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ADVANCE RESTRICTED REPORT 

WALL INTERFERENCE IN A TWO-DIMENSIONAL-FLOW WIND 


TUNNEL, WITH CONSIDERATION OF TEE 

EFFECT OF COMPRESSIBILITY 

By H. Julian Allen and Walter G. Vincenti 

SUMMARY 

Theoretical c tunnel-wall corrections are derived for an air-
foil of finite thicimess and camber in a two-dimensional-flow 
wind tunnel. The theoxy takes account of the effects of the 
wake of the airfoil and of the compressibility of the fluid 5 and 
is based upon the assumption that the chord of the airfoil is 
small in comparison with the height of the tunnel. Consideration 
is given to the phenomenon of choking at high speeds and its 
elation to the tunnel-wall corrections. The theoretical results 

are compared with the small amount of low-speed experimental data 
available and the agreement is seen to be satisfactory, even for 
relatively large values of the chord-height ratio. 

INTRODUCTION 

The need for reliable wind-tunnel data for the design of 
high-performance aircraft has led in recent years to attempts to 
make the conditions of' the tunnel . tests conform more closely with 
the conditIons prevailing in flight, epecially with regard, to 
the Reynolds and Mach numbers. Because of practical limitations 
in size and power, most existing wind tunnels, whether high speed 
or low speed, are not capable of providing full-scale Reynolds 
numbers for all flight conditions. In order to obtain the 
highest Reynolds numbers possible under the circumstances, it is 
necessary to use models dimensions of which are as large as 
possible relative to the cross-sectional dimensions of the tunnel 
test section. The effect of such large size is to make the test 
con ition3 ,ept further from the conditions prevailing in
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flight by increasing the jagnitude of the tunnel-wall interfer-
ence. In the case of testA at high Mach numbers, the interfer-
ence is increased still further by the tendency of the flow 
pattern of a compressible fluid, if unrestrained, to expand as 
the Mach number of the undisturbed stream increases. Since the 
walls of a closed-throat tunnel restrain certain of the stream-
lines at a fixed distance from the model, this expansion is 
prevented ; and the tunnel_wall : interference and corrections be- 

come progressively larger as the Mach number increases. The 
results obtained in the tunnel must therefore be corrected accu-
rately for the effects of.wall interference if they are to be 
applied with conftdenoe to the prediction of free-flight charac-
teristics. 

In tests at high Mach numbers an additional complication 
arises. The effeot of a model in . a closed-throat tunnel may, in 
a sense, be thought Of as equivalont to that of 4 constriction 
in the throat of the tunnel. The resulting converging-diverging 
nozzle formed by the model and the tunnel walls then has roughly 
the same characteristics at high speeds as the usual supersonic 
nozzle; that is, for some Mach number less than unity in the 
undisturbed stream, sonic velocity is reached at all points 
across " a section of the tunnel at the position of the model, and 
the flow in the diverging region downstream of this section 'be-
comes supersonic. When this obours, increased power input to 
the tunnel has no effect upon the velocity of the stream ahead of 
the model, the additional power serving merely to increase the 
extent of the supersonic region in the vicinity of the model. At 
this point the tunnel. is said to be "choked" and no further in-
crease in the test Mach number can be obtained. The value of the 
Mach number at which choking occurs is thus of extreme importance, 
since it determines the upper limit of the range of Mach numbers 
which can be obtained with a given combination of model and 
tunnel. 

• In testing airfoils to obtain section characteristics at 
subsonic speeds, it has become common practice in modern closed-
throat wind tunnels to have the model span the tunnel so that 
supporting struts and their accompanying interference effects are 
entirely eliminated. If the tunnl has a cross section of 
rectangular shape, this arrangement results in a flow which is 
essentially two-dimensional. 

The wall interference for such a two-dimensional-flow wind 

tunnel has been the subject of numerous investigations, the results
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in general being expressible as series In ascending powers of 
(c/h), where c is the chord of the airfoil and h the height 
of the tunnel. The effect of wall interference upon the flew of 
an Ideal fluid about a symmetrical airfoil at zero angle of attack 
is determined to the order (c/h) 2 by Lock in reference 1 and 
by Glauort In reference 2. The interference for an infinitesi-
mally thin, cambered airfoil at a small angle of attack in an 
Ideal fluid is given by Glauert to th& order (c/h) 2 in reference 
2, and investigations for the special case of a flat plate have 
been carried out to a hIher order of accuracy by several writers. 
While the present report was being prepared, work by Goldstein 
appeared (references 3 and 4) in which the interference is 
determined to the order (c/h) 4 for a general cambered airfoil 
of finite thickness in an inóompressiblo fluid, no restriction 
being made In the general results as to the magnitude of the 
camber, thickness, and the force coefficients. A still later 
paper by Goldstein and Young (reference 5) gives the modifications 
necessary in the previous results to alloy for the effect of 
fluid compressibility t. the order (c/h) 

In the present paper, the tunnel-wall corrections are deter- 
mined to the order (c/11)'2 for the general airfoil In a compres-
sible fluid for Mach numbers below that at which choking occurs. 
It is assumed that the thickness and camber of the airfoil are 
small and that the interference velocities are everywhere small 
as compared with the velocity of the undisturbed stream. A dis-
cussion is also included. oftho Mach number at which choking 
occurs. The various results prosnted are of essentially the 
same nature as those which already have appeared separately in 
the reference cited, biit the methods of development and certain of 
the final results are different, especially with regard to the 
interference associated with lift. The validity of the final 
corrections is examined by comparison with the available experi-
mental data. The equations also are compared with the results of 
references 3, 4, and 5, and the afore-mentioned differences are 
discussed. 

The discussion is limited to airfoils placed midway between 
the upper and lower walls of the tunnel. Mathematical symbols 
are defined as introduced, in the text. For reference, a list of 
the more important symbols and their definitions is given In 
appendix B.
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DEVELOP1€NT OF CORRECTIOr EQUATIONS 

Man analysis of tunnel-wail interference it is desirable 
to look upon the theoretical deve1opent of the tunnel-wall 
corrections as consisting of two parts. First, it is necessary 
to d.etei'vdne the manner and extent to which the tunnel walls 
alter-t& field of flow about the airfoil from what it would be 
if, they were not present, Second, it is necessary to calculate 
the effect of these alterations upon the measured characteristics 
cf the ai.xfoil. The develoment of the correction equations of 
this report has been divided, into those two general sections. 

In reference 6, the use' of the method of superposition to. 
determine thepressure distribution over the surface of an air-
foil section in freR air is presented. It is shown that in the 
calculation of the flOw at the surface of a thin airfoil of email 
camber, the effects, of. camber and thickness may be considered 
ind.euendently. This .foiiowe 'directly from the fact that the 
velocities induced by the vortex sheet used to represent camber 
and those induced by the source-sink system used to represent 
th'ickiess are simply additive in theli''effect on the flow over 
the airfoil.	 . 

To treat the problem of wall -iuler'ference, it is, again 
convenient to consider, the thickness 'and camber effectsseparately. 
The flow changes associated with airfoil thickness are found by 
considering the interaction between the tunnel wails and the base 
profile of the airfoil, the base profile being defined as the 
profile the airfoil would have if the camber were removed and the 
resulting s'amietrical airfoil placed 'at . zero angle of attack. 
The interference effects associated with airfoil camber are found. 
by analyzing the interaction between th tunnel walls and an 
'infinitesimally thin. airfoil having the same camber as the actual 
airfoil. In addition to 'the interference effects associated with 
airfoil thickness and camber, it is necessary to consider a fur-
ther alteratin of the field of flow caused by the confining 
influence of the tunnel walls upon the airfoil wake. When the 
individual effects promoted by the int'eri'erece between the walls 
and the airfoil thickness, camber, and wake are known, the total. 
'alteration in the flow at the airfoil is found by superposition, 
and the characteristics of the airfoil in the altered field of 
flow are compared with the characteristics in free air. This 
comparison.leads to simple formulas which enable the prediction of 
the free-flight characteristics when the characteristics in the 
tunnel are known.
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The method of superposition, which is fundamental to the 

entire anaisi .s, is in geiral inapplicable to comuressible flow 

as the differential eauation for such flow is nonlinear in the 
physic-al Plane. The separate solutions which are superposed are 
obtained, however, by assuming that the airfoil is of small thick-
ness and camber and that the induced, velocities are thus small a 
compared with the velocity of the undisturbed flow. On the basis 
of this assumption the equation of compressible flow becomes a 
linear differential equation - namei r , Laplace 's oquat ion (refer-
ences 7, 8, and 9) - so that iperposibion of velocities is, in 
this case, technically permissible. Furthermore,. the tunnel-wall 
corrections are in naot cases rather small relative to the experi-
mental quantities being corrected, so that it is not thought that 
the use of this approximate method will lead to large errors in 
the final corrected quant I-bios. 

Influence of Tunnel 1ls upon Field


of Flow at Airfoil 

Thickness_effect. - The interaction between the base profile 
and the walls of a two-dimensional-flow tunnel has been consider-
ed by Lock for the case of an incompressible fluid (reference 1; 
a discussion of Lock's method is also given by Glauert In 

reference 2). Lock's method of analysis is essentially to intro-
duce an infinite series of images of the base profile such as to 
satisfy the condition that there is no flow normal to the walls, 
to replace each image by a suitable source-sink doublet, and to 
calculate the velocity induced at the base prpfile by this 
system of doublets. It is shown that the net effect of the 
tunnel walls upon the flow at the base profile is to increase 
the effective axial velocity of an Incompressible stream by:the 

amount

(1) 

where 

V' apparent stream velocity at airfoil as determined from 
measurements taken at a point far ahead of model 

a	 factor dependent upon size of airfoil relative to tunnel 

A a factor dependent upon shape of base profile 

The factor 0 is-defined by the equation 

it In 	
= ( .2
	

(2) 
48 \h
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where (c/h) is the ratio of the airfoil-chord to the tunnel 
height. The factor A cai he determined for an'be Drouile 
from the relation

/[lP1.1l+(d	 (3) 
%00
	 IV L	 L 

where 

Yt	 ordinate of base profile at chordwise station x 

dyt/dX, slope of surface of base profile at x 

Pf .	 base-profile Dressure coefficient at x in an in- 
1	 compressiblO fluid 

(It will be noted that the quntity Xt in references 1 and 2 

is equivalent to JAr, in the notation of this report.) Values 

of A for a number of base profiles are given in table I. 

In appendix A. it is shown that the effect of compress-
ibility upon the strewise induced velocity at a given point a 
large distance above or below a body in a uniform stream is such, 
as to multiply the velocity increment for incompressible flow by 

the factor i/[i - M2] ,' / where M is the Mach number of the 
flow far upstream from the body. Applying this result to the 
velocity induced at the base profile by each of the airfoils in 
Lock's system of images, itcan be seen that for a compressible 
fluid the increase in the effective axial velocity in the tunnel 
is

Al V
-	 AaVt	 (4) 

[1	 (!)213/2 

where M t is the apparent Mach number - that is, the Mach 
number correspondig to the velocity V. 

It should be noted that equation (4) does not agree with the 
result given in reference 10, in which it is stated that the 
velocity increment in the incompressible fluid should be multi- 

plied by the factor' l/l. - (M')2 ] to allow for the effect of 
fluid compressibility. A critical review of this latter report by
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its author and by others has disclosed that the :esu1t given there-
in is inccrtnct. The er:or in the analysis arose frcm a failure 
to preserve the shape of the body for which the ccmpressibilfty 
faczoc was being determined, so that the velocity at the surface 
of the body was influenced by a change in shape as well as by the 
tunnel-wall intaiference. This difficulty does not arise in the 
analysis of the Ixesent report. The result of equation (4) has 
also been obtained by an independent procedure in refe:encc 5. 

Consideration of the symmetry of the base profile and of 
the system of images used by Look to simulate the effects of the 
tunnel walls ind±oteo that the Interaction betweoh the walls 
and the baoe profile does not Induce velocities. normal to the 
center line of the tunnel. Similarly the base profile does not 
affect the longitudinal velocity gradient in the tunnel at the 
position of the airfoil. 

Wake effect,- In the wake of an airfoil moving through a 
real fluid, the total head of the fluid is less than in the 
region outside the wake. This reduction arises from the increase 
in thermal enerdy caused by fluid friction in the boundary layer 
and in the wake itself and by any shock waves which may exist in 
the vicinity of the airfoIl. Considering d section normal to the 
wake, it nay be said that the static pressure across the stream 
is nearly constant if the section taken is not too close to the 
trailing edge of the airfoIl. It follows that the reduction in 
total head which exists within the wake must appear almost entire-
ly as a decrease in the local dynamic pressure of the fluId. 
This decrease arises primarily from e, reduction in the local 
velocity and secondarily from the reduction in local density which 
accompanies the increased temperature within the wake. Thus, 
since the local velocity and density within the wake are both less 
than in the external flow, the mass-flow rate per unit area is 
less inside the wake than outside. This condition prevails both 
in the tunnel aad in free air. In the tunnel, however, the roquire- 
mont of continuity of flow between a transverse section upstream 
from the airfoil ar.d a lsection across the wake necessitates, in 
addition, that the mass-flow rate per unit area outside of the wake 
is greater than the mass-flow rate per unit area ahead of the air-
foil. In order to satisfy this requirement, the velocity in the 
tunnel outside of the wake must be greater than that of the un-
disturbed stream. This fact Implies that as the flow proceeds 
down the tunnel the velocity of the main portion of the stream 
undergoes a gradual Incrbase from the value prevailing in the 
undisturbed stream ahead of the model to some higher value down-
stream of the airfoil. This does not hold true in free air, where
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the velocitK6 of the main flow upstream and downstream of the 
model are equal. The int'erence between the wake and the 
tunnel walls thus gives rise at the position of the model to a 
velocity increment and a velocity gradient which are not present 
in an	 ii,i,ted stream. Turther, as required by Bernoulli's 
equation tile velocity gradient is accompanied by a longitudinal 
Dressure gredienu which likewise would not exist in free air. 

To detorni.ne the narxitude of these effects the procedure 
is briefly as lollcws: Two stations in the tunnel are considered, 
one far v1stream.frai the model and one far enough downstream so 
that ths wake has preati to the walls arri the velocity is again 
triiform across the tunnel, The difference in static pressure 'be-
twsai these two stations is e'àluated as a function of the measur-
ed drag of the airfoil'. The pressure gradient at the airfoil can 
be related to this pressure difference and hence to the drag of 
the airfoil by a convenient analyric device, which Is essentially 
the same as that used by Goldstein (reference 3). The airfoil 
and. its wake are considered. to be replaced by a fluid source 
located at the position of the airfoil. It io specified that 
conditions far upstream in the resulting hypothetical flow must 
he the same as those existing in the actual stream. 1,11th this 
provision, the magnitude of the velocity ami static pi'essure far 
downstream can be determined as functions of the upstream condi-
tions and the strength of the source. The strength is then re-
lated, to the drag of the airfoil by requiring that the static 
pressure difference promoted between the two. stations in the 
tunnel by the source flow is the seas as that which actually 
exists when the airfoil and wake are present. The tunnel walls 
can then he replaced by an infinite system of such sources 
directly above and 'below the position of the airfoil at Intervals 
equal to the height of the tunnel. The system of image sources 
alone, however, would induce a small finite ' negative velocity at 
infinity upstream, so that . it is necessary to superpose on the 
flow field an ald.1tional uniform flow of equal. velocity in the 
positive direction in order to satisfy the original requirement 
that the conditions far upstream shall be unchanged. The velocity 
of this flow, which is'readiiy determined as a function of the 
sdurce strength and hence of the airfoil drag, then gives the 
velocity Increment caused at the airfoil by the interference be-
tween the wake and the walls. The longitudinal velocity and 
pressure gradients at the position of the airfoil are found in 
terms of the drag by evaluating the. flow induced at that point 
by the image souices It Is apparent that this entire method of 
analysis fails to satisfy the actual condition as regards the 
velocity at infinity downstream. This discrepancy arises out of



NACA AP No. 4K03	 9 

the fundamental difference between the actual flow in the wake and 
the source flow by which it is represented and is unavoidable as 
long as this representation is used. 

Consider the flow In a closed two-dimensional-flow wind 
tunnel, as shown in figure 1. At a station far upstream, the 
effect of the model upon the flow Is negligible, so that the 
velocity V t , the density p', the static pressure p', and 
the absolute temperature T' are constant across the stream. At 
a station far downstream, where the wake has spread to the walls, 
the velocity V", the density p", the pressure p", and the 
absolute temperature T" are again constant across the stream. 

The difference between the pressures p t and pt can be 
related to the measured drag of the airfoil by means of the con-
ditions of continuity, conservation of energy, and Impulse and 
moment, together with the state relations for a perfect gas. 
The. condition of continuity is given by 

PT Vt = P" V"	 (5) 

and, If it is assumed that the flow Is en adiabatic process, 
conservation of total energy requires that 

(V t )2 - (V")2 
= gJc (T" - T') 

2	 2 

or	

={ - __-

	
(6)• 

(V t )2 (TI 

whore 

g gravitational acceleration 

J mechanical equivalent of heat 

c specific heat of gas at constant pressure 

In modern wind tunnels the walls of the test section are flared 
slightly to compensate for the growth of the boundary layer on 
the walls, and only the drag of the airfoil therefore need be 
considered. The impulse-moment equation can be written 

DI - 
pt - p t ' + p!(Vt)2 - 

h
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or	
- 

iI"=	 _22_ + 1 -	 (7) 

	

2 d \hJ	 P, (v,)2 

where Dl is the drag of the airfoil and Cdt the drag co-
efficient referred to the apparent dynamic pressure qJ. 

The velocity of sound V0 1 in the 'undisturbed stream is 
reLated to the absolute temperature by 

(v) 2 =RTl	 (-Y 	 l)gJcT'	 (8) 

where y is the ratio of specific heats and P is the gas con-
stant.. By means of this relation, equation (6) can be written 

V IT	 r 

 

=l_'	 I  
(v , - l)(M')2	 (9) 

 ( L	 -J 

and, 'rom equation (s),

r	 1-1/2-
., (Tt'


	

P	 TT 

1)(M	
(10) 

The state equation for a perfect gas then - provi' des' the relations 

2 (TIt _ -	 \

(II) p'	 p'T T 	 Tt	 (y - 1)(Mt)2 

and	 - 

p t.	 PT 	 (v')2	 1 

p'(V') 2 - (V')2	 y (v') 2 = (M')2	
(12)
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Substitution from equations (s), (10), (11), and (12) into 
equation (7) gives

IT"	 \ 
i	 i j	 rn"	

2	 - 1 
0d' (
	

i1r	

+1 

/'rp	 \ .1 1/2 
2t-1 

I	 .L / Fl ) 

from which it can be fcux that 

Ji !ftHk - 1)(M)1	 (v + 

)2J2	 2/f2+ 2 
". 2	 1 (13) 

(1 + I)(Mt)2 

For airfoils usually employed, the factor Cd' () is mall. 

Expanding the above expression and neglecting terms containing 

Cd' () to powers higher than the first gives 

2 (T"	 \ 
1- \TLLl+/0d'(-h)iivii)	 (14) 

( y - l)(M t )f 	 2 	 i - (M')2 

By means of this relation, together vith equations (9) and (10) 
the static pressure difference in terms of q' is obtained from 
equation (7) as 

p' - / C\ I	 'Y(M')2 

	

C' (— ? 1 +	 —?	 (15) 
q'	 \hI L	 1 - (M)2j
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Now, conlder the airfoil and wake to. be removed and re-
placed by a fluid source of strength Q. If the flow con-
ditions far upstream are maintained unchanged, the mass flow 
far downatreva Is then 

hp 3 ttV5 fl = hPrT! + Q 

or

= I + _..i-L_	 (]i) 
p t •\,rl	 - 

where the subscript s denotes conditions now prevailing at 
the latter station, For reversible aiahatic flow 

-	 I 
p " r

 

7_1	 / V 
=	 -. - ()! (---i	 J - L	 2	 LXV' 

Since it is to be expected that (V5 "/V T ) will-be close to 

unity, the right-hand dde of this equation may be expanded 
-.	

] in ascending powers of 

L

! ( 

	

1	 and terms contain- 

aug powers higher than the first neglected. Thus, 

\2	 1 
(n)2 i	 \

(17)


	

2 L\V I	 - 

and equation (15) becomes 

'J	 (r7vJ)2 TL 1 
V	 2	 /	 hpV
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It is reasonable to assume that the. ratio 	 is small -as 
hp'V' 

compared with unity. This solution cYf the preceding equation to 

the first order in	 is 
hpTVT 

i + - 1 -	 (18). 
'V' /	 1 - (M') 2 hp IV, 

Bernoulli's equation for reversible adiabatic flow can be written 

P ' - Ps	 2  	 (M, ) r(v2	 1 q'	 Y(M)2 L	 L	 2	 Lv I 
Vs ..	 . 

Since (__ J is close to unity, this may be replaced by the 
\V' J 

approximate relation

i-'_-" ,	 's	 I	 5 -

\v'I 
Substitution from equation (18) and neglect of the term involving 

the square of	 then gives 
hp'V' 

p' - Ps 
it 

Comparison of equations (15) 
strength required to promote 
actually arises from the con 

p'V'c 'c d 
2	 L

2Q	 1 
=	 -	 (19) 
hp'V' 1- (M')2 

and (19) shows . that .: the source 
the same pressure difference as 
inemnt of the airfoil wake is 

(y - 1)(M'?	 (20)
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• The tunnel walls are now replaoed by an infinite system of 
sources of strength Q rçed h d.irance apart and located 
directly above and below the position of the airfoil as shown in 
figure 1. This image system together with the source which has 
been placed at the position of the airfoil satisfies the require-
ment that the how at the plane of the tunnel wall shall be 
tangential to the wall. 

As shown in the first of equations (All) of appendix A. a 
source of strength 0. in a unifbrm flow of compressible fluid 
will induce at a distance r from itself a etreamwise velocity 

= 0.  

2rprLv_,M 2 (l - M2sIn2CP) 

where p is the polar 'agle of the point in question and p 
and M are the density and Mach number of the undistrbed stream. 
By virtue of this relation, the sreamwise velocity AV' 'in-
duced at a point of the'center line of the tunnel by the entire 
system of image sources is 

co -cos (p 
A V = '\ 

,tp'r	 /i - (M t ) 2 ri -' (M!)2sin2 ] 
L	 L	

m 

where rm and ym are the radial'distance and the polar angle 
of the point relative to the source a distance mb above or 
below the center line and p 1 and Mt are the density and Mach 

r numbe of the undisturbed flow in the tunnel. If the distance 
from the p osition of the airfoil to the point on the center line 
is denoted by x (taken positive downstream), this equation can 
be written 

A 2 Vt  
CO

 

pt/ -1- (MI) 1 x 2 + [1 - (Mt)2] ni2h2
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or

V ?	 I 	 coth ________ - 1Ax 

2	 - np'ji (i)2 [2h./1-(M')	 h71 - (M' 

	

It can be seen by setting x = - 	 in equation (21) 
that the image sources induce at an infinite distance up-
stream a velocity

2 
(V')

-
2p1h ji - (M') j 

In order to satisfy the original requirement that conditions 
far upstream remain unchanged, this velocity must be counter-
balanced by the superposition of a uniform flow of equal 
magnitude but opposite sign. The addition of this flow at 
all points in the field will result in a speeding up of the 
general flow at the poetiion of the airfoil by the amount 

	

•	 3v' =- ••	
2 

	

2p'h1-	 4'). 1 
or, substituting the source strength from equation (20), 

,	 l + (y- 1)(M')2	 Cd' (c)VI

(M') 2 4	 h 

If the factor r is defined as 

1•	
1 Ic 

The velocity increment induced at the position of the air-
foil by the interference between the wake and the walls may 
thus finally be written for air ( y = 1.4) as 

1 +
Ic t


	

2	 d 
1 - (N')

15

(21) 

(22) 

(23)
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•	 The longitudinal velocity gradient produced at the position 

of the airfoil by the flcw from the image sources can be found by 
differentiating equation NO with respect to x and then 
setting x =0. This gives finally 

dT'	 d(v?)	 7Q 

dx	 dx	 6pth2[1 - (M)2] •' 

or, by virtue of equation (20), 

= Lt: l)()2'VCdiVtC	 (24) 
-	 dx	 l - (it)2]3/eJ 12h2 

It already has been noted thattho interference associated 
with the thickness of the airfoil has no effect upon the longi-
tudinal velocity gradient at the position of the airfoil. It 
will be seen laterthat this also is true of the interference 
associated with airfoil camber. Equation (24) thus gives the 
total velocity gradient for the complete airfoil and wake. The 
total pressure gradientat the position of the model then is 
given by Bernoulli's equation as 

T
= -p'V' 

X dx 

or, iubstitutIng from equation (24) and setting 7 = 1.4, 

_ii + 044,)29ctqc	
•	 (5) 

dx	 - .(M:]'J	 6h2 

It is apparent from the symmetry of the system of image 
sources that at the center line of the tunnel the Interference 
between the wake and the walls has no effect upon the velocity 
normal to the direction of the stream. 

It is shown later in this report that the camber of the air-
foil does not affect the stream velocity at the airfoil. Equations
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-	 (4) and (23) together thus give the total increase in velocity 
for the complete airfoil eEd wake. The effective or true 
velocity V at the model is therefore 

V = V' 1 + _._!___	 (s) 

	

L	 Li - (M?)i'2	 1 - () 2 

It ic evident that.a correction to the apparent velocity in 
a compressible flow implies corrections also to the apparent 
density, dynamic pressure, Reynolds number, and Mach number. 
These corrections are readily obtained on the basis of the usual 
assumption that the flow is adiabatic. It is assumed that the 
correction terms are small as compared with unity, so that squares 
and products of these terms may be neglected. 

The true density p at the model is connected with the 
apparent density pt by the insentropic relation

1 

	

-	 - 
'	 1 

P = p' 	 •- 1	 (27) 
2	 V'J 

	

S.-	 L 

Substitution from equation (2 13) gives, after expansion as an 
ascending power series and neglect of correction terms higher 
than the first order, 

	

-	 (I1)2	 (1)2 
=	

rJ + O.4(M] 
TCdII	 (28) 

[i - (M 

The	

1 - () 2 	
j 

The true dynamic pressure q 1 pf is related to the 
2 

apparent dynamic pressure q T by the equation 

(PS' q	 qt	
V')
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By man of equations (26) and. (28) this can be written to the 
first order as

7i\a + EiMt21 
[1+0.4	 -I 

TCdJ 	 (29) 
t_. L1-(M)21 

Tho true Reynolds number B is given in terms of the 
apparent Reynolds number B' by the equation 

B = P I ( P. ,^ /, 
W ) V' 

where !-, Qnd .i' are the coefficients of viscosity correspond-
ing to V and V', According to Von Karmen and Tsien (reference 
II), the coefficients of viscosity are related to the correspond-
ing abeolute temperatures by

(T'\O.?6 

\T') 

For reversible adiabatic flow it can be shown that 

= T' 1 -	 - 1 (M') 
PV2 - 

Jj	
(30) 

	

L	 2	 LV')  

which äfter substitution from equation (26) becomes to the 
first order for air (7 = 1.4) 

T=T' '1- 0.4(M T )	 - 0.4(Mt)2[1±0.4(Mt] 
¶0	 (31) 

	

Ll(M t )21 3/2 	 1	 (M')2 

By means of these relations together with equations (26) and (28), 
the true Reynolds number may be written 

B=R'
_1_0.7M t , ) 2 Aa+ L1_0.7(MI)1[1+0.4(Mt)21 

TCd 	 (32) 

L L1-(M') .]"	 1 - (M I )2	 I
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The true Mach number M is related to the apparent Mach 
number 14 1 by the equatiod 

M = M' 
I v
ç;) v) 

where V and V. 1 are the velocities of sound corresponding 

to V, and V 1 0 Since the velocity of sound in a gas is 
directly proportional to the square root of the absolute temper-
ature alone, this equation may also be written

 ( V ) 
M = M'

(To 

With the aid of equations (26) and (31) the true Mach number then 
may be written to the first order 

M M t	 TO	 (33) 

L. [l(Ml) 2 J 37C	 1 - (M')2	 j 

At low Mach numbers, the terms containing Ted' in the 
correction equations are usually negligible as compared with the 
terms containing AG. At supercritical Mach numbers, howeyer, 
where the drag coefficient is very large, the terms with Ted' 

are predominant. 

Numerical values of the compressibility factor appearing.in  
equations (26), (29), (32), and (33) are given in table II. 

Camber _effect. - The theory of the infinitesimally thin, 
cambered airfoil —In free air is developed by Glauert in reference 
12 (pp. 87-93). In this development the camber line is replaced 
by a sheet of continuously distributed, bound vortices. The flow 
induced at any point on the camber line by this system of vortices 
is obtained by integration and is combined vectorially with the 
flow of the undisturbed stream to give the direction of the 
resultant flow. The distribution of vorticity is then determined 
from-the condition that the resultant flow at all points on the 
camber line must be tangential to the camber line.



20	 NACA APR No. 4K03 

In the actual calculation of the induced velocity, it is 
assumed that the vortices riy be distributed along the chord line 
rather than along the camher line and that the induced velocity 
at any chordwise station on the camber line is the same as the 
induced velocity on the chord line at the same station. If the 
origin of coordinates is taken at the leading edge of the airfoil 
(fig. 2), with the positive x-axis along the chord line and th 
positive y-axis directed upward, the induced velocity (v) 1 in 
an incompressible fluid at any point x0 on the chord line is 

C 

	

(v).	 _ IU	 (34) 

	

1	 £1C!	 X-X0 

0 

where dF/dx is the 'vorticity per unit length at the point x 
and c is the chord of the airfoil. The direction of this 
velocity is normal to the x-axis. 

G-lauert (reference 7) has shown that a first approximation 
to the velocity induced at any point by a simple vortex in a 
compressible stream can be obtained by simply multiplying the 
velocity induced at the same point in an incompressible stream by 
the factor

(!i - M2
(35) 

1 - M sin 2p 

where M is the Mach number of the undisturbed flow and P the 
polar angle of the point in question as measured from the direction 
of flow of the undisturbed stream. For points on the chord of an 
airfoil which is inclined at a small angle to the direction of the 
undisturbed stream the polar angle P is small, and the factor 
(35) is sensibly equal to 

All - M' 

If it is assumed that the effect of a vortex sheet in a com-
pressible fluid may be obtained by superposing the effects of 
elementary vortices, the velocity induced at any point x 0 on 
the chord line in a compressible fluid is 

=	

- r	

dx	
(36) 

2t	 x- x0
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If the undisturbed velocity of the free stream is taken 
equal to the true velocity V at the airfoil in the tunnel, the 
condition that the resultant flow shall be tangential to the 
camber line requires that, for all points on the airfoil, 

dy0
 — =-- ct 

V dx 

where dyc/dx is the slope of the camber line at x0 and a. is 
the true angle of attack that is, the angle the undisturbed 
stream makes with the chord line In free air. (See fig. 2.) 

The problem of the infinitesimally thin, cambered airfoil in 
a two-dimensionai .-flow tunnel can be investigatedby the method 
of images; that is the effect of the upper and lower walls of 
the tunnel can be simulated by introducing an infinite lattice of 
alternately inverted btit otherwise identical image airfoils above 
and below the original airfoil, as shown in figure 3(a). By this 
artifice the direction of flow at the position of the upper and 
lower walls can be made to coincide with the plane of the walls, 
which is the required condition of flow. As in G1auerta analysis 
of the airfoil in free air, the camber line of the , airfoil and of 
each of its images is replaced. by a sheet of continuously distri-
buted vortices, the vortex distribution of all sheets being 
identical in magnitude but alternately reversed in sign. The 
flow induced at any point of the camber line of the original air-* 
J.oil by the entire vortex system is then obtained by integration. 
As before, the distribution of vorticity must be determined so 
that the resultant of the induced velocity and the stream velocity 
is tangential to the camber line of the airfoil. 

For the detailed calculation, the coordinate system is taken 
as shown in figure 3(b). The origin of coordinates is taken on 
the centerline of the tunnel at theleading edge of the airfoil,, 
The positive x-axis extends downstream parallel to the undisturb-
ed flow, and the positive y-axis is directed upwards. It is 
assumed that the vortices may be distributed along the x-axis and 
the induced velocities calculated at points on this axis. This 
arrangement is somewhat different from the system employed for 
the airfoil in free air, where the x-axis was taken along the 
chord line; however, since the angle of attack is assumed to be 
small, the difference is of no consequence.

(37)
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It is evident from figure 3(b) that, for an airfoil midway 
between the upper and lower walls of the tunnel, the axial 
velocity induced at any point on the x-axis by any one image is 
nullified by the velocity induced by the corresponding image on 
the opposite side of the tunnel. It follows that airfoil camber 
does not affect either the true axial velocity or the longitudinal 
pressure gradient in the tunnel at the position of the model. 

The vertical velocities induced at any point on the x-axis 
by any one image and its counterpart are, however, additive. 
Thus, for corresponding images situated at mh and -mh, 
respectively, the vertical velocity .(v ? rm ) i induced at the 

point x0 in an incompressible fluid is 

c
d F1	 ( 

	

I	 Slflt\CP -jdx It	 \	 m.	 dx	 in	 2' 
V t'm 1 i = 	 ( _ l) 

2rm. 

or

	

r(XX)dX	
(38) (v'). =	

x	 + (mh) 

where dF t/dx is the vorticity per unit length at the point x 
in the tunnel. 

It will nof be assumed that the chord of the airfoil is 
reasonably small in comparison with the height of the tunnel. 
This being the case,.the approximation 

	

(x - x0)2 + 
()2	 ()2 

is sufficientl precise for purposes of this analysis, and the 
term (x - x0 )	 in the denominator of equation (38) may be 
neglected. 

The vertical velocity (vtr)j induced by all the images is 
then found by superposition as 

(v'r)i =  

CO	 c 

 (-l) 
f(X - x)	 dx

i'th2L.- in2 	 dx 
0
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C 
r	 d1"	 -

(39) 
12hj	 dx 

0 

This equation can be corrected for the effect of compress-
ibility by means of expression (35). If, as was assumed, the 
chord of the airfoil is reasonably small aa compared with the 
tunnel height, the polar angle cp of any point x0 on the air-
foil with respect to any point x on an image is noarly a right 
angle, so that in this case the factor (35) is sensiblyequalto 

1 

The vertical velocity induced in a compressible stream by all 
the images is then 

V'r=___ i(xx)ddx	 (40) 

	

l2h2 \/ 1 -	 clx 

The vertical velocity v 'b, induced at a point x 0 by the 

vortex sheet belonging to the airfoil itself, is given by equation 
(36) if T	 and v 'b are substituted for' F and v, respectively. 

The total vertical induced velocity v' at any point x 0 on 
the airfoil in the tunnel is then the sum of v 'r and v 'h; that 
:ts,

'-C 

VI -= -	 -	 -	 2	
- (x - x0 ) -- dx.	 (41) 

'-'	 x 	 6h (l-M')'	 dx 0	 0 

The condition that the resultant of the induced velocity and 
the true axial velocity at the airfoil shall be tangential to the 
camber line requires that, at all points on-the camber line, 

V,	 dy0 - a'
	

(42)
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where a t is the angle of attack of the airfoil in the tunnel; 
that 1 ) the angle the chord line makes with the center line of 
the tunnel. The true velocity V rather than the apparent 
velocity V , is used in equation (42), since the. vortex system 
used to represent the cambered airfoil in the tunnel is actually 
operating in a stream of velocity V when the airfoil thickness 
and wake are present, 

Relations between Characteristics of Airfoil 


in Tunnel and in Free Air 

The preceding sections provide the basic information requir-
ed for the development of relations between the characteristics - 
of the airfoil in the tunnel and in free air. The relations for 
the lift and moment coefficients and angle of attack are derived 
from the equations of the preceding section by an extension of 
the method of Fourier series employed in Glauert's theory of thin 
airfoil (reference 12,pp., 87-93). To this end, the vorticity 
distributions for the airfoil in the tunnel and in free air are 
each represented by a trigonometric series, the two ser i es being 
similar in form but having undetermined coefficients. , By means 
of the equations of 'the preceding section, general relations are 
found between the coefficients of the two series. These general 
relations are then specialized to meet the requirement that the 
airfoil shall have the same value of the cotangent term of the 
series in the tunnel and in free air, this requirement being 
shown to be necessary to assure that the essential characteristics 
of the pressure distribution will be sensibly the same in both 
cases.' By means of the relations between the coefficients, 
expressions are then derived for the lift and moment coefficients 
and angle of attack of the airfoil in, free air in terms of the 
characteristics measured in the tunnel. The corresponding drag 
coefficient in free air can be' found from the drag measured in 
the tunnel by subtracting the pressure drag caused by the 
interference between the walls and the wake and referring the 
remaining drag to the true instead Of the apparent dynamic 
pressure. Finally, a method is 'presented for correcting airfoil 
pressure distributions for the effect of tunnel walls. 

To carry out the analysis, points on-the airfoil are defined 
by a new coordinate 0 such that 

x=c(l- Cos O)	 '	 (43)
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and

dx=c sin Ode	 (44) 

The distribution of vorticity along the chord of the air-
foil in free air is represented, after Glauert, by the trigono-
metric series 

dF	 1	
CO 

 
- = 2V <'A cot - 0 + 	 A sin nO	 (45) 
dx	 2	 / 

n=1 

Equation (3G) then gives the induced velocity at any point 0 on 
the airfoil as

CO 

	

=	

+

A	 O cos n 

and equation (37) for the slope of the moan-camber line becomes 

dye 
=	 1 - M2 A0 +AfiT_ M2 >An cos n)	 (46) 

The coefficients are then given by the relations 

TT

1
(47) 

	

A	 _____	 _2 Cos nOd.O 
fllM2	 dx 

For the airfoil in free air the coefficients An for n ^ 1 are 
thus functions of the camber-line shape only and are independent 
of the angle of attack. The coefficient A0 is a function of 

both the camber-line shape arid the angle of attack.
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The chordwise lift distribution in free air is giver by 

11	 - 0 

= 
PV	 = q ±. 

	

dx	 dx 

which after substitution from equation (45) can be written in 
coefficient form as

C- 
dL P=!=4A0 cot!O +A sin n8 

qdx	 2 	 L1-	 J n=3. 

Euation (48) illustrates the well-kno•m fact that in free air 
the chordwise lift distribution consists essentially of two 
distinct parts. The one ?art contributed by the sine terms and 
Generally referred to as the basic lift distribution (reference 
13), depends in magnitude and form only upon the shape of the 
mean-camber line. The other part, defined, by the cotangent term 
and referred to as the additional lift distribxbion, is fixed in 
form and depends in magnitude upon the angle of attack as well 
as upon the camber-line shape.	 - 

The distribution of'vorticity for the airfoil in the tunnel 
is rep resented by

I	 CO
- 

	

= 2V	 cot 9 + N 	 sin nO	 (49) 
dx	 L --	 2.	 /	 J 

Substitution of this expression, together with expressions (43) 
and (44), into equation (41) gives, after integration, 

Vt	 f2A? +	 Ao I +
) 

+	 i_	
a,	 (2A0 2 + A1 1 )1 cOs 0 L	 l-M2.	 j 

+ CO

 At cos no

(43)
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where C7 is as defined by equation (2). Equation (42) for-the 
slope of the meancember lffne thus becomes 

S ___ r 
dy 
dx	

M" A0' i2(A0 +A2t)1 

Af1 - M2	 -	 a	 (2A0 	 Ai')l cos 0 
1-M2	 j. 

Co 

1 -	 An' cos flO
	

(50) 

Thecoefficients in this case are given by the relations 

_M FA' . _	 (Al	 A2T1 = 

•L°	 l - M°	 2	 )J j dx 

All	 Cr - 	 _ ( 2A0 ' +, A 1 ') = — 
	 cos 9 dO	 (51) 

1-M2	 AJ1M2ITJ 

IT 

td1T

An' =	 l_	 .LEcosnOdO, n2 

A 
ll --:7M 2ItJ dx 

0 

Thus for the airfoil in the tunnel the coefficient A 0 ' is a 

function of both the angle of attack and the shape of the camber 
line, but the functional relationship is altered from what it was 
In free air by the inclusion of terms proportional to a. Further-
more, because of the appearance of the term involving A 0 ' in the 
second of equations (51), the coefficient A l l Is in this case 
also a function of the angle ofattack, as well as of the camber-
line shape. Since A0 ' appears in this equation multipliedby 
the factor a, the dependence upon the angle of attack is, how-
ever, secondary as compared with the dependence upon the shape of
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the camber line. As in the case of the airfoil in free air, the 
coefficients A' fcr n . 2 are functions of the camber-line 
shape only. 

The chorthise lift distribution in the tunnel is given by 

dL'= PPV
dF'

 =	
2 dF' -  

ax	 ax	 'Tdx 

or in coefficient form

CO	 - 

P* =	 = 4 A' cot	 e+ \ A' sin nO	 (52) 

L	 2	 J 
fl= 1 

In writing this equation the streaniwise velocity gradient which 
results from the a.11-wake interference (equation (24)) is 
ignored, It can be shown that the inclusion of this variable 
would give rise to correction terms of the order ace'. 	 Terms 
of this order are usually small as compared with the terms of 
order o and T Cd' considered in the theory and may therefore 
be neglected. 

It is apparent from equation (52) that, as in the case of 
the airfoil in free air, the lift distribution in the tunnel may 
be divided into two components. Now, however, the component 
which depends upon the angle of attach includes both the 
cotangent tern and the first sine term. The component which is a 
function of the camber-line shape alone, comprises the sine terms 
corresponding to n 2. Again, these two components could be 
denoted by the terms "additional" and "basic" in the sense 
previously employed; however, since the phrase "add.tionai lift" 
already is so firmly established with reference to the distinctive 
cotangent term alone, this usage does not appear advisable in-the 
present case. For this reason, the terms of the series will be 
referred to by reference to their form or their position in the 
series. 

Since it Is the same airfoil which is beixig considered in 
both cases, equations (47) and (51) lead to the following general 
relations between the coefficients in free air and in the tv.nnel
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M -,jT - M2 A0 = c' -,ff- ivr	 ' + .__.(o t + A27) 

Aj1-M2 

CT 

A 1 = A 1 ' - - (2A ,+ A1 ') _ Y7
1

(53) 
A 2 = A2 

A11 .= An 

In order to use these expressions to relate the character-
istics of the: airfoil in free air with those in the tunnel, it is 
necessary to choose some quantity or condition which will be main-
tained the se in both cases and relate the remaining quantities 
in accordance with this choice. If it were possible, the ideal 
procedure would be to keep all the aerodynamic coefficients 
unaltered and to determine a corresponding relationship between' 
the angle of attack in the tunnel and in free air. To do this it 
would be necessary to keep all pressure and frictional forces the 
same in both cases, which can be accomplished only if the pres-
sure distributions are identical. This would require that each 
of the coefficients A in equation (48) be equal to the cor-
responding coefficient An' in equation (52). It is apparent 
from the second of equations (53), however, that this require-
ment cannot, in general, be satisfied. 

• Although the pressure distribution cannot be maintained 
completely unaltered in the transfer from the tunnel to free 
air, the general relations (53) can be specialized in such a 
way that the essential character of the distribution is un-
changed. It is apparent that the component of lift contrib-
uted by the first, or cotangent, term in equations (48) and. 
(52) is different in form from that contributed by the series 
of sine terms. The cotangent component has an infinite value 
at the leading edge (0 = 0) and a relatively large chordwise 
gradient of lift over most of the chord of the airfoil. • The, 
sine-series component is finite at all points and, for air-
foils ordinarily encountered In practice, has a r3latively 
small chordwise gradient, except possibly In the immediate
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vicinity of the leading or trailing edges. The cotangent com-
ponent with its infinite peak pertains, of course, only to the 
hypothetical airfoil of infinitesimal thickness and zero leading 
edge-radius. For all real airfoils, the lift at the leading 
edge can never be infinite; however, even in this instance the 
lift distribution is characterized by a component the form of 
which is peaked near the leading edge and the magnitude of which 
varies markedly with the angle of attack. The magnitude of 
this component is a primary factor in determining the character 
of the pressure distribution, and even a relatively small change 
in magnitude may cause considerable change in the minimum pres-
sure and in the chord-wise pressure gradients attained on the 
surface of the airfoil. Further, the aerodynamic chaiateris-
tics which depend upon thosd quantities, particularly the pro-
file drag, maximum lift, and critical compressibility speed, 
will be correspondingly altered. It follows that properly to 
correct airfoil data obtained in a wind tunnel to conditions 
in free air, the corrected quantities should correspond to the 
same magnitude of the peaked lift component as exists on the 
airfoil in the tunnel. 

The requirement that the peaked component of lift on the 
real airfoil shall, be the-same in the tunnel . and in free air 
can be expressed with reference to the assumed airfoil of in-
finitesimal thickness and camber by setting A 0 equal to 

in equations (53). The first of these equations, which re-
lates the angle of attack in the two conditions, then -becomes 

+	 __SL_... (A0' + ; A 2 ?	 (54) 
Jl_M 2 \	 2	 )  

and the relations between the coefficients are 

Al

Ao Act 

 =A 1 ' -	 - (2A' ±A1'). 
l-M 

A 2 = A 2 '	 (55) 

An An '	 .
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Substitution from equations (55) into equation (48) gives 

+ ') SiflO 
+> A

n t sin nO P4A0cot!O-Q_2

fli or

P =	 -.	 (2A 0 1 + V) sine	 : (56)

1-M 

Thus, if the angle of attack in the tunnel and the angle of 
attack 5..n free air are such as to satisfy equation (54), the chord.-
wise lift distributions will differ by an amount defined by the 
second term on the right-hand side of equation (56). 

-	 The lift, coefficient for the airfoil in free air is 

1 

c	 / Pd(-  
cj 

0 

which
)
 after substitution from equations (44) and (48), can be 

integrated to give

	

c 2 =KZAO + A 1 )	 ( 57) 

The quarter-chord-moment coefficient is 

= [
p (! - d ( 
\4	 0/	 \cJ 

-	 4
0 

which becomes after integration

(58) 

In usual wind-tunnel practice , the measured coefficients 
are referred to the apparent dynamic pressure q t . The lift 
distribution over the airfoil in the tunnel in terms of q' is 

Pt
q , dx	 Vqdx
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Substitution from equation (49) gives 

P' = 4

o ,cot - 9 + 

CO

 A' sin n9	 (59) 

	

q.'	 J 
n=1 

The lift and moment coefficients of the airfoil in the tunnel as 
referred to the apparent dynamic pressure are then, respectively, 

1 

	

C' 

=/ P'd () =	
(2A' + A 1 ')	 (60) 

and	
0 

cmC	 P I	 d ( x	 q (A 1 ' - A 2 ')	 (61) 

Relations between the coefficients in free air and in the 
tunnel can now be found with the aid of equations (55). Sub-
stitution of values from these equations into equation (57) 
gives

+ A 1 ') (i - 
1 

Cr 

- 

(1 / 	 a 
cl \ T-- 7) 

Substitution from equation (29) and neglect of correction terms 
of higher than the first order then give 

1	 Cr	 2 - (M')2	 [2(Mt)2][i+O.4(Mt)2 
C = C	 l	

Li- (M' 3 '2	 -	 .	 1 - (Mt)2	
Tcdj
LI 

From equation (33) it can be seen that, to the first order, M 
may be replaced by M' in this equation. The final equation for 
the correction of the measured lift coefficient is therefore 

C	
0 1.r1 _ .	 a	 -	 2_J')2	 Aa 

1 - (M') 2	 Li. - ( Mt)2]3/2 

- [2 - (M') 2j[l + 0.4(M')] 

Tcd'	 (62) 
i.(M')2
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Similarly, substitution of values from equations (55) into equa-
tion (58) gives 

	

c1 -	 (4.,' -A 2 ') +	 (2A' ^A1') 1 -M2 

=	 ' + 

	

q	 2	 4	 l-M2 

To the order of approximation previously employed, the final 
equation for the correction of the measured moment coefficient 
can be written 

	

I2-(M')2	 F2(M1)21[i+o.4(M] 
Cm = Cm' L -	 T(11It)2	 Tcdj 

	

+ C j ' __L_____..	 (63)

4[i-(M' )2] 

The corresponding angle of attack in free air canbe found from,
equation (54). Combination of equations (60) and (el) gives 

r	 c + 4Cm' 

A0 +	 A _, t = 
2	 q2it 

To the first order, equation (54) then gives for the corrected 
angle of attack in radian measure 

a = a' +	 Cl' + 4C fl0 T	 (64a) 
21tAJ- (1)2 L	 J


or in degrees r 57,y	 I  a=a' +—	 Cr'01' +Cm	 ( 'A b) 

2 iE- (M' )	 - J 
Numerical values of the compressibility factors appearing in 
equations (62), (63), ard (64) are given in table II.
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It should not be implied from equations (64) that the general 
inclination of the stream at the position of the airfoil in the 
tunnel is actually different from what it would be If the walls 
were not present. The equations indicate rather that, with regard 
to the magnitude of the cotangent component of lift distribution, 
an airfoil at a given angle of attack in the tunnel behaves as 
though it were at a different angle in free air. This difference 
occurs because the tunnel wails give rise effectively to a change 
in the curvature of the stream at the position of the airfoil. 

As was indicated previously, the essential character of the 
pressure distribution over a given airfoil will be the same in 
the tunnel and in free air, provided the magnitude of the cotan-
gent lift component is the same in both cases; that is, provided 
the angles of attack 'are such as to satisfy equations (64). The 
exact shape of the pressure distributions, however, will still 
differ slightly for two reasons: (a) The interference between the 
lift and the tunnel walls causes a difference in chordwise lift 
distribution as required by equation (56), and ('b) the interference 
between the wake and the walls gives rise to a longitudinal pres-
sure gradient defined by equation (25). The effect of those two 
influences upon the remaining airfoil characteristics, the profile-
drag coefficient, must be considered. 

As given by equation (56), the chcrdwise lift distributions 
in the tunnel and in free air differ by an amount

4a 7 
AP = P* - P =
	 -M (2A

0't ± A l t ) sine 

which, by virtue of equation (60), may be written to the first 
order as

AP = ______ c ' sine	 (65) 
it. 1. -M2 

The changes in peak pressure and pressure gradient brought about 
by this increment of lift dietributioti, unlike the changes which 
would accompany even a minor alteration of the cotangent lift 
component, are ordinarily 'small. At low Mach numbers the drag 
depends primarily upon the character of the flow in the boundary 
layer, and, since this flow will not ordinarily be altered greatly 
by these small, changes in the pressure distribution, the inre-
ment of lift distribution should have only a small effect upon 'the
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profile drag. At high Mach numbers the drag is determined prima- - 
rily by the total-head losses in the shock waves which appear 
after the critical Mach nuniber is reached, that is, after tne 
local speed of sound is obtained at the minimuun pressure point On 
the airfoil, The critical Mach number is usually reduced by the 
change in peak pressure accompanying the change AP in lift 
distribution, but it can be shown that this reduction is ordi-
narily very small. It is reasonable to ex pect that the change in 
profile drag at a given supercritical Mach number is correspond-
ingly small. These changes are discussed in further detail later 
in the report, but for the present it may be assumed that the_ 
difference in chordwise lift distribution between the tunnel and 
free ad.- has only a negligible effect upon the profile drag. 

For usual airfoils and drag coefficients, the longitudinal 
pressure gradient defined by equation (25) is also small, and Its 
effect u pon the boundary-layer flow and hence upon the friction-
al drag of the airfoil may he neglected. It will, however, in-
crease the pressure drag by an amount which is comparable to 
differences already retained in the corrections to the lift and 
moment. This increase in pressure drag must be subtracted from 
the drag measured in the tunnel to obtain the true profile drag 
of the airfoil in free air. 

Glauert has shown (reference 2, pp. 62-63) that in an 
inconipessible fluid the drag experienced by an airfoil as the 
result of a steainw.ise pressure gradient is, in the notation of 
this paper,

dp 6h  dp (66) 
S	 ax	 9	 ax 

In appendix A, it is shown that this relation is unchanged by the 
effect of fluid compressibility. Substitution of dp/dx from 
equation (25) then gives for the drag due to the interference be.. 
tween the wake and the walls 

AD = Cd' q' cf 1 + O. 4(M')	 A

(Mt)2]3'J' 

The true profile drag of the airfoil in free air is then 

D D' - AD

1 +O.4(M')2 
= Cd' q' c l - [i - (Mt)2]3/ i
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and the corresponding drag coefficient referred to the true 
dynamic pressure is 

Cd	 = c(1.) f' -	 :i4 
Substitution from equation (29) gives for the final correction to 
the measured drag coefficient 

2 - (M) 2	 1 + O4(Mt)2 
1 - _.____7 -  a	 L	 - ( I41)232  Ll  

(MlAcr 

2	 0.4(Mi1	
(67) 

1	 (M')2	 j 

It will be noted that, of the two correction terms involving A0 
in this equation, the first appears as a result of the change in 
dynamic pressure occasioned by the interference between the walls 
and the airfoil thickness; the second represents the effect of 
the pressure gradient induced by the interference between the 
ails and the wake. The correction term containing .i Cd' appears ears 

as a result of the change in dynamic pressure caused by the wall-
wake interference. Numerical values of the functions of M' 
which appear in equation (67) are given in table H. The cor- 
rected drag coefficient corres ponds of course, to the corrected 
lift and moment coefficients as given by equations (62) and (63) 
and to the corrected angle of attack as given by equation (64a) 
or (.4b). 

The drag correction of equation (67) was determined partic-
ularly for drags measured with a balance and, as derived, is not 
necessarily correct for drags measured by the wake-survey method. 
It can be shown, however, from theoretical. considerations of 
momentum and continuity in a two-dimensional-flow tunnel that for 
normal ratios of airfoil chord. to tunnel height, the ordinary 
typo of wake survey derived for free-air conditions gives, when 
applied in the tUflflOL, a value of the drag equal to that measured 
by the balance except for a negligible difference of less than 
one-half of one percent. Equation (67) may thus also be used to 
correct drag coefficients determineçi by the wake-survey method. 

It shculd he noted that no correction to the drag has been 
made for any pressure gradient which may exist inherently in the
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tunnel asa result of the streomwise growth of the boundary layer 
on the tunnel walls. Most :odern tunnels are constructed so that 
this pressure gradient is sensibly zero; however, if such a gra-
dient does exist and its magnitude is known, an approximate cor-
rection to the airfoil drag can be made by means of equation (66). 

There remains the necessity for correcting the measured pres-
sire distribution over the surface of the airfoil. The pressure 
at any point on the airfoil is conveniently expressed by the pres-
sure coefficient S2 defined by 

4	 H - p-. P2	 (68) 
Q 

or by the pressure coefficient P 2 defined by 

P 2	 (69) 

where p 2 is the local static pressure 'on the surface of the air-

foil and H, p, and q are, respectively, the total head, static 
pressure, and dynamic pressure of the undisturbed stream. As 
indicated in reference 14, in . a compressible stream, 

	

H=p±q(l+)	 (70)


where (1 + i) for air (y 1.4) is defined by the series 

jr4 jVj	 1.L	 _______ (71) 
4	 40 1600 

M being the Mach number of the stream. From these relations it 
is readily shown that	 . 

	

S 2 = (1 + r) - P 1	 (72) 

A curve of (1 ± ) versus M, as calculated from equation (71), 
Is given in figure 4. 

In reference 6 a method is presented for the determination 
of the pressure distribution around an airfoil in an incompress-
ible stream when the lift distribution along the chord and the

ri
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pressure distribution over the base profile are known. The upper-
and lower-surface pressures at any chordwise station x are given 
in coefficient form by

[(lPf)+P]2 

q	 (i - Pf) 

r	 2	 (73) 
Pf)	

P] 

PL =

	 -	
=1 _ 1 - 

	

q	 (l - Pf) 

where Pf is the pressure coefficient on the base profile at x, 

and P is the coefficient of lift per unit of chord at x. By 
following the basic reasoning of reference 6 and assuming that 
the induced velocities at the surface of the airfoil are small as 
comDarod with the velocity of the undisturbed stream, it Is readily 
shown that equations (73) may also be applied to the pressure 
distribution In a compressible stream. In such application, the 
values of PU, PL) Pf, and P must all correspond, of course, to 

the same free-stream Mach number. 

The measured pressure distribution is now readily corrected 
for the effect of the tunnel wails. It Is only necessary to refer 
the measured pressure coefficients to the true instead of the 
apparent dynamic pressure and remove the effect of the lift dis-
tribution represented by equation (65). Strictly speaking, cor-
rection should also be made for the pressure gradient due to the 
wall-wake interference; however, in practical. tests such cor-
rection is small and may be neglected. The detailed procedure is 
then as follows: 

(1) The apparent upper- and lower-surface pressure coef-
ficients

H- Pul 

	

SU t =	 and 5Tt 
q'	 c17 

are obtained from the experimental results for the various chord-
wise stations.
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(2)These pressure coefficients. are referred to the true 
dynamic pressure by means 0± the equations 

STJ*=Sijt(L'Su -. _-(M' 2- (M	 ±o±)fJ TC 

\ q ) [1-(4y13'2 l-(M)2	 J 

SL *S1
2-.(M')2

r [2_(M1)][i+o.4(w)]7 dIJ.] _ 
q)	 • [J_(Mt) 21315. l-(M')2 

(3) The quantities	 (1 PU*) and	 (1 _:PL*)	 are determined 

in accordance with equation (72) as

i_PU*=sU*_
(15) 

1	 =	 - r 

whore n is determined by figur 4 for the true Mach number as 
given by equation (33). 

(4) The chordwise lift distribution in the tunnel is found 
from

•Ort - 
p*=	 Stj*_SL*	 (76) 

(5)The chordwise lift distribution in freO air is dëtermin-
ed from equatiQn (65), which may be written 

P = P* -
	 -(M')2 Po c
	 (77) 

where Pe is given by 

Pe3mneAj1_(1_) 
TI	 it 

This quantity, which is termed the. "interference lift distribu-
tion, 1' is seen to be elliptic in form. Values of Re at stand-
ard chordwi.se stations are given in table. III. 
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(6) The quantity (I - P1), where P1 is the base-profile 

pressure coefficient in free air, is given by 'the equation 

(	 P) =	
- Pf* ) = ( 1 -	 + l PL*) 

which is obtained by combing equations (73). 

• (7) The values of P and (1 - Pf) being known, the upper-

and lower-surface pressure coefficients P and 	 are deter- 

mined from equations (73). If desired, the corresponding coef-
ficients SU and. SL can be found from equation (72). 

The corrected pressure distribution obtained, by this method. 
corresponds to the corrected angle of attack as given by equation 
(64a) or (64b) and to the corrected lift and moment coefficients 
as given by equations (62) and (63). . 

It has been mentioned previously that the correction to the 
angle of attack appearing in equations (64) does not represent an 
actual rotation of the stream direction. This fact is implicit 
in the derivation of the equations, but it can also be demon-
strated by simple considerations of force and moentum. For this 
purpose it is sufficient to consider a simple incompressible 
potential flow in the. tunnel and ignore the effect of the profile 
drag. Assume for the time being that, because of the interference 
between the airfoil and the tunnel walls, the general direction 
of the.streain at the airfoil.is inclined from its original' 
direction parallel to the tunnel walls. For potential 'flow the 
resultant force acting on the airfoil must be at right angles to 
the local direction of the stream. The airfoil thus would be 
acted upon under the assumed conditions by a component of force 
parallel to the center, line of the tunnel and would in reaction 
exert an equal and opposite force on the flow. Since the tunnel 
walls cannot in a potential flow exert a force parallel to the 
center line, this longitudinal force would have to be' balanced 
by a difference of pressure or momentum between two stations in 
the'tunnel, one upstream and one downstream from the airfoil. If 
the stations are taken far enough from the airfoil that its 
induced velocities are negligible, 'conditions across, the.tunnel 
are uniform at each station. It then follows. 'from considerations 
of continuity of the incompressible flow in the tunnel that the 
conditions at the two stations are identical, and no difference
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of pressure or momentum is Dossibie. Thus the original assump-. 
fin of a general rotation of the stream direction at the position 
of the airfoil is untenable. This conclusion is not changed by 
the effects of fluid compressibility. Furthermore, the fact that 
the introduction of the profile drag and the accompanying wake 
causes a pressure difference between the two stations likewise 
does not alter the result, as the wake effects are considered in 
the theory to be superposed on the potential-flow field. Thus, 
the angle correction appearing in equations (64) must be due to 
some cause other than a general inclination of the stream. As 
previously pointed out, it is actually due to an effective change 
in the curvature of the stream at the position of the airfoil and 
is a direct consequence of the requirement that the airfoil in 
this stream shall have the same cotangent component of lift 
distribution as does the airfoil in free air. These considerations 
are important in the proper interpretation of drag measurements 
from a two-dimensional-flow 'tunnel. 

In the development of the correction to the measured drag 
coefficient, it was assumed that the increment AP in chordwise 
lift distribution between the tunnel and free air has only a 
negligible effect upon the profile drag. A better idea of the 
nature of the effect .can be had by further examination of the 
difference between the two cases. It follows from equations (55) 
that, if the angles of attack in the tunnel and in free air are 
related as required by equation (54) or (64), the transposition 
of a given airfoil from free air to the tunnel is equivalent to 
increasing the coefficient A 1 for the airfoil in free air by 
an amount

AlAA	 t - Al =	 (2A' + A1!) 
l-M 

which can be written, to the first order as 

AA 1 = ! _-_ 
1 - M2 

As can be seen from equation (46), this can be accomplished by 
maintaining the angle of attack unaltered in free air and chang-
ing the ordinate of the mean-camber line at every point by an 
amount Ayc such that 

d(iy) 
c sos e	 (80) 

dx	 T,fij:j7 Z
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The value of Ay as a fraction of the chord i:then 

Ayr = [ d(y0) d1	 + c 
c	 dx 

which after substitution from equations (44) and (80) can be inte-
grated to obtain 

Aye	 1	 • — = - - ______ cj cos 20 + C 
C	 Ajl-M2 

The constant of integration ­ C is determined by the condition 
that Ayc/ c = 0 at 9 = 0 and .0 = t. The equation for the 

change in the camber line then becomes finally 

Aye	 C7 Cl  c	 i': jjjj	 L°1 
\JJ 

This is the equation of •a parabola with vertex at the midchord. 
point and has the same form as the equation for the camber line 
of an NACA conventional airfoil with maximum camber at the mid-
chord point (reference 15). The maximum change in camber is 

Aye	 ..L	 a c-	 (62)

C lax. 4t Au - M2 

Thus, if the angles of attack of the airfoil in the tunnel and 
free air are adjusted as required by equations (64), the wall 
interference in the tunnel has the same effect upon the chord-
wise lift distribution as would an increase in camber in free air. 

As a possible instance of a test for the determination, of 
the drag of an airfoil of large chord at a low Mach number and 
low lift coefficient, consider the case of an airfoil in a tunnel 
providing a chordheight r-atto of 0.5. The value of a . is then 
0.051. Assume that the angle of attack a' in the tunnel is 
adjusted as required by equations (64) to correspond to an angle 
a, giving a lift coefficient c1 . of 0.3 in free air. Assuming 

that the Mach number is sufficiently low that the effect of
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compressibility may be neglected in computing the tunnel-wall 
corrections, the change of aximimi camber required in free air to 
duplicate the effect of the tunnel walls ib given by equation (82) 

as

(Yc	
,,=_. (0.05i)(0.3) = 0.0012 

c )max' 4 

An estimate based upon experimental data has been made of the 
effect upon the profile drag of a change in camber of this magni-
tude for an MCA conventional airfoil of moderate caiber and 15-
percent thickness with maximum camber at the rnidchord point. The 
result indicates that neglecting the effect upon the profile drag 
of the change in lift distribution caused by the tunnel walls 
leads in this case to an error in the final corrected drag Co-

efficient of less than 0.0001. This is within the usual limits 
of experimental accuracy. The correction terms included ii equa-
tion (67) amount in this instance to approximately 0.0004. If 
the chord-height ratio were increased to 1.0, the error in the 
drag coefficient would be increased to 0.0004, which is well out-
side the limits of experimental accuracy. This indicates the 
desirability of limiting the chord-height ratio if accurate 
measurements of the profile drag are desired, even at low values 
of the lift coefficient and Mach number. At higher values of the 
lift coefficient or Mach number the permissible chord-height 
ratio must be reduced correspondingly. 

The foregoing comparison is based upon. the specific case of 
an airfoil with maximum camber originally at the midchord point 
and is not necessarily applicable to other typos of airfoils. 
For families of airfoils which have a smaller variation of drag 
with camber than do the I'ACA conventional sections, the error 
introduced by neglecting the effect of the change in lift dis-
tributicn is correspondingly less. In any event, satisfactory 
accuracy can be obtained in the measurement of drag at low' lift 
coe'fficients and Mach numbers by keeping the chord-height ratio 
within a suitable limit -'say 0.7. A possible exception is an 
airfoil having an essentially flat pressure distribution in the 
region of transition from laminar to turbulent flow in the bound-
ary layer. In such a case the changes in pressure gradient may 
shift the point of transition and noticeably alter the profile 
drag; however, for any such sensitive.airfoil, alterations from 
this source are no more serious than similar changes which may 
accompany the small variations in pressure distribution caused in 
any practical application by Irregularities in construction.
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Some measure of th effect of the increment 'P in chord.-
wise lift distribution upon measurements of airfoil characteristics 
at high Mach numbers can be obtained by calculating the change in 
critical Mach number caused by this increment. Such a calcula-
tion has been made for an airfoil with minimum pressure originally 
at the m:Ldchord point. Since the increment LP is a maximum at 
m:tdchord, this represents the worst possible case,as regards the 
change in critica]. Mach number.' For a chord-height ratio,of 0.25, 
which is considerably larger than that ordinarily employed in 
tests at high Mach numbers, the critical Mach number was foilind to 
be reducd by approximately 0.001 at a lift coefficient of 0.3. 
A change of this magnitude is insignificant. It may be expected 
that the accompanying change in the aerodynamic coefficients in 
the vicinity of the critical Maoh nuLlber will be correspondingly 
small.

/ 

THE PEENOMJN0N OF CHOKING 

Consider the compressible adiabatic flow of a fluid in an 
elementary stream tube of varying area Al. as shown in figure 

5(a). Continuity of flow requires that the product p 2 IT1A 2 be 
constant,, whore p1, V2 , and A 2 are the local values of' 

density, velocity, and area respectively, at any station along 
the tube. In consequence, the logarithmic derivative must vanish; 
that is,

dp1	 d11 1	 cIA,
(83) 

Q	 V2	 A2 

Bernoulli's equation for compressible : flow requires that 

dp
= -V2dV2	 (84) 

PZ 

where p 2 is the local pressure. Defining V.,as the local 
velocity of sound, then

dp2 
_	 2 

dUd
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so oquaticn (84) becomes, after substituting the value of dp1 
in that 'ecuation,

do, " VdV	 dlT 
Z	 Z	 R2	 1 

= - --- =-1 l ;;•—• 
.. p z	 ye1 V 1 

where M1 is the local Mach number, 

Substituting this relation into equatidn (83) gives 

'dv,	 dA
(85.) 

V2	 A2 

From this well-known relation it is seen that at subsonic 
speeds the usual behavior asooiated with incompressible flow is 
obtained; namely, that as the area increases the velocity de-
creases. At supersonic speds, however, the behavior is reversed. 
in that as the area increases the velocity increases. When the 
local Mach number is unity it is seen that dA = 0; that is, if 
the velocity of sound is attained in the tube it can only be 
attained where the area has its minimum value. 

When the local velocity of sound is attained at the minimum 
area section, the local Mach number at any other section, deter- 
mined by the ratio of the area at that section to the minimum area, 
may be less or, in some cases, greater than unity depending upon 
the conditions promoting the. flow in the tube. The, nature of such 
flow's can be studied by considering the change in the character 
of flow iii the stream tube of figure 5(a) as the downstream prCs-
sure p 2 is decreased v.ith respect to the upstream pressure p1. 
If p 1 - P2 .j8 small so that completely subsonic flowis main-
tained in the 'tube, the nature of the velocity Variation along 
the tube is that usually associated with Incompressible flow as 
seen in curve I offigure 5(b) . . When 1 -. P2, is increased so 
that sonic speed is just ieaciedin'the. minimum area section, the 
variation Of Velocity along the tube-becomes that shownin curve 
II. iuiy further decrease of the pressure p2 cannot alter the 
flow'upstream of the minimum area, since the velocity at the 
minimum thection cannot exceed the velo,city,of sound. The only 
effect of decreasing the downstrear pressure is to piomote 'a 
supersonic flow region dowstream of the minimum area, as shown 
by curve III of figure 5(h). This region is terminated by an 
abrupt return' , through a cpmpres,sion shook wave, to subsonic flow.
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The position of this terminal shock wave must be such as to bring 
about the necessary conversion of kinetic to thermal. energy that 
is required to promote the downstream pressure p. For present 
purposes ; the most important point concerning the flow as descib-
ed is that when the velocity of sound is attained at the minimum 
area section, no further increase in the flow rate can be, made 
regardles of the extent of the supersonic flow region downstream 
of this section. When this maximum flow rate has been reached, 
the stream tube is said to be "choked." 

What has been said concerning the choking of a single stream 
tube applies to the cmlete system of stream , tubos past an air-
foil mounted in a two-dimensional-flow tunnel, as shown in figure 
6. That is to say, when the volopity of the undisturbed flow far 
upstream in the tunnel reaches a ortain value, sonic velocity is 
attained at the point of minimum area of. each elementary stream 
tube between the airfoil and the upper wall of the tunnel. It is 
important to note that the locus of the points of. minimum area of 
the separate stream tubes does riot necessarily coincide with the 
shortest line between the airfoil and the upper wall. This is 
iiustrated in figure 6, whore the line. A represents .the short- 
et distance between the airfoil and the wall. If the conditions 
of flow were uniform across the stream at each chordwise station, 
the flow between the airfoil and the wall would be the some as in 
a single elementary stream tube, and sonic velocity would neces-
sarily.be attained along line A. In the actual case, however, 
the flow is two-dimensional, and sonic velocity is attained along 
some line, such as line B. not coincident with A. A similar 
situation exists in. the space between the airfoil and the lower 
wail of the tunnel, where the sonic velocity is attained along 
some line D.. As before, this line ddee not necessarily coincide 
with line C. the shortest line which can be drawn from the 
lower surface of the airfoil to the lower wall. (In order to 
avoid an apparent contradiction with the requirements of continu-
ity, it must be kept in mind, that the velocity vector, is not, in 
general, perpendicular to either lines A and C or B and..C.) Sonic 
speed is generally not attained coincidentally along lines B and 
D, Once it is attained along both these lines, however, the rate 
of flow past the airfoil in the tunnel can undergo no further 
increase. The Mach number of the flow ahead of the airfoil then 
has its maximum attainable value. This value is described as the 
"apparent choking Mach number." .• . .	 . 

In practice, the lines of sonic speed lie very close to the 
lines defining the shortest distance between the airfoil and the 
tunnel wails. For purposes of analysis, it will be assumed that
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they are coincident, that is, that lines B and D coincide, respec-
tively, with lines A and C. Under these conditions, the calculated 
rate of flow in the tunnel (which must in any event be equal to 
the rate of flow across lines A and C) will be somewhat greater 
than that which actually exists when the lines B and D have their 
true positions. The assumption of unid.iinens5.onal flow will thus 
lead to a computed choking Mach number, which is slightlygreater 
than the theoretically correct value. 

On the basis of the foregoing assumption a relationship be-
tween the model size and the choking Mach number can be obtained 
from elementary considerations. The velocity V' and density 
p' of the flow far forward of the model, where the cross-
sectional area is A', are constant across the stieam. The 
velocity Vm and density ptm across the sonic-speed lines B and 

D of figure 6, where the area has the minimum value Am, are again 

constant across the stream. The velocity Vm is the local sonic 

speed V	 so that the equation of continuity becomes 
III

D'V'A' = PmVcm 

Assuming adiabatic relations, the density and velocity terms 
can be related to the Mach number far upstream, which is now the 
apparent choking Mach number. The end result is that the ratio 
of the area of the undisturbed stream to the minimum flow area 
can be expressed in terms of the apparent choking Mach number 

as

1 

Am M'011 L	 7+1
7+1 

[ 
(M t Ch ) 2	 I.

-J-)
(86) 

The area ratio is clearly 

A'	 h 
Am Ii - t  

where h is the tunnel height and t the projected thickness 
of the airfoil normal to the flow direction. For reasons which 
will be evident later, the projected thickness in this relation 
will be replaced by an "effective" thickness te.
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Taking the value for y for air as 1.4, equation (86) be-
.. Games

M'ch 

I.	 = - r (M'ch )2..fl3	
(87) 

L	 J 
In figure 7, the ratio ta/h is plotted as a function of 

the apparent choking Mach number. The region above the curve 
represents an Impossible state of flow. As a matter of interest 
the results are shown for thö supersonic- as well as the subsonic-
flow regime, although for the purpose of this report only the 
subsonic choking Mach numbers will be considered. 

In writing equation (87), the projected thickness was re-
placed by an effective thickness. If choking occurred as was 
assumed in the preceding analysis, then the effective thickness 
determining choking would be, of course, the projected thickness. 
In any real case, although the effective thickness may never be 
less than the projected thickness, it may be greater for two 
reasons. First, If the angle of attack is sufficiently large in 
bso1ute value, one of the lines B or Dmay move downstream of 
the trailing edge because of the continued contraction aft of the 
airfoil of the portion of the stream passing that line. Second, 
since on any aerodynamic body there exists, because of the action 
of viscosity, a boundary layer wherein the velocity must be re- 
duced below the velocity in the otherwise unaffected flow field, 
it follows that the velocity of sound cannot be attained at those 
points close to the airfoil surface on the lines B and D of 
figure 6. 

To estimate the choking Mach number in any practical case, 
it is necessary to assume that the effective thickness is equal 
to the projected thickness of the airfoil. Because of the 
possible contraction of part of the stream aft of the airfoil, as 
well as of the assumption, that unidimension4 flow exists as 
previously described, this procedure will lead to a computed 
choking Mach number which Is greater than the theoretically 
correct value for an ideal, incompressible fluid. Further, the 
influence of the boundary-layer will cause the actual choking 
Mach number to be even less than this theoretically correct value. 
Thus the use of the projected thickness in the computation may be 
expected to lead to an overestimation of the choking Mach number.
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Tho effect of the bounda:' layer in this regard may beet be 
illuatraced by the case of a fiat plate set at zero anigle of 
attack. in a two-dJfliefl3iOnal- . IlOwwifld tunnel. Since the project-
ed thickness is zero, the previously develo ped theory i.you1d mdi-

Gate that C' choking would occur in this case. Actually, because 
of the fact that the plate has a bocan layer and an accompany- 
ing ;ake, chcking does occur, as is shown in the following die- 

It vae .een in the section on wake effect, wherein the effect 
of confinin the 1.vako of 'a i)cdy e.eperieno ng drag was cc.ns idered, 
that when the influence of the wkc sreads tp the walls so that 
a u-Jform veloCt7 field again e:iscs, the temperature at this 
do-maream position is related to the temperature upstream, of the 
model by equation (13). Using euation (9), the ratio of the 
corresponding velocities may be- seen to he 

1 +  
V"	 L	 2 

V'	 + i)(vi) 

\/]1 ;+7u )j2--)jt
08 

(7 + l)(M') 2 -

The velocity ratio is imaginary when the sin of the group 
of terme under the radical is negative.. The functional relation-
ship between the choked Mach nxciher and the drag-ensity factor 

Tcd , fothid by equating the terms	 er thl radical to zero and 

solving the resulting equation, is thus detarminecI as 

1. +	 /	 rI - (/)22 
•	 Tcd'	 --- 1 _,/i _.___:___	 (89) 

2(1vi.h)	 L	 "	 L I + ( ch)	 j 

where, as before, T=f).. Setting 7 1.4 for'air gives 

Tc	
i+L4(Mch 	 ch)1j	 (90) 

d	
2.8(M'0h)	 [ 	

j 

a graph of this function is shown on figure 8. The effect of drag 
en choking for supersonic as well as subsonic wind tunnels is 
shown as a matter of interest.	 - 
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The manner in which drag promotes choking may be comprehended 
by examining the variations of the ratios V"/V and T"/T in 
eqj.ations (88) and (13) as the value of Ted' is increased. In 
the cash of the subsonic wind tunnel, the effect of increasing 
Tcd l is to increase V" ' /V 1 , On the other hand, T"/T' and hence. 
Vc"/Vc' are reduced. Consequently, M"/M' is increased. In 
the case of the supersonic wind tunnel the effect of increasing 
T	 i to decrease	 I and to increase T"/T1 and hence 
v' ,'/1.y. Ccsequent1y, M"/M is reduced in this case. In both 

cases choking occurs when the value of T Cd I is such as to make 
the downstream Madh uumber I/P unity. 

There is one definite limitation of the previous analysis in 
that it was assumed that the effective tunnel area remained con-
stant at least until the wake had spread to the walls so that uni-
form flow conditions were obtained across the stream. Such a 
condition does not prevail in any conventional wind tunnel, never- 
theless the results are useful in providing approximate values for 
the effect of' drag as it determines choking. For example, a flat 
plate having an apuarent drag coefficient of 0.007 1 if the chord-
height ratio were 0.5, would choke a subsonic wind tunnel at a 
Mach number of 0.95 if choking occurred as assumed 'in the analysis. 
The serious influence of drag on choking for airfoils for which 
the drag coefficient may be many times this value is evident. 

To sunmarize, it has been shwn that choking will occur in a 
wind tunnel' as a result of the confinement of the flow caused by 
the presence of the model and its wake. In the case of airfoils 
of normal thickness, choking will usually be determined by. the 
effective dimensions of the body - that is, by the actual dimen-
sions modified for the effects of boundary layer and stream con-
traction aft of the airfoil as previously described. Properly, 
the boundary-layer effect is a. drag influence, but since its 
contribution is usually small it is most convenient to classify 
such confinement effects along with those due to the physical, air-
foil dimensions. In the case of very thin airfoils, at small 
angles of attack, choking will usually result from the confining 
effect of the wake rather than the effect of the airfoil thickness. 

Once the choking Mach number is reached, no further incroaso 
in tunnel power can affect the appareut Mach number. Such an in-
crease will only serve to extend the supersonic flow region down-
stream of the lines of sonic speed. The forces experienced by 
the airfoil at choking thus vary depending on the power input to 
the wind tunnel 	 ,.
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As a final consideration it should be noted that the flow in 
the trelat cIoking does not correspond to any real flow over 
an airfoil in free air, Since the clicking Mach number approaches 
unity as the tunnel height h becomes infinite, flow in the 
tunjiel at choking if it is to correspond to any flow in free air, 
must correspond` the flow that would occur arouiid an airfoil in 
a free stream inovtLnç' at the velocity of sound. It can be 

cL,	 t	
demon- 

rate however, tha suoh a corrosponaenco is Impossible. 
Experimental eyidciee indicates that the flow conditions existing 
in the tunnel at choking are essentially steady state. That the 
flow aboet an airfoil in a free stream having the velocity of 
sound cannot be a eteady-state flow can be readily shown. For 
Instance, it was demonstrated previously that in any stream tube 
the velocity of sound, if it is attained at all, must be attained 
at the minimum area section. That is to say, the rate of flow 
Per unit area is a maximum whore the velocity is the velocity of 
sound. Nov, -presuppose a steady-state flow in the stream tubes 
in the vicinity of an airfoil in free air when the stream 
velocity is : sonic creed. If tho velocity either increases or 
decreases as the flow passes the airfoil, the stream tubes must 
expand. This is clearly impossible, since the disturbance to the 
flow would then increase continuously as the distance from the 
airfoil increases. On the other hand, if the velocity remains 
the velocity: of sound in each stream tube, the streamlines will 
then have the same shape at all distances from the airfoil. Also, 
the pressure will remain constant throughout the entire flow 
field. This is of course., .nipossible, since 1:ressure differences 
are necessary to promote the required changes in the direction of 
flow past the airfoil. A steady-state flew similar to that obccrv- 
ed in the tunnel at choking therefore cannot exist in free air at 
a free-stream Mach number of unity. Thus at the choking Mach 
number, the flow at the airfoil in the tunnel cannot correspond 
to any flow in free air. It follows that, at choking, the 
influence of the tunnel walls cannot. be corrected for. Further, 
in the range of Mich numbers close to choking, where the flow is 
influenced to any extent by the incipient choking restriction, 
arty correction for wall interferoce must be of doubtful validity. 

That the flow at or close to choking cannot be corrected for 
the interference effects of the tunnel walls may be reasoned from 
another: point of view. The assumption that it is permissible to 
correct wind-tunnel test data for the influence of the walls is 
justified only when the influence on the flow near the model is 
of such a uniform nature as not to alter the general character of 
the flow materially from some corresponding flow in free air. 
For instance, a velocity correction for wall interference may be
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aDpiied with confidence only f ti"9 velocity increment resulting 
from such interference is cone•;ant 01 nearly constant ove tnat 
portion of the flow field wherein the influence of the model on 
the flow is important. Viewed in this light, it is clear that 
at or clocio to choking no correction can properly be applied, 
since an in'çortant influence of the model on the flow is felt 
over a range extending close or up to the walls, within which 
range the influence of the wails on the flow is not at all uniform. 

it i nhus clear that the equations which have been derived 
for correcting the, test data octained ir a subsonic two-
dimensional-flow wind tunneJ. for tue effects of wail interference, 
cannot apply at the choking Mach number nor for a range df Mach 
numbo's below the choking value. Moreover, when the model is not 
stnion.ily disposed, the flow will in generi, attain sonic 
velocity across the stream on one side of the airfoil, before it 
does on the other. In such caso, it is to be expected tha

t
 the 

range of Mach ni.mbers'below choking for which the corrections are 
invalid is entended over that which would occur with a more 
nearly symmetrical flow 'pattern. 

DIS'IJSSION 

There is, at present, only a very limited amount of ex-
perimental data available which can be considered satisfactory 
for determining the accuracy of the theoretical interference 
cor'ectiois derived in this report. Moreover, none of the 
available data were obtained at sufficiently high Mach numbers 
to permit an evaluation of the accuracy of the theory with regard 
to the effect of compressibility. 

In figure 9 are shon the exDerimentally determined varia-
tions of lift coefficient with angle of attack for several ETA OA 
0012 airfoils, having different chord-ieight ratios. The data 
for those models for which the chord-height ratios are 0.25, 
0.5. and 0.8 were obtained from tests in the 7- by 10-foot wind 
tunnel at the Ames Aeronautical. Laboratory. These models were 
of 6-foot span mounted across the 7-foot dimension of the test 
section; G . inch-span dumny ends were us e

d in an attempt to obtain 
two-dimensional flow. A gap of about 1/32 inch occurred between 
the test panel, which was connected to the balance frame, and the 
dummy ends, which were fasten-.d to the tunnel walls. The lift was 
determined both from force tests and by integration of chdrdwise 
pressure distributions at a section close to midspan. The data 
presented here are those obtained from the pressure distributions.
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The data for the model for whch the chord-height ratio is LO' 
were obtained from te .st in the low-turbulence wind tunnel of the 
Langley Memorial Aeronautical Laboratory, This 3-foot-span model 
was fastened directly to the s:!.dea1ls of the tunnel such that 
no air gai existed, and the lift was determined from measurements 
of the reaction on the roof and floor of the test section. The 
test results for he various models are shown, uncorrected for 
tunnel-wall interference, in figure 5(a). in figure 5(b), are 
shorn the same data corrected for wall interference by means of 
equations (62) and (i4b). For all the models, the correction 
term depending upon T Cd t is n Ligibly Email. The test 
Reynolds numbers rae from 2,000,000 to 6,000,000. It is seen 
that the corrected data obtained with the models for which 
(c,/h) equals 0.25, 0.5, and 1.0 agree well with one another and 
with the 'section lift characteristics as obtaind from tests in 
the i'AcA variable-density wind. tunnel (reference' 15), The data 
obtained with the model for which (c/h) equals 0.8, when 
corrected indicate a lower lift-curve slope than do the other 
data. This is thought to be CLue to the effect of air leakage 
through the gaps at the ends' of the test panel ) the influence of 
which may be expected to become more pronounced as the chord of 
the airfoil is increased relative to the span. 

In this regard, uir'eported tests in the Langley low-
turbulence wind tunnel have shown that the presence of any gap 
through which leakage can occur will int'luehce the aerodynamic 
characteristics to a surprisingly marked extent. This fact was 
also demonstrated by the Amos Laboratory tests on the NACA 0012 
airfoils. A comparison of the lift characteristics obtained from 
balance measurements with those derived by integration of the 
pressuie distributions, which are those given in figure 5,' showed 
the lift-curve slopes for the former to he definitely lower than 
those for the latter ', This indicates that the lift near the 
center of the test panel exceeded that at the sections near the 
gaps; that is, that the flow was definitely not two-dimensional. 

In figure 6(a) is shown the experimental variation of lift 
coefficient with angle of attack for an NACA 23012 for which 
(c/h) equals 1.0. These data were obtained in the Langley low-
turbulence wind tunnel at test Reynolds numbers of 4,560,000 and 
6,450,000. The same data corrected for tunnel-wall interference 
by means of equations (62) and (64b) are shown in figure 6(b), 
together with section lift characteristics as obtained in the 
variable-density wind tunnel at an effective Reynolds number of 
5,000,000 (reference 16). The corrected data are seen to be in 
excellent agreement with the results from the variable-density 
ti rne1...
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In figure 7(a) is shown the variation of quarter-chord-
moment coefficient with lift coefficient for the NAOA 0012 air-
foils a obtained from the 7 . by 10-foot wind-tunnel tests 
previously described. In figure 7(b) are shown the same data as 
corrected f.n' the interference of the tunnel walls by means of 
equation (62) and (63). The section moment characteristics for 
this airfoil as obtained from tests in the variable-density wind 
tunnel (reference 15) are also shown for comparison. It is seen 
that the corrected data are in fair agreement with the data from 
the variable-density wind tunnel, except for the model for which 
(c/h' eqjiais 0.8. It is believed that this disagreement is 
again due oa the effects of air leakage through the gaps between 
the test panel and the dummy ends, and not to any shortcoming in 

the theory. 

In figures 12 and 13, the uncorrected and corrected profile-
drag coefficients for six symmetrical bodies at zero angle of 
attack are plotted as a function of the experimental chord-height 
ratio. The uncorrected experimental values Oa', shown by the 
crosses are taken from results reported by Fage In reference 17. 
The theoretically corrected values Cd, indicated by the circled 
points, were computed from equation (67) for M' = 0. The extra-
polated free-air value given in reference 17 for each of th 
bodies is indicated by a horizontal dashed line. It is seen that 
the corrected points are in good agreement with the extrapolated 
free-air values. In view of the assumptions made in the theoreti-
cal development,' the relative accuracy of the corrections at 
large chord-height ratios and large drag coefficients is remark-
able, particularly in the case of the circular cylinder. 

Giauert (reference 2, pp. 56-57) suggests for the drag cor-
rection in an incompressible fluid a formula which may he written 
in the rotaticn cf this paper as 

=	 - 2 Ao- 2K()()J.
	 (91.) 

where (t/c) is the thickness ratio of the airfoil. In this 
equation, as in equation (67), the first correction term appears 
as a result of the Interference between the airfoil thickness 
and the tunnel walls. and is i'ientical with the corresponding 
term in equation (67) for M' = 0. The remaining term is an 
empirical correction for the effect of the wake. The empirical 
factor K is given by Glauert as a function of .(c/t), the 
values being derived by fitting equation (91) to the. experimental
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data of reference 17. This w;he tern differs fundamentally from 
the wake correction of equation (67) in that the correction in 
this case consist .,.; of a single term which varies as (c/h); 
whereas the correction in equation (67) comprises two terms, one 
of which varies as (c/h) and one of which varies as (c/h)2. 
Equation (67) givec corrected results which agree as closely with 
the free-air values as do the results obtained with equation (91). 
It has the advantage that it is generally applicable to all air-
foils and does not depend upon the experimental results of tests 
of pecific sections. 

In suary ) the co:rected data of figures 5 to 9 indicate, 
for the most part, that when the flow is maintained strictly two-
dimen;ional, the theoretical corrections fol' the tunnel-wall 
interference are, for low Mach numbers at least, accurate up to 
chord-height ratios of unity. The high accuracy observed at. the 
larger values of (c/h) must, however ) be regarded as fortuitous 
since the theoretical analysis is predicated upon the assumption 
that the chord-height ratio iii small enough that all points of 
the airfoil may be assumed to lie on the center line of the tunnel 
and that powers of (c/h) higher than the second may be neglected. 
It is thought that, at low Mach numbers, chord-height ratios as 
high as 0.7 are permissible if the tests are conducted only for 
the purpose of obtaining drag characteristics at low values of 
the lift coefficient. However, care must be exercised in 
ascertaining the maximum chord-height ratio permissible in any 
particular case to insure that the interference lift represented 
by equation (63) is not of such nature and magnitude as to affect 
the general character of the flow in the boundary layer along the 
surface of the model. In tests conducted to determine the aero-
dynamic characteristics of a model up to and beyond the maximum 
lift, it is believed that the chord-height ratios must be kept 
to much lower values. At low Mach numbers, chord-height ratios 
up to 0.4 are probably permissible; however, there are no experi- 
mental data available at present to support -this conthntion. 

As noted previously, no experimental data could be found 
which would permit an evaluation of the accuracy of the calcu-
lated effects of compressibility upon' thewall-interference 
corrections. Most certainly, as the test Mach numbers increase, 
the permissible chord-height ratios must decrease. Theory mdi-
cates that as long as the velocities induced at the position of 
the airfoil by the wall interference are small as compared with 
the velocity of the undisturbed stream, the corrections developed 
in this paper are valid even though the stream Mach number exceeds 
the critical, for the airfoil under test. However, as previously
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noted, at and for a range of i:ach numbers belrw choking, the inter-
ference velocities are no longer small and the corrections are 
invalid. The extent of this range is unknown. It should he 
emp].iäsizod that the flow pattern at and in the immediate vicinity 
of choking does not corres pond to arT flow pattern obtainable with 
the airfoil in free air; so the test results in this range cannot 
be corrected by any method. 

For zero Mach number (i.e., for an incompressible fluid.), the 
results of the prese.et pap3r can be compared with Goid&eins 
particular corrections for airfoils having small thickness and 
camber and email force coefficients. For an air-foil on the center 
line of the tunnel, equations (133), (139), (140), (143), and 
(144) of reference 3, together with the expressions of appendix 
5 of' re±erence 4, give the following equations for the velocity, 
angle of attack, and aerodynamic coefficients in an incompressible 
fluid:

r	 - 
V =
	

1 + o (2C0 
T 

C2) 

ci = ' + 2_. Jc + 4 (crnc . 
•	 27c1,, 

I	 )•-
C2C2 ,u i- CY 

= cdil -	 - C2 

L Cm0 = 

2.	 2 

• Hero, the moment coefficieflts are for moments about the midchord,

and (c1'\ is the moment cefficient at zero lift in free air. 

'\ 2J 

.The  quantities C o and. C. *are determined by the shape of the 

base profile according to the equations

(92)
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TT

c sinG 
0

(	
(93) 

c . =±/ 
2	 c sin  

0	 - 

in deriving these equations, the notation of references 3 and 4 
has been chanced to agree i1th that of the presnt paper, and the 
lift-curve sJope in free air aumed to have its theoretical 
value of Q. 

The .corresponding corrections as obtained by setting 
C in.equations (26), (62), (63), (64a), and (67) of the 


	

present 'paper are	 - 

	

=	 Aa + TCdj 

a = a' ±4 cc i' + 4cm0 

= c	 l - a - 2Aa- 2TC 	 '	 () 

Cd = c	 3P	 2 id 

CM
3 = Cm	 l - 2 Aa - 2 TCd 

The last of thevie equations is obtained from equations (62) and 

(63) by means of the relation 0m	 G+ 

The correction terms involving a in the two equations for 
the velocity are equivalent, except that the factor' A, which
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aprears in the equation of the present paper ; is replaced in 
Goldstein's equation by the quantity (2C 0 - 02 ) . Equation (93) 

gives 

•	 (2c - C)	 de='/	 sinO d 

which becomes, after substitution from equation (44), 

(2o -	
=	

(95) 
ltJ	 %, 	 C	 ITC. 

0. 

where- A is the cross-sectional area of the airfoil. The factor 
A can be expressed in analogous form by means of equation (19.05) 

of reference 2. Since - Ac 2 is oquivalerit to the quantity 

t2 in reference 2, thic equation 'becomes 

it	 C 

where AV is the so-calld' "virtual area" of the base profile. 

The virtual area of a given body in two-dimensional flow is de-
fined as the area occupied by a fictitious quantity of fluid 
Laying a uniform density p and velocity V and possessing a 
kinetic energy equal to the total kinetic energy of the field of 
flow about the same body when it is moving forward with a steady 
velocity V through an unlimited expane of incompressible f],uid. 
of density p. The .magnitude of the virtual area depends upon 
the shape as well as upon the size of the body. It is seen that 
the first correction term in the velocity equation of the present 
paper (which for the incompressible case is simply the result 
originally derived by Lock) has a somewhat higher value than the 
correction term of the Goldstein equation. The Goldstein equation 
contains no term corresponding to the term T Cd' in the equation 

of the present paper. Goldstein includes this correction, however, 
in the equation for the determination of the stream velocity from 
measurements made at-he tunnel 'wall upstream of the model. 

The Goldstein equation for the correction of the measured. 
drag coefficient likewise differs from that of the present paper
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by the re, lacernent of the factor A by the quantity (2Cc - C2) 
and by the omission of the term in TCd t . If Goldstein's equation 

is applied to the experimental results of Fage given in figures 
12 and 13, it is found that there is. little to choose between the 
corrected results given by the two equations, except in the case 
of the circular cylinder where the results obtained from the equa-
tion of the present paper are better. 

The corrections to the lift and moment coefficients as de-
rived by Goldstein differ markedly from those of the present 
paper nthat Gold stein's equation contain no terms corresponding 
to the 2AG and 2lc d' terms which appear in the equations of 

this paper. As has been noted previously, the 2 Tcd' termis 

accounted for indirectly in the determination of the apparent 
stream velocity. A term of the type 2A0 is necessary, however, 
to correct the measured coefficients for the increase in dynamic 
pressure caused by the interference between the walls and the air-
foIl, thickness. 

,Since the moment coefficient at zero lift is the same about 
any axis and since the change from the free air to the measured 
moment coefficient in the correction to the angle of attack will 
introduce only differences of the second order in o, Goldstein's 
equation for the corrected angle of attack may be written with 
sufficient accuracy as 

= a.' + ._  

z
+ 4 (C1"\ I 2tL 

In this equation, the part of the correction due to the moment on 
the airfoil is constant, its value depending only upon cmc' for 

4 
zero . lift; whereas in the corresponding equation of the present 
paper the part of the correction due to the moment varies with 
the angle of attack. This difference is of small consequence In 
most applications; however, the equation of the present paper, 
which includes, the actual variation In moment, may be somewhat 
the more accurate, especially at high angles of attack. 

The compressibility factors which appear in the complete 
equations of the present paper are comparable with the results of 
Goldstein and Young (reference 5). The equation for drag as given
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in reference 5, when expressed in coefficient form and altered to 
agree with the notation, of the present paper, can be written 

Cd = Cd'	 1 - L 2], AG	 32K(h)	 (97) 

This equation is obtained by modifying equation (91) to include 
the effect of coriDressibility. Comparison of the compressibility 
modifications of equation (97) with those of the corresponding 
terms of equation. (67) reveals that the compressibility factors 
appearing in the first correction terms differ by the inclusion 
of a term (M')	 in the numerator in equation (67). This 
difference arises from a failure to note in the development of 
equation (97) that in a compressible fluid the dynamic pressure 
in the tunnel is affected by the change in density which ac-
companies the change in axial velocity. The compressibility 
factor of the second (or wake-correction) term of equation (97) 
is not comparable with the compressibility factors of the wake-
correction terms of equation (67) because of the fundamontal 
difference in the nature of the corrections already pointed out 
in the discussion of equation (91). The compressibility factors 
in the equations for lift, moment, and angle of attack in reference 
5 agree with those appearing in the corresponding terms of the 
equations of the present paper. It should be noted, however, 
that the lift and moment equations of reference 5 include no 
corrections for the difference between the true and apparent 
dynamic pressures in the tunnel. 

CONCLUSIONS 

Airfoil data obtained from tests in a two-dimensional-flow 
wind tunnel can be corrected to free-air conditions by means of 
the following equations: 

1	 1	 04'M''2 V	 V'	 1 +	 Ao+	 + • ' / Tc' '	 ( 26) 
L	 [1_(M)0]3'2	 1 - (M')2	 J 

	

2 - (M92	 [2_(Mt)2J[1+0.4(M)2] 

	

= q'	
[(Mt)3/2	 1 - (M, )2	

TcdtJ	 (29)
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+	 A+	 2tQUJTC	 (32) 
IL	 [1(Mt)231'c	 1 - (M')2	 J 

M=Mt	
+ 1 +_O.2(M')2 Ao+ [1+O.2(Mt)2j1^O.4(Mt)21 

Tcd j (33) L	 E1_,(M t ) 2j 31'2	 1 - (M')2	 J 
= t + 67 . 3(Y

+ 4C	 (degrees) (64b) 
2t	 - (M') L 

a	 2-(M')2 c 1 =c 2 t 1-	 ----	 Aa L	 1 - (M') 2 . [i	 (M)2]3/2 

12 - (Mt)2][1 + 0.4(M')] 
TC t	 (62)
d 

	

-	 i-(M')2	 J 

Cm = cm	
- 2 - (M')2

a 
-	 L	 [l_(M)2J3 .	

TCdIJ 
1 - (M')2 

+ Cz'	 - 
a	 (63)


4L1 - (M T ) 2J 

Cd = Cd t	 1	
[1_(Mt)2]3/2	 1 - (MT)2 

3 - 0.e(M)2	 [2	 [1 

	

._(Mi)2]+O.4(Mt)2] Tc
1	 (67) 

whore

- 1

 ( C )
T  

..,	 I ,tc1C1c 

and A is a dimensionless factor the value of which depends upon 
the shape of the base profile of the airfoil. (See equation (3) 
and table I.) The remaining symbols are defined in appendix B. 
Numerical values of the functions of M t which appear in these,
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equations are given in table II. Experimental pressure distri- 
biitions also can be correct' -'-d by a method butlined in the text. 

Thecorrections derived should be valid theoretically up to 
a Mach number near the choking value, which is the maximum Mach 
number attainable in the wind tunnel. The choking Mach number is 
shown to be the stream Mach number at which a Mach number of unity 
is attained locally across the tunnel either (1) at the position 
of the airfoil because of the reduction of the available flow 
area occasioned by the presence of the airfoil, or (2) downstream 
of the airfoil as a result of the influence of thealrfoil drag 
upon the flow in the wake. The choking Mach number can be esti-
mated by means of equations presented in the report. 

Insofar as can be ascertained from the small  amount of 
experimental data available, the correction equations are appli- 
cable at low Mach numbers for values of the chord-height ratio 
(c/h) as high as 0.7 if the tests are conduöted for the purpose 
of obtaining drag characterIstics at low values of the lift co-
efficient. In tests conducted to determine the aerodynamic 
characteristics of an airfoil up to and beyond the maximum lift, 
it is thought that a chord-height ratio of 0.4 is permissible at' 
low Mach numbers, although there is no experimental evidence to 
support 'this contention at present. At high Mach numbers the 
permissible chord-height ratios must logically be expected to. 
decrease. In particular, if the critical speed is exceeded., it 
is probable that only very small values, of (c/h) are permissible. 
There are at this time no experimental data available on this 
aspect of the problem. 

Comparison of the results of the present paper with those 
of references 3, 4, and 5 reveals certain differences as noted 
in the section Discussion. 

Panes Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif..



NACA ARE No. 4K03
	

63 

APPENDIX A 

THEE VELOCITY FIELD FOR A SOURCE AND FOR A SYTRICAL AIRFOIL


IN A COMPRESSIBLE STREAM 

The velocity Induced at a point in a compressible fluid 
stream by a single fluid source can be found to a first degree of 
approximatioi by a modification of the method used by Glauert 
(reference 7) for the consideration of a vortex in a compres-
sible fluid. To this end, a system of polar coordinates is intro-
duced. The origin is located at the source and the polar axis 
extends: downstream parallel to the velocity V of the undisturbed. 
stream. (See fig. 14.) The rosultant velocity U at any point 
L(r,cP) is defined by the velocity components w and n parallel 
and normal, respectively, to the radius vector. 

The condition for irrotational motion requires that at al]. 
points in the field

(.rn) -	 = 0	 (Al)

cp 

The equation of continuity is 

(rw)	 =	 (A2) 
:p p j r	 P2 6T 

where p Z Is the density of the fluid at any point. 

The source strength (mass flow per unit time) is denoted by 
Q. Then, for any circle enclosing the source, considerations of 
symmetry and continuity, respectively, provide the two integral 
relationships

21r 

I

nrP=O	 . 

and	 021T

pwr dCP = Q	 (A4)
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The radial and circferentja1 components of the velocity 
may be expanded in the series

CO 

w	 + 

(
- 

19=  

where A. and B. are functions of P. If r is large, it is 
sufficient to retain only te first -terms of each power series, 
so that

I 
V I Cos ? + A_) 

r 

	

/	 B\  n=-V( sin P+	
(A5) 

— 
r 

To the first power in (1/r), the square of the resultant 
velocity is 

(
u\2 w 2 +	

= 1 +	 (A cos CP + B sin ) \V)	 V2 

For reversible adiabatic flow, the local density p 2 is related 
to the density p of the undisturbed stream by 

[ 71 2 r(U\ 2, 	 11 
11M [) 

-1J 

where M is the Mach number of the undisturbed stream and y is 
the ratio of the specific heats. Thus, to the first power in 

=	 - - (A co	 +B sin 
cP)I 	 (A6) r
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The solution is now obtained by inserting values from 
expressions (A5) and (A6) into the fundamental equations. Sub-
stitution of (A5) into the equation for irrotational motion (Al) 
requires that A shall be a constant. Substitution of (A5) and 
(A6) into the equation of continuity then gives 

dB - M".. sin-"CP) = M 2 (A cs 2P+ B sin2CP) 

which becomes upon integration 

B(l - M2 sin-' CP) = . M 2 A sin 2CP + C	 (A?)


where C is a constant. The integral equations (A3) and (A4) 
become, respectively,

211 
S. 

J1	
BdCP=O	 (A8) 

and	 0 
211 

2 1'	 1 
B sin 2P dCP = 2A (1 - !!_) - 	 (Ag) 

2J.	 2) pV 
0 

Substitution of the expression for B from equation (A7) 
into the integral equation (A9) gives 

pvLJ1 - 
while substitution into equation (A8) shows that C • 0. Thus, 
from equation (A7),	 S 

B=	 [	
M2 sin 2CP 

4npV Li - M2 sin2CP)Il -.M 

The expressions for the velocity components therefore become 

/
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W = V cos	
- 	 I 

2itpr	 1 - Mj

(.lO) 

r	 MssincP cosCP	 -,

n = -v sin - --- I 

2ipr L(1 - M2	 (p) AJiT-Mj 

For a Mach number of zero these equation's reduce to the well-
known results fora source in an incomprcissible fluid. 

From equations (AlO) the velocity components. u and v, 
parallel and perpondicular, aecipectively, to the direction of the 
undisturbed stream, are found to be 

V +	 1 1 pr L	 (1 - M 2 sin  P)j 

--	 1	 (All) 
Q !Af1-M2sinCP 

CP 2pr	 17- M2 sin2J 

The drag experienced by the source can be determined by 
evaluating the integral 

cit 

D = _j1' p1 cos + p 1w(w cos - n sin 

91
rd CP 

over any circle enclosing the source. To the accuracy previously 
employed, the pressure at any point is

PVap = p - - (A cos CP + B sin CP)	 (Al2) 
1	 r 

Insertion of this expression, together with (A5) and (A6) ) into 
the equation for drag gives finally 

D=-VQ
	

(A13) 

which is the same as for a source in an incompressible fluid. It 
is apparent from considerations of, symmetry that the lift force 
of the source is zero.
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•	 The results of equations (All) can be used to study the field 
of flow about a symmetrical airfoil at zero angle of attack in a 
uniform stream. Such an airfoil can be represented by a suitable 
system of sources and sinks distributed continuously along the 
chord line. If the notation of figure 15 is used, the vertical 
velocity v1 induced in an incompressible stream at a given point 
(x0) y0 ) on the surface of the airfoil is 

vi == 
2A  J	 r V; / 	 2tpJ (x0-x) 2+y02 \dx / 

0	 0 

(

dQ . \
where 	 is the strength per unit length of the source-sink 

distribution in an incompressible stream. From the second of 
equations (All) it follows that the velocity VC at the same point 

in a compressible stream is

0
dQ 

v =	 I &Jl - M sin cp (2'\ dx 
r(l-Msin2 cp)	 dx I 

0 

or
c 

^:_lpm 2f

	 (dQc\dx	 (A15)
vc
 (x0-x)+ (l -M 

0 

where (—aQa c)
 

is the strength of the source-sink distribution in 
the compressible case. For any given airfoil of small thickness 
the condition that the flow shall be tangential to the surface 
of the airfoil requires that vc = v1 at all points on the 

surface. This fact can be used to relate the source-sink distri-
butions for a thin airfoil in the compressible and incompressible 
streams by considering the limiting forms of equations (A14) and 
(A15) as y0 approaches zero. 

Consider first the limiting form of equation (A14), which 
may be written

c 

	

Yo i	 (9 v \ dx	 • (A16)
= 
liin ;-;J (x0-x) + Yo 2 \dx I 

0

I'
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It is. seen: that even for y = 0 . the integral in this eqiation 

is finite when evaluated ov3r any interval of Integration not 
including the point .x = x0 . In the limit, the contribution of 

such intervals to the right-hand side of the equation is there-
fore zero, and the equation may be written 

x +c 

V. = him, 1	
(	

1	 1( dQf\ 

£ --0 y-0	 2icp	 (x0 - x)2 ^ y	 dx ) 

xo-c 

In evaluating the limit in this equation, care must be taken that 
the limit with respect to Yo is taken first in every case. 
Integration by parts gives

G

xQ\	 1 X0X 
v. = urn urn —< - —J (tan 

-. o	
2t P 	 / YO 

x 

+

	

	

(Q 
(tan') 

X0X 
dx	 (A17)


dx' 
xo- £	 j 

By virtue of the first mean value theorem for integrals (reference 
18, p. 65) the integral term in this equation may be written 

r

XO+E.
(d2Qi(tan_1)XoXdX=(Q	 r (tan.1)X0 dx J \ dx2

)

	 yo. \dx/x=1J 
x0-C	 Xo-C 

xo+c 

r 
+1	 J.(tan-)!2:1  dx


yo 

where (x0- c)	 x and x0	 (x0+c). The division Into 
two integrals Is necessary to ensure that the conditions under 
which the mean-value theorem is applicable are fulfilled.; namely,
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that (	
i	 Is continuous and. that (tan1) °	 ha-s the 

\dx 2j. 	 .yo 
same sign throughout the Interval of integration. Integration 
gives 

xo+ €

(d)) (tan')_dx E::)=,; 

r	 1 
xI(tan- )----log(i+---- 

LYO 	 \	 yo' 

In the limit, the va1u, of the terms in the second , bracket in 
zero. Thus, only the first term need be retained in equation 
(Al?), which' may now be written 

V i = urn	 lm	 (tan1)  
(dl,i	 dQ

 1 
C_-4O y-40 21tp	 0	 Ix=x0+c tdx) x=xo_€j 

urn	 urn	 (tan')---	
kdx IXXf 	 .0 Y> 0 

Thus the limiting form of equation (A14) becomes finally 

vi =

	

	 (A18)

2p\dxJ 

(d

d 

x

Q
1where v. and -) maynow be considered as'pertaining to the 

J 
same general- chordwlse station x.
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The limiting form of equation (A15) can be. . .found in similar 
fashion. In this case intoration by parts gives in place of 

equation (A17)

Ma	 dQr. 
v	 urn urn	 J J'-\ -------- (tan )_

X0 X 

0 y0	 21Tp 1 \dx J AJI T M 2	 YojlM 

L 
YO + E 1 

xo-

As before, the value 
zero. The limiting

rd2Q 
— ff __^ - 

1_	
(tan')_

X0 	
dx	 (A19) 

dx 
Ajl Ma	 Yo AV 

of the integral term in this equation is 
Corm of equation (A15) becomes finally 

v

	

	 (A2o) 
C 2p\dxJ 

which is the same as (A18). 

Since for any given airfoil .v = v1 at all chordwise 

stations, it follows from (A18) arid (A20) that 

Ic'\

 

(dQ
i 

\dx)	 dxJ
(Ail) 

that is, the source-sink distributions necessary to represent 
any given thin symmetrical airfoil in a uniform stream are 
identical for the compressible and Incompressible case. 

This result can be used to calculate the effect of com-
pressibility upon the field of induced velocities at a consider-
able distance from the airfoil. The increase in longitudinal 
velocity at a large distance y 1 directly above or below the 

midchord point of the airfoil in an Incompressible fluid is 
approximately 

(u1-V)= 1	 r- 
2tpy1 J	 \2	 J \dx 

0	 /



dV 1 d 

dxpVdi
(A23) 
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By virtue of the first of equations (All), the correspor4ing 
velocity at the same point in a compr6ssible fluid is approximately 

C 
p 

(u - v) 	 (2 - x\ I _2 cix 

2zpy1 (1 - M) 'J	 2	 ) \dx I 
Thus, in view of equation (A21), 

(u - IT) _-_- (u .1 - v) 
(1 - M2)312 

(A22) 

that is, in a compressible fluid. the increase in longitudinal 
velocity at a point a considerable distance directly above or 

below a symmetrical airfoil is l/(i - M 2) 3	 times the increase 
in longitudinal velocity at the same point in an incompressible 
fluid. 

The foregoing results can be used also to determine the 
effect of compressibility upon the drag of an airfoil in a stream 
having a longitudinal pressure gradient. Consider an undisturbed 
nonuniform stream having at some given point a velocity V, a 
density p, and a streamwise pressure gradient dp/dx. By 
virtue of Bernoulli's equation, there must be at this point a 
velocity gradient

This holds true both In the compressible and the incompressible 
case. The velocity v a mall distance x from the point in 
question is then

dV 
V V+x —  =V x 

cip 
--- 

dx	 pVdx
(A24) 

As a result of equation (A13), the drag experienced by an airfoil 
placed at this point in the stream is, for both the compressible 
and incompressible cases, 

= j v()cix	

c	

f () dx
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where (dQ/dx) is ) as before, the strength per unit length of 
the ource-o±nk system neoeaary to represent the airfoil, In 
order to fulfill the coudition that the airfoil is a closed 
body, the source sink system must be such that 

•	 f(dx=o 
Thus the drag is finally	 - 

•	 D = 	
(Q dx	 (A25) 

pV dx j	 \dx, 
0 

in both the compressible and the inccmpresTLble eases. If the 
streamwise pressure gradient is small., equation (A21) is still 
applicable; that is, th source-sink distributions necessary to 
represent the airfoil in thecompressible and incompressible 
cases are identical. It therefore follows from equation (A25) 
that the drag of an airfoil in a stream having a longitudinal 
pressure gradient is unaffected by fluid compressibility. 

\

U
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APPENDIX B 

LIST OF IMPORTANT SYMBOLS 

c	 airfoil chord 

t	 airfoil thickness 

h	 tunnel height 

A	 a factor depending upon shape of base profile (see equation 
(3) and table I) 

2,, 
o	 factor depending upon size of airfoil relative 

to tunnel 

T	 ! (2	 factor depending upon size of airfoil relative 
hJ 
to tunnel 

a.	 angle of attack 

c	 section lift coefficient 

cmc section quarter-chord-moment coefficient 

4 

c	 section mir.dchord-moment coefficient 

2 

cd	 section drag coefficient 

V	 stream velocity 

M	 Mach number 

M' 0h apparent Mach number at choking 

R	 Reynolds number
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C 
y	 ratio of specific heat of gas at constant pressure to 

C

to specific heat at constant volume (for air y = 1.4) 

H	 total head 

p	 static pressure 

q	 dynamic pressure 

P	 mass density 

coefficient of viscosity 

T	 absolute temperature 

V	 speed of sound 

i+rl	 compressibility factor (see equation (71) and fig. 4) 

D	 section drag 

• section drag due to streainwise pressure gradient 

P	 chordwise lift distribution in coefficient form 

Pe	 interference lift distribution (see equation (78) and 
table III) 

P 2	 local pressure coefficient (see equation (69)) 

local pressure coefficient (see equation (68)). 

x	 coordinate of points on chord line as measured from 
leading edge 

e	 angular coordinate of points on chord line (see equation 
(43)) 

r	 radial distance In polar coordinates 

polar angle in polar coordinates (positive counter-
clockwise) 

t	 projected thickness of airfoil
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•	 •-..- 	 effective thickness of airfoil 

Yt	 ordinate of base profile 

dyc 
slope of mean-camber line 

dx 

Q	 source strength 

fir	 vorticity per unit length of chord line 

U.	 horizontal component of velocity 

V	 vertical component of velocity 

n	 circumferential component of velocity in polar coordi-
nates (positive counterclockwise) 

W	 radial component of velocity in polar coordinates 

A	 geometrical area of airfoil section 

AV	 virtual area of airfoil section 

A'	 cross-sectional area of empty tunnel 

A 
m	 minimum cross-sectional area between model and tunnel walls 

local cross-sectional area of stream tube 

An	 Fourier coefficients (see equations (45) and (49)) 

Superscripts. 

(') when pertaining to flui& properties, denotes values exist-
ing in- tunnel far upstream from model; when pertaining 
to airfoil characteristics, denotes values in tunnel, 
coefficients being referred to apparent dynamic pressure 

(") denotes fluid propertes far downstream from model 

(*)	 denotes airfoil characteristics in tunnel as coefficients 
referred to true dynamic pressure q
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Sub scripts 

c	 denotes values in compressible fluid (excepting v0) 

i	 denotes values in incompressible fluid 

2	 denotes local conditions at point in fluid	
.4 

s	 denotes conditions existing far downstream when airfoil 
and alce are replaced by source 

m	 denotes conditions at minimum cross-sectional area between 
airfoil and tunnel wails 

L	 denotes values on lower surface of airfoil 

U	 denotes values on upper surface of airfoil.
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TA3LE III


VALUES OF Pe AT STAffOiiD CHORThIISE STATION- 0 

x/c 

o0	 O0 L.2475 

0.005	 j	 0.17S6	 0,45 1.2669 

00075	 0,2198	 0,50 1.2732 

I 0,0125	 0.2830	 0.55 1.2669 

0.025	 0,3976	 L0 6O 1,2475 

0.050	 0.5550	 1	 0,65 1.2146 

1. 0,075	 I	 0.6707	 0.70 1,1670 

0.10	 0.7639	 0.75 1.1027-

0.15	 0.9093	 080 i..0186 

0.20	 1.0188	 1	 085 

0.25	 1.1027	 1	 090

019093 

0,7639 
-_ 

0,30	 1,1670	 0.95 0.550 

0351.2146j1.00 0
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Figure 1.- Source system for analysis of-wake effect. 

Figure 2.- Mean-camber line in free air.
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Figure 3.- Mean-camber line in tunnel.
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Figure 4.- Compressibility factor. 
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Figure 5.-. Velocity distribution in an elementary stream tube. 
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Figure 6.- Lines of sonic speed at the position of the airfoil 
after choking. 
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Figures lOa,b.- Lift characteristics for NACA 23012 airfoil section 
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Figure 12.- Profile drag for three symmetrical Joukowski air-
foils at zero angle of attack.
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Fig. 13 
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Figure 13 . - Profile drag for three symmetrical 
bodies at zero angle of attack. 
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Figs. 14,15 

Figure 14.... Velocity induced, by a source. 

Figure 15.- Velocity induced by a symmetrical airfoil.
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