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EXTRUDED R30%-T ALUMINUM ALLOY

By George J. Heimerl and Douglas P. Fay
SUMMARY

Column and plate compressive strengths of extruded
R%03-T aluminum alloy were determined both within and
beyond the elastic range from tests of thin-strip columns
and local-instability tests of H-, Z-, and channel-sectlon
columns. These tests are part of an extensive research
investigation to provide data on the structural strength
of various aircraft materials. The results are presented
in the form of curves and charts that are sultable for use
in the design and analysis of aircraft structures.

INTRODUCTION

Column and plate members in an aircraft structure
are the basic elements that fail by instability. For the
design of structurally efficient aircraft, the strength
of these elements must be known for the various aircraft
materials. An extensive research program has therefore
been undertaken at the Langley Memorial Aeronautical
Laboratory to establish the column and plate compressive
strengths of a number of the alloys avallable for use in
aircraft structures. Parts of this investigation have
already been completed; the alloys already investigated
include 24S-T and 175-T aluminum-alloy sheet and extruded
755-T and 2L3-7 aluminum alloys (references 1 to 4,
respectively).

The results of tests to determine the column and

plate compressive strengths of extruded R303-T aluminum
alloy are presented herein.
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SYMBOLS

e

length of column
radius of gyration
fixlty coefficient used in Euler column formula
effective slenderness ratio of column
width and thickness, respectively, of fla

of H-, Z-, or channel section (see fig. 1)

width and thickness, respectively, of web
of H- or channel section (see figs 1}

N
i

corper radius (ece fige i)

ndimensional coefficient used with bW SN Gl e Gy

|
]

in plate-~-buckling formula (see figs. 2 and 3
-~ (&) )

modulus of elastlicity in compression, taken as
10,500 ksl for extruded R303-T aluminum alloy

nondimensional coefficient (The value of ¢ 1is
so determined that, when the effective modulus
of elasticlity 7TE, 1s substituted for E; in
the equation for elastic buckling of columns,
the computed critical stress agrees with the
experimentally observed value. The coeffi-
cient 7T a8 3qua1 to unity within the ‘elastic
range and decreases with increasing stress
bevond the elactlc range.)

nondimensional coefficient for compressed plates
corresponding to T @ coelamne

Poisson's ratio, taken as 0.3 for extruded
R303-T aluminum alloy

eritical compressive stress
average compressive stress at maximum load

compressive yield stress

Y
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METHODS OF TESTING AND ANALYSIS

All tests were made in hydraulic testing machines
accurate within three-fourths of 1 percent. The methods
of testing and analysis developed for this research pro-
gram (see reference 1) are briefly summarized as follows:

The compressive stress-strain curves for the extru-
sions, which identify the materlal for correlation with
its column and plate compressive strengths, were obtained
for the with-grain direction from tests of single-thickness
compression specimens cut from the flanges and web at both
ends of the extruded H-szctions., These tests were made 1in
a compression fixture of the Montgomery-Templin type,
which provides lateral support to the specimens through
closely spaced rollers. (See reference 6 for the tech-
nique in using this type of fixture.)

The column strength and the assoclated effective
column modulus were obtalned for the with-grain direction
by the use of the method presented in reference 7, in
which thin-strip columns of the material were tested with
the ends clamped in fixtures that provide a high degree
of end restraint. The fixtures used have been improved
and the method of analysis has been modified since publi-
cation of reference 7. The method now used results in a
column curve representative of nearly perfect column
specimens. In addition, the method now takes into account
the fact that columns of the dimensions tested are actually
plates with two free edges. These columns were cut from
the flanges of the extruded H-section adjacent to the
fillet at the junction of the web and flange.

The plate compressive strength was obtained from
compression tests of H-, Z-, and channel-section columns
80 proportioned as to develop local instability, that is,
Instability of the plate elements. (See fig. 4.) Extruded
H-sectlons of three different web widths were tested; the
flange widths for each were varied by milling off parts of
the flanges. The flanges of some of the H-section extru-
sions were removed 1ln such a way as to make Z- or channel
sectlons as desired; the flange widths of the Z- and
channel-section columns were varied in the same manner as
the flange widths for the H-section columns. The lengths
of the columns were selected in accordance with the prin-
ciples in reference 8. The columns were tested with the
ends ground flat and square and bearing directly against
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the testing-machine heads. In these local-instability
tests, measurements were taken of the cross-sectional
distortion, and the critical stress was determined as the
stress at the point near the top of the knee of the
stress-distortion curve where a marked increase in dis-
tortion first occurred with small inerease in stress.

The method of analysis presented herein differs from
that presented in reference 1l in the use of the inside
face dimensions to define Dbp and by 1in the evaluation
of Ogp/m by means of the equatlons and curves of
figures 2 and 3. This definition of bp and by for
extruded sections with small fillets was previously used
in references 3 and L in order that the theoretical and
experimental buckling stresses would agree within the
elastic range. For formed Z- and channel sections with
an inside bend radius of three times the sheet thickness
(references 1 and 2), bp and Yy were defined as

center-line widths with square corners assumed.

RZSULTS AND DISCUSSION

Compressive Properties

Figure 5 summarizes the compressive stress-strain
curves that apply to the extruded R30%-T aluminum alloy
used in this investigation. The variation in compressive
yleld stress shown by the dashed curves in figure S5sfor
both the flange and web indicates the average differences
that were found to exist between the two ends of the
20-foot extrusions. The results of a single survey made
over the cross section of one extrusion (fig. 6) revealed
but little variation in the compressive yield stress over
the width of a flange or a web. At a given cross section,
the web tended always to have a lower compressive yield
stress than the flange.

Column and Plate Compressive Strengths

Because the compressive properties of an extruded
aluminum alloy may vary considerably, the data and charts
of this report should not be used for design purposes for
extrusions of R303-T aluminum alloy that have appreciably
different compressive properties from those reported
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herein, unless a suitable method is devised for adjusting
test results to account for variations in material prop-

ertles. The results of the column and local-instability

tests of extruded R30%-T aluminum alloy are summarized

herein; a discussion of the basic relationships is given
in reference 1.

Column strength.- The column curve of figure 7 shows
the results of tests of thin-strip columns loaded in the
with-grain direction. The reduction of the effective
modulus of elasticity rE, wlth the increase in column
stress 1ls indicated by the variation of T with stress
shown in figure 8.

Plate compressive strength.- The results of the
local-instability tests of the H-, Z-, and channel-section
columns used to determine the plate compressive strength
are given 1In tables 1, 2, and 3, respectively, The plate=-
buckling curves, analogous to the column curve of figure 7,
are shown in figure 9. The reduction of the effective
modulus of elasticlty mE, with increase in stress is
Indicated by the variation of m with stress, which is
shown together with the curve for 1t in figure 8. 1In
this figure, the T-curve crosses the m-curves because
the extruded H-, Z-, and channel-section columns used to
obtain the m-curves apparently had an appreciable degree
of imperfection. This imperfection probably caused the
f-curves to deviate from unity at a lower stress than that
for the T-curve, which 1s representative of nearly perfect
columns.

The variation of the actual critical stress G
with the theoretical critical stress ogp/m computed for
elastic buckling by means of the formula and curves of
figures 2 and 3 is shown in figure 10.

In order to illustrate the difference between the
critical stress 04, and the average stress at maximum
loed Gg..., the varilation of @,. with Ocn/gmax is

shown in figure 11, Because values of o may be
g max

required in strength calculations, the variation of Emax
with O0g.n/m 1s shown in figure 12.

Figures 9 to 12 show that the data for H-sections
describe different curves from those indicated for Z- and
channel sections. One of the rcasons why higher values
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of O sy < Wers obtained for H-sections than for Z- or

channel sections for a given value of o,,/m (fig. 12)
may be the fact that the high-strength material in the
flanges (see fig. 6) forms a higher percentage of the
total cross-sectional area for the H-sectlon than for

the Z- or channel section. For the H-section, op,, 18

increased over the value of Ef”x for the Z- or channel
IS (o8

section for the entire stress range covered in these bests
(fig. 12) whereas 0,, 1s Increased only beyond the

elastic range (fig. 10).

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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TABLE 2.- DIMENSIONS AND TEST RESULTS FOR EXTRUDED Z-SECTION COLUMNS THAT DEVELOP LOCAL INSTABILITY

1200 - 42) | Zer r
Column tw tp by bk L T, 74 7 b ky X (1201 = p7) %er max
(in.) | (4n.) | (1n.) | (1n.) | (1n4) /on | tu/te | ou/tu | /o (f1g. 3) | W Yoy (¥2§) (ks1) | (ksl)
a
la 0,123 | 0:121.| 1.6 1.00 | 6.10 | 3.7 | 1.015 | 13.21 | 0.61 24 30,2 113, e ol
1b S2ENNE 2] 1.6ﬁ <991 6:20.] 3.7 | 1.0 13,34 60& z.?Z 30,1 i .I %3.3 ;u.o .3
lc Q23 o122 1F 1,65 9 6,08 | 37 | X.012 |F13. 1 .612 2:10 20,1 114.5 O 73.5 9
2a A2l a2t e 1 i65 | 150 6.50 3.9 1.012 | 13.3 .62& 1.87 32,3 99 .2 95 2%l | 96l
2b 123 119 | 1.62 | 1.08 6.30 .0 | 1,026 |13.23 | .6 g 1.80 22,6 97.6 | 69.3| T2.3| 959
2c 123 122 | 1.64 | 1.08 | 6.40 <94 | 10104154 .65 1.86 22,3 9.4 | 69.1 2210 <95
3g .123 120 1.22 1.16 | 6.96 2 | 1L025a3 .701 1.6l 3.7 36.2 63.1 9.8 | .9 Z
2b .119 T T 1.26'| 64,90 | Lis2 978 | 13, .707 1.2% 35,0 8,.8| 68.5| T1.0 .925
ac .123 2n| T xsdl | 133 [ 6i90 || L2 ] 1.0 13.52 | .713 L 53.1 8%.1 67.5 Zl.o .951
a .123 12251 1465 |t 152 8.75 | 5.4 | 1.008 | 13.18 g 1.26 38.8 68.8 | 60.2 937
Lo .123 1221 1562 | 1% 8.72 | 5.4 | 1.008 [13.14 82 1.26 38,7 69.2 | 61.1 éﬁ .950
Le .123 122 | 1.63| 1.35 | 8.70 | 5.4 | 1.005 | 13.20 829 1.26 28.9 68.6 | 61.0 | 62 .970
5a .128 121| 2.25| 1.00 | 9.50 | 4.2 | 1.062 |17. Ll 3,22 32,3 2 | 69.0 0. .982
5b 308|321 ] 2+26 |t 1.01 | 9450 | L2 | 25059 17.22 .uug 2,19 52.3 82.1 6%.& 9'e .3
Zc s1e8 1 a2t 2526 | 1502 9.80 %.2 1.060 | 17.71 | .448 3,19 2 5 | 68.2 | 70:01 974
a 12 2123 | 2,264 157 113:80 1 | 1,063 |17.56 | .696 1.62 Es.é 29.9 L5.5 | 52.7 .323
éb »12 1221 2,25 | 258 {1 .ge 610 1% 17.62 1 707 1561 h2-9 L9 s 7L =530 00N
6c .128 | .121| 2.26| 1.59 [15.80 | 6.1 | 1.060 | 17.60 go 1.56 L6.6 L7.8 uZ.9 3.0
7a 28 1 <125 | _2.25 1'Bﬁ .Zg 6.5 1'8ﬁﬁ 175 $ 1.27 51.4 329.2 | 36.5 39.8
T 21281 222 | 225 1 1. 655 | 1. 1o .81 1.2l 5243 27.8 | 37.1| 50.0
8a g2zl a2l oy 1.08 |11.50 | 4.2 9 22,4l 389 3, .8 2. 62.2| 6
8b .153 o122 .2.7Z 1.03 11.50 | L.2 .938 22..3 | .395 3.2% ;g.l 31.% 62,2 6gf§
8¢ 5 .12 2.76 | 1,08 [11.50 | L.2 997 |22.33 | .392 2,82 37.8 AN 62.3 63.1
9a 123 | L2} 2.76'| 1.37 |14.50 | 5.3 99 22-33 497 2-33 3.1 5 -Z 53 55.2
9b .123 123 | 2.76 | 1.38 |14.56 | 5.3 | 1.003 |22, .500 D L3.6 5L . 53,3 .g
9¢ 'iﬁﬁ Vo e A L ST 35S 997 |22.k7 1 .09 2.92 h3‘% L9 | 53.0 ;.
10a 5 120 | 2.76 1.6Z 15.50 | 5.6 | 1.028 |22.31 | . 2;11 0. 0.2 9.9 .
10b .123 .lga 2.75 | 1.66 |15.46 | 5.6 .998 | 22.35 | .604 2.19 E9.9 L1.6 30.3 ua.g
10c 12 . 2.75 1.6g 15450 2.6 1.010 | 22,06 | .605 2.12 Zo.o Li.3 | L1.3| L9.6
lla o12 d22 | 2.9 | 2.28 |17.80 A | 1.012 | 22.48 .812 1.29 WL 2L.2 | 23. hﬁ.a
11b 32l |- 2% 2.72 2.28 |17.80 | 6.5 | 1.010 |22.14 | . 1.27 9 2.6 aﬁ.g Lk.3
lle KOETEN s P2 R I 2.27 |17.28 | 6.3 s987ili2as6li gl 1.32 65.1 2y | 23.5| L3.5
a Ogp Ky W E gty
— z ————————— where E_, = 10,500 ksi and p = 0.3.
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TABIE 3.- DIMENSIONS AND TEST RESULTS FOR EXTRUDED CHANNEL-SECTION COLUMNS THAT DEVELOP LOCAL INSTABILITY

2 %er 3
Column tw tp by bp L L S JA b Ky X 1201 - R %r %max
(in.) | (1n.) | (4na) [ (1) | (n0) 7w | /e | bu/tw | o/ (fig. 3)| W (ks1) | (ced) | ()
a

la 0.125 | 0,123 | 1. 0. 6.10 . 1.010 | 13.15 | 0.60 251 29.6 118.0 | 71.0 | Th.
1b .123 .123% 1.2% .3 6.08 ?.é 1.012 1%. .60@ 2.12 23.% 119 BRI 7&.@

lc SRl R Y23 8| 6 .98 | 6.20 . 1.008 | 13,12 | .60 2.4l 29, 118.0 Zl.} 75-
2a i BT 1.61 | 1.08 | 6.46 .0 | 1.003 | 13.07 | .667 hig 31.8 102.2 9.3 | 72.4
2b g2 | .123 | 1.63 | 1.08 | 6.48 | L.O | 1.006 | 13.21 | .659 1.8 21.8 102.2 | 69.3 | 72.0
2¢ .123 121 | 1.62 | 1.08 | 6.48 | L.0 | 1.022 | 13,12 | .665 1.83 32,1 100.9 23.7 7245
3a 2230 121 162 || 1.18) 6.90°1 i3 1022711303 | .72 1.56 5&.5 85.9 31 | 970.0
2b 122 |- 1230 1.6 | 1181 6.90 | Le2 |1.0200 3527 ] -7d 1.59 2., 85.7 | 66.8 | 70.6
Ec 123 | v 3230 e I8 [ 6ot lie2 jLlto228] i 15e5T |- . 718 1.53 3%.9 85.2 | 67.1 Z .6
a el250 Y 1.63 | 1.35 | 8.75 | 5.4 996 | 13.2 .828 12 3 .g 69.3 | 62.7 3.6
Lo s125| e 1.63 | 1.35 | 8.75 | 5.4 994 | 13.2 .830 1.28 28. 68.9 | 62.2 | 63.h
5a 128 | .122 | 2,26 | 1.00 | 9.50 | 4.2 | 1.050 ] 17.69 | .LL9 3,20 32.Z 97.1 | 68.6 | 70.0

5b 129 | 122 | 2.26 | 1.02 | 9.50 | 4.2 | 1.084 | 17.60 [ U450 3,19 32. 92.2 63.0 708
5c a2 122 12260 1,01 9.30 %.2 it 3 17.23 . 3,20 257 Z 2 68.3 | 70.1
ba .12 120 | 2.26 | 1.59 [132.82 el 1.53 1767 | $702 1.60 6.2 856 || lLigedlt| 5148
6o . g A2 | 2.25 | 1.59 {13.80 | 6.1 | 1.038]17.53 | .7 1.60 L45.8 Lig isilslizely 1518
6c 12 .120 2.22 L 12.79 | 6.1 [1.072 | 17.5 . 707 1.54 46.8 h7.% hz.g 51.9
Ta 1281 1200 2.2 35 .Zo 6.5 | 1.068 | 17.64 | .813 1.2 52.3 37, 36, 50.3
To I2801F 2120 2.2% 1.8, | 1;.69 | 6.6 | 1.0 17.45 | .820 1.20 52.6 3g.h 36.5 0.2
Te 1288208 a2 1.8% |1,.70 | 6.5 | 1.047 | 17. 812 1.25 52107 38.2 | 36.9 8.8
8a 22l 123t 2, 1.08 |11.52 | L.2 | 1.003 | 22,2 e n 3.78 .8 . 63.1 | 64.8
9a s 12l 99 2.32 1.38 1&.36 G2 015822 .2 .5%1 2.36 ﬁ;.s Eﬁ.g 51.5 | 53.1
9b 2l | W122 | 2.76 1.33 1.50 | 5.3 | 1.013 | 22.3 .502 2.86 ua.z sh.y | 52.0 | 53.0
9¢ Jd23 | 121 | 2.76 | 1.38 | 14.50 | 5.3 | 1.015 | 22.3 500 2.87 L3. L.l 2.2 g.u
10a 120 | 121 | 2.76 | 1.65 |15.50 | 5.6 | 1.026 | 22.17 | .600 212 50.3 0.9 o.z .0
10b 2320 221 | 2.6 X671 15.50 | 5.6 | 1.021N22 2 .60 211 50.6 o.5 | Lo. L7.9
10c 125 1217 2.76 | 167 |15.48 | 546 | 1029 22.0 o 2/610 50.3 L40.9 | L0.5 | L47.5
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Fig. 1 NACA ARR No. L5HO4

i s ke gl

}l——bFﬁ l‘——bl_——v
L | ]
g A
8
bw bw
te t !
F r=+
L l l _J kt/ 6 Y
J i i
f 1
NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
Figure |.- Cross sections of H-, Z-, and channel-

section columns.
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Fig. 3 NACA ARR No. L5HO4

Lk / o e /\\

Buckling of web \|/
restroinemf lange \

ON
SN
NN

N iobe e
| B
I EEEAN

NN \
NS _

////)

/
2/
d

Q.
&

Z
<
/

///
/‘b\

o
Tz

o

%

- ! :

: =

L \Q

i R e
b:/ Dy PR

Figure 3.- Values of ky for Z-and channel-
secfion columns. (From reference 5))
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NACA ARR No. L5HO4 . Fig. 4

Figure 4.- Local instability of an H-sectlion column.
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Figure 5.- Compressive stress- strain curves for
extruded R303-T aluminum alloy for with-
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Figure B6.— Variation of the compressive yield stress
over the cross section of an extruded R303-T
aluminum-alloy H-section. (Volues in ksi.)
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Figure 10- Variation of o with o/ for plates of extruded R303-T
aluminum alloy obtained from tests of H- Z- and channel- section
columns. oy (flange), T3 ksi ; Oy (web), Tl ksi.
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