% 08 e 2160

Sum of first three 15,970
npl

o il o - 1
Stress amp

An approximation of the maximum to
obtained by adding the stress ampl
several modes as indicated.

1. Stowell, Elbridge
Johkn, G4t Bend
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Figure 6.- Variation of bending - stress
coefficients A and shear-stress coefficients Bp
at root of cantilever beam with mass ratio r.
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Figure 7.- Impact apparatus used in tests.
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Figure 9.- Comparison of theoretical with
experimental frequencies as mass ratio r increases.
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Figure 10. - Comparison of theoretical with
experimental root bending stresses as
mass ratio r increases .
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Figure 1.~ Graphical representation of the
discontinuous function v-vI.
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