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SUBMARY 

An investiGation has been conducted by the NA.CA to determine 
the design-pcrf0r manc e c~:aracteriDti cs ':If the HACA eight - stage 
axia1 - f1m'T c om:9ressor anG. the effect of a1tttude on the performance. 
The compressor 1vaS tested at simnlatec. al ti tudes of 50 , aco j 36,000 ; 
an:1 27,000 feet at r '.)tor s:)eeJs corres.?onding to compressor Mach 
nUlabers of 0 . 80 , 0 . 85 , O. SO , and 0 . 95 w'i th varying a::'r f1,)ll at each 
s,eed . 

TIle des~gn pressure ratio of 5 :1 was obtained at an adiabatic 
te:r-11)erature - ri'3e efficiency of [13 r e1'cent, a simulated altitude ')f 
36 , OOi) feet, a:1d a c0:r-1;.-:.es30r Mach l1ur::ber o~ O. 9S . fin ap:)reciab1e 
Reynolds number effect vTaS ShOl-11 by tLe decrease of 4 poi nts in 
efficiency at a Mach nU:::il'1.:ler cf 0 . 80 for an increase in si::n.ulated 
altitude frOB 27, OCO to 50 , 000 feet . 

HiTRODUCTION 

Tl:e NACA eigh"'J - stage aXial - fl ow compressor vas constructed in 
order to determine the performance chara.ct0ristics of a multistage 
axial - fl ow com,ressor based on aerodynamic princi:1les . The pre­
liminary in'festigation at the Langle~r Fie ld laboratory consisted 
of perf ormance tests at approxir::ately sea-level Outlet pressure and 
r otor speeds frohl 5 ) OOC to 14 , 000 rpm, heat - transfer tests vTi th the 
compressor lagged , anQ pararleter tests to cstablish the most suit-
able method of pr esenting da.ta . Alt:!10U3h the estimated high effi ­
c iency was obtained ) the perfo~ance at design conditions was not 
determined because of blade f ailure . A discussion of the test r csults, 
a bibliographical t:;,'eatment of l'esoarc!1 on axial-flow compressors) .. 
the theory of dosign and operation of the com,~essor including the 
velocit y diaGr~s ~n vThich the design was based, and the mecha~ical 
construct i_on of tho COI:J;?ressor are presented in r efer ence 1. 
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The invost"isatlon of the NAC/l. ax"i_al-fl ')v compressor we.s con­

tinued at the Clevelan-~_ 1.:11) o~,~at -)ry in :'S14 ':lith the dual objective 

of detel'mLl.inc tIle ~"lc3=-{m-- per'fo:.'ma:lce charact6l~lst-i cs and the effect 

of a2-tH;ude: or ReYllo~Qs number, 0"1 t~le perfor.':.1ance. The stator 

bla:ies ars of the orig:i.r.al deoign but t.he rotor blades had been 

rec.csidned f ')r :~m.l-l..:~oyec1 strenGth . Alt:.tudes of 50,000; 36,000; and 

27,000 feet "Tere t;i;':.u.la'Led by means of refriber<.:.teti a~r and altitude 

exha1.~st; the range 'J:i:' :;:'·.Jt'Jl' spee," s COr1'8 apOn0.8d to C()lupreSsor Mach 

numbers frJm 0 . 80 tJ 0.95 . 

APF ARATUS MID TESTS 

NACA 3.xi.:::.l- f 1 0': 1 c:Jnrp:.'e3sor . - Th3 essential mechanical features 

of the lI.flCA eigh"v - staC0 axi.al-:f2_ow cO:.:Jprvs8or are sl:own in figures 1 

to 3 . ]'ailure of the original rotor "uJ.ades necess:Ltated the f')l ­

lowing a1 terat'ions tl~at) tl:.::ll.lbh eer()oJ.yr.am5_ca':"ly undes ira-:~le) .rould 

::'ncrea3e the Cl 0rc::t :mg :'ife 0:' the blac:.cs by improvinG the strength 

cll.aracteristics : 

1 . A semicL'cular fillet was cut at the point 1·,here the blade 

overhang joins the bese . 

2 . The Quder side of the blad base Jf the three longest rows 

(fir::Jt throe) 110.0 dos1cne1 t ~) fa:..r in the circular -thl'eaJed section 

wi th tho p::'ojoct ''''d ');.aue ~::c'O:·H0 . 

3 . The b18 .. de th~.c}cness "T~?"5 tapered fro::JJ hu~) to tip . 

4 . The fillet at the root of the blade "\Tas in..;reas9d fl~om 

0 . 015 ii1cn fOl' s)'11a11 blades and from 1) . 023 inch for large blades to 

0 . 090- inch radius for all rotor blades . 

Fignre 4 811ml-s the tY'Jical can truction of the rede3igned rotor 

'blades; the shaping of the uncer si ~ e of the blades cf t:le first 

three rows (f ::.g . 4(a)) lfdght have been c.es:rable for all r otor blades 

but the 8hort(n~ bla"es (fig . 4(0)) have less etl~ess at the root . The 

extension on the eni of the threaded shan.k: was desicned. as a friction 

l ock 0n the origin2.1 blo.des In:t ,·ras reta L od. in tho present clesien 

of the silOrter bladeL ·')~lly f oI' d-'naJ'lic balance . In oraer to elimi­

nate any pOGsibility ::if blLd.e tl.l:.:ning: I'Thich lliay have ca:.l.sed the 

prev::.ous failnre) all biaies w'ere sccm'ed . n thc rotor by firm­

fitting threais and spot- )eenlng of t2e illf~tinG blade-b~se and rotor 

surfaces . 

At the :!!lOCll opan of t:tc otor bla:ies J the bla1e section in tho 

nel! design is i de1tical to the orig::'na1 d .:J sign . (See table l J ref­

erence 1 . ) T~1e !!lean camber line and tile chord length are the same 

a-c all rad:!.i but the t::ic::::::1GSS is variec linecrly from hub to tip . 

-----_._--
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The thickness of tl"e blades in the first tvo rotor rOilS varies 
fr0ID 12 percent of the c~10rd at the hub to 6 percent at the t j:p. 
On the othel' rotor blades t he rate of taper - that is, the change 
tn percentage thickness per untt length along the s:;>an - is the 

3 

same as for the second rotor row . For any given secti0n, the thick­
ness is chanced by the same proportion at all points alon3 the mean 
caJ!lber line . The chor d leL.€;th of the blades in the first four rmTS 
iEl 1 . 350 inches and in the last four rDl'fS , 1.013 inches . 

Test setup :,. - The genera: arr angement of the compressor test 
setup :i s ShOiffi 1n figure 5 . The compressor was driven through a 
cr adled gearbox by t'lVO 300- ilOr sel).)wer dyna:n.ometers connected in 
tandem . A central systm;J supplied. refr igel'ated air to the com­
pressor ; the inlet- air ter:::.?er atl1re i·ms cl.l'tomatically contrclled . 
The air :'lo':fed tl:rs uesll an 'inlet d.uct into a depression tanr~ 4 fee's 
in diameter and 6 feet long immejie..telJr ahead of the compressor . 
A Be.iley adjustabJ.0 orifice and a subme~cged VDI standard orifice 
S inches in d i aneter vere located in the inlet duct . The depres ­
s i on tanlr was fitted i-Tith a screen, fel'c filter, antI honeycomb 
straightening vanes to ins~re an air stre~ free of foreign parti ­
cles and of uniform veloci t ;:r at tho cOL1p::essor entrance. The air 
d i scharged f rom the compressor f:' .. mied through an 8 - i.nch duct and 
was exl:austed into the centl'al al-:; i tnde- eX~lau st systerL. Air flDl'T 
vTaS r egulated by electrica l ly.)pel'ated throttles in the inlet and 
the outlet ducts . The du cts , the del,Jression tank, and the com­
pr ess.)r i"ere i nsulated il i th a 6- inc ::'ayer of felt . 

I ndependent l ubrtcating sys tems vTere used for the front and 
the r ear bear ings . Snction was applied to the low'- pressure side 
of the oil systens to prevent oil from being forced into the air 
stream.. Press l.re - actuated switches were used to cut off thE) dyna ­
mometur :power slP2ly and pr event operation of the setup w'i'~h insuf ­
ficient oi l pressure . The power sup:;:Jly vTas also automattcally cu.t 
off when ;:>redetcrminec1 1 1.li1i ting bearing temperatures i-lOre encountered . 

Instrumentation . - Pressure and temr>erature neasurements were 
made in accordance vith the r e commendations of references 2 and 3 . 
Figur e 6 st.mTs the location of the various measuring stations . The 
air temperatur es at the Bailey adjustable orifice and the inlet tem­
per atures i n the depression tank vere measured with iron- constantan 
thermocouples . The three therr:tocouples in the tar>.k: vTere placed near 
the walls 1800 apm't and at the center . At the VDI orifice and in 
t he dischar ge duct , iro:J.- constantan thernoccmples mounted in axial ­
vent temper atur e probes vTer e us ed . The two probes in the outlet 
du ct were arranGed diametrically opposite . The cold jlnctions of 
all thormoco~ples ,vere placed in an ice bath to maintain a cold ­
junction teIll1)crature equal to that at ,·rhi. cll the thermocouples had 
been calrbrated . A calibrated potentiometc:- was used to moasure 
the difference in yotential betHeen tLe hot and the cold junctions . 
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Mercury Ilanometers Her8 used to measure all p:-cessures except 
t:"e pressure c1ro~ at the orifices. A water manometer was used at 
the Bailey orifice; ane.. a vlater micl'omanora.eter was used at the 
VDI erifice because of the slight chanee in pressure drop with 
change in air fl()'\{ . Only static pressures were measured in the 
depression taclc because the velocity pr essure was negligible. Com­
)1'eS80r speed \·;as manually contr:)lled and was periodicall;,r checked 
w'i th a Chrono - Tachometer . 

Tests . - The tests wer e begun vli th a single 300- horsepower 
dynamometer driving un·it . Because of this power limitation the 
initial tests vlere run at inlet conditj 0113 approxi:wating conditions 
at 50)000 feet (3.44 in . RS and _670 F) . The tests vere run at 
compressor :t-.iach m~llhers f2'om O. SCi to 1. 0; only one }1oint ,ms obtained 
at a compressor Mach munbe1' of l.0) howeyer) because of power limi­
tation . Tests vere then made at a simulated altitllde of 36)000 feet 
but at compressor Mach munber s lowe!' than l. O. A large Reynolds num­
ber effect ,·ras indicatecl but) ovling to the difficulty in maintaining 
a constant inlet pressure } tb.e data were scattered at all speeds . 

The tests at 36) 000 f eet ,'rere resumed vi th an add i tional 
300- ho!'sepower dynalllO~et.er but ;,Tere again interrupted ,,,hen the mercury 
in the manometer board uas sucked throngh the c:)mp::-essor . An inves­
tigation revealed that the lead'i.ng edges '.)f the third) the seventh} 
and the eighth stages of the rotor blad.es had. been damaged . The 
edges "Tere SIlYJotlled by hand e.nd traps Hel"e installed on the manometer 
board to prevent another SL!ch occurrence . ~ll1en the compressor was 
disassembled ) it lTas also found that the thrust bearing had worn and 
had allm{ed the rotor to mcve forward . The ends of the stator blades 
of the second rm{ had scraped the rotor because of the taper of the 
rotor . Al thQugh all the stator blades of this row "Tere scraped) the 
rotor sholled SlBll.S of cont.act only on one side) which indicated that 
a crit.Lcal speed had oGen encountered . From subsequent 'fibration tests 
it was found tl'!at the critical rotor speed was in a renge frCiill 15,000 
to 2l , f)00 rpm} ,.,hich included the desiGn speed . 

Tests with the reassembled compr essor vere made at compressor 
Me.ch nuubers of 0 . 80, 0 . 85 ) 0 . 90 .. and 0 . 95 at a simulated altitude 
of 36 )000 feet; at compressor Mach numbers of 0 . 80) 0 . 85} and 0 . 90 
at a simulated altitude of 50,000 feet; and at a compressor tvlach 
number of 0 . 80 at a simlAlated altitude of 27)000 feet . No data were 
tal~en at a compressor Mach nU1!J.ber of 0 . 95 and altitude of 50}000 feet 
because the bear:Lng lubricating oil v;as suclced through the com.pressor . 
At an altitude of 27 ) 000 feet} only a compressor Mach number of 0 . 80 
was run because of p01ver limitations . 

---------------_._--. - ----
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RESULTS lLWD DISCUSSION 

The adiabatic temperature-~ise efficiencies ~T and pressure 

ratios P3 / :')1 and P2 / P1 
T ~ T-T 

are based on totaJ.-pi'essure meas-

ure:.n.ents either j.n the outlet pipe or after the last row of 

stator blades P2 ' The telilnel~ature rise between the in:!.et depres-
T 

sian tank anJ t:18 :)utlet pipe was used in detenJ.in:'ng the efficiencies 
for bott. t,otaJ. - .ressur o rneamn:ements . Tb.e perf ')r:rn.ance characteris­
tics are presented e.s functions of the v)lune floll (cu ft/min) 
corrected to NACA standard sea- level tem 1erature) 60 Ql/ 'lje 

w:t:ere 

Q
l 

inlet volumo flov) cubic foet per second 

e ratio of absolute inlet - air teTl"perature to standard sea-level 
absolute te:o:peratu::oe 

The performance char2.ctori:;tics shmm in fi ure 7 were obtained 
fl'om pressures taken in t~le inlet dep::'ession tank and. at the exit of 
the last row of stator blac es . At 36 J 000 feet and a com:;)ressor t<1ach 
number of 0 . 95 ) tb.e design presSl,re ratio 01 5: 1 ",as reached with a 
pea~c effic:i.ency of 83 ?!orcen~;:. at t~:2.S sl'Ged . T~e ~lighest efficiency 
obtained in the tests i'TaS sli6htly mm:e thEm 85 percent at 
27) 000 feet . The Mach nUllbe~ at w~ lcll t:le compressor 'perates flost 
efficiently is bet':-Teen 0 . 25 and 0 . JO . 

The curves of figure 7 show an appreciable Reynolds number 
effect on the cOTll.pressol' pE:rformance; at a comp:t'essor Mach number of 
0 . 80 the peak effic'l.ency ilas 81 },Iercent at 50 ) 000 feet) 83 percent 
at 36)000 feet) and 85 ~ercent at 27 ) 000 feet . The ReJ~olds nueber 
f or which a particular compressor stage sh'Juld -be deslgned cannot be 
jetarminen froD ttese over-all resu2.ts because the Reynold.s num.ber 
varies from staGe to stage . Calcu2.ations sh:)\f that the a.ve~_~ace 
Reynolds nnmDor acrl)ss the cOTllpressor blading is approxi:nately 50 , 000 
at 50,000 feet; 100,000 at 36 )000 feet; and 150) 000 at 27,000 feet . 

The yressure distribution tl~ ougn. the compressor at the point 
nearest the design preS3ure ratio of 5 :1 at 36 , 000 feet and a com­
pressor Mach m;mber of () . 95 is shown in figure 8 . The last stages 
of the com:;,:Jressor are ope::oat ing more effectively and giving a better 
pressur e di8tributiol at the design point tha~ was obtained at the 
l ow speeds in previous tests . (See fiB . 9 of reference 1.) 
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Figure 9 Sh0,,\{S the compressor characteristics obtained from 
meam;rements ~ n the inJ.et tank and the outlet ;?:Lpe, \'Thic~1 include 
He losses in the scroll coL'_ector. The loss in efficiency due 
to the scroll is about 4 points . 

Tile effect of the damage dor-.e by the mercury may be seen in 
figu2,'e JO . Because tile leading edGes of the blades had been 
da,1Jaged, the efficiel1c:T was decreased ab out 1 ::?oint and the flow 
"Tas also sJ.iglltlJ- decreased . These curves are based on measure­
ments in the outlet pipe at altitude conditions of 36,000 feet . 

I-li th n8"l{ blades and at Re;;,rnolds nWllbers encountered at sea­
level c:-,ndi tions t_le e::'ficier..cy of the compl'essor based on measure­
ments in the outlet pir>e 110Uld probably be about 84 percent; the 
i)eak efficiency repvrtod in reference 1 ivaS 87 percent at an inlet­
~ir tem}Jel'ature of-approximately 508 F and pressure of approxima:cely 
10 inc:'les of mel'cliry . The opcratins (Ufferences that may account 
f 0r the differences in pe'foruillnce obtained in the present tests and 
those of reference 1 mf',y be the chengGs -:n l'otol'- blade :iesign, 
lagging of the compressor in tho p ... esent tests (or heat - trnnsi'er 
effect), Reynolds l1ltIl1ber effect , and posetble error in measurements 
due to nonuniform. inJ.-st-alr temperatures :i n the tests of reference 1 . 

In general, the comp::>:'es80r handled a 8omew'hat smaller quantity 
of air ~.t a sJ.tghtly higher :pre')su:~e ratio than t:1at for "'hich it 
was des1gned . This di3Crepa!lcy is pr~baoly due to the fact that 
the deSiGn on 1-Thich the comprcsscr l.]'as baaed w'as nel'! and, therefore, 
some of the initial D.asumptions as -Co losaes from blade tip clear­
ances, size of r oot fil.lets, val l fl"iction, and blade interference 
were sligh~ly in error . 

The .redesigned blades proved h:i.eh};}' satisfactory as to strength 
requirements . At the terminatio!1. of this investig:1tion, the compressor 
had been r un at~ut 5S0 l~o\1rs .:::ver a large rar:.ge of speeds, tempera­
t.ures, pressu~es , aEd loads , and no st:,,'esc or fatigue trouble had 
boen encountered . 

CONCLuSIONS 

1 . The NACA eiGht- stage axial-flow COmpl"eSSOr 8.ttained the 
design pressure ratio :)f 5 :1 at an adiabat t c t emperature-rise effi­
ciency of 83 percent , demonstro:tin t~at axial -flOi.T compressorfl of 
h igh efficiency wi tIl a much h~.gher : reesure ratio per stage than had 
previous:.y been obtained cen be c.eS).Bned by the use of proper velClcity 
diagl'&'!ls and ~lrElsent ai~foil thec-ry . 

--_ . . ---
--~ __ -.J 
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2 . The effect of Reynolds munber on compressor performance is 
larger than had been generally assumed; an increase in simulated 
altitude from 27,000 feet to 50,000 feet resulted in a drop of 
4 points in efficienc.y . 

Aircraft Engine Research Laboratory, 
National Advisory CorJmittee f or Aeronautics, 

Cleveland, Ohio . 
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Figure I. - NACA eight-stage axial-flow compressor. 
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Figure 2. - NACA eight-stage axial-flow compressor with upper half of casing removed. 
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F igure 3 . - L o w e r h al f of casing showing entrance guide vanes, stator blades , and 
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{a} First rows. 

Figure 4. - Construction of typical rotor blades. 
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Figure 5. - Setup of equipment for tests of axial-flow compressor showing compressor 
and discharge duct with Jagging removed. 
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Figure 6. - Compressor setup showing location of pressure and temperature measuring 
stations. 
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Figure 7.- Performance characteristics of NACA eight - stage axial- flow compressor based on measurements in inlet tank and at exit of last 

row of blades . Tests were not run to surge point . 
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Figure 9.- Performance characteristics of NACA eight -stoge axial-flow compressor based on measurements in inlet tonk and 

outlet duct. Tests were not run to surge point. 
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Fi gure 10 .- Eff ect of bJade damage on performance characteristics of NACA 

eight-stage axial-flow compressor. Altitude, 36,000 feet; compressor Ma c h 

number, 0.80. 


