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NATICNAL ADVTSORY COMMITTEE FCR AERONAUTICS

ADVANCE RESTRICTED REPORT

WALL INTERFERENCE oy A TWO-D;MENSIONAL-FLOW WIND
TUNNEL , WITH CONSIDERATION OF THE
EFFECT OF bOMPRESSIBILITY
By H. Julia; Allen and Waltsr G, Vincenti

-

Theoreticalotunnel-wall corrections are derived for an air-
foil of finite thickness and camber in a twc-dimensional-flow
wind tunmel. The theory takes account of the effects of the
valte of the airfoil and of the compressibility of the fluid, and
‘ig .based vpon the assuwmption that the chord of the airfoil is
small in comparison with the height of the tunnel, Consideration
is given to the phenomenon of choking at high speeds and its
relation to the tunnel-wall corrections., The theoretical results
are compared with the small amcunt of low-speed experimental data
available and the agreement is seen to be satisfactory, even for
relatively large values of tie chord-height ratio,

INTRODUCTION

Trhe need for reliable wind-tunnel data for the design of
high-performance aircraft has led in recent years to attempts to
make the conditions of the tunnel tests conform more closely with
the conditions prevailing in flight, especially with regard to
the Reynolds and Mach numbers. Because of practical limitations
in size and power, most existing wind tunnels, whether high speed
cr low gpeed, are not capable of providing full-scale Reynolds
numbers for all flight conditions, In order to obtain the
highest Reynolds numbers possible under the circumstaences, it. 1is
necessary to use models dimensions of which are as large as
pogsible relative to the cross-sectional dimensions of the tunnel
test section. The effect of such large size is to make the test
conditions -depart further from the conditions prevailing in
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flight by 1nﬂrpasnng the magnitide of the tunnel-wall interfer-
ence. In the case of test’ at high Mach numbers, the interfer-
ence is increased still further by the tendency of the flow
pattern of a ‘compressible fluid, if unrestrained, to e: pand as
the Mach number of the und_stu;bed stream increases. ‘Since the
walls of a closed-throat tumnel restrain cortain of the stream-
lines at a fixed distance from the model, this expansion is
prevented, and tho tumnel-wall- int erxerence and corrections be-
come progressively larger ag the Mach number increases. The
results obtained in the tunnel must therefore be corrected accu-
rately for the effects of.wall inteérfersnce if they are to bs
applied with confidence to the prediction of free-flight charac-
teristics,

In tests et high Mach mmmbers an additional complication

arigeg. The effect of a model in a cle sed-throat tunnel may, in
a sense, be thought of as equivalont to that of a constriction

in the throa+ of the turnmel. The resulting converging-diverging
nozzle formsd by the model and The tunnel wallse then has roughly
the sams characterighice at high speeds as the usual supersonic
nozzle; that is, for scme Mach nunber less than unity in the
undisturced gtream; sonic veloclity is reached at all points Y
across a sectien of the tunnel at the position of the model, and
the flow in the diverging region downstream of this section be
ccmeg supersonic, When this occurs, increased power input t©

the turnel has no effect upon the velocity of the stream aﬂe&d of
the model, the additional power sorving merely to increase the
extent of the supersonic region in the vicinity of the medel, At
this point the tunnel is said to be "choked” and no further in-
crease in the teet Mach number can be obtained. The value of the
Mach number at which choking cccurs is thus of extreme importance,
since it determines the upper limit of the range of Mach numbers
which can be obtained with a given combination of model and
tunnel.

In testing airfoils to obtaln section characteristics at
gsubgonic speeds, it has become common practice in modern closed-
throat wind tunnels to have the model span the tunnel so that
supporting gtruts and their accompanylng interference effects are
entirely eliminated., If the tumnul has a cross section of
rectangular shape, this arrangement rcsults in a flow which is
essentially two-dimensional,

The wall interference for such a two-dimensional-flow wind
tunnel hag oemn the s1bJect of numerous investigations, the results -
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in general being expressidle as series in ascending powers of )
(c/h), where ¢ 1is the chord of the airfoil and h the height

of the tunnel., The cffect of wall interference upon the flew of
an ideal fluid about = symmetrlcal airfoil at zero angle of attack
is determined to the order (c/h) by Lock in reference 1 and

by Glauwert in reference.2, The interference for an infinitesi-
mally thin, cambered airfoil at a small angle of attack in an
ideal fluid is given by Glauert to the order (c¢/h)® in reference
2, and investigations for the special case of a flat plate have
been carried out to a higher order of accuracy by several writers.
While the present report was being prepared, work by Goldstein
appeared (roferences 3 and 4) in vwhich the interference is
determined to the order (c¢/h)* for a general cambered airfoil

of finite thickness in an inc¢ompressible fluid, no restriction
being made in the general results as to the magnitude of the
camber, thickness, and the force coefficients, A still later
paper bJ Goldstein and Young (reference 5) gives the modifications
necesgary in the previous results to allow for the effect of

fluid compressibility to the order (c/h)

In the present paper, the tunnel-wall corrections are deter-
mined to the order (c/h)° for the general airfoil in a compres-
sible fluid for Mach numbers below that at which choking occurs.
It ie asgumed that the thickmess and camber of the airfoil are
. emall and that the interference velocities are everywhere small
as compared with the velocity of the undisturbed stresam. A dis-
cusgion ig also included of ‘the Mach number at which choking
cccurs. The various results pressnted are of essentlally the
same nature as those which already have appeared separately in
the reference cited, Lut the methods of develcopment and certain of
the final results,are diffcrent, especially with regard to the
interference assoclated with 1ift, The validity of the final
corrections ig examined by comparison with the available experi-
mental data, The equations also are compared with the results' of
referencee 3, 4, and 5, and the aforc-mentioned differences are
discussed.

The discussion 1s limlted to airfoils placed midway between
the upper and lower walls of the tunnel, Mathematical symbols
are defined as introduced in the text, TFor reference, a list of
the more important symbols and their definitions is givon in
appendix B.
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DEVELOFPMENT o7 CORRECTICK TQUATIONS

* In an anaiysis of tunnel-wall interference it is desivable
to look upon the theoretical development, of the tunnel-wall
corraciiong as consisting of two parts. Firgt, it is nscessary
to deterwine the manner and extent to which t“e tunnel walls
alter the field .of flow about the airfoil from what it wouid be
if they were nct present, Second, it is necessary to calculate
the eflect of these alterations upcn the meagured characteristics
cf the airfoil., The development of the correction equations of
this report has been divi ided into thvse two general sections,

1)

In reference 6, the use of the method of superposition to
determine the pressure distribution over the surface of an air-
foil szction in free air is presented. It is shown that in the
caloulation cf the flew ab the surfacs of a thin airfoil of emall
cambor, the effects of camber and thickness may be considersd
“indevendently, Thig follows directly from the fact that the
velocities induczed by ths vortex sheet used to represent camber
and those induced by the gourcs-sink system uced to represent

thickness are simply additive in thelr- cffect on the flow over
“the airfoil,

To treat the problem of wall iqte“ierenoe, it is agein
convenient to consider the thickness and camber effects separately.
The flcow changee agsociated with airfoil thickness are found by
considering the interaction betwesn the tunnel walls and the base
profile of the airfoil, the base prcfile being defined as the

~profile the airfoil would have if the camber were removed and the
resuwiting symmetrical alrfoil placed at zerc angle of attack,

The interference effects agsociated with airfcil camber are found
by analyzing the interaction between the tunnel walls and an
"inTinitesimelly thin airfoil having the same camber as the actual
airfojl In addition to the interference effects associated with
airfoil thickneas and camber, it is necessary to consider a fur-
ther alteraticn of the f‘P]d of flow caueed by the cﬂnfin*ng
influence of the tunncl walls upon the airfoil wake, When the
individual effects promoted Dy the interference between the walls
and the airfoll thickness, camber, and wake are known, the total
‘alteration in the fleow at the airfoil is found by superposition,
and the characteristics of the alrfoil in the altered field of
flow are compared with the characteristics in free air., Thisg
comparison.leads to simple formulas which enable the prediction of
the free-flight characteristics when the characteristics in tho
tunnel are known.
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The method of superposition, which ls fundamental to the

a, ig in genirsl inapplicable to ccmuressible flow
ntial eaguction for such flow is nenlinear in the
physical plane, The seperate solutions which are superposed are
obtained, however, by assuming that the airfoil is of small thick-
ness and camber and that the induced velocities are thus small a3
compared with the velccity of the undisturbed flow, On the basis
of this zssumption the squation of compressible flow becomes a
linear differential equation - nemely, Leplace's ecquation (refer-
ences 7, 8, and 9) - g0 that guperposition of velocities is, in
this case, technically permisaidble, . Furthermore,. the tunnel-wall
corrections are in most cages rather emnll relative to the experi-
mental quantities being corrssied, so that it is not thought that
the use of thisg approximeste method will lead to large errors in
the final corrected quantities.

T O ko

Inflvence of Tunnel Walis upon Field

of Flow at Airfoil

Thickness effect.- The interaction between the base profile
and the wal.ig or a two-dimensional-flow tumnel has been consider-
ed by Lock for the case of an incompressible fluid (reference 1;
a discussion of Lock's method ie also given by Glausrt in
refersnce 2). Lock's method of analysis is essentially tc intro-
duce an infinite series of images cof the base profile such as to
satisfy the condition that there isg no flow normal to the valls,
0 repiace each image by a suitable source-sink doublet, and to
calculats the veélocity induced alt the base profile by this '
gystem of doublets, It 1s shown that the net effect of the
tunnel walls upon the flow at the base profile is to increase
the effective axial velocity of an incompressible stream by .the
amount '

.

(b V'), =dovr . (1)

where

V' apparent gtream velocliy at airfoil as determined from
measuremsnte taken at a point far ahead of model

¢ & factor dependent upon size of airfoil relative to tunnsl
A a factor dependent upon shave of base profile

Ths factor G is. defined by the equation

=1 (oY (2)
48 \ 1
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‘where ~ (c/h) is the ratio of the airfoil.chord to the tunnel

height., The facter A cazh be dstermined for any bese profile
from the relation

1 T 3
!
é .
A 1_.6/\.)‘,2 /]_..P -gl +’\.._Zl’ X (3)

i ¢ : fi] | c )

vo y 4 L
vhere
It crdinate of base profile at chordwise station X

dyt/dx. slcpe of surface of base profile at Xx

Pe, basé-profile presgure coefficient at x in an in-
. compregaible fluid

(It will be noted ﬁhaﬁ the guantity At ‘ih references 1 and 2
is equivalent to -%Aca in the notation of this report.) Values
cf A for a number of base profiles are given in table I,

In appendix A, it is shown that the effect of compress-
ibility upon the streamwige induced velocity at a given point a
large distance above or below a body in a uniform stream is such.
as vo multiply the velocity increment for incompreésibie flow by
the factor 1/[1 - M?]a‘/g where M - is the Mach number of the
flow far upstream from the body. Applylng this result to the
velocity induced at the base profile by each of the airfoils -in
Lock'!s system of images, it can be seen that for a compressible
fluid the increase in the effective axial velocity in the tunnel
ig

. 1 - : \
AV = AoV : (4)
4[1-4(Mff13/8
J

where M' is the apparent Mach number - that is, the Mach
numper corregponding to the velocity V!,

It shculd be noted that equation (4) does not agree with the
regult given in reference 10, in which it is stated that the
velocity increment in the incompressible fluid should be multi-

‘plied by the factor' 1/[1 - (M')®] to allow for the effect of

fluid compressibility. ” A critical review of this latter report by

'
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its avthor ar? hy others hasz discloged that ths resudt given there-
in is iocorvect, The error in the anglysis aross froem a feilure
5 ‘ the silere of the body for which the compressibility

3 Leing determined, so that the velocity at the surface
body was influeanced by a change in shape as well as by the
tunnel-vwell intsrference., This difficulty dosa not arise in the

2 iz of the jpresent report. he result of equation (4) has
alsc been obtained by an independent procedure in reference 5.

Conzideraticn of ths symmetry of the basge profile and of
<
=

the syetem of imsges uasd by Lock to simuiate the effects of the
twnnel walls indicatass that the inberaction betwsen the walls

oné the base prolile does not induce velosities normal to the
cenbar Line cf the tummel, Similariy the base prcfile doss not
nffect the longitudinal velocity gradisnt in the tunnel at the
ogition of the airfoil,

)

o

Wake effect,~ In the wake of an airfoil meving through a
real fluid, tae total head of the fiuid is less than in the
region outside the wake., This redustion arises from ths increase
in thsxmal energy caused hy fluid fricticn in the boundary layer
and in the wake itself and by any shock waves which may exist in
the vicinity of the airfoil. Considering a section normsl to the
vake, it v be sald that the static pressure across the strean
is nearly congtant if the section taken is not too close to the’
trailing edge of the airfoil, It follows that the reduction in
total head which exists within the wake must appear almost entire-
1y as a descrease in the local dynamic pressure of the fiuid,
Thig Cdecrease arises primarily from a reduction in the local
velocity and secondarily from the reducticn in local density which
accompanies the incrsaced temperature within the wake. Thus,
since the local velocity and density within the waks are both less
than in the external flow, the mass-flov rate per unit area is
less inside the wake than outside, This condition prevails beth
in the tumnel and in free air. In *the tunnel, however, the roquire-
ment of continuity of flow between a trangverse section upstream
from the airfoil ard a section acrcss the wake necessitates, in
adadition, that the mass-flow rate per unit area outside of the wake
is greater than the mass-flow rate ver unit area ahsad of the air-
foil. 1In order to satiefy this requirsment, the velocity in the
tunnel outside of the wake must ve greater than that of the un-
Gisturbed stream, This fact implies that as the flow proceeds
down the tumnel the velocity of the main portion of the stream
undergoes a gradual increase from the value prevailing in the
undisturted stream ahead of the model to some higher value down-
stream of the airfoil. This docs not hold true in free air, whsre
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the velociticg of the main flow wpstream end éownstream of the

modsl are ecgual. The interierence hetween the wanks and the
tuwrmel walls thusg gives cisa at the pusition of ths model to a
velooidy increment and a velcecily gracient waich are not present
in an wniinited strezm. Further, as required by Bernoulli's

-t A

eqation, tae velacivy gradient 1@ accormanied by a longitudinal
oressure greGlenu waich likewise wonld not exist in free air.

To cetsrmine the maguitude of thesge effectes the procedure
is briefly as Tollcws:; wo stations in the tumnel are considered,
cne far vpshreem frod the medel and one far enough downsitream so
that the waks hias gpread to the walils ard the velocity is agaln

form across the tunnel, The diffsrence in static vressure be-
t7vu tiuese two stations is evadluated as a function of the measur-
et dvag of the airfoil, Tae pressure gradient at the airfoil can
be vs1a»=d to this pressure diffsrencs and hence to the drag of
the airfoeil by a convenient analysic gevice, which is nssentlally
the gzme &3 that used by Goldstein (refersnce 3), The airfoil

0
o'°
o

and its wake are conzidered to Do replaced by a fluid source
loczted at the position of tie airfoll. It is specified that
conditions far upstream In the resulting thothctic flow nmust
Pe the sams as those exishting in t“e actual strean, WEiH this
provigsion, the magritude of the Vﬁlﬁ:l*" and sta'l pressure far

dowmstream can be determined as functions of the upstrecam condi-
tions and the strength of the source. The prgth is then re-~
lated to the drag of the airfoil by requir ng that the static
pressure difference promoted between the. two. stations in the
tunnel by the source flow is the same as that which actually
¢xicte when the airfoil and wdke are present. The tunnel walls
can then be repiaced by an infinits systen of esuch sources
Girectly above &nd below the position of the airfoil at intervalg
equal to the helght of the tunnel, The system of image sources
alone, however, would induce a emall finits negative vslocity at
infinity upstream, so that it is necessary to superpose on the
flow field an axditional unifczin flow of equal velocity in ths
positive direction in order to satisfy the original requirement
that the conditions far wpstreem shzll be unclanged. Ths velocity
of this flow, vhich is readily detsrminsd as a function of the
gdurce strength and hesnce of the alrfoil arag, then gives the
velocity increment caused at the airfoil by the intsrference bo-
tween the wake and the walls, The 1 longitudinal velocity and
pressure gradients at the position cf the ‘2irfoil ere found in
terms of the drag by evaluating the. flow inducsd at that point
by the image sources, It is agparent that this entirc method of
analysiag fails to matisfy the ﬂ"tual condition as regards the
velocity at infinity downstream. This discrepancy arivev out of
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the fundamental difference between the actual flow in the wake and
the source flow by which it is represented and is unav01dable as
long as this representation is used. .

Consider the flow in a closed two-dimensional-flow wind
tunnol, as shown in figure 1, At a station far upstrean, the
effuct of the model upon the flow is negligible, so that the
velocity V!, the density p', the static pressure bp’, and
the abgolute temperature Tt are constant across the stream. At
a station far downstream, where the wake has spread to the walls,
the velocity V", the density p", the pressure p", and the
abgolute temperature T" are again constant across the stream.

The difference between the pressures p' and p'" can be
related to the measured drag of the airfoil by means of the con-
ditions of continuity, conservation of cnergy, and impulse and
momentum, together with the stvate relations for s perfect gas.
The. cond*tlon of continuity is given by

pr V= oV (5)

and, if it is assumed that the flow 1sg en adlabatlc process,
conscrvation of total encrgy rcquires that

(V!)E - (V")z - SJCP (Tn - T,)

2 2
or ' . .
J "
Al 28JcpT! " ‘
VD _d1 - .g.dgr.(EL -1 4 (6)
! L (V') T
where

g gravitational accelecration

J mechanical equivalent of heat

.cp specific heat of gas at constant pressure

In modern wind tunnels the walls of the tesf section afe flared
slightly to compensate for the growth of the boundary layer on

the walls, and only the drag of the airfoll therefore need be
considered., The impulse-momentum equetion can be written

21'1! =p' - "+ pt (VP - (V)

T TP e PR S SIS
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cr 7 .pn
RN p! !\15 = ’:.) ’ " N2
Lo v/on N £ LY
Cd iy + l . ""'/
2 \h/ pt(v1)3 . pt \V!

where D? ig ths érag of ﬁhe ajirfoil and-‘cd' the drag co-
efficient referred to the apparent dynamic pressure qr,

. The velocity of sound V,' in the undisturbed stream is
related to the absolute temperature by

(Vé‘)z =YRT' = (VY - l)chpT’ ‘ (8)

wheréf Y is the ratio of gpecific heats‘and R 1is the gas con-
gtant, By means of this relation, equation (6) can be written

' " Ti/a
v [ 2 (%% -1) /
—_— = (] - 4 (9)
' [ (v = 1)(Mr )PP
and, from equation (5), .
[_ T"_ \ N-1/2 -
1" 2l -1 ‘
_p_’_ ={ 1 - (T' / = > (lO)
ot (v - 1){mr)

The state equation for a perfect gas then provides the relations

T Th-1/2
E.‘.' ) prp ) T Jl = (}17'{ = l) L »
p'  p'Tr T ] (v - 1)(m1)= I

Lo : :

(11)
and

. P’- . RT' - (VC')Q-__ l . l 3
pr(V)E (V)R (V)R ()P -8

PR G A e R e ekt Ak s
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Stbstitution from equations (9), (iC), (11}, and (12) imto
equation (7) gives -

{ ‘./rrn’. j 1/2
AT
S LY S VSOV S X
C (Y- 1){'r-1';2i
-
from which it can be found that
- —_-
fT" :_‘? k] i\ e E@ Ig_\j
Jl \T—T - l“ ul _ £ +’Y(Ll') Ll ;F“‘-}-\,E,L.J‘
IR o+ 13 ()
“ N
Q - -
1 - (MR v (i) Z9_ /ey {2 svymr)?|s - 22 /.Eﬂ |
Ao e S Leoven [ @]

For airfoils usually employed, the factor cy! (%} is gmall,

Expanding the above expression and neglecting terms containing
k 12 &S S

cy' (?) to powers higher then the first gives
h

A i A ]—;‘5 |

j 2 {-E—i— - l\’ i 1! 2

S T VLR AN S R (E‘, ) (14)
* (Y - 1) ()2 | 2 \n/1 - (M)

L. J

By means of this relation, together with eguations (9) and (10)
the static pressure differsnce in terms of q' is obtained from
equation (7) as

! - p" ‘ cy }f' v{m! —\
= =gyt (23 o — L (15)
q! \n/ {_ 1- (M*)Bf 4

.
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Now, Cunu_JeL the airfoll and wake to.be remcved and re-

placed by a fluid source of strength Q. If the flow con-
diticas far upatream are maintained unchanged, the macs flow
fer downgtresm is then -

hps"VS" = hp'Vr + @

or )
|l'.]' 1
Pa e L, _.9_._ (15)
PV npiv ' '

whers ths subsc rpr 2@ denotes conditions now prevailing atb
the latter station, For revewzible aciatatic flow
-~ ! 1
e "\ - "1‘1 -
- g ] far A2 8 \
——m L e e (I,:,_i )')E { - 1 ’ r
p! L 2 i i
Since it is to be sxpected that (Vg"/V') will-be close to
vnity, the right-hand eide of this eqration may be expanded

Uy n\R
o coosat ooy o
in ascending powvers of L.3;~~ -1 }, and terms contain-
ing powers higher than the first neglected. Thus,

- "2 -
o M /V " ; .
Doy Py K?.- N ! (17)
o! 2 LNV / ,J

— e

v e vy 1 L
\A, 1 - .\'I' ) 1 ! ? - + __‘g_..
\f i 1 ‘J
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It is raasonable to assume- that the ratio E_3§? is small~as

pl
compared with unity, Thls solutlon of the px ecedlng equation to
the first order in - Q is
hpv!
/V 1 - . . . : .
= 8 (18)
Ve 1 - (M*)2 hp'v! '

Bernoulli's equation for reversible adiabatic flow can be written

- !l—/ ————(Mr)ag(in—l‘t |
q! 7(Mj 2 | l 2 F\vi / ‘ D

D .

’V 1" . . A .
Since (_ii_) is close to unity, this may be replaced by- the

v .
approximate relation

1

p, - pS" ¢ n‘\2
q! = (VT /

Substitution from equation (18) and neglect of the term involving

the square of then gives

hptV! .
p' - pg" 2Q 1 ‘ o
= - , (19)
ar B 1. ()2 -

Comparisen of equations (15) and (19) shows. that the source
strength required to promote the same Pressure difference as
actually arises from the confinemént of the airfoil wake is

-

1. (- DR (20)
2 L 4

Q _ D!VVCdXC i~
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. The tunnel walls are now replaced by .an infinite system of
gsources of strength Q. syﬂnei h distence apart and located
directly above 2nd below the position of the airfoil as shown in
figure 1. This imsge system together with the source which has
becn placed at the position of the airfoil satisfles the require-~
ment that the Tlow at the plane of the tunnel wall shall be
tangentlal to tns wall

As shown in the first of equatlons (A11l) of appendix A, a
source of strength Q in a uniform flow of compressible fluid
will induce at a distance r from itself a streamwise veloclty

B
: ©
AV = _9Q b ‘fos . ;
atpr | vI = M7 (1 - M?sin?®)
-

where ¢ is the pdlar angle of the point in question and p

and M are the density and Mach number of the undisturbed stream.
By virtue of this relatlon, the streamwise velocity AZV' 1in-
duced at a point of the center line of the tunnel by the entire
gysten of image sources isg

- r
Ty W S . S
— np'ry lL. 1 - (M1)* [1 - (M’)zsinszm}

m=1

where Ty and ¢ . are the radial distance and the polar angle

of the point relative to the source a distance mh above or
below the center line and p' and M!' are the density and Mach
number of the undisturbed flow in the tunnel, If the distance
from the position of the airfoil to the point on the center line
is denoted by x (taken positive downstreem), this equation can
be written

[o-]

LV = _Q . F—\z X .
, tpt/ T - (M) x2 + [1 - (M')?] mBn?
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or

AR < [ X coth —__TX__ = 1 51
K . nﬂ'vll ‘(M')zb 2h~/1-(M‘)2 °° h\/i_(M'SE 2x (21)

It can be seen by-setting x = - in equation (21)

that the image sources induce at an infinite distance up-
stream a velocity

-

(A Vl)— - - QA'
2" 2o'h |1 - (M')?‘}

In order to satisfy the original requirement that conditions
far upstream remain unchanged, this velocity must be counter-
balanced by the superposition of a uniform flow of equal
magnitude but opposite sign. The addition of this flow at
all points in the field will result in a speeding up of the
general flow at the postiion of the airfoil by the amount

Q
5
Zp‘hll-— (M‘) ]

or, substltutlng the source strength from equation (20),

y
ASV =

3 ,"1 (1{-1)(M'.)2 Ecd‘ e\ .,
8.V =.; +1_(M:)2 : f4 (_)‘v B

-~ -

. If the factor 1 is defined es

_1l(e : - . . (22)
T= 4-(11) - :
The velocity increment induced at the position of the ﬁir-

foil by the interference between the wake and the walls may
thus finally be written for air (Y = 1.4) as

2 : .
'
Asv! = .]?__f_g_'éLM.z_)_..Tcdt v . . (23)
1 - (M)
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The longitudinal velocity gradient produced at the position
of the airfoil by the flcw from the image sources can be found by
differentiating equat101 Zl‘ with respect to x and then
getting x =0, This gives finally

av' o a(avy) 7Q ‘
= 372
dax dx 6p1h3|'1 - M')~"‘

or, by virtue of ecudtlon (20),

ave 1+ (7 - 1)(M’)2N"Ln
|

cq'V
3/2
ax LLl (M )R] 2i

(24)
12h° .

It alrezsdy hes been noted: tna+ the interference associated
witli the thickness cf the air 011 has no effect upon the longi-
tudinal velocity gradient at the position of the airfoil, It -
. will be seen later that this also is true of the interference
associated with airfoil camber, Equation (24) thus gives the
total velocity gradient for the complete airfoil and wake. The
total pressure gradient at the position of the model then is
given by Bernoulli's equation as

dp avs

———-—_lvl
ax - P

or, substituting from equation (24) and setting -7 = 1.4,

ﬂcd'(l'c

e - PR en?

IQ-
He)
H
g
o -
N
(“\
&9

(25)

Tt is apparent from the symmetry of the system of image
gources that at the center line of the tunnel the Interference
between the wake-and the walls has no effect upon the velocity
normal to the direction of the stream,

Tt is shown later in this report that the camber of the alr-
foil does not affect the stream velocity at the airfoil. Equations
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(4) and (23) together thus give the totsl increase in velocity
for the complete airfoil ezid wake, The effective or true
velocity V at the model is therefore

r N

i 12 ’ ,

V=V'Ll+ : y ho+ L0400 ro il (28)
. s /o |

O 1 - (M1)2 J

[

It i¢ evident that.a correction to the apparent velocity in
a compressible flow implies corrections also to the apparent
density, dynsmic preesure, Reynclés number, and Mach number,
These corrections are readily obtained on the basis of the ugual
agsgumption that the flow is adiabatic, Tt is assumed tnat the
correction terms are small as compared with unity, so that squares
and products of thsse terus may be neglected.

The true density p at the mcdel is connected with the
apparent density p! by the insentropic relation

1
' . fad “}W 7=-1
¥ - . } 2 '
o = p'-{l Jr-1 (M: ai (:L\ - lg} (27)
L 2 LNV

Substitution from equation (25) givea, after expansion as an
ascending power series and neglect of correction terms higher
than the first order, '

e

L - )] 1 - (Mr)? 5

The true dynamic pressure ¢ = -:EpV2 is related to the
> ,

apparent dynamic pressure gq' Dy the equation

- (R (XY
1=19 \,p') \V‘)
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By means of equations (?6) and (28) this can be written to the
first order as

q4=q' {1+ 2-(M1)* 1\,r,+ (2- (2] [L+0.4 (001 2

;
Tcat) (29)
U er BT e ‘

The true Reynolds number R 1is given in terms of the
apparent Reynolds number R' by the equation

R = R (3\ ,"E-'> (l)
\p?_/\ T ANA

where u gond ! e the coefficients of VlSCOSity correspond-
ing to V and V7, A >cording to Von Kermén and Tsien (reference
ll), the coefficients of viscosity are related to the correspond-
ing absolute temperatures by

B £l>o.7e
" (

-4

For reversible. adiabatic flow it can be shown that

( ' |
=T'%l~7;l(M')3i[:(%>2‘]1 (30)
L Z A )

which after substitution from equation (26) becomes to the
first erder for air (7 = 1.4)

- - \ ’
=T I L0402 pp 0.4 PlIs0.a (P o oY - (31)
U Ree e 1 () : -

\

By moans of these relations together with equations (28) and (28),
the true Reynolds number may be written

-
ReR! 41 4L=0. i(t 1)? Aoa (1-0. 7(M’)]Ll+<‘ 4 (M )2] Tcd'

(32)
Ll (M )2]3/:, 1. ()3
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The true Mach number M is related to the apparent Mach
number M' by the equation

M= M [ (Yﬁﬂ')
Vr/\ Vc

where V, end V,' are the velocities of sound corresponding

to V,and V!, Since the velocity of souhd in a gas is
directly proportional to the square root of the absolute tsmper-
ature alone, this equation may also be written

. . P
M:M'(l T..' 1/ 2
\V! T

With the aid of equations (26) and (31) the true Mach number then
may be written to the first order

~ ~ -
Moo w1 e 200.20002 o (140200020 [s0.400 ) 1o o b (a3
L [-u)=P® 1o (un)? J

]

- At low Mach numbers, the terms containing Tcg' in the
correction equations are usually negligible as compared with the
terms containing Ac. At supercritical Mach numbers, however,
where the drag coefficient is very large, the terms with Tcy’
are predominant, '

Numerical values of the compressibility factor appearing. in
equations (26), (29), (32), and (33) are given in table II.

Camber effect,- The theory of the infinitesimally thin,
cambered airioil in free air is developed by Glauwert in reference
12 (pp. 87-93). In this development the camber line is replaced
by & sheet of continuously distributed, bound vortices. The flow
induced at any point on the camber line by this system of vortices
is obtained by integration and is combined vectorially with the
flow of the undisturbed stream to give the direction of the
resultant flow, The distribution of vorticity is then determined
from-the condition that the resultant flow at all points on the
camber line must be tangential to the camber line,

~
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In the actual calculation of the induced velocity, it is
agsumed that the vortices nay be distributed along the chord line
rather than along the camber line and that tiie induced velocity
at any chordwise station on the camber line is the same as the
induced velocity on the chord line at the same station. If the
origin of coordinastes is taken at the leading edge of ths airfoil
(fig. 2), with the pesitive x-axis along the chord line and thz
positive y-axis directed upward, the induced velocity (v); in
an incompressible fluid at any point x5 on the chord line is

c
I f\%z dx
(v)i = - / & (34)
2t | XX
~ o
o)

where al/éx 1s the vorticity per unit length at the point x
and c¢ 1is the chord of the airfoil, The direction of this
velocity is ncrmal to ths x-axis,

Glausrt (reference 7) has shown that a first approximation
to the velocity induced al any point by a simple vortex in a
compressible streem can be obtained by simply multiplying the
va1001+y induced at the same point in an incompressible stream by
the facto .

/\J/]_ - Mz (35>

1 - M%sin®p

where M 1is the Mach number of the undisturbed flow and ¢ the
polar angle of the peint in question as measured from the direction
of flow of the undisturbed stream. For points on the chord of an
airfoil which is inclined at a small angle to the direction of the
undisturbed stream the polar angle ¢ 1is small, and the factor
(35) is sensibly equal to

=
AL - M7

If it is assumed that the effect of a vortex sheet in a com-
pressible fluid may be obtained by superposing the effects of
elementary vortices, the velocity imduced at any point x, on
the chord line in a compressible fluid is

= dx '
Y = ’\J/l - IVI (36)

X-XO
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If the undisturbed velocity of the free stream is taken
aqual to the true velccity V at the airfoil in the tunnel, the
condition that the resultant flow shall be tangential - to the
cember line requires that, for all points on the airfoil,

:—-'G«A . | (37)

.vhere dyc/dx 1is the slogze of the camber line at X, and o is
the true angle of attack; that iz, the angle the undisturbed
3tream makes with the chord line in free air. (See fig. 2.)

The problem of the infinitesimally thin, cambered airfoil in
a twvo-dimensionai-flow tunnel can pe investigated by the method
of images; that ie, the effect of the upper and lower walls of
the tunnel can be simulated by introducing an infinite lattice of
alternately inverted but otherwise identical image airfoils above
and below the original airfoil, as shown in figure 3(a), By this
artifice the direction of flow at the position of the upper and .
lower walls can be wade to coincide with the plane cf the walls,
wvhich is the required condition of flow. As in Glauert's analysis
of the airfoil in free alr, the camber line of the airfcil and of
each of its images is wreplaced by a sheet of continuously distri-
buted vortices, the vortex distribution of all sheets being
identical in magnitude but alternately reversed in sign. The .
flow induced at any point of the camber line of the original air-
foil by the entire vortex system is then obtained by integration.
As before, the distribution of vorticity must be determined so
that the resultant of the induced velocity and the stream velocity .
is tangential to the camber line of the alrfoil.

For the detailed calculation, the coordinate system is taken
as shown in figure 3(b)., The origin of coordinates is taken on
the center line of the tunnel at the leading edge of the airfeil.
The positive x-axis extends downstream parallel to the undisturb-
ed flow, and the positive y-axies is directed upwards. It is
agsumed that the vortices may be distributed along the x-axis and
the induced velocities calculated at points on this axis., This
arrangerient is somewhat different from the system employed for

the airfoil in free air, where the x-axis was taken along the
 chord line; however, since the angle of attack is assumed to be
small, the difference is of no consequence. ‘
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t is evident from figure 3{b) that, for an airfoil midway
between the upper and lower walls of the tunnel, the axial
velocity induced at any point on the x-axis by any one image is
nullified by the velocity induced by the corresponéing image on
the opposite side of ths tunnsel, It follows that airfoil: camber
does not affect either the true axial velocity or the longitudinal
pressure gradient in the tunnel at the position of the model,

The vertical velocities induced at any point on the x-axis
by any one image and its counterpart arc, however, additive,
Thus, for corresponding images situated at mh and -mh,
respectively, the vertical velocity (v'yy,); induced at the

point x5 ..in an incompressitle fluid is

~ \
o halr ( 7t
(0 Ye e (oym TS Pm T F
m/i < /
: _B anry
or
M~ oaln
— (x - x,) dx
(v)y =2 (18 & ° (38)
N 7 (x - x5)% + (mn)? :

vhere 4I't/dx is the vorticity per unit length at the point x
in the tunnel, ”

It will nov be éséumed that the chord of the airfoil is
reasonably small in comparison with the height of the tunnel,
This being the case,.the approximation ‘

(x - x5)° + (maf = (wh)?
. ‘)
is sufficientl% precise for purposes of this analysis, and the

term (x - Xo)° in the denominator of equation (38) may be
neglected, ' - '

The vertical velocity (v!

\ -r)i induced by all the images is
then found by superposition as ' -

, o c ¥
(vip)i = 12 YS, ('ll (x - x5) L ax
th® £ n" . dx
m=1 (o]
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c
7 , IRl ’
== = [ (x - xy) T= dx (39)
th_J dx
o - .

N

This equation can be corrected for the efiect of compress-
ibility by means of expression (35). If, as was assumed, the
chord of the airfoil is reezeonably small as compared w1tn the
tunnel height, the polar angle ¢ of any pcint xo on the air-
foil with respect to any point x on an image is nearly a right
angle, so that in this case the factor (35) is sensibly . equal to

’

1

— v st s 45 F e

«/_1""71\2'

The vertical velocity inducsd in a compressible stream by all
the images is then - '

c v
v

Vi, = - x . Xl(x - Xg) al' ax . (40)
12h «J 1 - M"‘ dx

The vertical Ve’ooity v induced at a point Xpo by the
b

vortex sheet belonging to the airfoil itself, is given by oquatlon
(35) if 't and . v', are substituted for I’ and ‘v, regpectively,

The total vertical induced vslocity v' at any point xo on

the airfoill in the tunnel is then the sum of v'e and Vv'y; that
ig, '
I C . .
2 | - oy, :
V'\: /\/l - I\I /A : l - : T - (X - XO _(_1-:__ dx . (4:1)
ant < |z -x, 6% (1 - M) dx

The condition that the resultant of the induced velocity and
the true axial velocity at the airfoil shall be tangential to the
camber line requires that, at all points on the camber line,

’
'

o

Ye
dx

%7 -at - (42)
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where a' is the angle cf attack of the airfoil in the tummel;
‘that is, the angle the chord line makes with the center line of
the tunnel. The true velocity V rather than the apparent
velocity V' is used in equation (42), since the. vortex system
used to represent the cambered airfoil in the tunnel is actually
operating in a stream of velocity V when the airfoil thickness
an¢ wake are present.

Relations between Characteristics of Airfoil
in Turnel and in Free Air

The preceding sections Zrovide the basic information reqguir-
ed for the development of reiations between the characterisgtics -
cf the airfoil in the tunnel and in free air. The relations for
the 1lift and moment coefficients and angle of attack are derived
from the equations of the preceding section by an extension of
the method of Fcurier series employed in Glauert's theory of thin -
airfoils (reference 12, pp. 87-93). To this end, the vorticity
distrivutions for the airfoil in:'the tunnel and in free air are
each represented by a trigonometric series, the two series being
gimilar in form but having undetermined coefficients.. By means
of the equations of -the preceding section, general relations are
found betwesn the coefficients of the two series, These general
relations are then specialized to meet the requirement that the
airfoil shall have the sawme value of the cotangent term of the
geries in the tunnel and in free air, this requirement being
shown to s necegsary to assure that the essgential characteristics
of the pressure distribution will be sensibly the same in both
cases.’ By means of the relations between the coefficients,
expregsions are then derived for the 1ift and moment coefficients
and angle of attack of the airfoil in. free air in terms of the
characterigtics measured in the tunnel, The corresponding drag
coefficient in free air can be found from the drag measured in
the tunnel by subtracting the pressure drag caused by the
interference between the walls and the wake and referring the
remaining drag to the true instead of the apparent dynamic
pressure, Finally, a method is presented for correcting airfoil
pressure distributions for the effect of tunnel walls.

To carry out the analysis, points oﬁ<the airfoil are defined
by a new coordinate 6 such that

x=%c¢(l- cos 0) - (43)

AV
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and

ax =

oo =

c sin 0 d6 o (44)

The distribution of vorticlty along the chord of the air-
foil in free air is 1epresented after Glauert, by the trigono--
metri¢ geries

(o]
dr-zvf cot T 0 + > A sin ng (45)
ax L 2 é«../

n=1

Equation (33 ) then glves tne induced velocity at any point 6 on
‘the airfoil

— . iy

% =N 1 - M° [;Ao + :> A, cos ng
i l s
S . n:l

and equation (37) for the slope of the mean-camber line becomes

7|2

=a-A1-M A 4+ 1-M24/ cos nf (46)

The ccefficients are then given by the relations

' -
T, /ﬁde

I' (47)
dy ?
Ay = —_—t 3‘/ —C cos n9 a6
! dx
N1 =M . B

For the alrfoil in fres air the coefficients A, for n 21 'are

thus functions of the camber-line shape only and are independent
of the angle of attack. The coefficient A, is a function of

both the camber-line shape and the angle of attack,
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The chordwise lift distribution in free sir is gived by

.(.iI:.' pV.r.J;lj_qg.i‘C
a dx V dx

which after substitution from equation (45) can be written in
coefficient form as

o
P = =4 Ao cotb § o + : An sin ng ) (48)

L

" Equation (48) illustrates the well-known fact that in free air
the chordwise 1ift distribution consists eassentially of two
distinct parts. The one part, contributed by the sine terms and
generally reforred to as the basic 1ift distribution (reference
13) depends in maznitude and form only upon the shape of the
mean-cambnr line, 'The other part, defined by the cotangent term
ard referred to as the additional 1ift distribution, is fixed in
form and depends in magnitude upon the angle of attack as well
as upon the camber-line shape. -

Kl
n1m
N

n:l

The distribution of vowt¢01ty for the airfoil in the tunnel
- is represented by

o | 2. ) |
8 _ oy Jagt cotb 2 0 4+ N Ap' sin né b - (49)
dx . 2. . , }

n=1

Substitution of this expression, together with expressicns (43)
and (44), into equation (41) gives, after integration,

v —-—:-—éi o 14
7= L-H ]:Ao’+'i’*‘l;4-5.\c> "'"Ae\

o

+ 1Ay _n;__w (285 + Aa? i} cos 0

L 1-M

e o
+ .; Ap' cos nd

n=2a

)
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vhere o 1is as defined by equation (2)., Equation (42) for -the
slope of the mean-~camber line thus becomes

PU— AT
ot A1 - MPiAy - =T At 4= Ap
ax ' © l-Mg o 2 /J
+A 1 - MP AL - 2 (2A " + A1) cos @
2 |
L 1-M J
o ,
| e———t— NN
YA Mz'\>~ Ap' cos nf - (50)
n==2

The ccefficients in this case are given by the relations

T '
o -AN1 - MPiA 1 "-/A'+—1-Agf\‘= e ge
. ) l 0 a\ o} 2 j 1 dx
L 1-M N
(e]
. Ti
: o 1 2 dye -
ﬁl' - —— (ZAO' +, Al') = _ cog 6 do - >(51)
1- M7 AN1-n?T &
[¢]
p’ﬂ
ra
ppt =L 2] Jecogmoas, n2e
/\,‘l __.Mz ﬂ‘ dx \ | )
(o} J

Thus for the airfoil in the tumnel the coefficlent Apn' 1is a
function of both the angle of attack and the shape of the camber
line, but the functional relationship is altered from what it was
in free air by the inclusion of terms proportional to o, Further-
more, because of the appearance of the term involving Ag' .in the
second of equationsl(SI), the coefficient Ai1' 1s in thils case
also a function of the angle of ‘attack, as well as of the camber-
line shape., Since Ag! appears in this equation multiplied by
the factor o, +the dependénce upon the angle of attack is, how-
ever, secondary as compared with the dependence upon the shape of
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the camber line. As in the case of the airfoil in free air, the
coefficients Ap' fcr n 2 2 are functions of the camber-line
shape only.

The chordvise 1ift distribution in the tunnel is given by

or in coefficient form,

P* =

Qo
A L—vc‘
]

1

M. - .

o—
Ao' cot Lo+ N\ An' gin né (52)
L 2 .

RIS

n=1

In writing this eguation the streamwise velocity gradient which
results from the wall-wake interference (equation (24)) is
ignored. It can be shown that the inclusion of this variable
would give rise to correction terms of the order ocg'. Terms
of this order are usually emall as compared with the terms of
order ¢ and T cg' considered in tke theory and may therefore
be neglected, ‘

) Tt is apparent irom equation (52) that, as in the case of
the airfeil in free air, the lift distribution in the tunnel may
be divided into two components. Now, hcwever, the component
which depends upon the engle of attach includes both the

cotangent term and the first sine term. The component which is a
function of the camber-line shape alone, comprises the sgine terms
corresponding to n 2 2. Again, thege two components could be
denoted by the terms "additional" and '"basic" in the sense
previously employed; however, since the phrase "additional 1ift"
already ia so firmly established with reference to the distinctive
cotangent term alone, this usage does not appear advisable in the -
Present case, For this reason, the terms of the series will be
referred to by reference to their form or their position in the
series. - :

‘Since it 1s the same airfoil which is being considered in

~both cases, equations (47) and (51) lead to the following general

relations between the coeff'icicnts in free air and in the tunnel:
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N
et s 4 1 :
(e "/\/_ - Mz Apg = ! -/\l - AoV + -w-mo-:-——___(Ao' :l' - Ag')
' AL - M3 2
[0}
Ay = Ayt - —— (2h0! 4+ A )
1-M
¢ (53)
A=Ay
Ap-= Ay’ -

In order to use thnese expressions to rslate the character-
istics of the airfoill in free air with those in the tunnel, it is
necessary to choose some quantity or condition which will be main-
tained the same in both cases and relate the remzining quantities
in accordance with this choice. If it were possible, the ideal.
procedure would be to keep all the aerodynamic coefficients
unaltered and to deterwine a corresponding relationship between:
the angle of attack in the tunnel and in firee air. To do this it
would be necessary to keep all presswure and frictional forces the
same in both cases, which can be accomplished only if the pres-
sure distributions are identical, This would require that each
of the coefficients A_ 1in equation (48) be equal to the cor-
responding coefficient An' in equation (52), It is apparent
from the second of equations (53), however, that this require-
ment cannot, in general, be satisfied.

Although the pressure distribution cannot be maintained
completely unaltered in the transfer from the tunnel to free
air, the general relations (53) can be specialized in such a
way that the essential character of the distribution is un-
changed. It is apparent that the component of 1ift contrib-
uted by the first, or cotangent, term in equations (48) and
(52) is different in form from that contributed by the series
of sine terms. The cotangent component has an infinite value
at the leading edge (6 = 0) and d relatively large chordwise
gradient of 1lift over most of the chord of the airfoil, The -
gine-series component ig finite at all points and, for air-
foils ordinarily encountered in practice, has a rclatively
small chordwise gradient, except possibly in .the immediate
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vicinity of the leading or trailing edges. The cotangent com-
ponent with its infinite pesk pertains, of course, only to the
nypothetical airfoil of infinitesimal thickness and zero leading=
edge-radiuvs., For all real airfoils, the lift at the leading
edge can never be infinite; however, even in this instance the
1ift distribution is characterized by a component the form of
which is peaked near the leading edge and the magnitude of which
varies markedly with the angle of attack. The magnitude of

this compornent is a primary factor in determining the character
of the pressure distribution, and even a rslatively small change
in magnitude may cauee consicerable change in the minimum pres-
sure and in tie chordwise pressure gradients attained on the
surface of the airfoil. Furthsar, the aercdynamic characteris-
tics which depsnd upon these quantities, particularly the pro-
file drag, maximm 1ift, and critical compressibility speed,

will be correspondingly altered, It followe that properly to
correct airfoil data obtained in a wind tunnel to conditions

in free air, the corrccted quanvities should correspond to the
fsame magnﬂtude of the peaked 1lift compﬁnent as exists on the
airfoil in the tunnel.

The requirement that the peaked component of 1ift on the
real airfoil shall be ths- same in tne tumnel and in free air
can be expressed with reference to the assumed airfoil of in-
finitesimal thickness and camber by setting A, equal to AO‘

in equations (53). The first of these equations, which re-
lates the angle of attack in the two conditions, then-becomes

= ! V S.):.....« / 1 J; t ,I
a = +A./1-M§ .\Ao +2A2>. (54)

and the relations between the coefficients are

1

1]
o=

Ag

(0]
Ay = Ay - - (285" & Agt).
. 1 - M°
Ap = Ay
A
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Substitution from equations (55) into equation (48) gives

e (o] ’j
P=¢ lA ' cot Lo - _O (28, + A3') 8ind + O A.' sin ne
| Lo 2 Tz o 7 LB
n=y
or
40 s :
P =D% - ~ (2A_ ' + A, ') 8ind - (58)
1 - M © - :

Thus, if the angle of attack in the turmel and the angle of

attack in free air are such as *+o satisfy equation (54), the chord-
wigse 1lift distributions will differ by an amount defined by the
second term on the right-hand side of equation (56).

The lift ccefficient for the airfoil in free air is

1
~

\
c. = Pd(’f\,
A . C/‘

[o)

which, after substitution from equations (44) and (48), cen be
integrated to give

cy = (28, + Ay) - (57)

The'quarter-chord-moment coefficient is
1 ‘ } :
o, = /P P/é-z\,d(i\)
-/ \4 c/ C
7 _
which becomes after integration

Cm :-E(Al-Ag). | (58)

In usval wind-tunnel practice, the measured coefficients
are referred to the apparent dynamic pressure qQ'. The 1lift
digtribution over the airfoil in the tunnel in terms of Q' is

pro 1l 4Lt 29 al
q! dx Vgydx
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Substitution from equation (49) gives

1 o e
Pt =4 LJA " cot =9+ > Ap' sin nd (59)
: n=1

The 1ift and mement coefficients of the airfoil in the tunnel as
referred to the apparent dynamic pressure are then, rgspectively,

¢yt = / P (3é-> = (ZAO"+A1') | (60)

and

4 (K - ALY (61)

Relations betwsen the coefficients in free air and in the
tunnel can now be found with the aid of equations (55). Sub-
-stitution of values from these equations into equation (57)
gives '

cy = n(2A," + A,Y) (l S \

1 - M

]

/
¢y g""kl - ¢>
q l - M"

Substitution from equation (29) and neglect of correction terms
of higher than the first order then give

) 5 2 - (M!)2 l2-(u)2]{1+0.aM0)3]) |
R = FR DL N (DR

From equation (33) it can be seen that, to the first order, M
may be replaced by M' 1in this equation, The final equation for
the correction of the measured 1ift coefficient is therefore

[ o 2. (u)?

C = C LI - =3 > - T
Lo 1o )2 [1- ()PP

[ :2-"-‘ .1.. ‘2-1
REERCOMIE 0. £ (M) 7oy (62)
1 - (M)




NACA APR No. 4KO03 | 33

Similarly, substitution of values from equations (55) into egua-
tion (58) gives '

1 7C C
e =~ X (Ayt - Ag) + X (2AL +Ay) —F—
T 4 SR 1 - M
&
=,§l ot 4+ X0, 9
q e g L 1 - M°

To the order of approximation previously employed, the final
equation for the correction of the measured mcment coefficient
can be written '

;r 2-(M")?  e- )2 [1+0.4(M1)?] R
Cp_ = Oy '{1 - Fropme=—r lo- Toy!
e T e |7 [1-(u)E]e/e 1-(M")?
& A - - -
+Cqt G (63)

4{1-(M%)7]

£ +}- ‘l\xq' = = e e

°© o ® qLZ"n

n gives for the corrected

To the first order, equation (54) the
angle of attack in radisn measure

3
G

\ - %

s .
o = ol + e CZ! + 4Cmo !' (64:8.)
erafl - (M) 2
or in degrees
o = a' + /__A___"‘__':_____E'_ ,‘l Cl + _‘Cmc 35
23—\;\11 - 'M‘)J i = -

Numerical values of the comprsseibility factcrs appearing in
equationg {62), (83), and (64) are given in tablie II.
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It should not be implied from equations (64) that the general
inclination of the stream at the position of the airfoil in the
tunnel is actually different from what it would be if the walls
were not present. The equations indicate rather that, with regard
to the magnitude of the cotangent comporent of 1lift distribution,
an airfoil at a given angle of attack in the tunnsl behaves as
though it were at a different angle in free air. This difference
occurs because the tunnel walls give rise sffectively to a change
in the curvature of the stream.at the positiocn of the airfoil.

As was indicated previously, the essential character of the
pressure distribution over a given airfoll will be the same in
the tunnel and in free air, provided the magnitude of the cotan-
gent lift component is the same in bobh cases; that is, provided
the angles of attack ‘are such as to satisfy equations (64). The
exact shape of the pressure distributions, howsver, will still
differ slightly for two reasons: (a) The interference between the
1ift and the tunnel walls causes a difference in chordwise lift
distribution as required by equation (58), and (b) the interference

between the waks and the walls gives rise to a longitudinal pres-

gure gradient defined by equation (25). The effect of these two
influences upon the remaining airfoil characteristics, the profile-
drag coefficient, must bs considerad.

As given by equaticn (56), the cherdwise 1ift distributions
in the tumnel and in free alr diffser by an amount

AP = ¥ - P = T—égﬁg (24c* + Ax') eing

which, by virtue of equation (60), may be written to the first

‘order as

AP = < c,' sing (65)

1 - M®

A i

The changes in peak pressure and pressure gradient brought about
by this increment of 1ift distribution, unlike the changes which
would accompany even a minor alteration of the cotangent 1ift
component , are ordinarily small, At low Mach numbers the drag
depends primarily upon the character of the flow in the boundary
layer, anl, sgince this Tlow will not ordinarily be altered greatly
by these small changes in the pressure distribution, the incre-
ment of 1ift distribution should havs only a small effect upon’the
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profile drag. At high Mach numbers the drag is deteimined prima-
rily by the total-head lossos in the shock waves whickh appear
after the critical Mach number is reached; that is, after tne
local speed of sound iz obtained at the minimum pressure point on
the airfoil, The critical Mach number is ugually reduced by the
change in peak pressure accompanying the change AP in 1ift
distrikution, dbut it can be shown that this rsduction is ordi-
narily very small, It is rsasonable to expect that the change in
profile drag at a given supercritical Mach number is correspond-
ingly small. These changes are discussed in further detail later
in the report, but for the present it may pe assumed that the.
difference in chordwise lift distribution between the tunnel and
free air has only a negligible effect upon the profile drag.

For usual airfoils and drag coefficients, the longitudinal
pressure gradient defined by equaticn (25) is also small, and its
effect upon the boundary-layer flow and lLience upon the friction-
al drag of the airfoil may ne neglected. It will, however, in-
crease the pressure drag by an amount which is comparabLe oo
differences already retained in the corrections to the 1ifv and
moment. This increase in pressure drag must be subtracted from
the drag measured in ths tunnel to obtain the true profile drag
of the airfoil in free air.

Glauert has shown (reference 2, pp. 62-83) that in an’
incompresaible fluid the drag experienced by an airfoil as the
result of a streamwise pressure gradient is, in the notation of
this paper,

: 2
it dp 6h d
AD:——ACE'ri=‘“)—"AO"_—p (66)
3 dx 14 ax

In appendix 4, it is shown that this relation is unchanged by the
effect of fluid compressibility, Substitution of dp/dx from
equation (25) then gives for the drag due to the interference be-
tween the wake and the walls :

Ag

AD = cg' Q' © r.l + 0. 4(M'3¢~1
GRTIRES|
The true profile drag of the airfoil in free air is then

D=D' - 4D

1+ 0. 4(M=)2

G- 5

cg' a' ¢ 1l -
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and the corrssponding drag coetficient referred to the true
uynamlo pregsure 1is ' :

D2 [ 1ioa@my )
cd_— w0 " Ga' (q le [1 - (M,)z]:s?a '3?

Substitution from equation (29) gives for the Tinal correction to
the measured drag COGEILClOnu

e - . . \2 : / .
Cd = er’ 1 - 7:—2——«———‘—1%—-7-_‘ Ao - _l + 0.4 V'[')/ Ao
- (1 - )P=2 1. (]2
(2 - ()31 + 0.a0m0)] h

-z =~ TCq"' (67)
Lo~ (MY)% e ,f

It will be noted that, oP the two correction terms involving Ao
in thig squation, the flxst appears as a result of the change in
"dynamic pressu“e occasioned by the interfersnce between the walls

nd the airfoil thickness; the second represents the effect of
the preszsure gradient induced by the interference between the
valls and the wake. The correction term containing .7cq' appears
ag a result of the change in dynamic pressure caused by the wall-
wake interference. Numerical values of the functionz of M:!
which appear in equation (87) are given in table II. The cor-
rected drag ccefficient corresponds, of course, to the corrected
1if% and momsnt coefficients as given by equaticns (62) and (63)
and to the corrected angls of attack ag glven by equation (64a)
or (64b). :

The drag correction of equation (67) was determined partic-
wlarly for drags measured with a balance and, as derived, is not
necessarily correct for drags measured by the wake- survby nethod.
It can be shown, however, from theoretical considerationg of
momentum and continuity in a two-dimensional-flow tunnel that for

normal ratios of airfoil chord to tunnel height, the crdinary
type of wake survey derived for free-air conditions gives, when
applied in the tunnel, a value of the drag equal to that measured
by the balance except for a negligible difference of less than
ons-half of one pércent. Equaticn (87) may thus also be used to
correct drag coefficlents determined by the wake-survey method.

It shculd be noted that no correction to the drag has been
made for any pressure gradient which may exist inherently in the
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tunnel as a result of the streamwise growth of the bouvndary layer
on the tunnel walls, Most modern tunnels are constructed so that
this pressure gradient is sensibly zero; however, if such a gra--
dient does exist and its magnitude is known, an approximate cor-

rection to the airfoil drag can be made by means of equation (68).

Trere remains the necessity for correcting tiie measured pres-
sure distribution over the surface of the airfoil., The pressure
at any point on the airfoil is conveniently expressed by the pres-
sure coefficient Sj; ~defined by

B -~
87 = L (68)
g
or by the pressure coefficient P; defined by
0, - .
P, =222 (89)

q
vhere p; 1is the local static presswre on the surface of the air-
foil and H, p, and gq are, respectively, the total head, static

pressure, and dynamic pressure of the undisturbed stream. As
indicated in reference 14, in a compressible stream,

t

H=p+gq (L+n) (70)

"where (1 + 1) for air (y =1.4) is defined by the series

2 4 6
1L+ =1+ MO, MZ + M + .. (71)
4 40 1600

M Ybeing the Mach number of the stream., From these relations it
is readily shown that

8, = (L +n) - P (72)

A curve of (1 +1n) versus M, as calculated from equation (71},
is given in figure 4. '

In reference 6 a method is presented for the determination
of the pressure distribution around an airfoil in an Iincompress-
ible stream when the lift distribution along the chord and the
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pressure distribution over the base profile are known. The upper-
and lower-surface pressures at any chordwise station x are given
in coefficlent form by

N aAj
-7 (l-P)+‘]:'P
PU=-p—Ii-——=l—l: f 4]
q (1L - Pg)
r 2 4 (73)
Pr, - P (1 - Pg) - Lp
PL=-'_-_._=1-L 4:‘
q (1 - Pg)

-

where Pp 1s the pressure coefficlent on the base profile at x,

and P 1is the coefficient of 1ift per unit of chord at x. By
following the basic reasoning of reference 6 and assuming that

the induced velocities at the surface of the airfoil are small as
compared with the velocity of the undisturbed stream, it is readily
shown that equations (73) may also be applied to the pressure
distribution in a compressible stream., In such application, the
values of Py, P1,, P, and P must all correspond, of course, to

the same free-gtream Mach numbsi,

The measured pressuvre distribution is now readily corrected
for the effect of the tunnel walls., It is only necessary tc refer
the measured pressure coefficients to the true inastead of the
apparent dynamic pressure and rcmove the effect of the 1lift dis-
tribution represented by equation (65). Strictly spsaking, cor-
rechion should also be made for the pressure gradient due to the
wall-wake interfersnce; however, in practvical.tests such cor-
rection ig small and may be neglected, The detailed procedure is
then as follows: :

(1) The apparent upper- and lower~surface pressure coef-
ficients

- 1 - t

q' Q!

syt =

are obtained from the cxperimental results for the various chord-
wise stations, '
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(2) These pressure coefficiente are referred to the true
dynamic pressure by msans oi the equations

5 T e
SU.\(.__SJ ( SU, l- —»?u-—(—bg—‘-)—:rllC“ LZ- (M' )EJL +0.4 M ')] T T
) r-e)FEE 1-(M1)2

2-(M! '“" 2-(M1)? i +0.4{M")* :
Sp¥ —Sr ,_51 ( ) [ (a i1 (MY) Tog!
[J )

(M’ .c.'l',j/ 3 (M' 2
(3) The gquantities (1 - Bu*) and (1 -~ Pr*) are determined
in accordance with equation (72) as ‘ .

L - Py* = Sg* < 1

(15)

N

1= Pp¥ o= Sp* - m
where n is determined by figure 4 for the true Mach number as
given by equation (33). ' '

(4)‘The chordwise 1lift distribution in the tunnel is found
from ' - : - S .

=]

T'-'P' . ‘ .
= = Sp* - ST* - ' ~ (76)

P¥ =

)
'+

(5) The chordwise 1ift distributicn in fre¢ -air is detcrmin-
ed from equatiqn (65), which may be written’

g - . . .
P=P*-1——:—(—IV—I|—)'5P@CI' . (77)

wvhere Pg 1s given by , .
Pe=ésine=é/\/1-(1-§—’5) o (78)
b1 7 c . .

This guantity, which is termed the, "interference lift distribu-
tion," is seen to be elliptic in form. Values of - ' Pe at stand-
ard chordwise stations are given in table IIT.



40 - " NACA ARR No. 4K03

(6) The quantity (1 - Pg), where P¢ 1is the base-profile
preésure coefficient in free air, is given by the ‘equation
2

(1'4‘Pf)‘ (1 - Pe*) = A EF ; N1 - BLR (79)

which is obtained by combing equations (73).

(7) The,valués of P and (1 - Pr) dbeing knbwn, the upper-
and lover-surface pressure Qoeffipients Py rand Pp are deter-

mined from equations (73).  If desired, the corresponding coef-
ficients Sy and. Sp, can be found from equation (72).

The corrected pressure distribution obtained by this method
corresponds tc the corrected angle of attack as given by equation
(64a) or (64b) and to the corrected llft and moment coefficients
as given by equations (62 ) and (03) '

It has been mentioned previously that the correction to the
angle of attack appearing in equations (64) does not represent an
actual rotation of the stream direction., This fact is implicit
in the derivation of the equatlons, but it can also be demon-
gtrated by simple considerations of force and momentum For this
purpose it is sufficient to consider a simple 1ncompr8531ble
potential flow in the. tunnel and ignore the effect of the profile
drag. Assume for the time being that, because of the interference
between the airfoil and the tunnel walls, the general direction

.of the stream at the airfoil.is inclined from its original-

direction parallel to the tunnel walls, For potential -flow the
resultant force acting on the airfoil must be at right angles to
the local direction of the stream., The airfoil thus would be
acted upon under the assumed conditiong by a component of force
parallel to the center line of the tunnel and would in reaction
exert an equal and opposite force on the flow, Since the tunnel
walls cannot in a potential flow exert a force parallel to the
center line, this longitudinal force would have to be balanced
by a difference of pregsure or momentum between two stations in
the tunnel, one upstream and one downstream from the airfoil, If
the statlons are taken far enough from the alrfoll that its
induced velocitles are negligible, conditions across the tunnel
are uniform at each station. It then follows. from considerations
of continuity of the ihcompresslble flow . in the tunnel that the
conditions at the two stations are identical, and nc difference

‘o

.o
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of pressure or momentum is pcssible, Thus the original assump-
tion of a general rotation of the stream direction at the position
of the airfoil is untenadble, This conclusion is not changed by
the eftects of fluid compressibility., Furthermore, the fact that
the introduction of the profile drag and the accompanying wake
causes a pressure difference between the two stations likewise
does not alter the result, as the wake effects are considered in
the thecry to be superposed on the potential-fleow field. Thus,
the angle correction appearing in equations (64) must be due to
gome cause other than a general inclination of the gstream. As
previously pointed out, it is actually due to an effective change
in the curvature of the stream at the position of the airfoil and
is a direct consequence of the requirement that the airfoil in
this stream shall have the same cotangent component of 1lift
distribution as does the airfoil in free air. These considerations
are important in the prcper interpretation of drag measurements
from a two-dimensional-flow tunnel.

In the development of the correction to the measured drag
coefiicient, it was assumed that the increment AP 1in chordwise
1lift distributicn between the tunnel and free air has only a
negligible effect upon the profile drag. A better idea of the
nature of the effect can be had by further examination of the
difference betwesn the two cages. It follows from equations (55)
that, iif' the angles of attack in the tunnel and in free air are
related as required by equation (54) or (64), the transposition
of a given airfoil from free air to the tunnel is equivalent to
Increasing the coefficient A, for the alrfoil in free air by
an amount

AAl = Ay - Ay = ——— (ZAO' +A1')
1M

which can be wrltten to the first order as

e

A = = ——
1 -M

A j=

s %1

As can be seen from equation (46), this can be accomplished by
nmaintaining the angle of attack unaltered in free air and chang-
ing the crdinate of the mean-camber line at every point by an
amount Ay, such that '

a(aye)
ax

= g cy cos 6 (80)
es

T A1 - M7
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The value of AY ~ as a fraction of the chord is‘then

8y a(sye) al%\. c
c dx (c) i

which after substitution from equations (44) and (80) can be inte-
grated to obtain

Ay S
~e X __©° cy cos 20 + C
c 8 1 - M°

The conetant of integration 'C is determined'by the condition
that Aye/c =0 at 6 =0 "and .6 =n, The equation for the
change 'in the camber line then becomes finally

Aye

R ONO I

This is the equation of a parabola with vertex at ‘the midchord

point and has the same form as the equation for the camber line
of an NACA conventional airfoil with maximum camber at the mid-
chord pcint (reference 15), The maximum change in camber is

" .
.

Ay -
.._2) Sl o o (82)
C Jpax -4t / 2 L
AL - M

Thusz, if the angles of attack of the airfcil in the tunnel and
free air are adjusted as required by equations (64), the wall
interference in the tunnel has the same effect upon the chord-
wise lift distribution as would an increase in camber in free alr.

As a possible instance of a test for the determination. of
the drag of an airfoil of largs chord at a low Mach number and
low lift coefficient, consider the case of an airfoil in a tunnel
providing a chord-height ratio of 0.5. The value of o . is .then
0.051. Assume-that thé angle of attack a' in the tunnel is
ad justed as required by equations (64) to corresspond to an angle

o giving a 1ift coefficient cy. of 0.3 in free air., Assuming

that the Mach number is sufficiently low that the effect of
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compressibility may be neglected in computing the tunnel-wall
ccrrections, the change of waximum camber required in free air to
duplicate the effect of the tunnel walls i& given by equation (82)
as )

~ l’ﬁy_") = (0.051)(0.3) = 0.0012
\ ¢ /max" 4g

An estimate based upon experimental data has been made of the
effect upon the profile drag of a change in camber of this magni-
tude for an NACA conventional airfoil of moderate camber and 15-
percent thickness with maximum camber at the midchord point, The
result indicetes that neglecting the effect upon the profile drag
of the change in 1ift distribution caused by the tunnel walls
leads in this case to an error in the final corrected drag co-
efficient of less than 0,0001. This is within the usual limits
of experimental accuracy. The correction terms included in equa-
tion (A7) amount in this instance to approximately 0.0004, If
the chord-height ratio were increased to 1.0, the error in the
arag coefficient would be increased to 0,0004, which is well out~
gide the limits of experimental accuracy, This indicates the
desirability of limiting the chord-height ratio if accurate
measurements of the profile drag are desired, even at low values
of the 1ift coefficient and Mach number, At higher values of the
1ift coefficient or Mach number the permissible chord-height
ratio must be reduced correspcondingly.

The foregoing comparison is based upon. the specific case of
an airfoil with maximum camber originally at the midchord point
and is not necessarily applicable to other types of airfoils.

Tor families of airfoils which have a smaller variation of drag
with camber than do the HACA conventional sections, the error
introduced by neglecting the effect of the change .in 1ift dis~
tributicn is correspondingly less. In any event, satisfactory
accuracy can be obtained in the measurement of drag at low lift
cocfficients and Mach numbers by keeping the chord-height ratio
within a suitable limit - say 0.7. A possible exception is an
airfoil having an essentially [lat pressure distribution in the
region of transition from laminar to turbulent flow in the bound-
ary layer. In such a case the changes in pressure gradient may
ghift the point of transition and noticeably alter the profile
drag; however, for any such sensitive airfoil, alterations from
this source are no more sericus than similar changes which may
accompany the small variations in pressure distribution cauged in
any practical application by irregularities in construction,
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Some measure of the effect of the increment - AP in chord-

wise 1ift distribution upon measurements of airfoil characteristics
at ligh Mach numbers can be obtained by celculating the change in
critical Mach numher caused by this increment. Such a calcula-
ticn has been made for an airfoil with minimum pressure originally
at the midchord point. Since the increment AP is a maximum at
midchord, this represents the worst possible case as regards the
change in critical Mach number. For a chord-ﬁeiaht ratio of 0.25,
which is considerably larger than that ordinarily emploved in
tests at high Mach numbers, the critical Mach nuuber was foimd to
be reduced by approximately 0,001 at a 1lift coefficient of 0.3,
A change of this megnitude is insignificant, It may be expected
that the accompanying change in the aerodynamic coefficients in
the vicinity of the critical Mack mumber will be correspondingly
small,

/
THE T’T:tﬂ,IJOMI"]?\IOl\T OF CHOX TNG

Consider the compressible adiabatic flow of a fluid in an
elementary stream tube of varying area A,, as shown in figure

S(a). Continuity of flow requires that the product’ piViA7 be
constant, where py, V;, and A; are the local values of-
density, velocity, and area, respectively, at any station along
the tube, In consequence , the logarithmic derivative must vanish;
that is, "

dp, L0

Ny

= 0 ) - (83)

Bernoulli's equation for compressible flow requires that

a | -
21 yjav, (84)
Py .

where pl“ié the local prossure. Defining ch as the local
velocity of sound, then

dpz 2

W, T o
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80 equation (84) bscomes, after substituting the value of dpy
in that ecuation,

where M, is t‘e local Mach number.
Svhstituting this relation into equation (83) gives

e OV dy S
Vi Ay

From this well-known relation it is seen that at subsonic
speeds the usval behavior associated with incompressible flow is
obtained; namely, that as the area increases the velocity de-
creages, At supersonic speeds, however, the behavior is reveised
in that as the area incrsases the velocity increases, When the
local Mech number is unity it is seen that dA = 0; that is, if |
the velocity of sound is attained inm the tube it can only be
attained where the area has its minimum value.

When the local velocity of sound is attained at the minimum
- area section, the local Mach number at any other .section, deter-
mined by the ratio of the area at that section to the minimum area,
may be less or, in some cases, greater than unity depending upon
the conditions promoting the flow in the tube. The. nature of such
flows can be studied by considering the change in the character -
of flow in the stream tube of figure 5(a) as the downstream pres-
sure P2 is decreased with regpect to the uostream Pressure p,.
If py - Po 1s small so that completely subsonic flow is main-
“tained in the ‘tube, the nature of the velocity variation along
the tube is that usually associated with 1ncompr9381ble flow as
‘seen in curve I of figure S(b). When 7p1 - _p2. is increased so
that sonic speed is Jjust reached  in ‘the minimum area section, the
~ variation of velocity along the tube. becomes that shown in curve.
II. Any further decrease of the pressure 7pz cannot alter the
“flow upstream of the minimum area, since the velocity at the
minimum gection cannot exceed the velocity of sound. The only
effect of decreasing the downstream pressure is to promote a
supersonic flow region downstream of the minimum area, as shown
by curve IIT.of figure 5(b). This region is termlnqted by an
abrunt return, uhrough a compred31on shock wave, to ‘'subsonic flow,
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The position of this terminal shock wave must be such as to bring
about the necessary conversion of kinetic to thermal. energy that
is required to promote the downstieam pressure p2. For present
purpeses, the most important point concerning the flow as describ-
ed is that when the velocity of sound is attained at the minimum
area section, no further incrsase in the flow rate can be made
regardless of the extent of the supersonic flow region downstraam
of this section, When this mazimum flow rate has been reached,

the stream tubs is said to be "choked," '

‘What has been said concerning the choking of a single stream
tube appliss to the comdlete sgystem of stream tubes past an air-
foil mounted in a two-dimensional-flow tunnel, as shown in figure

6. That is to say, vhen the velocity of the undlsturbed flow far .
‘upatrsam in the tunn >1 reaches & certain value, sonic velocity is

attained at the poin% of minimum area of each elementarv stream
tube hetween the airfoil and the uppsr wall of the tunnel, It is
important to note that the locus of the points of minimum area of
the separate stream tubes does nobt necessarily coincide with the
shortest line between the airfoil and the upper wall, This is
illustrated in figure 6, vhere the line A represents the short-
est distance between the airfoil and the wall, If the conditions
of flow were uniform across the stream at each chordwise station,

" the flow between the airfoil and the wall would be the seme as in

a single elementery stream tube, and sonic velocity would neces-
parily be attained along line A, In the actual case, however,
the flow is twe-dimensional, and gonic velocity is attained along
some line, such as line B, not coincident with A, A similar
situation exists in the spaﬂe between the airfoil and the lower
wall of the tumnel, where the sonic velocity.is attained along
some line D, . As bbfore this line does nct necessarily coincide
with line C, the shcrtest line which can be drawn from the
lower surface of the airfoil to the lower wall, (In order ‘o
avoid an apparent contradiction with the requirements of continu~-
1ty, it must be kept in mind that the velocity vector, is not, in

general, perpendicular to elther lines A and C or B and.C, ) Sonic '

apeed is generally not attained coincidentally along lines B and
D, Once it is attained along both these lines, however, the rate
of flow past the airfoil in the tunnel can undergo no further
incréase. The Mach number of the flow ahead of the airfoil then .
hag its maximum attainable value. This value is described as the
"apparent choking Mach number,' - ‘

In practice,'thé lines of sonic'speed/lie very close to the
lines defining the shortest distance between the airfoil and the
tunnel walls, For purposes of analysis, it will be assumed that

i

”
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they are 001nciden ‘that is, that lines B and D coincide, respec-
tively, with lines A and C. Under these conditions, the oalcu,atbd
rate of flow in the tunnel (which must in any event be equal to

the rate of flow across lines A and C) will be somewhat greater
than that which actually exists when the lines B and D have their
true positions., The assumption of vnidimensional flow will thus
lead to a computed choking Mach number, which is sllghtly greater
than the theoretically correct value.

On the basis of the foregoing assumptlon a relatlonsblp be-
tween the model size and the choking Mach number can be obtained
from elementary considerations, The velocity V' and density
p! of the flow far forward of the model, where the cross-
gsectional arsa is A', are constant across the stream, The
velocity V, and denslty pp across the sonic- speed lines B and

D of figure 5, where the area has the minimum value Ap, are again
congtant acrogs the stream. The velocity Vp, 1is the local sonic
speed V, so that the equation of continuity beccmes

Tl :

p'V'A! = pmvomAm
Assuming adiabatic relations, the density and velocity terms

can be related to the Mach number far upstream, which is now the

apparent choking Mach number., The end result is that the ratio

of the arsa of the undisturbed stream to the minimum flow area

can be expressed in terms of the apparent choking Mach number

M ch as : '

. 7+l
\ - j:(_'-__5
AL g 2ed (M1 ) -1 } ’ | (86)
Ag - M'en 7+1 l_ -

The area ratio is clearly

A b
Am " h - tp

where h is the tunnel height and tp the projected thickness

of the airfoil normal to the flow direction. "For reasons which -
will be evident later, the projected thickness in this rclatlon
will be replaced by an "effective” thickness te.
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Taking the value for y for air as 1.4, equation (86) be-

- by IS 'L :
. 2. oh (87)
Qo n

[13 (M'cg?' R 1}3

In figure 7, the ratio tg/h .is plotted as a function of

the apparent choking Mach mumber. The region above the curve
represents an impossible state of flow, As a matter of interest
the resulits are shown for the supersonic- as well as the subsonic-
flow regime, although for the purpose of this report only the
subscnic choking Mach numbers will be considered.

In writing equation (87), the projected thickness was re-
placed by an effective thickness. If choking occurred as was
assumed in the preceding analysis, then the effective thickness:
determining chcking would be, of course, the projected thickness,
In any real case, although the effective thickness may never be
less than the projected thicknsss, it may be greater for two
reagsons, First, if the angle of attack is sufficiently large in
absolute velue, one of the lines B or D may move downstream of
the trailing edge because of the continued contraction aft of the
airfoil of the portion of the stream passing that line. Second,
gince on any aerodynamic body there exists, because of the action
of viscoszity, a boundary layer wherein the velocity must be re-
duced below the velocity in the otherwise unaffected flow field,
it follows that the velocity of sound cannot be attained at those
points close to the airfoil surface on the lines B and D of
figure 6. ‘ T

To estimate the choking Mach number in any practical case,
it is necessary to assume that the effective thickness is equal
to the projected thickness of the airfoil, Because of the
possible contraction of part of the stream ai't of the airfoil, as
well as of the assumption that unidimensional flow exists as
previously described, this procedure will lead to a computed
choking Mach number vhich is greater than the thecretically
correct value for an ideal, incompressible fluid. Further, the
influence of the boundary-layer will cause the actual choking
Mach number to be even less than this theoretically correct value.
Thus the use of the projected thickness in the computation may be
expected to lead to an overestimation of the choking Mach number.,
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n this regard may best be

The eftect of the boundexry laoyor 1
illustroesd by the cass of a fiav plete get at zero sngie of
attack in a two-(imensionsi-flow winé tunnel. Since the project-
ed “hickness is cero, ths previously devaloped theory vould indi-
cabtec that no choking w*u]q occur in this casa. Actvally, becauss
of the fact thzt the plats has a boundary layer and en accompany-
ing wake, chcking doss occur, as is shown in the fellowing dis-

e n wake effect, wherein the effect
of coufining the wake of v eipsyiencing drag was ccnsidered,
. that when ths infiusnce of the wzie spreads to tune walls so that
_a wniform velocity field aﬁa*l exists, the ewpera+ure st chis

(6]
]
it
e
s
ct
=
\D
- M@
O}
Q
T
Y e
g
[o]

(88)

downssreum position is related to the tmmheiatur, upstream of the
mcdel by equation (13;. TUsing eguation (9), the ratio of the
corresponding velocities may be seen to be
vt =
TR SR () i
v ) L. 2 \h/_
v (7 + 13{M7)%
4 . Ca'! / \ r : - c LI N ™
22 sz 4 [ CN p 2 | d fcy i
- P2 (M)~ (f ) M) 2 -
A B-QeY ST 700 = g ) (BTN 12 - A E) )

The velccity ratio ig imaginary when “the sizn of the group
of terms under tho radical is negative, The funcilonal relatvion-
ship betwesn the choked Mach number =23 the drag~ﬁansity factor
Teq', found by equating the terms unier s radlcsl to zerc and

golving the reaulting equation, is thus deturmined as

v

1o+ y{m T S|
Toal o lienl J1 -t DU .- B (89)
27 (M, oy oy (s )R J
where, as belore, )‘ Setting 7 = 1.4 for air gives
i A{MTan)? 1 - (W 2
Toy = 141.4(Mch)” 1 iten) '1 (50)
2. S(M'Cu)“ 1+1.4M¢ cn J

a gravh of this functiocn is shown on figure 8. The effect of drag
n choking for supersonic as well as subsonic wind tunnels is
shown as a matter of interest. . - :
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The manner in which drag promotes chokihg may be comprehended
by ezaminirg the variations of ths ratios VYV and 'I‘"/'Ti in
equations (88) and (13) as ths value of Tcg' 1is increased., In
the casé of the subsonic wind tunpel the effect of 1ncrca31no
Tcq' is to increase V'/V', On the other hand, T"/T' and hence.
Ve"/Ve! eare reduced, Consequently, M"/M!' is increased. In
the case of ths superaonic wind tunnel the effect of increasing
Teg! 1is to decrease VY/V' and to increase T"/T' and hence
V,"/Vy'. Consequently, M"/M' is reduced in this cass. In both
cazes choking occurs when the value of Tcg' is such as to make
the downstroam Mech number " mitv*. '

There is one definite limitation of the previous analysis in
that 1t was assumed that tho effective tunnel area remained con-
stant at least tntil the wake had spread to the walls so that uni-
form ilow conditions were obtained across the stream. Such a
conditicn does nob pravail in any conventional wind tunnel, never-
thelesg the rusults are useiul in providing approklmaue values for
the effect of drag as it determines choking., For example, a flat
plate lhaving an apparent drag ceefficient of 0,007, if phe chord-
height ratio were 0.5, would chcke a subsonic wind tunnel at a
Mach number of O. 9:,1f choking occurred as agsumed in the analysis.
The serious influence of drag on cheking for airfoils for which
the drag cosfficient may bs many times this value is cvident.

To suwmmarize, it has been s 1own that choking will occur in a
wind tunnel as a rusult of the confinement of the flow caused by
the presence of the model and its wake. In the case of airfoils

cof normal thickness, choking will usually be determined by. the
effective dimensicons of the body - that is, by the actual dimen-

sions medified for the effects of bourdary layer and stream con-
traction aft of the airfoil as previously described, Properly,
the boundary-layer effcct is a drag influence, but since its
contribution is useually small it is most convenient to classify
such confinement effects along with those due to the physical air-
foil dimensions. In the case of very thin a1v101]s at small
angles of attack, choking will usuvally result from tbe confining
effect of the wake rather than the cfi'ect of the airfeil BthﬂnGSS.

Oncé the choking Mach number is reachod, nec further incrocase
in tumnel power can affect the gpparecrt Mach number. Such an in-
crease will only serve to extend the supersonic flow region down-
strean of the lines of sonic spsed. The forces experienced by
the airfeoil at chokwng thus vary dcﬁcndlng on the power input to
the w1nd tunnel.

‘
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As a finsl consideraticn it should be noted that the flow in
the tunnel at clioking does not correspeond to any real Tlcw over
an airtfoil in fres air. Since the choking Mach number approaches
unity as the tunnel height h becomes infinite, flow in the
tuanel at choking, if it is to correspond to any flow in free air,
must correspond o the flow that would occur arount an airfeil in
a free stream movinz at the veleocity of sound. It can be demon-
strated, however, thalt such a correspondence is 1 nossible,
Experiuental evideace indicates that the flow conditions existing
in the twmel at chokKing are essentially steady stave, That the
flow about an airfoil in a free sbtresm having the velocity of
gound canact be a ctealy-gifate ficow can be readily shown, For
instance, it was demonstrated previously that in any strcam tube
the vilocity of sound, if it im attainsd at all, must be atiained
at the minimum arsa scction. That is to say, the rate of flow
per uit area is a maximum where the velccity is the velocity of
gsound. Now, nresuppose a steady-state flow in the stream tubes
“in the vicinity of an airfoll in free air when the stream
velocity is sonic speed. If tho velocity elther increases or
decreases as the flow passes the airfoll, the stream tubes must .
expand. This is clearly impcssibvle, since the disturbance to the
flow would then increase conbinuously es the distance from the
airfoil increases. On the other hand, if the velocity romains
the velocity of sound in each stroam tube, the streamlines will
then have the same shape at all distances from the airfoil. Also,
the pressure will remain constant throughout the entire flow
field. This is, of course, impossibles, since pressure differences
are necessary to promotce the reguired changss in the direction of
flov past tho airfoil. A steady-state fiow similar to that obscrv-
ed in the tunnel at choking therefore cannct exist in free air at
a free-stream Mach number of wnity, Thus at the choking Mach
number, the rlow at the airfoil in the tunncl cannot correspond
to any flow in free air. It follows that, at choking, tho
"influence of the tunnel walls cannot. be corrected for. Furthe
in the range of Mach numbers clese to choking, where the flow
irfluenced to any extent by the incipient choking restriction,
any correction for wall interfercnce must be of doubtful validity,

Y'
-
18

That the flow at or close to choking cannot be corrected for
the interference effects of the tunnel walls may be reascned from
another. point of view. The assumption that it is permissible to
correct wind-tunnel test data for the influence of the walls is
Justified only when the influence on the fiow nsar the model is
of such a uniform nature as nct to alter the general character of
the flow materially from some corresponding flow in free air.

For instance, a velocity correction for wall interference may be
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.
‘

applied with confidence cnly if ths velcclity incremenrt resultving
from such interference is constant or nearly congtant over that
portion of the flow field whersin the influence of the model on
the fiow is important. Viewed in this light, it is clear that
at or a.oqa to chcking no correction can proper1y be applied,
since an nkorqmr& infiluancs of the model on the flow ig felt
over a range extending close or up to the walls, within which

rangs the in ]uenor of tlhie walls on the flow is not at 21l wniform.

it ia Shus clear that the equatio 15 which have been derived
for correcting the test data optained in a subsonic two-
dimensiormal-fiow wind tunnel for the effects of wall interference,
camnot apply at the choking Mach number nor for a range of Mach
numbers below the choking value., Moreover, wien the model is not
symrebrically disposed, the flow will, in general, attain sonic
velccity across the stream(on ore sids of the airfoil before it
does on the other. In such cases, it ig to be expected that the
range of Mach numbers telow ChO&ng for which the corrections are
invalid is extended over that which would occur with a more
neariy symuaetrical flow pattern.

DISTUSSION

There 1s, at present, only a very limited amount of ex-
periméntal data available which can be considered satisfactory

for determining the accuracy of the theoretical interference

correcticus derived in this report. Moreover, none of the
available data were obtained at sufficiently high Mach numbers

to permit an evaluation of the accuracy of the theory with regard
to the effect of ccompresaibility, '

-In figure 9 are shown the experimentally determined varia-
tions of 1lift coefficient with angle of attack for several NACA
0012 airfcils, having diffevent chord-lleight ratios, The data
for those models for which the chord-height ratios are 0.25,

0.5, ard 0.8 were obtained from tests 'in the 7- by 10-foct wind
tunrel at the Ames Aeronautical Laboratory. Thess models were

of 8-foot span mounted across the 7-foot dimension of the test
section; 6-inch-gpan dummy ends were used in an attempt to obtain
two-dimensional flcw, A gap of about 1/32 inch cccurred between
the test panel, which was connected to the balance freme, ard the
dummy ends, whlch were fastenszd to the tunnel walls, The 1ift was
determined both from force tests and by integration of chordwise
pressure distributions at a section close to midspan. The data
rresented here are those obtained from the pressure distributions.
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The data for the model for which the cherd-height ratio ig 1.0
were obtained from tests in the low-turbulence wind tunrel of the
Langley Msmorial Aercnantical Laboratory, This 3-foot-span model
was fastened directly to the side walls of the tunnel such that
no air gay existed, and the 1ift was determined from measurements
of the reaction on thae rcof and floor of the test section. The
test results for the various models are shown, uncorrected for
tunnel-wall interference, in figuvre S5{a), In figure 5(b), are
sinown the game data correstsd Tor wall interference by means of
equations {62) and {34b). For all the medels, the cerrection
term depending upon. Teca' is ne g*lglo¢y cmall. The test
Reynolds nuriers range from 2,000,000 to 6,000,000, It is seen
that the covroctbd data obtained i,p e mudels for which

(c¢/L) equals 0.25, 0.5, and 1.0 agree well with one another and
with the section 1ift characteristics as obtained from tests in
ths WACA variable-density wind tunasl (reference 15), Tae data
obtained with the model for which (c¢/h) equals 0.8, when
corrected, indicate a lower lift-curve slope than do the other
data. T“ls is thouzat to be due to the effect of air leakage
through the gaps at the ends of the test parel, the influvence of
which may be expected to tecome more pronounced as the chord of
the airfell is increased relative to the span.

In this regard, unreported tests in the Langley low-
turbulence wind tunrel have shown that the presence of any gap
through which leakage can occur will influernce .the aserodynamic
characteristics to a surprisingly marked extent, This fact was
also demonstrated by the Ames Laboratory tests on the IACA 0012

irfeils. A comparison of the 1lift characteristics obtained from
balance measurenents with these derived by integration .of the

resswe distributions, which are those given in figure S, showed
tne lift-curve glopes lor the Tormer to be definitely lower than
those for the latter, This indicates that the 1iif't unear the
center of the test panel exceeded that at the sections near the
gaps; that ig, that the flow vas definitely not two-dimensicnal.

Tr. figure 6(a) is shown the experiumental variation of 1ift
coefficient with angle of attack for an NACA 23012 for which
(c/h) eguals 1L.0. These data were obtained in the Langley low-
turbulence wind tumnel at test Reynclds numbers of 4,560,000 and
6,450,000. The same data corrected for tunnel-wall interférence
by ueans of equations (62) and (64b) are shown in figure 6(b),
together with section 1ift characteristics as obteined in the
variable-density wind tunnel at an effective Reynolds number of,
5,000,000 (reference 16). The corrected data are seen to be in

excellent agreement vwith the results from the variable-density
tirnel
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In figure 7(a) is shown the varia
moment coefrl
foils as obha

d

‘_h

n of grarter-chord-
icient with 1ift bOGleC;Gﬂu frr the NACA 0012 air-
ined from the 7- by L0-foot wind-tunnel tests
sgcribed, In figure 7(b) are shown the same data as
re interference of the turnel wells by means of

. The section moment cbaracteris+ics for
thig airtoil as ined@ from tests in the variable-density wind
tunnel {reference 15) ars also shown for ccmparison. It is seen
that the corrected date are in fair agreemsnt with the data from
tre vsrictle-~density wind tunnel, except for the molel for which
(¢/h) egquais 0.8, It is beliseved tiat this disagreemént is
again due o the effzcte of ailr leakage through the gaps between
ths test panel and the dummy ends, and not to any shortcaning in
the thecry. :

previously
cervected fo
equation (6

In Tigures 12 and 13, ithe unccrrecited and corrected profile-
irag ccefficionts for six symmetrical bodies at zero angle of
attack are plotted as a function of the experimental chord-height
ratio. fThe uncorrected experimental values cg', shown by the
creosses, are taken from results repor+ea vy Fage in reference 17,
Tre theoretically corrected values cg, indicated by the circled
points, were computed from equation (67) for M' = 0., The extra-
polated free-air value given in reference 17 for each of the
bodies is indicated by a horizental dashed Line. It is seen that
the corrected points are in good agreement with the extrapolated

free-air values. TIn view of .the assumptions mede in the theoreti-
cai development, the relaulve accuracy of the correctiona at
large chord-height ratios and large drag coefficients is remark-
able, particularly in the case of the circular cylinder.

Giauert (reference 2, pp. 56-37) suggests for the drag cor-
rection in an 1ncwmpress1ble fluid a fovmula wvhich may be written
in the -notaticn cf this paper as

) — H ( v E _9_ Q
cg =ca' 1 -2 Ao- 2!4(0) h) » (s1)
t' .
where (t/c) is the thickness ratio of the airfoil. In this
equation, as in equation (67), the first correction term appears
as a IoSUlt of the interferencs betuween the airfoill thickness
and the tunnel walls and is identical with the corresponding
term in equation (687) for M' = 0. The remaining term is an
cmplrlcal correction for the effect of the wake. The empirical
factor % is given by Glauert =8 a function of (c/t), the
values being derived by fitting equation (91) to the. experimental
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data of reference 17. Thisg wake ternm differs fundamentally from
the wake correction of equation (€7) in that the corr ction in
this case consists of a singls term which varies as (c/h);
whereas the correction in equation (67) comprises two terms, one
of which varies as {c/h) and one of which varies as c/h
Egquation (67) gives corrected results which agree as closely w1th
the fres-air values as do the results obtained with equation (91).
It has the advantage that it is generally applicable to &all air-
foils and does not depend unpon the experimental results of tests
ol specific sections.

In sumrary, the corrected data of figures 5 to 9 indicate,
for the most part, that when the flow is maintained strictly two-
dimensional, the theoretical corrections for the tunnel-wall
interference are, for low Mach numbers at least, accurate up to
chord-height ratios of unity. The high aocuracy observed at the
larger valuves of (c/h) must, however, be regarded as fortuitous
since the theoretical aﬁaly81s ig predicated upon the assumption
that the chord-height rati o iz emall encugh that all points of
the airfoil may be assumed to lie on the center line of the turnel
and that powers of (G/h) higher than the second may be neglected.
It is thought that, at low Mach numbers, chcrd-height ratios as
high as 0.7 are permissible if the tests are conducted only for
the purpose cf cbtaining drag characteristics at low values of
the 1ift coeificient, However, care must be exercised in
ascertaining the maximum chord-height ratio permissible in any
particular case to insure that the interference 1ift represented
by equation {63) is not of such nature and magnitude as to affect
the general character of the flow in the boundary layer along the
surface of the model. In tests condusted to determine the aero-
dynamic characteristics of a model up to arnd beyond the maximum
1ift, it is believed that the chord-height ratios must be kept
to much lower velues, At low Mach numbers, chord-height ratios
Lp to 0.4 are prcbably permissible; however, there are no experi-
mental data available at present to support this -contention,

- As noted previously, no experimental data could be found
which would permit an evaluation of %the accuracy of the calcu-
lated effects of compressibility upon’ the wall-interference
corrections, Most certainly, as the test Mach numbers increase,
the permissible chord-height ratics mugt decrease. iheory 1nd1-
cates that as long as the velocities induced at the position of
the airfoil by the wall interference are small as cocmpared with
the velocity of the undisturbed stream, the corrections developed
in this paper are valid sven though the stream Mach number exceeds
the critical for the airfoil under test, However, as previously
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"noted, at and for a range cf Mach um‘s g below cheking, the inter-

ference veloclitiea are no longsr small and the corrections are
invalid. The extent of this range is unhnown. It should bs
emphagizct that the flow pattern at and in ths immediate vicinity
of choking does not correspond to any flow pattern ohtainable with
the airfoil in frse air; sc the test results in this rangs cannot
be correctsd by any method.

For zero Mach mwber- (i.s,, for an incomprsssible fluid), the
results of tnp preseat papsr can be comparsed with Goldsteints
artlun1ar correcvions for aix
.0

foils having small thickness and
aimber andé swall force coefficient For an airfoil on the center
line of the tunnel, equations (13 ) (139), (140), (143), and
(144‘ of veference 3, together with the expxessions of appendix

of r=s fexunce 4, glfe_the Telleowing equations for the velocity,
anble of attack, and asrcdynamic ccefficients in an inccoxpregsible
fluid:
P j k!
V:V"gl+o(?CO-C)‘r
4 ) J

a=a + 2 ey o+ 4:(fmc) 5
. Z‘ILL ;gj

N |
[ 7 (92)
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. - Here, the moment coefficients are for moments about the midchord,

2

and (emp) is the moment coefficient at zero 1ift in free air.
A :

‘The quantities C, and. C; " are determined by'the shape of the

base profile according tc the equations
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n‘/ 7; gin €

N\,
m e (93)
A Y+ cos
Cé'= = _E ;g:_?ﬁ 4
T ) ¢ 8in 6
vo =

In deriving these eguaticns, the notation of roferences 3 and 4
has been changed to agree with that of the pregent paper, and the
lift-curve slope in free air assumed to have its theoretical
value cf 2i.

The corresponding corrections as obtained by setting
M' = ¢ in cquations (26), (62), (63), (64a), and (67) of the
present paper are :

)

A J.+Ao-+Tcd£}

g
a=a' + o cy' + 4cmcij

Z
s .
: | >
, CZ = Cz’il -0 = ZAO'- ZTCdY 1 (94:)
i .
[ e
cqg = ¢4’ )l - 3ho - 2Tcy’ }
. 1
Cm_. = Cmc' ]l - '2./“.0' - ZTCd’ 3
5 3 W J B

The last of these eguations is obtained from equations (62) and

(63) by means of the relation cp = cmc“+ % cy.

2 K
The correction terms involving o in the two equations for

" the velocity are equivalent, except that the factor A, which
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g in the equation of the pr
€ n

: regent paper, is replaced in
in's eguation by the guant p

ty (2Co - C,). 3BEguvation {93)

< 2 oy c sin6

(o]
o

A f’\/—rl.\. —'\ 8 A . .
{20y - C,) =22 [/ {25y g2y .8 A (95)
© 11,_// ‘\C) \C) b8 C-2 )

where - A is the cross-secctional azrez of the airfoil. The factor
L can be expressed in analogoue form by means of eguation (19.05)

. 1 2 . . .
of reference 2. Since 5 e is equivalent to the quantity

At® in reference 2, this equation becomes

A, .
P - (98)

=1

46.'.

‘A=

+
c

Ao

vhere A, iec the so-called "virtual area" of the base profile,
The virtual area of a given body in two-dimensional flow is de-
fined &g the area occupied by a fictitious quantity of fluid
having a uniform density p and velocity V and possessirg a
kinetic energy equal to the total kinetic energy of the field of
flow about the same body when it is moving forward with a steady
veloclty V through an unlimited expanse of incompressible fluid
of density p. The magnitude of the virtual area depends upon
the shape as well ag upon the size of .the body. It is seen that
the first correcticn term in the velociiy equation of the present
paper (which for the incompressible cese is simply the result
criginally derived by Lock) has a somewhat higher value than the
correction term of the Goldstsin equation, The Goldstein equation
contains no term corresponding to the term Tcg! in the equation
of the present paper. Goldstein includes this correction, however,
in thé equation for the determiration of the. stream velocity from
measurements made at-the tunnel ‘wall upstresam of the model.

The Goldstein equation for the correction of the measured
drag coefficient likewise differs from that of the present paper
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by the replacement of the factor A by the quantity . (2Co - Cz)
and by the omission of the term in Tcg'. If Goldstein's equation

is applied to the experimental results of Fage given in figures

12 and 13, it is found that there is. little to choose between the
corrected results given by the two equations, except in the case
of the circular cyliinder where the results obtained from the equa-
tion of the present paper are better.

The corrections to the lift and moment coefficients as de-
rived by Goldstein differ marksdly from those of the present
paper in that Goldstein’'s equatlons contain no terms corresponding
{to the 2A0 and 2Tcgy! terms which appear in the equations of
this paper. As has been noted nrevious1y, the . 2Tcg' term. is
accounted for indirectly in the determination of the apparent
strean veleccity. A term of the type 20 is necessary, however,
to correct the measured coefficients for the increase in dynamic
pressure caused by the interference between the walls and the air- .
foil thickness. ' ‘

_Since the moment coefficient at zero lift is the same about
any -axis and since the change from the free air to the measured
moment cosfficient in the correction to the angle of attack will
introduce only differences of' the second order in 0O, Goldstein's
equation for the corrected angle of attack may be written with
suailclent accuracy as

a=a"+3 e, +4 ¢,
: ’ (o]

In this equation, the part of the correction due to the moment on
the airfoil is constant, its value depending only upon cmc' for

: _ 4
zero 1ift; whereas in the correspornding equation of the present

paper the part of the correction due to the moment varies with
the angle of attack. . This difference is of small consequence in
most applications; however, the equation of the present paper,
vhich includes. the actual variation in moment, may be somewhat
the more accurate, especially at high angles of attack.

The compressibility fa0uors which appear in the complete
equations of the present paper are comparable with the results of
Goldstein and Young (reference 5). The equation for drag as given

4
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in reference 5, when expreasssd in cosfficlent form and altered to
agree with the notation of the present paper, can be written

2 L 1 % '
- Ao - 2K | = 97
[_].- (M )2] 3720 [lf(M' )a]. 3/2 ( h). (97)

- -

This equation is obtained by modifying equation (91) to include
the effect of compressibility. Comparison of the compressibility
modifications of equation (97) with those of the corresponding
terms of equation (67) reveals that the compressibility factors
appearing in the first correction terms differ by the inclusion
of a term -(M')® in the numerator in eguation (67). This
difference arises from a failure to note in the development of
equation (97) that in a compressibie fluid the dynamic pressure
in the tunnel is affected by the change in density which ac-
companies the change in axial velocity. The compressibility
factor of the seccnd (or wake-correction) term of equation (97)
is not comparable with the compressibility factors of the wake-
corrvection terms of equation (87) because of the fundarmontal
difference in the nature of the corrections alresiy poinved oub
in the discussion of egquation (91), The compressibility factors
in the equations for lift, mcment, and angle of attack in reference
5 agroe with those appearing in the correspording terms of the
equations of the present paper, It shculd be noted, however,
that the 1ift and moment equations of reference 5 include no
corrections for the difference between the true and apparent
dynamic pressures in the tunnel.

Cd = Cd' l.

CONCLUSIONS

Airfoil data obtained from tests in a two-dimensional-flow
wind tunnel can be corrected to free-alr conditions by means of
the following equations:

2
1 Ao+ 1+ 0.4 (M)

'L l] + —————re
* [l_(Mt)?:]S/Z 1 - (M,)-B

v

1"

TCd' (26)

_2- M)f Ao+ [2- ()2 ] [1+0.4(M7)2]
[l-(M')8]3/2 . 1 - (M‘)B

Teg'y (29)

=
1]

Q' ¢ 1+
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RRY rl N 1-0.7(M’?i Ao 1-0.70u") )2 (40,40 )7] Teath  (32)
" [a-(m0)E] sz Lo (e

L+ o0.2M)2 [1+0.2(M")&][1+0.4(M)?)

M=M* <1 + . Teg ! (33)
. "l"'!/"’ [~
[l"r(M‘)n.Jv 2] ) l - (M')c.
o =a' + 027.50 cz: + 4cy ?} . (degrees) (64b)
N c
a1l - (M1)2 S
r‘ o 2 - (M)
cy = ¢y ﬁ'l - - - = Y
‘ L 1 . (M,‘)a' [l - (M«)a]s a'
2—M'°l+04M"3

1- (M)8

2 - (M)2 Aoe [2 (41)%] [1+0.4(u")%]

-ch = cm ' - 2 3/3 1\a
¢ 2l B-md : L- ()?
1 O , 63)
¢ 4L - (M,)g] (
.3 - 0.6(M1)R [2 (M' 2] 10,4 (M1)E]
st T e e T (87)
whgre |

Q
=Y
[V
/\
=lo
~—
[

"8

and A is a dimensionless factor the value of which depends upon
the shape of the base profile of the airfoil, (See equation (3)
and table I.) -The remsining symbols are defined in appendix B,
Numerical values of the functlons of M' which appear in these
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equations are given in table II., 'Experimemtal pressure distri-
butions also can be corrected by a method’outlined in the text.

The corrections derived should be valid theoretica?ly up to
a Mach number near the choking valuve, which is the maximum Mach
numher attainable in the wind tunnel The choking Mach number is
shown to be the stream Mach number at which a Mach number of unity
is attained locally across the tunnel either (1) at the position
of the airfoil becavse of the reduction of the available flcw
area occasioned by the presence of the airfoil, or (2) downstream
of the airfoil as a result of the influence of. the airfoil drag .
upon the flow in the wake, The choking Mach number can be esti-
mated by means of equations presented in the report.

Tnsofar as can bo ascertained from the small amount of-
experimental data available, the correction equations are appli-
cable at low Mach mumbers Lor values of the chord-height ratio -
(c/h as high as 0,7 if the tests are conducted for the purpose
of obtaining drag characteristice at low values of the lift co-
efficient, In tests conducted ‘to determine the aerodynamic
characteristics of an airfoil up to and beyond the maximum 1lift,
it is thought that a chord-height ratio of 0.4 is permissible at-
low Mach numbers, although there is no experimental evidence to
support ‘this contentlon at present. At high Mach numbers the
permissible chord-height ratios must logically be expectcd to
decrease, In particular, if the critical speed is exceeded it
is provable that only very small values, of (c/h are permlssible.
There are at this time no exper.mental data available on thls
agpect of the problem. '

Comparison of the results of'ﬁhe present paper with those
of references 3, 4, and 5 reveals certain differences as noted
in the section Discussion.

- Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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'APPENDIX A

. ]
THE VELOCILTY FIELD FOR A SOURCE AND FOR A SYMMETRICAL AIRFOIL
IN A COMPRESSIELE STREAM

The velocity tinduced at a point in a compressible fluid
stream by a single fluid source can be found to a first degree of
approximation by a modification of the method used by Glauert
(reference 7) for the consideration of a vortex in a compres-
gible fluid. To this end, a system of polar coordinates is intro--
duced. The origin is located at the source and the polar axis
extends downstream parallel to the velocity V of the undigturbed
gtream, (See fig. 14.) The rosultant velocity U at any point
L(r,®) is defined by the velocity components w and n parallel
and normal, respectively, to the radius vector.

The condition for irrotational motion requires that at all
points in the field

d(rn) . dw (A1)
or oP

The equation of continuity is .

a(rw)_+ on + v ?EL + B QEL =0

dr I py o py OF

vhere py ig the density of the fluid at any point,

The source strength (mass flow per unit time) is denoted by
Q. Then, for any circle enclosing the source, congiderations of
symetry and continuity, respectively, provide the two integral
relationships
an

[ nr a9 =0 ‘ ‘ (AS)

‘and ) 0 21T

o

f pzWI' a® = Q (A4:)

o
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The radial and circumferential comporents of the velocity
may be expanded in the seriss

w
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where Ag and By are functions of ®. If r is large, it is

gufficient to retain only the first terms of each power geries, °
go that

v i/cos '%0+é)j;
\ r/ o

]

. W

(A5)

-V (ain P+ ,-I?\
r)
-t

To the first power in (l/r), the square of the resultant
velocity is ’

(U)° . w2 n®
\V) = 2

8]

=1+ % (A cos ® + B gin P)

For reversible adiabatic flow, the local density p; 18 related
to the density p of the undisturbed stream by

1
J NI
. Y - 2y (UY 7-1
o =0 gl - T [(v) 'l]‘
where M is the Mach number of the undisturbed stream and v 1s
the ratio of the specific heats., Thus, to the first power in

(l/r):

\ a8 .
Py =0 1 - %7 (A cos ® + B sin 9 (A6)
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The solution is now obtained by inserting values from
expressions (A5) and (A6) into the fundamental equations, Sub-
stitution of (A5) into the equation for irrotational motion (Al)
requires that A shall be a constant., Substitution of (A5) and
(A8) into the equation of continuity then gives

@ .

T (1 - M?sinam) = M2 (A cos 29+ B sin 29)

which becomes upon integration

N E

B(1 -~ M® 5in® @) =

M2 A 8in 29+ C (A7)

where C 1is a constant. The integral equations (A3) and (A4)
become, respectively, ’

27

. \
f Bi® = 0 o (a8)
and o ' : '
ar o .
2 . 8 ' . . /' B
M B sin 29 dP = 2rA (1 ~MY.Q o (A9)
2 J ' 2 pV
/ _

Substitution of the expression for B from equation (A7)
into the integral equation (A9) gives

A =2 L ‘
‘ 2 pV af1 - M2

while substitution into equation (A8) shows that C = 0, Thus,
from equation (A7),

B = Q | M2 gin 29 ' e
o anpV (1 - MB singCP)'\/l -M

The expressions for the velocity components thereuforg become
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w-—VcosCPf——B——"——--—‘-—
anpr - /1 - MEJ R

F ' (Alé)

n=-Vsin®- -—9—
2npr

M2 gin® cos @ “'i
(1 = M2 gin® 9) A/l'-__MEJ
o

For a Mach mmber of zero these equations reduce to the well-
known resuits for a source in an incompréssible fluid,

From equations (ALO) the velocity components. u and v,
parallel and perpendicular, respectively, to the direction of the
undisturbed stream, are found to be '

1 CD .
u="yV + c! = -_CO’S ' P -
. 2npri Ajl - M2 (1 - M2 gin® )

— . (A11)
Q _'\/1 = M® gin
2npr | 1 - M° sin®® | : ,

<
N

The drag experienced by the source can be determined by
evaluating the integral

f {PZ cos @+ pzw(w cos ® -~ n gin ‘P) rd @

over any cn.rcle enclosipg the source. To the accuracy previously
Qmp] cyed, the pressure at any point is

pl=p-9-¥‘<—(A cosCP+BsinCP) ’ (A12)
Insertion of thls eyPresswon together mth (AS) and (A6), into
tlne equatlon for drag gives finally

‘D=-VQ . - . . . (A13)
which is the same as for a source in an incompressible fluid, It

ig apparent from considerations of symmetry tnat the 1ift force
of the source is zero. N
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The results of equations (All) can be used to study the field
of flow about a symmetricel airfoil at zero angle of attack in a
uniform stream. Such an airfoil can be represented by a suitable
system of sources and sinks distributed continuously along the
chord line., If the notation of figure 15 is used, the vertical
velocity v;i 1induced in an incompressible stream at a given point

(xo, ¥o) on the surface of the airfoil is

c c
: a9 YA . aQs '
vy = = sin @ [ 71} 4y - L o (=) ax (a14)
2np r ax 2tp (xo-%)“+yo° \dx .
‘ )

0O

©r4q. : .
where (??3) is the strength per unit length of the source-sink
X ;

distribution in an incompressible'stréamq From the second of
equations (All) it follows that the velocity v¢ at the same point

in a compressible stream is

. :
v. = L1 Afl - M2 sin @ dQc) ax

c = =
2np r(1-M"gin® ®) \dx
0

or

. L
. 4 |
ve = N1-MZ Yo q( QC) dx (a15)
2np (x0-x)2 + (1-M )yo® \ax
o B

d | © :
where (ng) is the strength of the source-sink distribution ip

the compressible case. For any given airfoil of small thickness
the condition that the flow shall be tangential to the surface
of the airfoil requires that v = vy at all points on the
surface. This fact can be used to relate the source-sink distri-
butions for a thin airfoil in the compressible and incompressible
streams by considering the limiting forms of equations (Al4) and
(Al5) as y, approaches zero,

Consider first the limiting form of equation (Al4), which
may be written :

c

o, |
vi = lim 22 f T ( Ql) ax (Al6)
Y6—>0 ano (xo0-x)" + ¥o ax :
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It is. seen’ thau even for yo = O the integraT in this equation

is finite when evaLua“pd over any interval of integration not
including the.point  x = X5. In the limit, the contribution of

.guch intervals to the right-hand side of the equatlon is there-

fore zero, and the equatlon may be written
X SHE -

v. = 1lim. lm 20 /g L “q‘(in) ax
¢ =0 yg30 e (¥ - X + ¥t \dx

XO-E

In evaluatlng the limit in this equatlon, care must be taken that
the limit with respect to Yo 1is taken first in every case,

Integratlon by parts gives

Xo+€
. dQ. . XA ~ X
v, = lim  lim —2?1- '(?1323) (tan~t) ==
€—>0- y5—>0 P Yo
XO-C
X g+
) a- X=X
+/ Q (tan ) ° _ ax (A17)
ax? Yo
X5~ €

By virtue of the first mean value theorem for integrals (reference
18, p. 65) the integral term in this equation may be written.

® ‘ . ,
Xo+€- ' - %o '
. a2 . X =X 2Q. -1, X~ ~X
[“4 e (tan—1)_2 __dx= el ,ﬁ (tan~1) ° _ dx
J ax? Yo  \dx3 x:ilhj Yo
xo-e xo-€ .

Xot+€
(d Qil V/A Zo-X
tan dx
=t Yo

vhere (xg~¢€) < 5:12 X, and Xg < €s < (xo+€). The division into
two integrals is necessary to ensure that the conditions under
which the mean-value theorem is applicable are fulfilled; namely,
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Xy - X
Yo
same sign throughout the interval of integration. Integration
gives . :

.2 - ) v l
that (d Qi) is continuous and that (tan™1) "has the -

- . ’ ! : iy : :g . : '2 ..
f. (d Qé)-(tan'l) To¥ ax = | (d 212 - (d Q;)
dx Yo dx =§1 dixv x=ga »

~€
Xo . ‘

-1, ¢ Y, N
X E(tanl)——e-—glog'l+ 3 '
o Io. z. Io

In the limit, the valué of the terms in the second bracket in
zero, Thus, only the first term need be retained in equation
(A1l7), -which may now be written

vy = lim lim _}__(t@n-l) L (932) + 29-1 .
- €-—>0y5,>0 enp Yo dx X=X ¥€ dx X=X y-€

aQy L
=L (ﬁ) lim  iim  (tan"l) £
A fx=xe —>0 Y5> 0 Yo

Thus the limiting form of equation (Al4) becomes finally .

aQ\
2p \ dx _ ‘

where vy and (-dx—i> _may now. be considered as pertaining to the

pame general chordwise station x.
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N

The 1imiting form of equation (Al5) can beqfoundbin»éimilar
fashion. - In this case intecgration by parts gives in place of
equation (A7)

|x0+€
All - M2 dqQ . Xa = X
Vo= lim lim M ( ° l___(tan k) A,
€e—>0 y;>0  enp N Ma  Youf1-ME
o fx -¢
o}
Xp+€ i
+ f (d ¢ : ——— ("C&n 1 —-O——-————-_____ dx (Alg)
%" //\/ Ma ‘ 7oN1 - M2
xo~‘€ ) ’

As before, the value of the integral term in this equatioh is
zero, The limiting form of equation (A15) becomes finally

dQ '
V.- =--- ) A20 -
G . (A20)
which is the same as (Al8). \ -

Since for any given airfbil Vo = V4 ‘at all chordwisé
stations, it follows from (A18) and (A20) that '

aQ aQ;\ S \
L) ={ 2} ' (A21)
dx dx ‘ ,

that is, the source-=sink distributions necessary 'to represent

any given thin symmetrical airfoil in & uniform stream are
identical for the compressible and incompressible case.

This result can be used to calculate the effect of com-

" pressibility upon the field of induced velocities at a consider-
" able distance from the airfoil. The increase in longitudinal
velocity at a large distance ¥, directly above or btelow the

- midchord point of the airfoil in an incompressidble fluid is
approximately

c
(ug - V) =1 gu/f\ (é - ) <é8é> dx
S ey, 2 ) \a&
, o
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By virtus of the first of eguations (All), the corresponding
velocity at the same point in a compressible fluid is approximately

c

aQ

r
(u, - V) = l — g. x) __é> ax
'tm (l - MB2)372 / 2 dx

Thus, in view of equation (A2l),

(uo - V) = __._._.1'._.. /u- - V) (A22)

(1 - wE)s/2t

thet is, in a compressible fluid the increase in longitudinal
velocity at a point a considerable distance directly above or

below a symmetrical airfoil is 1/(1 - 3/’_ times the increase
in longitudinal velocity at the same p01nt in an incompressible
fluid. )

The foregoing results can be used also to determine the
effect of compressibility upon the drag of &n airfoil in a stream
having a longitudinal pressure gradient, Consider an undisturbed
nonuniform stream having at some glven point a velocity V, a
density p, and a streamwise pressure gradlent dp/dx. By
virtue of Bernoulli's equation, there must be at this point a
velocity gradient

L

= - (A23)

mig
SR ES
818

This holds true both in the compressible and the incompressible
cage. The velocity v a small dlstance x from the point in
question is then

vev+zx ¥ oy X (A24)
dx pV dx

As a result of equation (A13), the drag exﬁerienced by an airfoil
placed at this point in the stream is, for both the compressible
and incompressible casges,

C C

c
Y R /- (- VR 4\, , L dp aq
D = u/[‘ v(dx)dx = - V‘»//ﬂ (dx)dx-+ 7 ax ‘//N x(;x) dx

o - [e) ~ (e
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where (dQ/dx) is, as befors, ths strength per unit length of
the gource-aink sygtem necessary to represent the airfoil. In
order to fulfill the condition that the airfoil is a closed
body, the source-sink system must be such that

[3 .
aQ\ . A
o
Thus the drag is finally

C
D=2 42 ,/ x { €2 ax (a25)
S pV dx. ‘AX 4
0

in beth the compressible end the inccmpressible cases. If the
streanvise pressure gradient is amall, equation (A21) is still
applicable; that is, the source-sink distributions necesgsary to
represent the airfoil in the compressible and incompressible
cases are identical, It therefore follows from equation (425)
that the drag of an airfeil in & stream having a longitudinal
pressure gradient is wnaffected by fluid comgressibility.
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APPENDIX B

LIST OF IMPORTANT SYMBOLS
airfoil chord
airfoil thickness
funnel height

a factoridepending upon shape of base profile (seé‘éqﬁation
(3) and table I) ' :

oy

(%jf; factor depending upon size of airfoil relative

:to tunnel

1 (3) . factor depending upon size of airfoil relative
4 \h » )

to tunnel
angle of attack

gection 1ift coefficient \

section quarter-chord-moment coefficient
gsection midchord-moment coefficient

section drag coefficient
gtream velocity

Mach number

apparent Mach number at choking

Reynolds number
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Cp

—; ratio of specific heat of gas at constant pressure to

Cvy
to specific heat at constant volume (for air y = 1.4)

total head
static pressure
dynamic pressure

mass density

" coefficient of viscesity

absolute temperature

gpeed of sound
. comproessibility factor (sece equation (71) and fig, 4)

..section drag

section drag due to streamwise pressure gradient
chordwise lift distribution in coefficient form

interference lift distribution (see equation (78) and
table III)

local pressure ccefficient (see equation (69))'
local pressure coefficient (see equation (68))

coordinate of pcinte on chord line as measured from
leading edge '

angular coordinate of points on chord line (see equation

(43))
radial distance in polar coordinates

polar angle in polar coordinates (positive counter-
clockwise)

proJjected thickness of airfoil
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(*)

.Yy  effective thickness of airfoil o e

N ordinate of base prcfile

922 slope of mean-camber line

ax

Q source strength

ar : .

3z vorticity per unit length of chord line

u horizontal componsnt of velocity

v vertical component.of velocity

n circumferential component of velocity in polar coordi-
nates (positive counterclockwise)

W radial component of velocity in polar coordinates

A geometrical area of airfoll section-

A, virtual area of airfoil section

At cross-sectional area of empty tunnel

Ay minimm cross-sectional area between model and tunnel walls

A, local cross-secticnal area of stream tube

Ay Fourier coefficients (sec equations (45) and (49))

Supsrscripts.

(') vhen pertaining to fluid properties, denotes values exist-

: ing in tunnel far upstream from model; when pertaining

to airfoil characteristics, denotes values in tunnel,
coefficients being referred to apparent dynamic pressure
q' ‘

(") denotes fluid propertdes far downsiream from model

denotes airfoil characteristics in tunnel as coefficients
referred to true dynamic pressure -q
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Subecripts

c denotes values in compressidle fluid (excepting Vi)

i denoctss values in incompressible_fluid

1 tenotes local conditions at point in fluid

8 denotes conditiong existing far downstream when airfoil

: end wake are rerlaced by gource -

jirk denotes conditibns at minimum cross-secticnal area between
airfoil and tunnel walls

L- denotes values on.lower surface of airfoil

U

denotes values on upper surface of airfoil,
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NACA ARR No, 4X03

AT STUNOARD CEORDWISE STATIONS

e 1
x/c LN x/c Pg

c 0 o i 0.0 | 1.2475
0.005 0.1756 0.45 | 1.2869
0.0075 | 0.2195 || 0.50 | 1.2732
0.0125 | 0.2830 0.55 | 1.2569
0.025 0.3976 0.60 | 1.2475
0.050 0.5550 0.65 | 1.2146
10.075 0.6707 | 0.70 | 1,1670
0.10 0.7639 0.75 | 1.1027-
0.15 0.9093 0,80 1.0186
0.20 1.0186 0.85 | 0.9093
0.25 1.1027 C.90 | 0.7839
0.30 1.1670 0.95 | 0.5550
0.35 1.2146 | 1.00 | o
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NACA ARR No. 4K03 y Pigs. 1,2
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Figure 1.- Source system for analysis of-wake‘effect.

— — — — — —— —— —

.
c |
< x 3|
S XO..:‘7
V. A = X
S v ar
5 A dx dx

Figure 2.~ Mean-camber line in free air.



NACA ARR No. 4K03
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Fig. 3

Figure 3.- Mean-camber line in tunnel.
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NACA ARR No. 4KO3 - Fig. 4

T ;
= g—. i M—— = --.--—M PR
Qem) =17 +55* 35505 *

1.25| - .

1.20 - /
? 7
+ N
a /

; . /
(e}
¥ 1l.15¢+ /
]
%+
> /
ot
) /
0
o
[/
w .
51,10 ' ////
2 .
g "
3 /
1.05}
] I—
1095 0.2 0.4 0.6 0.8 1.0

Mach number, M

FPigure 4.- Compressibility factor.
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NACA ARR No. 4KO3 Figs. 5,6
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Figure 5.- Velocity distribution in an elementary stream tube

Figure 6.- Lines of sonic speed at the p081t10n of the airf011
after choking.
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NACA ARR No. 4KO3

Effective-thickness to tunnel-height ratio,

Fig. 7
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Figure 7.- Choking Mach number 28 a
: of effective~thickness to
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NACA ARR No. 4KO03
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NACA ARR No. 4KO03 Pig. %a

F
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(a) Uncorrected for tunnel-wall interference

. Figures 9a,b.- Lift characteristics for NACA 0012 airfoil section.
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NACA ARR No. 4K03

Fig. 9v
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(b) Corrected for tunnel.wall interference

Figure 9b,



A-0)

NACA ARR No. 4K03 Fig. 10a
I | ] 1 ]
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— — —Section characteristics,
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(2) Uncorrected for tunnel-wall interference

Figures 10a,b.- Lift characteristics Tor NACA 23012 airfoil section
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NACA ARR No. 4X03 Fig. 10V
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(b) Corrected for tunnel-wall interference

Figure 1l0b.



NACA ARR No. 4KO3 Fig. lla
! I
4+ ¢/h = .25
oc/h = .50
X ¢/h = .80
— — Section characteristics,
12 (reference 15)
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(a) Uncorrected for tunnel-wall interference

Yigures lla,b.- Moment characteristics for NACA 0012 airfoil
section.
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NACA ARR No. 4KO3 Fig. 11b
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(b) Corrected for tunnel-wall interference

Figure 11D,



Profile-drag coefficient, cy and cq!

Chord-height ratio, c/h

NACA ARR No. 4K03 Fig. 12
X Thickness
.] ratio, t/c
B (
X (
X ¥ [e] o
o
.02
X1 =
L 0.208
b
X o]
S ]
0. 104,
.OL X
X 1 X |
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X Uncorrected for wall interference, cg'
(Reference 17)
© Corrected for wall interference, cg
(Equation 67)
— — Bxtrapolated free-air value
(Reference 17) :
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Figure 12,- Profile drag for three symmetrical Joukowski air-

foils at zero angle of attack.



Profile-drag coefficient, cy and cy'

NACA ARR No. 4KO3

Fig. 13
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Figure 13.~ Profile drag for three symmetricel

bodies at zerc angle of attack.
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NACA ARR No. 4KO3

Figs. 14,15
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Figure 14.- Velocity induced by a source.
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Figure 15.- Velocity induced by a symmetrical airfoil.
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