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NACA ARR No. ILLFO05

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

FLIGHT STUDIES OF THE HORIZONTAL-TAIL LOADS

EXPERIENCED BY A MODERNW FURSUIT ATRPLANE

IN ABRUFPT MANEUVERS

By Flight Research Maneuvers Section

SUNMARY

Flight measurements were made on a modern pursuit
airplane to determine the apprroximsts magnitude of the

horizontal tail loads in accelerated flight.

In these

flight measurements, pressures at a few points were used -
as an index of the tail loads by correlating these pres-
sures with complete pressure-distribution data obtained

in the HACA full-scale tunnel., 1In addition,

strain gages

and motion pictures of tsil deflections were used to
explore the genersl nature and order of magnitude of the

fluctuating tail loads in accelerated stalls.

The results indicated that, if the airplane were
not stalled, a total up load of 57C0O0 pounds would be
experienced on the horizontsl tail in an 8g pull-up and
that, with power on, this load would be distriduted
‘unsymmetrically with about Z0C pounds more up load on
the left stabilizer than on the right. When stalling
occurred there was an initial abrupt increase in the up
tail load of the order of 1CO0 percent of the previous
load, which was followed by repeated load and stress

variations due to tall buffeting., Under the

conditions

of tail buffeting, the possibvllity of excessive stresses

due to resonsnce was indicated.

TETRODUCTION

As a result of nuwerous tajl failures of wmodern
high-speed oirplanes in flight, a flight investigation
was undertaken tc determine the general nature of hori-
zontal tail loads experienced in abrupt pull-up maneuvers.
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Tests were made by the NACA at Langley Field, Va. during
the spring and summer of 1942, The flight-test procedure
involved the use of pressure measurements made at a few
points on the horizontal tail, which were correlated with
complete pressure-distribution data from the NACA full-
scale tunnel to determine the anproximate tail loads.
This procedure gave satisfactory results except when
applied to stalls wherein abnormally high fluctuating
pressures, corresponding to tail buffeting, were
experienced, In order to help establish the significance
of the pesk pressures recorded, a strain gage capable of
following the load fluctuations was installed on the
stabilizer; motion-picture cameras were installed later
to record the deflection of the horizontal-tail surfaces.

The results of the tail-load measurements obtained
ars discussed in two main parts. Cne part pertains to
the more or less steady loads experienced in maneuvers,
for which the determination of loads by means of the
measured pressures is fairly straightforward., The second
part deals with the fluctuating loads experienced in
stalled flight wherein the significance of the measured
pressures was difficult to establish. For this second
case, the malin dependence 1s placed on strain measure-
ments and photographs of the tail deflections.

DESCRIPTION OF AIRPLANE AND APPARATUS

Test airplane.- The tail-load tests were made on a
modern pursuit airplane having the plan form and dimen-
sions shown in figure 1. The gross weight of the airplane
was maintained between 11,900 pounds and 12,000 pounds for
the tests. The center-of-gravity position was maintained
betwsen 29.8 percent and %0.2 percent mean aerodynamic
chord.

Basic flight instruments.- Airspeed, elevator angle,
stick force, and normal accelerations were recorded during
the tests by standard NACA recording instruments. The
airspeed recorder was connected to an NACA swiveling
static head. located 1 chord length ahead of the right
wing tip and to a shielded total heazd mounted on the
airsveed boom,
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Pressure-distribution installation.- Four pairs of
crifices were installed on the hcerizontal stabilizer to
measure the pressure difference between the upner and
lower surfaces of the stabilizer, +The svanwise and chord-
wise locations of the orifires were chosen to correspond
with particular orifices used in the pressure-distribution
measurements made in the NACA full-scale tunnel. A
sketcli showing the location of the orifices used in the
flight tests is given in Tigure 2. Pressures wers
recorded for the individual orifices by an NACA mechanical
menometer mounted in the baggage compartment of the air-
plane, The inboard orifices were connected to high-
frejuency pressure reccrders to permit a study of the
pressure fluctuations at the stall.

Tail-deflecticn apparatus.- The deflections of the
horizontal tail under load wers measured by photographing
the tail with two 16-millimeter motion-picture cameras
mounted, cne on each side of the fuselage, in the inter-
cooler exit ducte., The cameras were synchronized by
timing lights operated by a master timer that also
synchronized all the recording instruments in the air-
plane, Targets were painted on the tail vlane to
identify the spanwise position in the photographic
records. The camera installation and the targets on the
horizontal tail are shown by photographs in figures 3(a)
and 3(b), respectively.

Strain-gage installation.- An electrical strain gage
was installed on the skin above the rear spar on the
right horizcntal stabilizer, A photograph showing the
locaticn of the strain gage and the dummy gage on the
horizontal tail is given in figure L. The orifices on
the upper surface of the tail and the lead from the
orifices on the lower surface are also shown in figure l.

For one flight, de Forest scratch-type strain gages
were mounted along the front spsar on the upper skin of
the left stabilizer at 3L, 60, and 7.5 inches from the
stabilizer tip., The gages were mounted by gluing the
gage target and scratch arm to the skin.
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TEST PROCEDURE -

The types of tests.and records obtained are summa-
rized in the following table:

Records obtained

Flight Type of Basic |[Pressure|Strain Tail
maneuver flight | distri-; gage |deflection

o bution :

143 iabrupt pull- -ups| Yes Yes No No

198 Abrupt pull ups! Yes Yes No No

183 Abrupt pull-ups! Yes Yes Yes No

193 180° turns " Yes Yes i Yes No
213  |[Abrupt Du]l -ups |

: and 180° turn . Yes Yes ' Yes Yeg

2B lAbrupt pull-ups! Yes | Yes | Yes Yes

It is apparent from the table that the test program
progressed from an installation that measured only pres-
sures on the horizontal tall to one consisting of a
combination of pressure orifices and a strain gage and,
finally, to an installation which simultaneously measured
the pressure, strain, and tail deflection. The strain
gege was installed to facilitate an interpretation of
the pressure fluctuations experienced on the horizontal
tail at and beyond maximum 1lift of the wing in the pull-
ups. The apparatus for measuring tall deflection was
subsequently added in an effort to obtain additional data
on the motion of the tail following the wing stall for
corr elatlon with the pressure fluctuations and the strain
measurements,

The abrupt pull-ups to maximum 1ift were made at
various speeds, from the minimum speed of the airplane
to an indicated airspeed of approximately 21l miles per
hour. The corresponding normal accelerations experienced
ranged from lg to L.5g. A1l tests were made at an alti-
tude of approximately 6000 feet and, except for one
power - off run, with the engine operating at 24,50 rpm and
27 inches of mercury manifold pressure.
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DETERMINATION OF TAIL LOADS

The nressure data rscordsd in flight were converted
to tail loads from the pressure-distribution datsa for
the tail plane obtained in the HACA full-scale tunnel.
Eecause of an unsymmetrical flow in the full-scale-tunnel
tests, the load on the tail, as indicated by integration
of the measured pressures, was unsymmetrical., The
dissymmetry of lcad is shown in fizure 5, which is a
plot of the spanwise distribution of load on the hori-
zontal tail. The variable c¢,c usaed in this figure is
the product of the section normal-force coefficient Cn
and the local chord c.

The normal-force coeificients Cy for each half of

the tail were plotted in figure 6 as a function of the
pressure ccefficient Ap/4, in vhich Ap is the dif-
ference between the pressures on the upper and lower
surfaces of the tail plane at the two spanwise stations
where orifices were lccated in the flight-test installa-
tion and ¢ 1is the dynamic pressure.. The tail loads
computed from pressures measured at the individual
orifices therefore assume a symmetricel tail load with a
load distribution similar to tihiat obtazined in the full-
scale~-tunnel tests., The normal-force coefficients for
the tail are noted to be provortional to the pressure
difference across the tail plane and are also a function ,
of the elevator angle 35g. ne tunnel date for the right
inboard orifice were considered too inconsistent for use
in evaluating the tail loads (see fig. 6) and the evalua-
tion of tail loads for the flight tests was therefore
based on measurements at the other three stations.

Tail loads were determined from the tail-deflection
data by moans of the influence line shown in figure 7
and the spanwise load distribution of figure 5. The
Influence line was obtained experimentally by applying
unit up loads at the indicated spanwise points, whereas
the spanwise load distribution was taken from NACA full-~
scale-tunnel data. The tail load per inch stabilizer
deflection is obtained by the summation
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h w 1is the running load at a spanwise point,

is the ordinate of the influencs line at the same
oint, and b 1is the span of the horizontal tail. This
mmation shows & load of 875 pounds per inch tip deflec-
on on the right stabilizer and 976 pounds per inch tip
flection on the left stabilizer.

QO

Some question may be raised as to how the spanwise
load distribution (fig. 5) should be faired across the
fuselage, but consideration of possible changes would
not materially alter the locads as measured by tip deflec-
tion.

RESULTS ANWD DISCUSSION

Loads in unstalled flight.- The tail loads in
accelerated flight were measured in pull-ups to maximum
1ift of the wing. Time histories of airspeed, normal
acceleration, elevator position, and elevator stick force
for three typical pull-ups of varying acceleration are
presented in figure 8. The present discussion is limited
to the loads attained before the wing stalled, that is,
to the portion of the maneuver prior to tail buffeting,
as is indicated by the fluctuating normal-acceleration
curve, '

The pressure coefficients Ap/q for the four span-
wise points are listed in table I. The corresponding
values of normal-force coefficlent Cy obtained by
reference to figure 6 are also listed for the three
stations at which satisfactory calibrations were available.
Total tail loads ccrresponding to the normal-force coef-
ficients of table I (tail load equals 55qCy) have been
plotted in figure 9 as a function of normal acceleration.
oxtrapolating these data indicates that an up load of
abogt 5700 pounds would be experienced at an acceleration
of dg. '

In consideration of these tail loads, a study was
made to learn the contribution to the load of each of
the following factors:

(a) Increment of tail load necessary to balance
pitching moment of wing-fuselage-
propeller combination
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(b) Increment of tail load due to horizontal
location of center of gravity with respect
to aerodynamic center of wing-fuselage-
propeller combination

(c) Increment of tail Zoad due to manipulation of
elevator.

At the speeds investigated, the increment of tail
load due to factor (a) (a down load) was found to be
relatively small, about 5.5q or 560 pounds at 200 miles
per hour. At diving speeds, however, this increment is
larze enough to be of primary consideration.

The increment of tail load due to factor (b) is
always an up load at positive 1lifts with the conventional
wing and tail arrangement; if the aerodynamic center of
the wing-fuselage-propeller combination is known,
determining this increment of tail load for any center-
of -gravity position, gross weight, &and normal accelera-
tion resolves into a simple wmoment problem. The increment
of tail load varies directly as the product of the grcess
weight and normal acceleration and varies linearly with
center-of-gravity location; that is, this increment of
tail load will be zero for every flight condition if the
center ol gravity and aerodynamic center are coincident
and will increase as the center of gravity moves rearward.

Full-scale-tunnel tests indicate that the aerodynamic
center of the fuselage-wing-propeller combination (power
on) of the airplanec tested is at approximately 15 percent
of the mean aerodynamic chord. With this aerodynamic
center, the increments of tail load calculated by the
method suggested are in substantial agreement with tail
loads obtained from flight-test data, The tail loades
experienced during acceleration were considerably larger
than the loads indicated by standard design practice
because the propeller and fuselage caused the aerodynamic
center to move farther forward than had been anticipated.

A discussicn of the effect on the tail loads of
factor (c) (elevator manipulation) requires a knowledge
of the control movement during the manseuver. It is
apparent from figure & that the elevator force is relaxed
before the maximum acceleration is reached and es a
result the stick force is approximately zero at the time
of maximum acceleration. When the elevator stick force
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is zero, the elevator is floating, and the tail-load
increment due to a combination of factors (b) and (c) is
equal to that obtained in a similar maneuver, elevator
fixed, with the center of gravity at the point giving
zero stick-free stability. Computed on this basis, the
up tall load due to releasing the elevator is 130 poands
per g of normal acceleration, Extrapolation of the data
in figure 10, which is discussed subsequently, corrobo-
rates experimentally this calculated load increment.
This load increment is indicated by the difference
between the curves shown for elevator floating and
elevator fixed as determined from unstalled pull-ups

and steady turns, respectlvely,

Pull-ups to maximum 1ift and unstalled pull-ups to
the same acceleration gave dissimilar tail-loading condi-
tions. Analysis of the data indicates that the lcad was
unequally distributed between the right and left stabi-
lizers during unstalled pull-ups, as shown in figure 10.
The total tail load, nowevor, was the same as that
obtained in pull-ups to maximum 1lift. (Compare li.5g
pull-ups in figs. 9 and 10.) A clue to the probable
cavse of the asymmetric load is obtained by a study of
the time histories of figures 11 and 12, A turn with
pewer cn is shown in figurs 11. Immediately before this
turn was entered, the load on the left stabilizer was
greater than that on the right stabilizer and remained
greater by about the same amount throughout the turn,
The pressure changes that occurred during the turn were
very similar on both sides of the taill and occurred

imultaneously with acceleration changes. For the turn
of figure 11, which was exccuted with power off, the
loads were nearly equal on both stavbilizers, with the
pressure orifices indicating a slightly largcr tall load
on the right stabilizer, The changes in pressure duflng
this turn were similar to the changes that occurred in
the pover-on turn. Consideretion of the magnitude of
the dissymmetry in loadlng indicates that the unsymmet-
rical tail lcading is attributable to a slipstream twist
which increases the angle of attack on the left stabi-
lizer 29 or 3° in a positive direction and decreases the
angle of attack on the right stab lizer by an equal
amount .

It appears from these data that the slipstream twist
with power on is responsible for an asymmetric tail-load
increment except at maximum lift. (See fig. 9.) The

dissymmetry, which is independent of speed and acceleration,
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results in an up load on the left stabilizer 800 pounds
greater than that on the »ight stabilizer. .This
unsymmetrical loading, if attained in an accelerated
pull-up of 8g, would result in a tail load of 3250 pounds
on the left half of the tall or in a stress due to an
eaquivalent uniform tail load of 6500 pounds.

Loads during stallsd flight.- In abrupt pull-ups to
maximum 11ft, large and erratic tail-load increments
were indlcated by sharp pressure rises immediately after
ths stall occurred., The initial pesak pressures were
followed by fluctuating pressures throughout the psricd
cf stalled flight. Time histories of pull-ups to maximum
1ift (figs. 13 and 1) show the nature of these pressure
rises and fluctuations, together with sirmltaneous
records of strain as indicated by the electrical strain
gage. These abrupt pressure rises and fluctuations are
ascribed to fluctuations in direction of the air flow at
the teil, which are due to stalling of the wing.

'3

As was previously mentioned, cameras were installed
to record thre motion of the horizontal tail during pull-
ups. The accuracy of measurements of leading-edge
deflections on the 1l6-millimeter film is beliesved to be
withiin ¥0.C005 inch, wihich is cauivalent to *0.1 inch of
actuel tail deflection. Although a camera speed of
approximately 6L framss per second was used, the frequency
of the tail vibrations was such that the maximum ampli-
tude of the motion of the tail was not necessarily defined.
The data were therefore plotted (figs. 15, 16, and 17) in
the form of instantaneous beam-deflection Giagrams at
time increments of approximately 0.017 second during the
stalled part of the pull-up. In these figures, if a line
faired through the spanwise points at which deflections
were measured did not pass through zero deflection at the
center line of the tail (cee 2.500 zeconds, fig. 15), the
beam diagram was arbitrarily shifted so that the deflec-
tion at the center line was zero, The shifted beam _
curves appear in the figures as dashed lines. This shift
of the beam curve is considered justifiablie on the basis
that vibration in the airplane may have caused slight
shifting of the cameras or that the zero reading for the
particular frame may have been in error; either of these
factors would have caused & uniform shift of the beam
line. The change in tail load, which is indicated by the
deflection of each stabilizer tip is listed at the end of
each beam curve. In figures 16 and 17, the total load
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change for each beam diagram is tabulated at the center
line. Deflections of the stabilizer are also plotted as
time histories, together with airspeed, accelerations,
pressure, and electrical strain-gsge records in

figures 18 to 20. A marked twisting action of the
fuselage may be noted during the stalled portion of the
pull-ups. The deflections of the right- and left- ~
stabilizer tips are not, therefore, a reliable indication
of the individual loads developed on the right and left
stabilizers except during the first part of the maneuvers
before the twisting of the fuselage was st up. The axes
for the pressure and electric strain-gage records were so
drawn that the ordinates at the beginning of the run and
at the time of maximum acceleration are proportional to
the loads computed at these points. Because both the
electric strain gage and the pressure capsule have
straight-line calibrations, succeeding peaks are also
pronortional to the tail load.

‘The three de Forest strain gages mounted on the left
stabilizer provided a measure of stress on the upper skin
of the left stabilizer during the runs of figures 16
and 17. The de Torest strain-gage records are shown in
figure 21 and a photomicrograph of a typical record is
shown in figure 22. Although a history of the stress
encountered was recorded by a de Forest scratch gage, no
time record is available. The peak stresses, therefore,
do not indicate the frequency of the applied load and
must be interpreted in conjunction with other records.

The change in load from the level-flight condition
to the pcint of maximum acceleration that occurred
immediately before the stall is indicated by AL; in
figure 12 and the change in lcad indicated by the first
peak on the pressure or strain-gage record after the
stall occurred is indicated by AIp. The ratios of the
load immediately after the stall to the load befcre the
stall £Ip/AL, as indicated by pressure-orifics =nd
electric-strain-gage records, as well as similar ratios
determined from the tip-deflection and de¢ Forest strain-
gage records, are listed in the following table:
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Load ratio, - AL2AL3
_ Z, ' :
Pressure Electri-| Tip de Forest strain
orifice cal _|deflection!gages, from left tip
strain e
Figure Right |Left |gage - '
FLE] in- in- (root of {Right|left
board|board|right  |tip |tip |(4 in.|60 in. 3 1in.
: stabili-
zer)
1.5 | 1.9 2;%' O R e I e
s 1.5 | 2.6 | 1. S P TS R
l 1.1 """- l.l’. - 2.0 o - - - - -
19, 21| 1.2 | 2.6 1.6 1.8 |1.0 ] 1.5 1.6 | 1.8
20, 21§ 1.3 | 1.4 1.5 1.5 (1.1 ¢ 1.0 1.% 1.3

The tabulated data show that immediately after the
stall a large and abrupt increase in the up tail load
occurred. Althougl changes in load indicated by each of
the records obtained are listed in this table, the indi-
cations of the pressure orifices are dlscounted, not only
because of uncertainty regarding the dynamic character-
istics of the pressure-recording system, but also because
of uncer*alnty regarding the applicability of point pres-
sures in relation to total loads under these circumstances.
The fact should also e noted that, owing to the inertia
of the tall structure, momentary pressure-increments,would
not necessarily result in comparable stress increments.
The strain-gage and deflection measurements indicate that
tne initial effect of the stall may result in up loads of
the order of twice those loads experienced immediately
prior to stalling.

After the initial tail-load increment occurs because
of wing stalling, the tall is buffeted repeatedly by the
fluctuating downwash in the turbulent wake from the
stalled wing. The possibility for resonance between the
turbulence frequency and certain natural frequencies of
the tail structure exists under this condition, The
freouency of the horizontal tail in primary bending was

7~ cycles per second and the frequency of the complete

ta 1 in torsion of the fLselaﬂe was .10 cycles per second.
From tests in the NACA full- scale tunnel the frequency
of the turbulence fluctuations from the stalled wing was
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found to bs 5.5 cycles per second st 65 miles per hour.

If this freguency were a linear function of true airspeed,
the range would be from about 13 to 20 cycles per sécond
in the speed range covered by the pull-up tests and, at
some speeds, would coincide with the bending frequency of
the tail. The turbulence frequencies, however, as shown
by the pressure records taken at the tail, were seldom
actually uniform for more .than 2 or 3 cycles., Moreover,
where definite frequencies were detectable, the turbulence
frequencies appeared to range from about 10 to 35 cycles
per sscond and to be independent of the speed of flight.
This lack of regularity in the turbulence pattern was not
unexpected because both the angle of attack of the wing
and the position of the tail in the wing wake were rapidly
varying with time., In two of the pull-up maneuvere,
however, resonance with the tail structure occurred when
pressure fluctuations of a frequency close to that of the
tail were sustained for several cycles, An example of
this condition of resonance is shown by the pull-up
recorded in figure 1l where a large periodic build-up in
stress occurred as a result of a series of regular pres-
sure fluctuations. Figure 13 shows a somewhat similar
condition at a different airspeed. Eoth records clearly
indicate the mechariism by wnich excessive tail stresses
can be produced when tail buffeting occurs.

CONCLUSIONS

The results of the present tail-load tests with a
modern pursuit airplane show the type and the general
magnitudes of loadings encountered on the horizontal tail
of a heevily loaded pursuit airplane in acceleratecd
maneuvers, The survey of critical conditions is not
complete, however, because no tests were made in the
high-speed and diving-speed ranges. In addition, the
measurements that were obtained are less complete and
less detailed than are required to present an accurate
gquantitative picture of the loads, in particular, the
loads immediately after the stall and during tail buf-
feting. The need for further investigation of these
conditiones is indicated.

The conclusions to be drawn from the present tests
are sumunarized as follows:
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(1) In aebrupt pull-ups, the critical horizontal-tail
loads were up loads and were substantially proportional
to the maximun neormal acceleration. For unstalled null-
ups, cxtrapclation of the test results shows that a total
tall lcad of 5700 pournds would be experienced at an
acceleration of 8g., Of this totel tail load, ahout
1000 pounds would be dus to tne manipulaticn of the
elevator during the pull-up.

(2) In unstellad maneuvers with power on, the span-
wise loading on the hcerizontal tail wss unsymmetrical,
About 800 pounds more up load was carried by the left
stabilizer than by the right stabilizer. The magnitude

ilally independent of the
ofy", the dissymmetry

&

ol
normal acceleration, With powe

-was greatly reduced,

(3) In pull-uns to the stell, an abrupt increase in
the tail load occurred immediately aiter the stall of
the wing. Data for ths particular airplane tested
indicate that load incremer*s ¢f the order of 100 percent

"

of the load just prior to s.alling mey be obtained.

(L) In stalled pull-up maneuvers, the tail was
burfetsd repestedly by the turbulent flow from the stalled
wing. The possibility of excesdive stresses due to
resonance in this condition was indicated.

Langley Memorial Aerconautical Laboratory
Natlonal Advisory Committee for Acronautics
Langley Fileld, Va, , -
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Figure 1.- Three-view drawing of airplane.
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Figure 2.- Horizontal tail showing pressure-orifice locations.
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{a) Camera mounted in intercooler exit.

(b) Targets painted on left stabilizer.

Figure 3.- Installation for photographing tail deflections.
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Figure 9.~ Tail loads before wing stalled, computed from
pressure-orifice measurements in pull-ups to maximum 1ift.
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Figure 16.- Concluded.

Fig. 16d
Load change, Total load Load change,
1.0 /bé _ - L?Mﬁ e, / Lh Time, sec
&30 b ,o/l( \250
(o] \Q\L\QG\ /180 4:7-—‘0 : = 2.933
A
1.0 LY \G\ . ] »!
0 s 16/8 ; 105 2450
10 /56/ \0 ' .
0 ‘ : ol o 2.467
10| ? : '
' 1 ] :
0 29940 b b | 227 o _ 70, 2483
10 : l
f R . ' 750 :
ol - P — 2.500
1.0 :
) . T vos Z
0 293 =U—5—P—ofe- 2 2517
10 : ‘ i .
478 .| ‘ ,
0 “M;‘Fm i c—ofo—p={22 1 2533
Lo i '
0 L2l sob o -2 429l 2550
T o
.0 1974
! ? O | | .
0 o : o 647 TI33 2.567 ;
——t—]
1.0
ol = omb—ok ~170 29| 2583
1.0
048 —totol | X oo—o—p—|""| 2600
1.0
" l=s0 :
ol e r el 2617
1.0 :
o || =er=e—p—oi 2 o A_TT- & | 2633
101 . :
S0
ol
0 | W\.F\GL\L:M/ 259 2.650
/20 - 80 40 0 40 80 /20
Left Distance from ¢ fuselage, in Right

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS.



Fig. 17a N NACA ARR No. L4FO0S5
. Total load . . _ Time,
Zoa/rgclmnye;, change, /b Load ’Cb/i”?ei) sec
o s . i i 1.800
: T —do5-F :
',‘0 - - a : : i !
L0 ' ! . I
47, | . i ) ~
L - Mﬂ | G6T 400
10| s34 1
al : | 2757 o
00 ng\e\'n .:
P s AR B I I
£ Lo |28 1 e o
§ o | sebs | Lot | -
E 0 i - "“'Q\ R 2517
g 10 | A% 1658
SV ¢l 2558 e : .
30 : B e O s 1 2.533
- - - ’ .
< 0 /zfox\_._) : ' P 2
i \?\a 2865 g -9 /9;( :
Qo dso . - - . ° 2.850
: 22 N : ) o
S 19 - ; ; . : Iosz]
Yo e e | et 2.567
¢ Bl .| .-
o 1T o= oo
3 1 el | aeso | | e
g 0 s [ - : 2583
1 A ’ . '
Lo | =5 L
‘g B e N P 2P N e g
o ; e —T 2.600
10 ’490\‘3\0\" o 1050
‘O\& ) 540 @:@v/
0 , P \0\ 1 ! 2.617
/925N . | 1
1.0 o] | | -
v H B [ . . > - 788
S SO o =
[/ - N 1 . 2-633
] P~ 2164 o a5/
0 . . — 2.650
1846\ ’ .
1.0 9™ :
P~ 2362 | o] 2 jo16
o : o] l —_ 1 2.667
120 .80 40 (4] 40 80 120
Lleft . -Distance from ¢ fuselage,in. Right
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: Figure 19.- Time history of a 2.4g pull-up to maximum lift.

Run 1 of flight 24B.
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Figure 20.- Time history of a 4.2g pull-up to maximum 1ift.
Run 2 of flight 24B.
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Figure 21.- Records from de Forest scratch-type strain gages

for flight 24B. (Complete data for flight 2iB are presented
in figs. 19 and 20.)



NACA ARR No. L4FO05 Fig. 22

Figure 22.- Photomicrograph of a typical scratch-gage record.
Gage located 60 inches from tip of stabilizer. Maneuvers:
pull-up to 2.4g at 144 miles per hour and pull-ups to 4.2g
at 214 miles per hour.
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