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APPROXIMATE FORMULAS FOR THE COMPUTATIOK OF
TURBULENT BOUNDARY-LAYER MOMENTUM
THICKNEZSSES IN GQMPRESSIBLE FLOWS

By Neal Tetervin

STUMMARY

Apprcximate formulas for the computatlion of the
momentum thlcknesses of turbulent boundary layers on
two-dimenslionel bodies, on bodlesa of reveclution at zero
anxle of attaclk, and on the lnner surfaces of round
caarmnels all in compresslble flow are given in the form
of irtecrals that can bes convenlently computed. The
formules involve the assumptions that the momentum
thickness may Le computed by use of a boundary-layer
valocity profile which 1s fixed and that skin-friction
forrulas fer flat plates may be used in the computation
of toundaery-layer thicknesses in flow wlth pressure
gradlents. The eflfect of density changes on the ratilo
of the dicsplccement thickness to the mormentum thlckness
of the %“ourdary layer 1s taken intc account. TUsse 1s
made of the erperimental finding that the skin-friection
coefflcient for turbulent flow 1s indemendent of Mach
number, The computatlons indlcate that the effect of
density chanfes on the momentum thickness in flows wilth
pressure gradients 1s small for subsonlc flows,

INTRODUCTION

A number of methods sre avallable for the computdtion
of boundary-layer momentum thicknesses for lnccmpressible
flow. The increasing Importance of flows at Mach numbers
approachlng and exceeding 1 has emphasized the need of
formulas that would make possible the comparatively rapid
computation of boundary-layer momentum thlcknesses for
compressible flows. The purpcse of the present work is
therefore to provide approximste formulas for the compu-
tation of boundary-layer-thickness parameters for
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compresslble flows. The present work furnishes no new
Information concerning the boundary-layer shape, sklin-
frictlon coefficlent, position of the transition point,
or likellhood of boundery-layer separation. '

Approximste formulas for the computation of the
momentum thicknesses of turbulent boundaery layers on™
two-dimensional /bodles, on bodles of revolutlon at zero
eangle of attack, and cn the 1lnner surfaces of round
channels &ll in compressible flow are given in the form
of integrals that can be convenlently computed. The
aporoximate formulas contain the assumptlions that the
momentum thiclkness may be computed by use of a boundary-
layer veloclty proflle which 1s fixed durlng the 1lnte-
gratlon and that skin-frictlon formulas for flat plates
may be used 1n the computatlion of boundary-layer momentum
thicknesses for flow with pressure gradients., The
formulas are appllcahble to all unseparsated, turbulent
boundary layers and in speclal cases to laminar boundary
layers. The numerical values of the ratlo of the dis-
placement thlckness to the momentum thickness, a ratio
that appears in the momsintum equation and thet 1s capable
of speclfylng approximetely the veloclty distribution
through the turbulent boundary leyer 1ln lnscompresslble
flow, are corrected for density changes 1n the boundary
layer by use of low-speed veloclty dlstributions. Use is
made of the.sexperimental findlng that the skin-friction
coefflclent In turbulent flow 1s 1ndependent of Mach
number.

The problem of computing the boundary-layer momentum
thickness for compressible flow has been treated by Young
and Minterbottom (reference 1), who integrated the
boundary-layer momentum equatlion for laminar flow by using
the skin-friction relation from the Pohlhausen theory
(reference 2, p. 109), fixing the veloclty profile, and
correctlng the density through the boundary layer for the
effects of compressibility. For the turbulent boundary
layer, the momentum equatlon vss Integrated by a step-by-
step process 1in which a fixed veloclity proflle was used
and the effect of denslty changes through the boundary
layer on the ratio of the dlsplacsment thiclimess to the
momentum thlckness.was lgnored.

The preoblem of commuting the momentum thickness over
a body of revclution for incompressible flow has been
treated by Young (reference 3), who computed the momentum
thickness of the laminar boundary layer by a step-by-step-
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_computation in which an extenslon of the Pohlhausen method

was used.—- The thickness of the.turbulent part--of the
boundary layer wss computed by a step-by-step process in
which a fixed velocity profile and the momentum equation
for a body of revolution wers used.

In order to substantiate the assumptlicn that skin-
frictlon formulas for turbulent flow along flat plates
may be used in the computatlion of momentum thicknesses
for flow with pressure gradients, references 3 to 6 are .
clted. In these references, good agreement between calcu-
lated and experimental results was generslly obtalned
although falirly large adverse pressure gradlents were
present 1ln many of the casges. :

The assumptlon that the momentum thlckness may be
computed to a close anproxlmatlion by fixling the veloslty
profile durilng Integration 1s substantiated by the work
in references 3% and [; and by that in reference 6, which
contains a comparlson Between the computed and exneril-
mental values of the momentum thiclness over the entire
chord,

That the skin-friction coefflelent for turbulent flow
1s independ=ant cf Mach number 1s established by the work
in references 7 and 8, Frossel (reference 7) presents
experimental deta for turbulent flow in pipes which show
that the veloclty proflles for subsonic comoressible flow
ancé the sklun-~frietion coefflelents for subsonlec and super-
sonlc compressible flow do not differ noticeably from
thoce for 1lncomoressible flow. Theodorsen and Regler
(reference 8}, by experimentlng with rotsting disks, showed
that the skiln-friction coefficlent for turbulent boundary
layers is indepsndent of Mach number. Keenan and Neuman
(reference 9), after verforming experiments with pipes,
reached conclusions that did not contradict those of
roferences 7 and 8,

SYMZ0LS
a constant in equation relating H, to A and Hy
b slone of velocity distribution
eq drag coefficlent per unit span

_ -
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T tmax

Ts
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velocity of sound in free stream

specific héat at constant pressure, foot-pounds
per pound-mass per degree N

ratic of disnlacement thlckness to momentum
thickness (5&%/0)°

constant

constant in skin-friction formula

length of seilrfoll, body of revolutlon, or round
channel; measured slong chord or axis of
revolution

frese-stream Mach number

exponent 1n formila for boundary-layer veloclty
distribution

narticulsr vaiue of m

exnorent 1n skin-frictlon formula
statlec pressure

gas constant

Reynclds number (UgL/vo)

Reynolds number based on length of plate (Ugx/vo)
Reynolds number based on momentum thickness (Td/v)

radlal dlstance of polnt from axls of body of
revolutlion or round channel

radius of body of revolution or rocund channel

maxlmun radius of body of revolutlon or round
channel

absolute temperature
absoluts temerature of free strseam

absolute temperature at edge of boundary layer
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velocity parallel to x at euter edge of boundary
"layer "' - . -

free~stream veloclty

velue of U at statlon at which valus of (%) 1ls
x
obtalned /

value of U at x =0

\ AHi
value of U chosen to make value of (\ - 1la
maximun

value of U at =g

velocity inslde houndary la2yer and parallel to
surfeace

exponent 1r fermula for viscoslty

distance measured along surfece from forward
starretlon »olint

posltilon on surface at begirning of integration

dlstance mesrsursd normel to X

angle between tangent tc surface cf body of
revolutlon or round channel and axis of
revolution

+Q cos a

value of B at xg

ratlo of speciflc heat at constant nressure to
speciflc heat at consiant volume

hominal thickness of boundary layer

disnlacsment thilckness I-J(; 6 - = dy
[

PsU

8
momentum thilckness [L£ -‘5% (1 - -ﬁ)dy]

value of 8 at Xg
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_zﬂf .
s (U/Uo)2 ’

11 coefficlent of viscoslty

Bo free-stream viscoslty
v kinematic vlscosity at outer edge of boundary
layer
Vo kinematic visccsity in free stream
[o] denslty
Po free-stream density
P& denslty at edge of boundary leyer
To surface shesring stress
=1+ =
(y - 1)K

¥ =r.0 - {i cos a
Lo 1
n
.| O pu u
9 —u6 é%ﬂ (1 - g7 dy

. A pu
o -l/(; (1 - ;gj)y ey

value of ¥ at X9

Subscripts:
(] comhressible flow
i incompressible flow

ANATYSTS

Momentum equatlon for coirpressible flow about & two-
dimensional body.- The boundsry-leyer momentum equation
Tor two-cilmensional compressible flow (reference 10, p.l32)
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1s glven, when the static-pressure varlation across the
TBoundexry laysr 1s nefliglible, as -

3 8 o 3 [° _ : - -
SX—L/O pu dy-UB_i,/{; pudy—--ro-tig% (1)

From the equation of motlon for compressible, inviscild
flow the relation between the velocity and pressure

derivatives outside the boundary layer may be written
for convenlence as

. dppUZ - opsU _ &p
ox dx ox

. Then by use of the equation for %%, the definitlon for

the momentum thickﬂeﬂs i
.,.':
[7 e ' ot
0 = = (-3 SN
o U T/ - ‘
p5 J & !

and the definition for the displacement thickness
\J'l
e (B e

equation (1) cen he written 1n the form glven 1n reference 1
as

e

20 , o (Hc +20U0 1 ap5> _ 7o

: 2
x U ox pg OX peﬁé (2)

' vhere H, = -

The principles used in the derlvation of equatlon (2)
were the conservatlon of mass and Newton's law of ‘motlon.
Equatlon (1) 1ls therefore anplicable to both subasonic and
supersonic flow. Thils equation 1s not, however, to be
used for flow through a shock wave because In thils case
the assumptlions of the boundary—layer theory may not be

applicable.
JS
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Momentum equetion for compressible flow about a boad
of revolution.- The boundary-layer momentum equation Tor
comnr'essIble flow about a body of revolution (reference 10,
p. 132} can be written, when the static-pressure variation
across the boundary layer 1s negliglble, as

14]
E-'/ puard:;-U—/'pu:c-d:;r—-'r,:,z't--elE rdy (3)
ox 0 ox vn Ox 0
Since

r =ry +ycosa

wvhere »r+ and cos a avre dependent or x only (fig. 1),
equation (%) may be rewritten as

6 5
2 Jf 2p, @ U 0 a
— u=r - —— ur
n o PETE Y o Jo P W

5 [° > [° |
+75§/; puzlgaosc:.}ydy—U-&-c-k/ol pu(cosa)ydyJ=

6 6
Y 2 [ ona)
- = Jo Tt dy - 3 Ug (cos alydy - ryT,

If 8 and Q are deflned by the relaticns

e}
U{; puw(U ~ u)ry dy

r8pgU°

and

5
Q(cos a) pGU~2 ‘/O‘ pu (T - u) (cosa}ydy

and the ejuation of motion for compressible, inviscid flow

Op oU
—_— 2 - T —
ox - P8 ox
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i1s used, then the n_lomentum equation becomes
. PP \6.. Pl - = 5 . - emay ..é . F—
U n—
- % ‘/o‘ PgUry dy - £ pury dy) - 3% (rteanz)

[5 pu(cosa)y dy i

8
- ou f pgU (cos a)y dy -

o)
i [Q (cos O-)an‘Z] = = PgTo

Then 6% and (¥ may be defined hy the relations

6
fo (an - pu)ry dy

I‘t 6-::-p GU

and

6
Q% (cos a)psU ﬂ/O\ (p5U - pu) {cosc)yay

so that the momentum equatlon becomes

8 1 avf o
S; rif + Q cos o.) + P ;—trte(Hc + 2) + Q (cos a)-a- + 2
1 *ps TtTo
— —— 0 + ) o8 al) =
+ Ps ox (rt c ) Py (L)

, In crder to permit intezration of the momentwm
equation for comoressible flow about a body of revolution,
equation (l}) should be written in the seme form as that
for two-dimenslionel compressilible flow (equation (2)). The
approximation 1s thersfore made that for flow on the body
of revolution

{rte(ﬁc +2) + Q(cos u)(‘—g— + 2)] = (He + 2)(ry8 + Q cos a)K
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or
1 (2 cos a.(j T)

Q cos a
T8

In order to determine the magnitude of the ratio

+ 2
;?-ir?i the assumptlon 1s made that the veloclty distri-

butions through the boundary layer may be approximated by
power curves of the type

2 (3)™

When the flow 1s incompressible, the definitions of Q¥%,
{3, and Hy may be used to obtain

o* _1+m

QT T
and
2 +m
Hy = -
Therefore
¢
fil + 2
! _3m + 1

Hy +2 3m + 2

Tor Incommressible flow.

From

l;'l F(y?‘/"’)y dy %J;l F(yl/p) dy

1t can be shown that

Q*)
2 /m=m m=2m!
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for compressible as well as for incompresslble flow.

.8y use of

- — . en

R
CONNELSS

m=m!'

and fignwre 2, which 1s dlscussed later in connectlon with
& + 2
the effect of compressibllity on H;, the ratlo 11———5 ..
H, +
can be evaluated for compressible flow. F%Q all cases of
i-‘

-n-+2
e t 2
from unity by leas than 20 nercent and, for most cases, by

rouzhly 10 percent. Thus, even when {} cos a 1s not a

I‘ta
small fractlon, the appreximetion that K =1 1s not
far from true. ‘hen, in addition, 1t 13 noted that

unseparated flow, the value ol the ratio differs

0
M cos G . &
rte ry
ané ls therefore asmall over nwost of the body, the approxl-

matlon that X = 1 1s permissaible., If L =1 13 used
in equation (l1), it becomes

5%:-6'459+ {) cos u)+ Hcl;' 256%(1'1:9_"'0 cos u) + %%‘)%(rte + ) cos c:) -

rtTo
psU

or by substltutlon of {§ for r0 + £ ccs a
L it (5)
ox p\ T Ox pg Ox pf,U?a

This eguation for Incompressible flow has been gilven in
reference 3%,

Tie principles used in the derivation of equation (5)
wore the conservatlon of mass and Kewton!s law of motion.
The approximation was made that for flow on the body K = l.
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Momentum equatlon for compressible flow over inner
surface of a round chaniel.- When the fliow in a round
chennel 1ls such that the flow throughout the boundary
laver 1s approxlmately narallel to the wall and a region
exists outside the boundary layer In which viscoslty has
no effect, the boundary-layer momentum equation for this
flow is the same as equation (3). In the momentum equa-
tion for flow over the inner surface of e round channel,
tihie pressure change across tlie boundary layer 1s assumed
to be negliglble. All of the symbols Iin the momentum
equatlion for comprressible flow over the Inner surface of
a round channel have tielr meanings unchanged except for
the dlstance Yy, whlch is positive when measured Inward
from the wall so that

r=ry-ycosa

Trhe derivation of the momentuan equation for flow over
the inner surface 0f a round channel follows the same pro-
cedure and Involves the same assumptlons as the derivatlion
of equation (5). 7he derived egquation 1s

5__‘*"+¢C_‘_c_*__§é_”+_}_?£§=£‘zh ©)
oz T 0Ox pgoOx p502

where
V=rgs - Qcosa

Effect of coupressibility on H,.- Since the ratio
of the displacement thickness to the momentum thlckness
H, occurs in the momontum equation, the effect of com-
prossibility upon thls ratlo should be considered. The
equation for H, 1s

5*

Y
Y a
_4/;6< PsY v
T Tnd
‘/)_EE.( - E) ady
o PsU Y

H,
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The density varlatlon through the boundary layer can
-=be -obtained . .from the welocity @istrlbution through the
boundary layer by restrlcting the treatment to "the case
In which there 1s no heat flow through the surface and
the effectlve Prandtl number I1s equal to unity. The
equation
2

¢ T + L = constant
p 2

1s then applicable to flow In the boundary layer. Vhen
the addlitlonal restriction .is made that the static-pressure
variation through the boundary layer 1s negligible, the

expression for gL becomes
8

Sl ol o e
1+ 1-()()]'{-11\102

and the expression for © becomes
-1
1 1+[1-(—)]Y M2
- L S W |
U( U)da
0 1 .4 1_()<_> 2

which can be_reduced to

8
6

T .
y - 1 : :
2 u u
+ — - o
! 6 L 2 My ]_fl U( = d%
, — -
! 5 2 . Y - 2
: T\"xy-1.2 1+ M 2
| @) e b 2tz - 3
- TNy -1
\U°} 2 “0

dls b
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Let
1+ L%—l M°2 A2
/Y oy -1y
\GL'.'/" 2
or
)
A = _.g__,s.
AT
(;o>
where
d=1+—2=
(v - 1) 1,2
then
Mou ) 2)
g = (&2 - 1) U Y Y 4 (7)

By application cf the same procedure to the deflnition
of &%/6, then

3 1 L
8 . g . M2 - 13 [\ 1. a< (8)
6 A - (2 6

Jo (U

Large values of A2 mean suall values of Mo .
The assuription was made that
u _ I'l\l/m
v - \s/

ancé values were chosen for A2; &%/5 and 6/8 were then
czlculated for a rengs of A between 1.5 and 14.0

with m= 3, L, 5, end 7. The curves of 1/, are given
In figure 2. Since




= ey vl

NACA ACR No. L6A22 S 15

and since H eppears ln the momentum equation, the curves
of flgure 2 are deslgnated by values of Hj rsther than m.
POWer curves are used merely for convenience in computing
the effect of compressibility on H.

The value of H, for the Blasius flat-plate proflle
for laminar boundary layers (reference 2, p. 88) has been
computed for verious values of A &and a Prandtl number
of unity by use of equations (7) and (8). The computations
were repeated with the velocity distributlon for laminar -
flow over a flat plate at My = 2 (reference 11). TWhen
He was plotted against A\, the results of both computa-
tlons were practically identical for small values of A.
Only the results obtalned for the Hlaslus proflle are
therefore presented in figure 3.

Equations (7) and (8) show that although the veloclty
distribution through the boundary layer 1s assumed to be
independent of pcsition along the surface, I'e¢ may vary
with surface positlon becsuse cf 1its dependence on A.

Tor Integration of the momentum equetlons, the denendence
of He on A may be taken Into account by anproximating
the curves of flgures 2 and 3 Ly the equatlion

a
H, = + H
c A - 1 1

2 + Hy (9)
(ﬁ 1

Y

Uo

The values of a chosen to fit the curves of figures 2
and 3 wlth sufficlent accuracy over most of the range of
A are plotted asainst Hy in figure l.

Integration of momentum equeticn for two-dimensional
flow.- Belore equation () can bhe Integrated, (Ho+ 2),

1 oPs To .
—— and should be renleced by functlons of the
P5 Ox p5U° d

velocity distribution over the body, the free-stream Mach
number, and the momentum thickness. The term Hg, + 2 1s
a

+ (H4 + 2). By use
(A@_) -1

replaced by 1its equivalent

0
Uo /
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of the gas law

the equaticn of moticn

op _ _ U
dx Pel 3% ox

the Bernoulll equation for compressible flow
e Uo?
¢pTs + 5 = CpTo + —5-
and the equatlon for the velocity of sound

002 = (Y - 1) GpTo

o)
the term L _EQ can be wrltten as

Ps OX
U
5(33)

g
1 9Pg _ "2\JQ) 3x
96 AX (y = 1) [Qf _ _)T

The local skln-friction coefflclent ———2 is expressed
poU

(10)

a3 a power Tunctlon of the local Reynolds number based
on the boundary-layer momentum thickness by

To k (U)n -Ti
—_— = = ki=1]96 (11)
pPsU° R v

By analogy with the work of refererce 11, the viscosity
and denslty used to calculate Rg are those at the outer
edge of the boundary layer. The viscosity at the outer
edge of the bcundary layer i1s assumed to be given by

Tp
N =(=8
o T°> (12)

where w = 0.768 for air (reference 11).
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. The denslty at the outer edge of the boundary layer is

gfven-by - - - . . o -

2]1
0 1
po |7\ I'T"
g2 = ¢_1J (13)

in whilch the flow outside the boundary layer 1is assumed
to be adlabatic. TEquations (12) and (13) are used to
give the Xkinematlc viscosity v 1n equation (11l) as a
functlon of the veloclty dlstributlon over the body and
the free-stream Mech number. ETquatlion (2) may then be

2 .o _xg) 4

Uo ex | kv?

ST T b & @

This equation i1s a differential equation of 'the Bernoulll
type. Jhern 1t 1s made llineer and lntegrated by standard
methods, the result 1s -

(2.-) - ﬂ - (%)x/L]a ! [ﬁl%'x,%ﬂ]
L/xp.

——
(—1) (¢ - l)n(W =1
o/ x /.

) |y gy

Uo 3

x
. éﬁ ) l)a(1+n) L
xo/L

. |
)
b
[
+
nN
j -
=,
1
TN
. Sle
\__/
N
| SO
i
[ IR L
‘_I

~
l+n 1

( >l+n . (F14+2)(1+n) ; (-U-]:)ZY—_—I oy
" \u
3 > _

a(1+n)
Eﬁ 5

Uo

(1ly)




18 ' L] NACA ACR No. L6A22

where 01/L and U1/Uo are the values of 6/ and U/Uo
x

at % = E?' The value of ¢ 1s always greater than 1.
By use of the Bernoulll equatlon for compressible flow,

2

(%L> can be shcwn tc be always less than @. When M,
o

approaeches zero, equation (1lly) becomes equetion (1) of

reference 6, that 1s, the integrated momentum equation for

incompreasible flow.

Integration of momentum equation for flow over a
body of revolution.- The acsurmtlons concerning H, are
tThe same as those for the two-dlmensional case. The

equations for iL, EQ, end EL QEQ are also the same
Ko (SF¢] P& oax

as for the two-dimensional case. The exprcssion for the

skin friectlon, however, lnvolves the sapprcximation that

@ can be renlaced by ﬁ%. This approximetion 1s
equlvalent to neglecting the term -— cos a In the

r't
equation
8 = ;% - é% cos a
Q o)
Since the value of ;E cos a Is always less than FEB’
1t follows that the apnyrcxlmatlion 1s Justiflied only in

cases 1n which %1 i1s a small fraction of unity. 1In
reglons rear the tsaill, therefore, the accuracy of the
approxlmation for the skin frictlon may be expected to
decrease. The momentum equation for flow over a body of
revoluticn (equation (5)) indicates, however, that the
contribution of the skin friction tec the boundary-layer
thicknoses beccmes less Iimportant as the tall 1s approached.

The approximatlon that @8 can be replaced by £ 1s

rt
TiT
therefore allowable and the term E§E§ In equation (5)
sU=
may be wrltten
fito g o (15)
P52 glg™

!
JD
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:
pla Zib, and ——-2 are - replaced by

i c&uations (9), (10), and (15), then equat.ion (5 .becomes

Yhen the terms Hg,

i
- & -‘*-1’[?’-(3;)]]
bt1+nkun |
(Ul)nuoncn
Uo

This equaticn is a differential equation of the Bernoulll

type Fhen 1t is made 1llnear snéd integrated by standard
methods, the recsult 1is

{-‘ﬁ - ‘/‘%D ’Ja k(l+n)/ T A\l

—L& = = = ( \i JA —_— RL.D I‘tmax)

& 2 /_T.__)_' Hi+2 I 2 —_]___ .-}_

max I//L :UO)X/L ¢ U—o' z/L ) Y-l (¢ l) \W - _1)
/L /U [(Hi"'l) (1+n)+1] [¢- i 2 (nw.p-&i-) < r¢ 14n

\Uo) L (UO/ 7 rtmax) x

[ - v T1a(l+n)
o/ L {Vﬁ (UQ)J

& \(1+n) (F1+2)(1+n) [9' ) _U_l 2 .i—':ﬂ ﬁ

> (16)
_ mn a(l+n)
[w @)

-

where —B1_ and U1/, . are the values of” —-@—-2- and
max . Ttmax
x -
U/Ue at = = -LQ
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Integration of momentum equation for flow over irmer
surface ol & round chennal.- I'he equation resulting Irom
The Integration of equation (6), whan the sams procedure
and assumptions made to integrate equation (5) are used,
may be cbtained from equeticn (16) by replacing @

v. TIn the equation fer 1, the quantities denoting
refererce ccnditions, Uy, rg » and M,, are the condl-
tions at a convenlent referen@%xsection of the channel
and the length L 13 any convenlent length.

The definite Integrals occurring 1n equations (il)
and (i6) and the eguation for ¢ may bs evaluated by
elther an analytical cr a grapshical method, whichever
is more convenient,

DISCUSSION

Before equation (1), egustion (16), or the integrated
equation contalrinz W can b2 used, it 1s necessary to
know the velocity dictributlion over the surface, the con-
etants In the skin-frilction lformula, and the value to
choose for Hi. The velocity distribution must be that
for the Mech number ard Reyrnolds number for which the com-
putetion 1s being made,

Skin-friction formul:cs.- Tor the turbulent boundary
laver, a ncwer functlion oi 3p is used for the skin-~
friction fermala. Recause references 7 and S incdicote no
noticeable effect of Mach number on skin friection, & skin-
frictlo:n formla for low sneeds mey be chcsen and
approximated by

TO ~ k
pgl@ RgD

as ovtlined in reference 6. 0One formula cf the required
form is that of Fallmer (referernce 12)

To_ _ 0.0C6535
psU2  Rel/0

If the skin-frictlon dats available are given in the form
of ec¢g ~ Rx, they nay bo converted to Q

5 ~ Rg Dby use
T

pP5U
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of the relatlons

c
. . Rg-= Ry

-

= e .. + R o ——
pgl2 2 (:d * dRx

Laminar boundary layer.- Although equsetion (1l), -
equatTon (1%), and the equation for .y have been derived
for turbulent boundary layers, these equations may be used
for the approxlimate ccmputation of 68, g, and ¢ 1in
laminer boundary layers by the appronriate choice of a
value for Hi &and of a skin-friction formula. Although
by use of the skin-friction relation for the Blasius flat-
plate profille the sffect of »ressure gradlent on the skin-
friction coefficlent 1s neglected, the error introduced
1s small so long as tke average pressure gradlent over the
extent of the laminar boundary layer 1s small. The skin-
frictlon relaticn then is

To _0.220
p(,UZ Rg

where k = 0.220 and n = 1. Although a small decrease
occurs In k &s the Mach number Ilncreases (refercnce 1l1l),
the value of k for lncompressible flow (0.220) may be
used 1In view of the apnrcximation already made concernlng
the skin friction.

Choice of Hi.- In references 1, 3, and L, the value
of the boundary-layer shape parameter H was restricted
to l.4. If equation (14} 1s useg H1 4is glven an

arbitrary increment AHi, and 1% = 0, then the change

0
in.(—) may be glven by
L/x

“(%)x m \2H1
@

L

where UK lles between the maximum and minimum velocilty

A\2H1
in the interval zx, Xg - The term (—— has been

Ux,
P
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evaluated for incompressible flow and & m»tralght-llne
veloolty distributlion

U=U;0*bx

U, \AH3
Ths expression for <§§) becomes

(u 1
1 - (?EQ RH1+1)(n+1)+2+AH1(n+lﬂ
E§)AH1 _. Uy
Ux ] (EEQ [(H1+1_)(n+1)+2j
> = 1 -
f (H + 1)(n + 1) + 2 ] _n+1 an
l_(H1+1)(n+1) +2+AHi(n+1)J

Although equstion (17) 1s for incompressible flow and the
expression for Ale/L) 1s only epproximetely correct for

8 (/L) x
cases in which 1% Z 0, equation (17) indlcates that

excessive errors in 6/f, are possible if a in equation (9)
is made to equal zero and Hj 12 replaced by FHe snd restricted
to a constant low-sneed value when the actual varlation of

F, 1s large. Increasing the body thickness, the 11ft
coefficlent, or the Mach number increasss the varlation of

He over the surface.

In the integrated squatlons the value of He may
vary over the surface but that of H 1s assumed to be
constant., Because H4 can usually %e estimated to within
0.2 for cases in which flow separation does not occur, the
error in €/1. that may be caused by & poor choice of Hy
1s unlikely to be more than 10 percent.

When the veloclty increases in the dlrection of flow,
the value of ¥3 may be taken &s 1.2. When the veloclty
decreases In the dlrection of flow, the value of H
gshould be increased from 1l.l, for cases in which the total
change of veloclty is about 20 percent of the initial
veloclty, to values neer 1.7, for cases in which the total
change 1n velocity exceeds %0 percent of the lnitlal
veloclty. Because the veloclty proflile for the laminar
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boundary layer has been restricted to the Blaslius flat-
plate profile, Hi 18 equal to 2.6. For the laminar
bdundeary - layer, & then has-the-value 1l:2. - - --

Full thickness of bcundarf layer.- The full thickness
of the turbulent boundary layer In ths cease of two-
dimnnsional flow may be obtailned by use of the relatlon

2L (B)©)

For the body of revolutlon, the full thickness of the

turbulent boundsry layer may be obtainéd, after -—*§-1§

Ttmax
18 computed, by use of the relation

Ctmax K > ( v L T ) () cos o
2(5?) 00s a 18

Curves of 0/6 and (/62 against A eare glven in
figures 5 and 6 for four valuss of Hy.

The variation of 6/8 for the Blasius flat-plate
proflle is given 1In flgure 7 for use in computing ths full
thickness of ths lamlnar boundary layer. For flow about
a body of revolution, /62 may be neglected since the
laminar boundary leayers are usually thin. The expression
for the full thilckness of the laminar boundery layer on a
body of revolution therefore becomes

T cve) Gy L B

For flow over the Iinner surface of a round channel
when the boundary layer 1s thin, equations (18) and (19)
are replaced by

. G- \/<w)(a AN (@) o

Ttmax

'—2' cos a (20)
JED
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-l e

In order to obtain a general statement regarding the
offect of denslity changes on the momentum thilckness, com-
putations of 8 were made for a linear veloclty distrl-
butlon and a range of Mach number. The veloclty distri-:

»tion for 0 & % <1 wes defined by

and

Z =1 + bx
Uo L

The only varlable wes My. The curves of 6 agalnst My
are given in figure 8 for b =0 and 0.2. The results
indicate that the effect of denslty varlatlion becomes
irmportant only at Mach numbers exceeding unity.

CONCL™'SIONS

A comparatively repld method 1s presented for the
computatlion of boundary-lajer momentum thlclinesses for
flow over two-dimensional bodles, over bodies of revolu-
tion at zero angle of sttack, and over the lnner surface
of round charnels all in compressible flow.

The computatlions indicate that the effect of density
changes on the momentum thickness In flows with pressure
gradierts 1s small for subsonic flows,

Langley Memorial Aeronautliceal Lakorstory
¥ational Advisory Committee i1or acionautles
Lengley Fileld, Va.
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Figure 2.- Varlation of 1/H, with A for various values of Hj.
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Figure 3.~ Varlation of 1/H° with A for the Blasius flat-plate velocity distribution.
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Figure 6.- Variation of 0/52 with A for various values of Hy.
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Figure 8.- Variation of 8/L with M, for velocity distri-

bution given by L. =1 + b%; 0 <x/L <1. Values of

Uo
constants in equation (1l): % = 0.006535; n = 1/6;
Ry = 107; w = 0.768; v = 1.l Hy = 1.4; a = 0.78;
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