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ATTIONAT, ADVISORY COMMITTEE FOR ATRONAUTICS
ADVATICE RESTRICTED REPORT

THE TWO-QIMENSIONAL TNCOMPRESSIBLE POTENTIAT, FLOW
OVER CORRUGATED AND DISTORTED INFINITE SURFACES

By W. Perl and L. J. Green

SUMMARY

The two-dimensional incompressible potential flow over corru-
gations and bumps of arbitrary shape is derived by conformal trans-
formation., The results are compared with those obtained by the
methods of thin-airfoil theory. Some discussion is included of the
flow over bumps that protrude both inward and oubtward from a wall.

INTRODUCTION

Analyszes of the effects of local surface distortions on the drag
and the critical speed of airfoils usually begin with a consideration
of the two-dimensional incompressible potential flow over a surface
having these digtortions. In reference 1, for example, the well-
kncvm approximate methods of thin-airfoil theory are applied to the
calculation of the velocity distribubtion over periodic corrugations
and isolated bumps of sinusoidal shape.

In this paper the ideal flow past such shapes ig derived by more
exact conformal mapping methods of W. Perl of the NACA staff, particu-
larly inasmuch as the numerical application of these methods is almost
as simple as that of the approximate methods of thin-airfoil theory.
The regults are compared with those obtained by thin-airfoil theory.
Some incidental discussion of the conditions at a cusped edge and
of the mapping of bumps that extend both inward and outward from a
wall is also given.

The analysis in this paper was begun at Langley Memorial Aero-
navtical Laboratory and completed at the Aircraft Engine Research
Laboratory of the NACA at Cleveland, Ohio,
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THE FLOW OVER A CORRUGATED SURFACE

Consider a corrugated surface, all the cross sections of which
parallel to a fixed plane are the same, having infinite length and
arbitrary but perindic shape. It is desired to find the velocity
distribution produced along the surface by an ideal incompressitle
fluid moving parallel to this plane. The free-gtream velocity suf-
ficiently far from the corrugation is sssumed to be constant, par-
allel tn the axis of periodicity of the cross section, and of
magnitude unity.

The problem is solved by finding the conformal btransformaticn
between points of the corrugation (actually the cross section),
taken as periodic about the 6-axis of a z-plane, and points of a
straight line, taken as the §-axis of a {-plane (fig. 1). The
Cartesian mapping function (CMF), which relates conformally corre-
sponding pairs of points in the two planes, is defined as the vector
difference z - { Detween such pairs of points.

A

Thus
v + 18 1;
(=Yg + iff (1)

z-L=2Q-dc=(W-Y) -1 (f-8) J

The various quantities are defined in figure 1.

The COMF 2z - { can bPe regarded as & function that is regular
everywvhere outside a circle ty virtue of the transformations

z = log p'! (2a)
{ =logp (2v)

in vhich the coordinates of p! and p are

. ew+16

P = P“;'O+i¢

Fquation (2a) transforms the semi-infinite periodic strip in the
z-plane, tounded by 9 = 0, 9 = 2z, and the corrugation W(€),

- into the entire region outside the p'-plane near circle that corre-

sponds to the corrugation. The corrugation given by the Cartesian
coordinates W and € in the z-plane is represented in the p'-plane
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by the near circle with polar coordinates e\l"( and 6. Similarly,
eguation (2b) transforms the semi~infinite nerlodﬂc strip, bounded
by $ =0, @ =2x, and the f-axis (\JO ), into the entire
region outside a unit circle in the p plane. The GMF z - { ‘becomes
a function that is regular everyvhere outside the p-plane unit

¢ircle and is therefore eXxpressible by an inverse power series

oo

z - § =1log (p'/p) = Eﬁ (3)
Y

1
wherein the constant term, repregenting a relative translabtion
betieen the z-plane and Lne Q -plane, has been made zero, The trans-
formation log (p'/p) in equation (o) has been used %n reference 2.

On the bovndaries equation (3) becomes, with p = 0P ana
Ch = a, + ib,,

fos) ~

= ) an cos nf + Z.;bn gin n¢‘ )
1 1 i

r (4)

~e(f) = Zb cos nf - L_’a sin n¢l

The mapping function W(#) - 1€(¢!) for a glven boundary \U(e)
can be obtained from equations (4). (‘onversely, special families
of ccrrugations are oblained by selecting various harmonics in equa-
tions (4); for example, a simple type of corrugation is given by

W) = -2 cos )

e(g) EZ.T- sin ¢ > (5)
o) =g — <(B) =9 + %5 si n §

vhere T/2 is the thickness ratio of the corrugation, defined as
the total height h (fig. 1) divided by the wave length 2x; the
quantity T is thus analogous to the thickness ratio

(maximum thickness/chord) of airfoil sections. The members of this
family (equations (5)) corresponding to T = 0, 0.1, 0.2, and 0.3

]

are plotted in figure 2 as }%—2- against 0.
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Once the mapping function of a corrugation is known, the veloc~
ity v at any point on the surface is given by the product of the
velocity on the straight-line boundary, which is unity, and the
atretching factor idﬁ/dzl from the straight line to the corruga-~
tion; thus, by use of equations (1),

ey
- dz’_ ldw + idot
id

/ . .
Al de)z . /d\y)z
Y- ") * e,
For the special family of corrugations given by equations (5)
the velocity distribution reduces to

Av — v-1 _ '_2__ r 1 _ _l (7)
*T/2 = wi/2 T W | J . !
- A (TR
vl + (—— + wT cos 6
vl 2 _l

—

Figure 3 shows the velocity distributions of members of the special
family shown in figure 2. As T— 0, ¥ and Av also—>0, bub
AV
both —z and -3 - cog @, Thege limiting values agree with
v nT/2 wT/2 8 & g

the thin-airfoil results obtained by Allen (reference 1).

In the general case of a given arbitrary corrugation V(6),

the COMF V(%) — ie(f) can be determined by successive approxima-
tions. Suppose, for example, that the zeroth approximation to the
corrugation W(8) is the straight line ¢b(¢) - ieo(ﬁ) = 0, The
firsi-approximation ordinates WV, (), corresponding to a set of
evenly spaced ¢ values, are then obtained from the given boundary
at the abscissas 6p = . Tae function ¢;(f), conjugate to
wi(ﬁ), is determined by harmonic analysis and synthesis in accord-
ance with equations (4). The resuvlting first-approximation

OF Vy(f) —ieg(f) vields the coordimates Vq(f), 61(f) = f—e(9)
of a boundary, which is compared with the given boundary. If the
agreement is not satisfactorily close, the procedure 1s repeated;

he second-approximation ordinates V,(#) corresponding to the same
set of evenly spaced # values, are obtained from the given boundary
at the abscissas 8y(f) = § — ¢ (#), eto.
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As an example of the general procedure and for comparison with
the resul.s of Lllen (reference 1) in the case of nonnegligible thick-
ness, a cos%pe corrugation with a thickness ratio of 0.2 was taken
as V¥ = — 5 COS 6. The zeroth approximation was chosen ag the
gpecial corrugation T = 0.2 of figure 2. The maximum difference
in ordinates of the two surfaces was 30 percent. After the first
apprcximacion the maximum difference hetween the ordinates of the
given cosine corrugatvicn and the first-approximation boundary was
reduced S about 4 percent. A second and a third approximation
Turther reduced the difference to 1 and 0.25 percents, respectively.
The resulting CMF and the velocity distribution for the third
approximation are given in table 1. Figure 4 shows this velocity
distribution as well as the approximate velocity distribution based
on thin-airfoil theory. As was demonstrated by Allen, the approxi-
mate velocity distridvution is a cosine distribution.

The results obtained by the two methods for a thickness ratio
of 20 percent differ appreciably; the maximum difference is about
16 percent of the maximum increment of velocity over the free-stream
valve. In the range of thickness ratios contemplated by Allen, how-
ever, the results of thin~airfoil theory are undoubtedly of sufficient
accuracy, as far as incompressible potential flow is concerned,

THE FLOW OVER A BUMP

Consider a surface that is perfectly flat except for an isolated
bump or a disturbance of congtant chord length and infinite span;
assume the flow over the surface to be at right angles to the span
and of magnitude unity sufficiently far from the bump. A two-
dimensional symmetrical flow is obtained by reflecting the bump in
the plane surface. This problem is solved by conformally mapping
the symmetrical section, taken in the z-plane, inbo its axis of
symmetry, taken in the {-plane. The coordinates in the two planes
are (fig. 5)

-
z =x + iy |

(8)

¢ =0+ iq
The CMF z - { becomes a function regular in the exterior of a
circle |p] =R as a result of the Joukowski transformation
2
R
= + ——
C=p+3
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and can be expressed as an inverse power series

z ~¢ =4 j;;
0

For corresponding points on the boundaries in the z~, {-, and

(9)

"l

p-planes,
© % 7
. n n .
£x(p) =Z o~ cos nf + + 2 0 sin nd
0 0 L
(10)
(o] oo
" Ay(8) = S in cos nf —-z e sin ng
- = 2 R R
0 0 J
z(P) = r cos B + ax(P) (r = 2R)

The velocity Vv ab any point of the symmetrical section is the
product of the velocity at the corresponding point of the circle
|2} = R and the stretching factor |dp/dz|. The result is

v sin ¢ (11)

: jéln $ - @—%

The gections vnder consideration are now assumed to be symmetrical
with respect to both the coordinate axes and to have a horizontal
tangent at their chordwise extremities on the x-axis., The Fourioer
series (equations (10)) are thereby simplified; symmetry with
regpect to the x-axis requires that bp = 0, and symmebtry with
respect to the y-axis requires the vanishing of even harmonics.
Hence,

o
< 8n

Ax = \: R——- cecs n¢ : <123,)
i

B 5in ng J (120)
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c+
(D
+
ay
V]
+
.
n

be zero for @ = 0, is satisfied if

co ow
Slnap =0, r4+on?ayfO (13)
1 1

A simple example of a family of bumps satisfying conditions (13)

is given by
px == 2T (cos @ - 1 cos 3%)
- g -\ 3

3 . 1 .
7T (Fln @ — Z sin 3¢>

(14)

Ay =
z ={1-2)cos P+ I cos 39 (15)
\ 4/ 4

where the value of r has been so adjusted that the chordwise
extremities of the section are at x = Il. The thickness ratio T
ig defined as twice the height of the bump divided by its length 2,
The bumps given by equations (14) and (15) are shown in figure 68(a)
for T =0, 0.1, 0.2, and 0,3, The family of symmetrical sections
ghovn in this figure was derived by Kaplan in reference 3 by a
generalization of the Joukowski transformation. The corresponding
velocity distributions are shown in figure 6(b).

The velocity distribution on the wall (that is, for |x| >1,
¥ = 0) can be obtained from the general expression for the velocity
at any point in the plane outside the section; thus, for an arbi-
trary airfoil situated at an angle of attack « in a free stream
of uwnit velocity, the expression for the derivative wy of the poten-
tial function in the airfoil z-plane is

W- P
dz/dp

WZ=




van Il =

where wp is the derivative of the potential function in the circle p-plane. If p. is

written in the form

p=e\y+i¢
v

R:eo

Q=V-vY,

evaluation of wp and dz/dp yields the following formulas for the magnitude v, and the

-

o~

direction II of the velocity vector in the airfoil plane:

sinh® Q cos® (B + a) + Ezosh Qsin (f + «) + sin (« + BT)]Z

(cosh Qsin @ ~ -—-—

<sth cosff + —=% 3¢ [_coshﬂsin(¢+m)+sin(a+BT

(s:th (2 cos @ + BA;;;

ﬂ ~sinh Q cos (F+a) (@sh&') sinf — B;ZS

—{sinhQ cos(fB+a) QainhQ cos @+ ag;; /cosh

where ﬁT ig the zero-lift angle.

For a symmetrical flow and. section, = By
B = 38x/3f = 0. Equation (17) thus reduces to

Q 8ing — BA; [cosh Qein(f+a)+sin (MBT)]}

= 0; whereas, for points on the wall,

%



NACA ARR No., ESAOS 9

sirh Q

(vz)wall = 34 (19)
sirh O + {947
g
The value of %%%) for arbitrary 230 is obtained by differen-
. ¢=O
tiating equation (12t), replacing R with eW, and using for ap
the values prsvicusly determined for the ssction.

The conformal dtransformation of a sinusoidal bump was next _
determined by the method of successive approximations oublined in

m ] 3 "
the preceding section., The thickness ratic T was taken to be

0.2, 3o that the symmetrical section has the equation
¥ =%0.1 (1 + cos x x) (-1l=X<1) (20)

The symmetrical section of figure 6(a) with T = 0.2 was chosen as
the zercth approximation., Two approximations were carried out, The
maximvm differences tetween the ordinates of the given boundary
(equaztion (20)) and the successively derived boundaries were about
5, 1.5, and 0.25 percent for the zeroth, the first, and the second
apprOY1matlons regpectively, Table 2 contains the data for the
second approximation and figure 7 shows the velocity distribution
over bump and wall. The approximate result of Allen, obtained on
the »agis of thin-airfoil theory, is also shown in figure 7. The
rsximym difference between the two curves is aboubt 8 percent of the
waximum increment of velocity over the free-stream value, This
difference, it should te remembsred, is for a 20-percent thickness
ratio; for the very small thickness ratios considered by Allen,
thin-airfoil theory is quite adequate.

Figures 6 and 7 show that the velocity distribution in the
neighborhood of the point where bump meets wall merits discussion.
A symmetrical section can become tangent to the wall in any one of
three ways: with infinite curvature, zero curvature, and finite
nonzero curvature, The case of infinite curvature, properly called
a ougp, holds for the special family of sections given by equa-
tions (14) and (15) and also for the trailing edge of a symmetrical
Jdoukowski airfoil, The velocity curve corresponding to both bump
and wall has a minimvm value at ‘the cusp; the velccity gradient at
the cusp is finite on the bump side and infinite on the wall side
a8 indicated in figure 6(). See reference 4 for a comparison with
experiment.

Zero curvature is obbtained at the sharp edge of the symmetrical

gection if, in addition to conditions (13), the following equation
holds:
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The velocity curve in thisg cags has a minimm at scme point on the
bump and the velocity gradient is coabtinuous at the point wvhere the
secvion meets the wall,

The section ovtained by reflecting the cogine buwmp in the wall
has finite nonzero curvature at its sharp edge. The velocity is a
minimwi at a point on the bump, as seen in figure 7, but the conti-~
nuity of the velocity gradient at the sharp edge is, from the cal-~
cuwlatione of this paper, still an open guestion., It is conjectured
vhat, at a sharp edge of this tipe, the velocity gradient hasg &
finite discontinuity.

EXTERIOR-ITTERIOR BUMPS

The flow over a bump has been derived in the preceding section
b7y refiection of the bwmp combtour in the wall and analysis of the
resulting symmetrical section, If an exterior-interior buap, nzmely,
a digbortion of part of & wall in both direchions perpendicular to
the wall, is reflected in the wall, a symmetriczl figure-eight sec-
sion results, as indicated in figure 8. The mapping of such a con~-
tour onto a circle can be accompiished a5 previously described.
It appears, however, that the derivatlve dz/dp of the traneforma-
tion will be zero at a point outside the circle corresponding to a
point within the loop consigiing of tie interior part of the brup
conttour and itg reflection. That svch a zero mugt exist hecomes
eviden: uvpon tracing the paths around the figure~eight contour
corresponding to concentric circles larger than the basic circle,
As irndicated schematically in figuve 3, the transition contour
between those of figrre-eighv type and those simply comnscted hos a
sharp-zdged extremity at the point F ingide the loop formed by the
interior part of the bup conbowr arnd its refleciion. At this
sherp edge, az/dp = C. Although thils property of a looped contour
mignt be useful, for ezample, in locating the sirgularitics of a
mapping functlon, tkis method of attack does not yield the desired
flow over the exiterior-inierior bump {(the flow actvally obtained is
that whose zoro streemline is the pata ABCDEFGH in fiz. 8). It may
be noted that the conventional application of thin-airfoil theory
also breaks down in this casge.

The flow over an extaorior-interior bump can be obiained by
mepping the bump and thc wall contours onto an infinitely long
straight line. Points on the bump contour are rslated to points on
the straight line by the CifF,

b i s o b hm et e s L . s oo
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z - [ = Ax + 1Ay

a3 indicated in figure 9, and points on the straight line are related
to pointe on the unit circle hy the bilinear transformation, which
for the problem under consideration is taken as

¢ = i(—’i—"——?) (21)

Equation (21) transforms the upper half {-plane into the region
exterior to the unit circle; corresponding points of both regions
are shown in figure 9. For points on the boundaries, the inverse-
power-series expression for z - ¢ (equations (9) and (21)) yields

(s Cco -

Ax = >'ap cos nf + > by sin np |
0 0 |
o [e2] .

Ay = 3| by cos nf - S ay sin nf L (22)
0 0

o .
X =t +40x = tang—q——z-—-——Q + hx(P)
y = Ay i

The velocity distribution at the surface of the bump is obtained
from the complex velocity function wg:

v - Ve N 1 _ 1
7 dz  dz  ,  d(z-6)fap ; dsx . dAY
d_c dé 1+ dC/d-P 1- (l+81n¢) d¢ +1d¢>

The absolute magnitude of the velocity v 1is therefore given by

1

/\/[1 - (1 + sin §) %]2 + [(1 + sin @) %—%’5}2

As a2 simple example of an exterior-interior bump, the family
represented by

Vv =
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AX

i

b gin §

Ay =y =b cos @

. 90° -

tan > +b sin P

]
i

{te

s illuetrated for verious values of b, togevher with the corre-
sponding velocity digtribubions, in figures i0 and 11. By the
methods previously described and also by superposition of solutionsg
by linear comvinations of CMF's, arbitrary disbortions of a straight
wall may bYe analryzed or synthesized.

2

CONCLUSTION

The velocity distributions on corrugations and bumps as deter-
mined by confoxmal transformation are, in the cass of 20-percent
thickness ratio, appreciably different from the corresponding results
by thin-airfoil theory. The maximum differences, expressed as frac-
tiona of the meximum incremeni of velocity over free~stream veloclity
prodvced by the disturbance, amownt to approximately 15 percent for
a ginucoidal corrugation of 2C-percent thickness ratio and 8 percent
for a sinusoidal bump of the same thickmess ratio. In the limit of
zero tinickness ratio, the resulis by conformal transformation are
identical witk the resulits »Hy thin~airfeoil theory.

Aircraft Engine Research Laboratory,
National Advisory Cormittee for Seronautics,

Cleveland, Ohio.
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TABIE 1. — CMF AND VELCCITY DISTRIBUTION FOR COSINE CORRUGATION

v
(thin-
airfoil
theory,
refer-
ence 1)

(radians) v c o ay de -

ag af

0 {-0.3142 0 0 0 ~0.14)41210,69%9 | 0.6858

7/12 | ~.2925]-.1118] .3736| .1607{ —.3996] .7098 7075
/6 | ~.2343{-.2038] .7274] .2729{ -.2971| .754L | .765L
afli | =.1551{-.2659{1.0513] .3228{ ~.1776] 8191 | .8LLO
/3 | —o069%1-.298111.2h53] .3272] ~.0718} .892L .9298

5 /12 L01L1 |-.308)0 | 1. 61| .3068] .0128] .9673 | 1.0137
/2 090k {~.29%0]1..8638} .2747] .0789{1.0404 | 1.0907

7 w/12 | .157%1-.2652{2.0978] .230k| .1315{1.1113 | 1.1580
2 w/3 | .2133-.225%{2.3197] .1916| .1716{1.1760 | 1.2139
3 a/h | .2573]-.1762]2.5320) .aLh7|  .2013i1.2320 | 1.2576
5 4/6 1 .28391-.1208|2.7387] .0566] .220711.2736 | 1.2890
11 /12 23079{-.061312,9411] .0k82] .2320{1.2996 | 1.3079
v ! .z1elo %.1416} 0 .235%11,%077 | 1.3142

National Advisory Committee
for hAeronautics
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TABIE 2. - CMF AXD VELOCITY DISTRIBUTION FOR COSINE BUMP

]

( rad%;/ans Y1 Q Ax Ay x '2‘%5 %%z v
/2 |0 0 0.2000 | 0. 0.306l {0 1.%901
Lw/9 o -.0523 { ,1910 | 1373 | .2866 | .102L |1.3522
7 /18 |0 -,0978 | 1651 | .2756 | .2282 | .1907 |1.2509
/3 |0 -.1299 | 1262 | L4159 | .13h7 | .24B86 | 1.11h9
5 %/18 |0 - 1h36 | (081} .558L | .0217 | .2538( .9801
2n/9 |0 -.1386 | L0413 1 6977 |-.0718 | .196% | .8793
w/6 |0 ~.10%33 | 019 { L8422 |-.105L | ,1063 | .8272
/9 |0 -.105% | ,00%1| .9207 {-.0815 | .0350 { .8183
/18 |0 -.09h9 | 0002 | .980%3 {-.0%73 | .00hh | .8%5h
/36 |0 -.0925 { ,0000 | .99%1 {-.0173 | .0006 | .Bh61
0 051 =,0915 10 1,0016 {0 0093 | .88l7
0 10| -.0908 {0 1,006} {0 0178 | .8598
0 220 | -.088% {0 1.025% |0 L0318 | .8735
0 30} =.08Lh6 {0 1.0566 {0 Oh1l6 | .8889
0 0| -,0801 {0 1,1001 |0 LOu76 | .9040
0 ,50| =.0752 |0 1.1559 {0 .0508 | ,9180
0 601} ~.0700 |0 1,222 {0 L0518 1 9306
0 .70 | -.0649 {0 1.3055 {0 L0513 | .9l17-
0 80 -.0598 |0 1.4003 {0 L0L97 | .9512
0 90| ~,0550 {0 1.5096 {0 LCh7h | 959
0 | 1.00|-.050% |0 1.6343% {0 LOUl8 | .9663

National Advisory Committee
for Aeronautics
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Figure 5. — Conformal tronsformation of a Symmetrical section.
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