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NATIONAL ADVISORY COMUITTEE FOR AERONAUTICS

ADVANCE ERESTRICTED REPORT

COMPRESSIBILITY EFFECTS ON HEAT TRANSFER AND
PRESSURE DROP IN SMOOTH CYLINDRICAL TUBES
By Jack N. Nielsen

SUMIIARY

An analysls is made to simplify pressure-drop calcu-~
lations for ncnadigbatic and adiahatic friction flow of
air in smooth cylindrical tubes wiien the density changes
due to heat transfer and pressure drop are anpreciable.
Solutions of the equation of motion are obtained by the
use of Reynolds' analopy betwesn heat transfer and skin
frictlion. Charts of the solutlons are presented for
making pressure-drop calculations. A technique of using
the charts te determine the position of a normal shock
in a tube igs described.

INTRODUCTION

The heat transfer and pressure drop for the flow of
air in smooth cylindricel tubes may be calculated with-
out difficulty only when the cdensity changes that ac-
company the changes of temperature and pressure are
relatively smsll. In the preseat paper en atteuwnt 1s
made to analyze flow with large density changes, such
as occur st high 'ach numbers, in order to simplify the
calculation of such flow and to provide a basis for the
correlation of data,

The analysis devcends on the validity of Reynolds'!
anelogy between heat trensfer and skin friction, which
leads to the equality of the heat-transfer and skin-
friction coefficients. By means of this siwplification
the eguation of motion carn be solved for the nonadiabatic
case and the stagnation-temp-reture variation slong the
tube can then be obtailied as a function of the Mach
number; the solution is given in the form of a chart.
The adiabatlic case, a limiting form of the nonadiabatic
case, is also analyzed in some detall and the solution
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for the pressure variation is glven in grapaical form.
Some discussion is included of avallable expcrimental
data (references 1 Lo 3) in order to evuluate the as-
sumptions that sre made herein and the applicabllity
of the solutions.

Pr

Re

L SYMBOLS

absolute temperature, °F + lLé0
distance in flow direction, feet

distance nernmendiculsr to flow direction, feet

t

velocity in flow directicn, feet per second

velocity nerpendicular to flow dircction, fect per

second
Btu

thormal conductivicy,
soconds % foetd x °p/feet

mags density, clugs ver cubic‘foot

L] p J.-.u
absolute viscosity, slug

gencnds ¥ feet

Prandtl nurber (av-out 3.72 for laminear flow of air
at room temperature) (uc p/1{)
stagration temperature, “T + h60

nondirensional heat-transfer ﬂocff client

nondimensional ckin-friction coefficient
tube diameter, {ent
mass rate of flow mer unit area, 2SLués

feet™ % gseconds

Reynolds number (<:~>

#

static nressure, pounds ner squire foot



NACA ARR No. Llicl6

X

specific heat at constant pressure,

(Y

foot-pounds .pout 1716 for air);

gas constant,
slugs x °F
also tube radius, feet

mechanical equivalent of heat (778 foot-pounds per
Btu)

BRtu

slugs X O

ratio of snecific heats (taken as 1.l0l for all
figures) .

N\
Mach number -
VART

wall temperature, °F + 160

nondimensional terperature ratio (Tg/Ty)
distance from tube axis, feet

tube cross-sectlonal area, square feet
tube length, feet

isentropic mass flow per unit area in throat of

supersonic nozzle, ’slugs

feeta %X geconds

constant

Subscripts:

c

tube center
initial

before shock
after shock

stagnation

A single bar over a synbol denotes an average with

respect to crogss~-sectlional area; & double bar denotes
an average with respect to cross-sectional area with

Pa

as weighting factor.
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REYNOLDS' ANALOGY

Reynolds! analogy between heat transfer and skin
friction involves & similarity of velocity and tempera-
ture flelds. For steady low-speed flow of ulr along a
flat plate, the veleccity and tempersture fields are
given by the simnlified boundary-layer cquations

o)
. m . - [N
ué.i. + v.bi = . .]f__. .‘}__E

ox 0y Fep yye
and

-

ou du i éau

s b Ve = ke S (1
Ox “ov P aye - )

If the Prandtl number ;cp/ﬁ is unity ard if the
plete is’ a2t uniform temperaturs Ty, the (T - T,)-field
and the u-field are similar, gsince their differentisl
equations and boundery condiiloas eve then identica
For laminer flow ot alr et »nwrdinary temncratures the
value of the Prandtl number ig approximately 0.75. For
turbulent flov, however, the cffoctive values of
and k are increasged bocauss of the net turbulent
interchange of momontum arnd hest, resnectively. The
Prendtl number for tursulent fiow will vary somewhat
with position becauce, on ths basis of miring-length
theory, the increase in the effcctlive values of the
therwal conductivity and the viscosity devend on the
© turbulent mixing iongth snd tho velocity gradient.

.Measurements given in refersuce || sliow thst the
temperature and velocibty wrofiles in the turbulent
boundary layer along a flat nlete at uniform tempore-
ture are nearly the same even though thoe boundeary
conditions of the temperature end veloslty ficlds were
not exactly identical during the messurement. The
measursments Indicate that the use of an average Prandtl
number of unity for &« turbulent boundary luyer should
not be greatly in error. The reasurcments in refar-
ence i also show that the effect of denslly gradiesnts on
the velocity profile muy he nepglestsd al moderately
small temperaturs differences.
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Reynolds! analogy may be directly extended to low-
speed turbulent flow ol alr in tubes if the effects on
the velocity proflile of the pressure gradients due to
s¥in friction and of the density gradients due to heat
trensfer may be disregarded. This assurption 1is
justified by the good experimental esgrcement of the
low=-speed skin-friction and heat-trasnsfer data in refer-
ence H with Reynnlds'! anslogy.

The effect of comuressibility on the velocity pro-
file has been measursd by Frossel (rsference 2), who
concludes that for subsonic ediabatic flow of ailr in
smooth cylindrical tuves the veloclilty proflle is not
affected by compressibilitv. The effect of commres-
8ibility on the temperature »rofile may be seen from
the following differentisal Pcuatlon for two-dimenzional
motion of a comnregsible fluid in a boundary laysr:

2 W T ‘\2 / ' 2
2o+ B )=s S e e B ()
5 2eyd fey bJ 2end

Equation (2) is given by Goldsteln in referencée 6 and
attributed by him to Busemann (referen-ce 7). Tor
Pr = 1 s&and for steady flow,

n
=3

0Tg oTg e 0°Tg

w + v = (3)
Ox oy Pey Qy

n

omparLson of equations (1) and (3) shows that for com-
gssible flow the (T_ - Tm) ~-field and the u=-field are.
Lnllar for identical boundary conditions., Tor compres-
sible flow Reynolds! analogy thus postulates the simi-
larity of the stagnstion-teunperature and volocity fislds.
For incomprescsible flow this similarity reduaces to ths
similarity of the (T - T,)-field and the u-field.

'3 Q
Lo p.:

m

Reynolds' analogy recalts in en equality of the
nondimensional heat-transfer and skin- Irjctlon cnalf
cients, which is the basis [y the subsequent enalysis.
The nondimensional :zoefficlents are given by the
following exvressions:
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Cpr = 1= (L)

du
“’ <5-§7> v :0

s —
pa®

1
v

The single bar denotes an avsroge with respect to cross-
sectional arca, The heat-transfer coefficient is the
ratio of the heat transfer pner unit area per unit tine
at the wall to the average total energy (relative to
the energy where T, = T,) of the fluid flowing through
unit cross~-sectional arsa per unit tire. The okin-
friction coefficient 1s the ratio of the shearing
stress at the wall to tne average momentur of the

fluid flowing through unit cross-szctional ares ver
unit time, The similarity of the (T, ~ T4)-fleld

and the u~-fiecld glves the fcllowing relationshiyp:

6( TW - T‘_ ) —l (éu\)
. /y=0

oy - oy
_\/_.’_) - .
= —-"—_,-:“—' (6)
p'U..( TVJ - Ts) F-lld

From eguations (l) 4o (%),

“An experimental vsrification of this relationship for
incompressible flow is given in refererce 5 from the data
of several inveostigators.

The vealue of 0Cp will vary with Reynclds nurber,
roughness of tube wall, Mach nurmber, shape of tube
entrance, and distance from tube entrance. For adiabetic
flow in smooth tubes beyond the entrance lergth in which
the velocity profile *s still chenging, Frissel in refl-
erence 2 shows that Cp 1ig Inlependent of Mach number
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[ Py I d 4
up to the speed of sound and is given by the von Xarman-
Nikuradse relationship

|-

= -0.8 + 2 log Re BCp ‘ (7)

80;?

In computing the Reynolds number for the flow in a tube,
the average air temperature may be used for evaluating
the viscosity.

Pressure-drop and heat-loss measurements for hot
air flowing through a water-cooled tube are reported
~in reference 1. Tor subsonic flow, it was found that
" Reynolds' analogy is independent of Mach number if the
heat~transfer coefficients are calculated on the basis
of the stagnation temperature and that the values of the
skin-friction coefficlent are in accord with formula (7).

Pressure-drop and heat-loss measurements for burned
oil-air mixtures flowing through a smooth water-cooled
tube at hlgh temperatures and velocities ars given in
reference C. The measuremsnts are in good accord with
Reynolds' analogy. It is also shown that, under the
test conditions of reference O, the skin—friotion coef-~
ficients are given by the von vdrmén-rikuradse relation-
ship for incompressible flow (equation (7).

NONADIABATIC TFRICTION FLOW

The equality of the heat-~transfer and skin-fricticn
coefficients given by Reynolds'! analogy i1s used to reduce
the differential equation of motion for compressible flow
in a smooth tube at uniform wall temperature from three
variables to two variables. The resulting equation is
solved by the isocline technique to give a chart for
making pressure-drop calculations. Particular attention
is given to averaging the variables in the following
derivation and solution of the equation of motion:

The differential equation of motion for uniform
pressure at every cross section 1is

s e——

o2 4 L 2 4y =
d@p + o > + D(%npu dx = 0O
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The variable pu® is eliminated by introducing the
average squared Mach number

— ..
° o= TG
M A/ ¥ dA

0

n

A

2‘
/.EE..dA
L 4P

0

n

s |

ke

which gives
AN 2 _
d(p + Al )4 Z0p K" dx = 0

or, in different form,
< c2+-{> dlogp2 + dlog‘MZ-kbCF dx =0 (9)
M

The term %CF dx 1s replaced with & nondimensional tem-

perature ratio by equsting the differential hcat ftransfer
from the wall to the dlfferentlal heat gained by the
fluid; that 1is,

‘ ~2
CH Pa(Ty - Ts)~cpﬁD dx = ch Eﬁ— ¢ puTy
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n
pCH

1l

ax

1l

— dx (10)

The double bar denotes an average with respect to cross-
sectional srea with (u &as weighting factor. Introducing
the last equality of eguation (10) In equation (9) gives

-< +]>dlogp2+qlog M= ~dlog (%-1)=O (11)
ﬂ'

The last step in the derivation is to replace log p2

with an eznreésion in € end Na, ¥ith the ald of the
relations h:ns
T
*g
P = PRT ‘ € = —
IIVV
-
, - [
7o = T + 2 L 2) ye = 2
| 2 ART
p2 is exvpressed as
2 o 2p2 M ¢ (12)

P Fu T /
Y rﬁzQ.+-ﬁLZ—5 12 |
f . 2

The transformation to an expression in ¢ and M2

denendu on the considerations that the density and
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. . el .
velocity profiles are glven by the €~ and M -profiles,
since

= B
P T
€
T = Ty
1+ l—“-'——’\ﬁa
and
wl = yRTHC

These consideraticns, in conjunction with eqguations (23)

ro——

= 2 :
end (10), show that T and M~ denend only on the €=~

and Ma—profiles, so that equatlon (12) may be written
= G7RT
P2 = ¥ et o (13)
M2<} P il de ¥
2 &

where the constant X, close to ur;tj, oeoexd only on
ue

the €~ and -profliles, or on T and ¢

The constant K hes been evaluated for the one-
gseventh power veloclty nrofile, whic n ie characteristic
of fully develoned tuvrbulent flow, given by

(] N, /7
T R}
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and for the corresponding similar stagnation-temperature
profile, given by

1/
1 -¢=(1 - €C)<% - %) /

The evaluation of K introduces no particular mathe-
matical difficulties but is tedious. The values are

plotted in figure 1 against M- for several values

of T. Trom figure 1 the variation of X with N°

and € 1s seen to be second order and will be neglected.
The variation of X from the values of figure 1 for a
fully developed velocity prolee to a value of unity for
a plane velocity profile is small; therefore KX will -
hereafter be taken constant at unity, Taking ¥ con-
stant is equivalent to assuming one-dimensional flow,

where € and N° are significant averages.

with the simplification that ¥ is constant,
equation (13) may be written

K GZRT,, = -1
log p° = log Y 4 10g ¢ - 1og[§§<; + ﬁ;z—l Miﬂ
ot .

or, in differential form,

dlog p2 =dlog € - dlog[ﬂaé + 'Yé L I.Ea)} (L)

Finally, introducing equation (1li) in egnation (11)
gives the desired differential equatloﬂ of motion in

e

€ and M-, which is

ame Dﬁ6-+l%iwf>[w +1.+€(w2-1ﬂ
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Equetion (15) may be regerdcd as a differential
form of the equation of motion when the conditions of
Peynolds' analogy are fulfilled. Solutions wers
obtained by the 1socline technifgue becouse a closed
solution was not found. The resulting curves are hown
in figure 2. The lower family of curves, for € < 1,
corresponds to heating of the fluid; the upver family of
curves, for _T > 1, corresponds to cooling of the fluid,
If % >1, € decreases along the tube;end, 1f % < 1,

€ 1increases along the tube. For subsonic entrance
Mach numbers, the local MMach number inereases with tube
length +o the limliting velue of unity and, for supersonic
entrance Mach numbers, the local ‘001 quber Heureaoﬁ"
with tube length to the limitins valus of uwnity., In
order that a solution nass nontjnuouglv tnrotgn a kach
nurber cf unity, the value of € would have to incroesg
Tor the upper set of curves, for vhisl the fluid is
already hotter than the wa 1 ard would havo to decrczse
for the lower set of surve for which the fluid is
alread; colder than the wall. Tnuswtuch as such changes
are contrary to the sencond low of thermodynamics, tha
local Wech nuwber may 1 ot nass continuously through
unity,

-]n.
S,
11
i

Tn Tigure 2 scme erperimental dats from refer-
ence 1 &are inclugea for compariseon witli the theoretical
curves, The tube~wall temnereture was not uniforr for
the experiment; therefore the data have besn plotted for
two separate intervals of tube length with the tube~-
wall temperature over esch intervol constant =t its
average value. ihe agreemsent between the thenretical
and experimental requlfo 13 close. " 3mueth curves
instead of eypeﬂlmenta’ points are riven n Tfigure 2
because the experimental points In Iignres 3 nd i of
reference 1 are connected vy smooth curves.

In order to mwake more accurate _pressure-drap
calculations for heat exchangers, diaproms of ¢ nlotted

o 1/2
against ”L> enlarged i'rom ifigure 2 are given in
figure Q(a) {for subsonic heating rnd iu flmure 3(b) for
subsonic cooling. Ths curves OL flgare 3 were obtainsed
by taking the curves of fipure 2 as [irst approximations.,
Spezisal qccurury was attained In the curves by ad?uqtlng
them so0 that the integrsl of the slone ulonp each curve

between eny two noints
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as given by equatlion (15), equaled the differcnce in
ordinates between the two points on the curve.

By egquation (13), with ¥ constant,

. L e o 1/2
2
2o 2 = (16)
pO — " 1/2
€ i
——— ._..\\
v lfy oy X 1y2
1 ES P (N
o) 5 0
\

In order to simplify pressure-dron caleulations, lines
of constant

have been plotted in fipgure 3(2) and desijmated lines of
constant relative pressure. Tn making a nressurs-crop
calculation, the value of this exdression for the final
condition is divided by the value for the initisl con-
dition to give p/p,. A résumé of the »nrocedure follows.

The value of €, for the initial point is found
from the values of the bule-wall towperature T, and

the initial stagnation temperature 7T, which elthur

ere known or may be messured. Ths valuc of u02>
for the initial Doznt 18 calculated from equatlon (1%)
for values of G, T, and gy, which ¢lther ars known

or may be measurcd. Ths values of €, and
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*4 ) locate the initial point in figure 3. The final
001nt is located by follow*nb the curve of the solution

0 (m02> to the final value of €.

This value of ¢ 1is ohtalned from an integration of egqua-
tion (10). by assuming CI constant at its average velue;
thue,

through point

H ol

TJ

%=1+(€"1)e " (17)

The values of CH for fully developed turbulent flow in

smooth tubes, a3 given by equation (7), are plotted in
figure L. TFor the entrsrce length of a tube in which the
velocity profile is changing, the 'value of (. variles

along the tube and depends on the entrance conditions,

which determine the initiel velocltiy profile. If experi-
mertal velues of CH for specific entrance conditions

are not available, the value of C given by flgure L

may be used as the average value 10“ the tube with the
interpretation that this value will be slightly low.
Finelly, for the initial and Cinal points now located in
figure 3 the initial and final values of

1/2

t{a(l ¥ L;-—l M‘2> :

are determined with the help of the lines of constant
relative pressure, and the pressure ratio p/p, is
caleulated by equation (16).

i

As an examnle, suppose the follcowing values are
known:
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€, = 0.50 Re = 107
G = 1.0 L= g0
D
o] N
T, = 760" F abs. p, = 2070 1b/sq ft

Equation (13) gives

” 2<1 L Ao 1”;;’2'): 0.5 x(1)* x 1716 % 760
‘0 -0
2 1. Lok x (2070)2

and

N2
(m,2)" = 0.325

If the average value of (. for the tube is takon as

0.00225 from figure I, the value of G computed from
equation (17) is

e-J.;.(o.00225)(6o)

mi}
i
s
+
@]
un
1
—
o

= 0.799

Following the curve in figure 3 through the noint
0.325, 0.500 to & = 0.709 locates the point
corresponding to tube exit.

The values of

-11/2

=

15

as given by the lines of constant
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relative pressure are 2.1, and 1.66, respestively;
therefore

2= 2000
‘DO.

‘The statlc pressure at the end of the tube is 7.5 per-
cent of the static ovressure at the tube entrance

>

As previously mentioned, the everage value off C(C,
ps
for the tube is slightly higher thean the value given by

figure Iy because of the undeveloped flow in the

LAl

entrance length; thercfore, slightly larger values of
and of pressure drop then the forcpgoing mav be antici-
pated. Curves for constant vslues of

1/2

m]

|

w1 o+ Lok I\EZ>
< y
b e
— [

are plotted in figure 5 cver the rangs of \M“)
for which an accurate determiration is not possible
from figure 3.

Calculations may be wade for tubes of nonuniform
wall temperature by performning the calculaticn for
jeveral intervals of the length on ths assumption that
the tube-wall temperature is uniform at 1ts average
value over euch Interval. The validity of the preceding
analysis for ™ > 1 muy not be determined until experi-
mental data on Reynolds' analogy ore available Ffor
supersonic f{low.

ADIABATTC FPRICIION FLOW

)

iction
1al case.
S

[

The preceding enalysis lor nonadiabatic
flow includes adiabatic friciion flow as a spe
The egquation of motion fcr the adiabatic case

He O
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obtained from ejuation (15) by letting € = 1. The as~

sumption that £ =1 1is based on the experimental
observation that for adiabatic flow of alr the tube
wall is uniforwmly at stagnaticn temperature. Further,
equation (3) for the stagnation-temperature field is
in accord with this observation, since the particular
solution

w0

T, = Constant

corresponds to no heat transfer.

The reductlon of the equetion of motion (equa-
tion (15)) to the sdiabatic case procseds as follows:

From equation (10),

When this expression ig introdused in egquotion (15),

together with € = 1, the resulting equation is

(12 - 1) v

Lo ¢ =
Cp R T T S0 _ 1>
28 (M‘-)é + -'Y--z—-l— Md>

Direct integration gives

r—— —

T R Sl

)_‘_‘/ C,__1 dx = -:_1'.... ——]-'-7- - :—}.;?>+‘Y t 1 1oge ...?_ 2 U, (]S)

(__ d -\,2. ’ VR -

The integral is retained in the solution because (O
4

may not always be assumed uniform along the tube. The
variation of CF will subsequently be discussed.
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Equation (18), the snlution of the equation of
motion for adiabatic friction flow, is shown in fig-
7
ures 6(a) and 6(b) for two subsonic ranges cf ¥ < and
in figure 6(c) for a supersonic range of Moa. As
figures 6/b) and é(c) show, a particular solution of
equatson (18) corresponds to a supersonic velue of

02 as well as to a subsonic value of 103, These
figures differ only in the lines of constant pressure
retio, which will be discussed.

.
M

The solutions dre'qualitatively like thoss for

T <1 in figure 2. TFor subsonlc values of M02 the

local Mech number increases with tubc length to a
limiting value of unity, ‘and for supersonle values

of 1, 112 . the local liach number decreases with tube
length to the limiting value of unitv. A real [low
may not wass continuously through Ma = 1 because

X

n

B CF dx 1is a maximum for this coudition.

t

Before filgure 6 may be ussd, the varlation of Cr

with Peyno’os number, roughness of tube wall, iach
numder, shape of tube entrance, and distance from

tube entrance should be known. Frodssel's data (ref-
erence 2) show that, for the range of lkach rumber less
than wnity, the velocity profilec may not be fully
developed until T,/D = 36; and Kcenan and Heumann
(reference 3) fournd thet ¢, decreased along the tube

until T/D was sbout 36. DBeyond th's entrsnce leaath,
CP may be ccnsidered constant. In figure 7 experi-
mental data, taken from the results of reference 3 for
flow bevond the entrance length, are comparcd with the
theoretical solution of equation (15), Cn belng taken
constant at the value gilven by eguation (7). The theo-
retical solution is 1in good agrecment with the experi-
mental data.
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The conclusions of referecnces 2 and 3 for the effsct
of comnressibility on . at supersonic specds arec not
in agrsement. No effect of Mach mumber on Cp was found
in reference 2 for tubes of 1I/D € 25, Reference 3 found

a decrease in 1tn Mach number for tubes of L/D £ L6

Cr
on the basis of dats taken beyond an effective nozzle-
pipe T./D of sbout 35 because of severe pressure fluctua-
tions and possible variation of velocity profile in the
entrance length. Further experimant may Le necessary to
isolate the compressiblliiy effect and entrance effect
on Cp icr supersonic flow,
gurves of constant pressure ratio p/pﬁ have been
plotted in figure 6. The oressure ratios have been
calculated from ejuation (16), reduced to

v . - 1 )
N2 w & Lo+ J. = Mod
1R 0 Pad
Po, PRI BT S ¥

In figures 6{a) and 6(b) the lines of constant
pressure ratio are based on the subsonic value of

Nod end are valid only to Ma = 1 becausc the flow nay

not become sunersonic for subsnnic entrance Mach numbers.

In {igure 6(c) the lines of constant pressure ratio are
5

based on the supersonic value of HOL

the entire range of l'ach number. The curves of

Tigure 6(c) are also valid in the case of normal shock

because the assumptions of eguuation (1%) do not proclude

shocl.

ard are valid for

As a nuzerical examsle to illustrate prossure-~drop
calculations, consider i = 0.2, Rec = 105, ard
/D = 60, Trom figure L, (g = 0.00225. Taking OCp

constant for the tube as in the example for nonadiabatic
"flow gives

t

|

o]
no
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L

TJ
Cp dx = Loy

o =
(@]

1

L x 60 x 0.00225

= 0,5l
From figure €(a), p/o = 0.755; thus the static pressure
at the end of the tubp is 7%3.5 nercent of the static
pressure at the entrance of the tube. '

For supersonic entrance liach numbers, small lengths
‘of rapidly rising pressure may occur within the tube if
the static pressure in ths reservoir behind the tubs
fslls within a certain range. The pressure disturbance
can be formed by the superposition of a number of pres-
sure disturbances orig lnaLlng in the downstream flow
and traveling uostr ear to a voint where thelr velocity
of propeagation is equal to the stream veloclity. At thils
point the disturbances would coms to rest and form a
compression shock. The cosltion of the shoelr in the tube
will vary with the statlic »nressurce in the reservoir.
Figure 6 may be used to determinc the position of 2
normal shock with the helv of the ¢OllOWL 7 theoretical
relationship betwesn the Macl numbers before and sfter
the shocls

-
2 -+ - 1

241, = (-

M&

=
et

The bars are omitted from the foreygoing equation because
the shape of the velozslty nrofile in front of and behind
a pressure disturbance is not known and averages could
not be evaluated. '

Equatlion (20) has been nlotted in figure §. Several
exverimental points from Frdcsel's results show good
accord with the thecreticel curve. Ths llach numbers for
the experimental noints have been comvuted from Frossel's
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dats, plotted in terms of G/G. and p/pgs Dby means of
the following relationship:

7/

: 1 ,2), (6/00)2 / 5 N T
we (1 + ” — (21)
(O/bs) v+ 1

where Gy 13 the isentropic masgss flow wer unit area in

the throat of the sunersonic nozzle in front of the pipe.
The nondimensional eguation (21) was obtained by intro-
ducing the following expression for Gy in equation (1%):

1%

y+1

"2 -l
02 = rogey [
\A{ + 1

|
The subscrivt s refers to the initial stagnation con-
ditions of the flow. Frosssl's pressure measurements
were not-made sufficlently close together to determine
the precise shaps of the presgsure dibtrluutlon at the
shock. For purposesg of determirnrvT the points of fig-
ure &, a sharp discontinulty was assumed to exist.

An examnle to chow the method for determining
graphically the position of the normal shock is shown
in figure 6(c). Tf & shock forms at any point in the
supersonic regilon, the end point of the shock may be
determined oy moving horizontally to the subsonlc liach
number given by Ilgure 8. The locus of such end nolints

corresnonding to a gilven value of Moa form a shock

1ine, which is shown as & broken line in figure 6(c).
From the end point of the shock, the flow follows the
. 1./D
. b
subsonic solution to the value of L Cp d 5) for
N

0
the tube exit: the exit statlc pressurs is then given by
tho lines of constant »ressure ratio. The paths of the
solution for two positions of ths shock arc shown in
figure 6(c¢c). Tt may be seen that, os the exlt pressure
1is lowered, the shock moves Cownstream. After the exlt
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pressure is lowered below & particular value, the shock
will pass out of the tube and pressure equalization will
occur outside the tube.

Kecause the algebraic solutions of the equation of
motion for adiabetic flow are given, it 1s clear that
the splutions of normal shocks for such flow may 2lso be
determined algebreically. Compression shoclis In nonadla-
betic friction flow may be hendled by the graphical
technique. Figure 8 may be used for nonadiaktatic flow
when the comprcssion shock does net occur over toc long
an interval.

Langley Memorial Aeronautical Laboratory
Nationel Advisory Committee for Aeronautlico,
Langley Fleld, Va., March 16, 19LL
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