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smdMARY

OF

Approximate formulas for t~g computation of thg
momentum thicknesses of turbulent boundary layers on
two-dimen.sionel bodies, on bodies of revolution at zero
anqle of attack, and on the inner surfaces of round
channels all in campresslble flow are given in the form
01 irte~r~ls :h.atc~.nbe conveniently computed. The
formules Involve the assumptions that the momentum
thickness may Le computed by use of a boundary-layer
valocity profile which is fixed and that skin-friction
forrulas fer glat plates may be used in the computation
of ‘lounciGry-layerthicknesses in flow with pressure
gradients. “lY.eeffect of density changes on the ratio
af tke dis?lcceme,nt thickness to the momentum thickness
of the ‘xnmdary layer 1s taken intc account. ~Tg~ Is

made of’the e.=erivental finding that the skin-friction
coefficient fcr tm”bulent flow Is independent of Mach
number, The computations Indtcate that the effect of . .
density chan~es on the momentum thickness in flows with
pressure gradients Is small for subsonic flows.

INTRODUCTION

A number &f methods me available for the computation
of boundary-layer momentum thicknesses for incompressible
flow. The increasing importance of flows at Mach numbers
approaching ~d exceeding 1 has eqhasi.zed the need of
formulas that would make possible the comparatively rapid
computation of boundary-layar momentum thiclmesses for
compressible flows. The purpcse of the present work is
therefore to provide approximate formulas for the compu-
tation of boundary-layer-thiokness parameters for

. .
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compressible flows. The present work furnishes no new . “-
information concerning the boundary-layer shape, skin-
friction coefflclent, position of the tramltion point,
or likelihood of boundary-layer separation.

Approximate formulas for the computation of the .
momentum thicknesses of turbulent boundary layers on”’
two-dimensional /bodies, on bodies of revolution a.tzero
mgle of attack, and cn the Inner surfaces of round
channels all in compressible flow are given In the form .
of integrals that can be conveniently computed. The
approximate formulas contain the assumptions that the
momentum thlclmess may be computed by use of a boundary-
layer veloclty profile which is fixed during the inte-
gration and th~t skin-frtction formulas for flat plates
may be used in the compu~atlon of boundary-layer momentum
thicknesses for flow with pressure gradients. The
formulas are appllcahle to all unseparated, turbulent
boundary layers and in special cases to lamlnar boundary
layers. The numerical values of the ratio of the dis-
placement thickness to the momentun thlc”mess~ a ratio
that appears in the momentum equation and thet is capable
of specifying approximately the veloclty distribution
through the turbulent boundary layer In incompressible
flow,are corrected for density changes in the boundary
layer by use of low-speed velocity distributions. Use Is
made of the.experimental finding that the skin-friction
coefficient in turbulent flow is independent of Mach
number.

The problem of computing the boundary-layer momentum
thickness for compressible flow has been treated by Young

, and THnterbottom (reference 1), who integrated the
boundary-layer momentum equation for lamlnar flow by using
the skin-friction relation from the Pohlhausen theory
(reference 2, p. 1!39), fixing the velocity profile, and
correctin~ the density through the boundary layer for the
effects of compregslbility. For the turbulent boundary
la~er, the moment’nn equatlcn ves integrated by a step-by-
step process in whfl.cha fixed veloclty profile was used
and the effect of density changes through the boundary
layer on the ratio of the disp~acement thickness to the
momentum thickness.was ignored.

The prcblem of computing the momentum thickness over “ .
a body of revolution for incompressible flow has been
treated by Young (reference 3), who computed the momentum

..

thickness of the lamhar boundary layer by a step-by-step,
“+
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.computatlon in whtch an extension of the Pohlhausen method
.. ,.,. was used ---The thickness of the..turbulent pati--of the

boundary layer wss computed by a step-by-step process in
whioh a fixed velocity profile and the momentum equation
for a body of revolution were used.

In order to substantiate the assumption that skin-
friction formulas for turbulent flow along flat plates
may be used in the computation of momentum thicknesses
for flow with pressure gradients, references 3 to 6 are
cited. In these references, g“oodagreement between calou’~
latea and experimental results was generally obtained
although fairly @rge adverse pressure gradients were
present In many uf the cases.

1
The assumption that the momentum thickness may he

r. computed to a close a?proxiination by fixing the velocity
profile during into ration 1s substantiated by the work

fin references ~ and , and by that In reference 6, which
I contains a comparison between the oomputed and experi-

mental values of the momentum thiclrnessover the entire
chord.

.

That the skin-friction coefficient “for turbulent flow
is independent of Mach number is established by the work
in references 7 and 8, Fr&ssel (reference 7) presents
experimental tietsfor turbulent flow in pipes which show
th~t the velocity profiles for’subsonic coumressibl.e flow
and the skin-frlctlon coefficients for subsonic and super-
sonic compressible flow do not dll’fernoticeably from
those for incompressible flow. Theodorsen and Reg!er

~ (reference S}, by expertientlng with rotstin~ disks, showed

i that the skin-friction coefficient for turbulent boundary
I layers is independent of Mach number.

(reference 9 ) ,
Keenan and Neuman

after performing experiments with pipes,
rehched conclusions that dtd not contradict those of

1.
references 7 and 8.

SYW301!S ~

COnStant in equation relating Hc to h and Hi

slope of velocity distribution

drag coefficient per unit span

.—.. - . .
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veloclty of sound in free stream

specific heat .at constant pressure, foot-pounds
per pound-mass per degree c

ratic of displacement thickness to momentum
t~i~~*ss (&/e) “

cmstant

constant in skin-friction formula

length of airfqll, bdy of
channel; meamrsd along
revolution

free-stream Mach numbe=

revolution, or round
chord or axis of

exponent in formllla for boundary-layer veloclty
distribution

aarticular value of’ m

exponent In skin-friction formula

static pressure

gas constent

Reynclds number (UoL/UO)

Reynolds number based on length of plate (uoX/uo )

Reynolds number based on homentum thickness (IJO/u) ‘

radial distance of point from axis of body or
revolution or round channel

radius of body of revolution or raund channel

maximum radius of bod:yof revolution or round.
channe1

absolute temperature

absolute temperature of free

absolute temperature at edge

,

stream

of boundary layer

.- ---._-.
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+ u velooity parallel to x at
- ..-, ‘la~e+ “ ,!-.,., ....,

5

outer edge of boundary
, ... .. -

Uo

T&

‘%
u~

Iq

u

w

x

‘o

Y

a

free-stream velocity

()gvalue of U at station at which value of ~ is

obtained
/x

value of U at x = O

()

uk AHi
value of U chosen to bake value of ~ -la

maximu.m x

~ralue of U at xo

velocity inside boundary l.~yerand parallel to
s’.lrf5ca

exponent in fcr,mula ~or viscosity

distance mpasured alon& suzzfscefrom forward
sta~netion point

positicn on surface at begirnin~ of Integration

distance me~svr5d nom=l to x

a~gl.ebetween tQnFent tc surface cf body of
revolution or round channel and axis of
r~~~lution

P =rt~+~cosa

PI value of flat%

Y ratio of specific heat at constant pressure to
specific heat at cons~ant volume

6 nominal thickness or boundary layer

54$ displacement thickness [~’f - &~dy]
—

e
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x=
+

$“-

(u/u& - ‘

P’

PO

u

Uo

P

Po

PO

To

@=l+

ill=rte

*1

coefficient of viscosity

free-stream vlacoslty

kinematic vlscos~ty at outer edge of boundary
layer

kinematic visccsi%y in free stream

density

free-stream density

density at edge of boundary l&yer

surface sheering stress

..

.
.

.-
*
.’.

.“
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r , ,i

2

,

-Ccosa

value of .,J at Xo

.

Subscripts:

c compressible flow

i incompressible flow

A$JA??.YSIS

s

?lomentum equation for compressible flow about a two-
dimensional body Th b d -lsyer momentum equation
for two-elmenslo~~l c~mp~s~b~e flow (re~erence 10~ p.132)

I
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Is given,when the static-pressure yariation across the
‘%thlndw’y l~~d is ne~l~l.ble, as - ‘-

From the equation of motion for compressible, inviscid
flow the relation between the velocity and pressure
derivatives outside the boundary layer may be written
for convenience as

Then by use of the equatlor for ~, the definition for
the momentum thickness

.

..
and tk~edefinition for the aisplacsment tklicknf)ss

equation (1) can be written in the form given in reference 1

(2)

,. 6*+.
where EC = ~.

The principles used in the derivation of equation (2)
& were the conservation of mass and lTeWton~s law of-motion.

Equation (1) is therefore applicable to trothsubsonic and
supersonic flow. This equa”tion is not, howemr, to be
used for flow through a shock wave because In this case
the assumptions of the boundary-layer theory may not be
applicable.

~-

—— — —
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Momentum equation for compresslble flow about a bod~
of re~on. - The boundary-1 ayer momentum equation for
comnresslb le flow about a body of revolution (reference 10, ‘
D. i3?l can be writtem when the static-~ress~e variation’
acros~-the boundary layer is ne~liglble,-as

~ ~nce

r = rt + y cos a

where rt and.cos a aye dependent on x only (fig. 1),
equation (~) may b9 rewritten us

(3)

.

If e

and

md Q are defined by the relati.cns

r

6

rtep6@ = ~. Pu(g - u)rt dy

p6

and the e.quatlon of motion for compressible,, invlscid flow
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.

1s used, then the momentum equation becomes

b.—
[

1fl(COS a)pae, = - rtTo
ax

Then @ amd fi+:may be defined ~Y the relations

6

:(rt63:p5U = ~ P6U - pu)rt dy

and
6

[(O* (Cosa)p~u = ~o,, p~u - fill)(COSC)ydy

so that the momentum equation becomes

a
(

1 ~rr
rtQ+ilcosaJ +-=-

C )1

@

z
r 6(Hc +2) +G(~osa)~+2

uaxlt

1 ?p5
(

rtTo
.—

+ Pu ax
rtO+$lcosa)=— (4)

p~TJ2

In crder to permit integration of the momentum
equation for compressible flow about a body of revolution,
equation ()+)should be written in the ssme form as that
for two-dimensional compressible flow (equation (2)). The
approximation Is therafore made that for flow on the body
of-revolution

[
rt9(Hc + 2) + fl(COS ‘f%+$]=(Hc +Z)(rte + $2cos a)K

.

— -—
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or

K

In order to determine the magnitude of the ratio

%
*+2

— the assumption is made that the velocity distri-
Hc + 2’
butions through the boundary layer may be approximated by
power curves of the type

When the flow is incompressible, the definitions of f)+,
n, and Hi may be used to obtain

and

Therefore

fcr Incompressible flow.

From

J’ F(’i=), ‘, = + J’ @’) ‘,

it can be shown that
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for compressible as well as for incompressible flow.
....3~.uscoi’ . - “% . . . - .... .. ... ..

()

~*

11- = %=allf
m=m 1

I

and figure 2, which is discussed later in connection wi.ti

ti+z
the ef’:ect of compressibility on Hc, the ratio A ..

c
can be evaluated for compressible flow. F~~ all cases of

~+2
unseparated tlow, the value o: the ratio — differs

HG+2

from unity by less than 20 mrcent and, for most cases, by
~ cos a

ro~ly 10 pe~cent. Thus , even when — is not a
rta

smull fraction, the apprcxiwtion that K = 1 is not
fmr from true. ;heri, in ad~~tlon, It t~ noted that

ncosg<e—
rtEl ‘t

and.is therefore small over most OY the body, “he approxZ-
maticn that K = 1 is pcrmisnible. If K = 1 is used
in equation (IL),it kecmxes

or by substitution of # ?or rtO +nccsa

(5)

This ev=tion for incompressible flow has been given in
reference 3.

1

The principles used in the derivation of equation (5 )
were the conservation of mass and Newton’s law of motion.
The approximation was made that for flow on ‘&e body K = 1.

,,,-,,, —.-—.
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Momenttan equation for compressible flow over inner
surface of a round channel. - When the flow in a round
channe1 is such that the flow throughout the boundary
layer is approximately narallel to ‘We wall and a region
exists outside the boundary la~r :n which viscosity has
no effect, the bounciary-layer momentum equation for this
flow is the same as equation (3). In the momentum equa-
tion for flow over the inner surface of e round channel,
the pressure change across t~lebo-undary layer is assuned
to be negligible. All of the symbols in the momentum .
equation for compressible flow over the inner surface of
a round channel have their meanings unchanged except for
the distance Y) which is posttlve when measured inward
from the wall so that

r = rt -ycosa
I

The derivation of ●A9 momentum equation f’orflow over
the inner surface of a round channel follows the same pro-
cedure aiidinvolves the same assumptions asthe derivation
of equation (5). me derived 9qUat20n is _

(6)

where

Effect of compresslbilit~ on H%.- Since +&e ratio

of tlw displacement thicbess to the momentum thickness
Hc occurs in the mom9ntum equation, ths effect of com-
pressibility upon this ratio should be considered. The
equation for TIC 1s

HC =

dy
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The dens3ty variatIon through the boundary la-r c
--be-obtained.from the velocity .~$str~butlon +Arough the
boundary layer by restricting the treatment -to’“the case
in which there is no heat flow through the surface and
the effective Prandtl number Is equal to unity. The

‘ml

equatIon
2

c T + ~ = constant
P 2

is then applicable to flow”in the boundary layer. When
the additional restriction .ismade that the static-pre$sure
variation through the bounds.iiylayer is negligible, the

expression for ~ becomes

1+ ~ - fi)q~itio.

~=,+~ - (“~(:-~~;’.oz

~i; Ehe expression for e ~c~gs
.

e
6 J

1

=

o

1+P-(kH=”02
qy’-(:)’(;-’zz~

which can be reduced

[

Y -1

Q
l+—

2
~02

-= I

to

-1

.

i.

I
I
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+~Mo2 .

or

where

then

f/=1+- 2
(Y- 1) L&

~ application cf the same procedure to tke @efinition
of 6*/5 , then

(7?

(8)

L=ge values of X2 mem. slilallvalues of Mo.

The assilrption w~s m9de that

and values were chosen fcr A2 ; 64$/13and 0/5 were then
c~lculated for a rsnge of A between 1.5 and 1~.O
with m = 3, 4&i::eand 7. The cul”ves of lfic me given
in figure 2.

*
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r

1 and since H appears in the momentum equation, the curves
of figure 2 are designated by values of Hi rather than m.
WWer ctirves-areused merely d?or-convenience In computing
the effect of compressibility on H.

The value of EC for the Elasius flat-plate profile
for laminar boundary layers (reference 2, p. 88) has been
computed for vmious values”of A and a prandtl number
of unity by use of equations (7) and (8). The computations
were repeated with the velocity distribution for laminar .
flow over a flat plate at ?& = 2 (reference 11). When
H was plotted against A, the results of both computa-
t~ons were practically identical for small values of A.
Only the results obtained for the Hlaslus profile are
therefore presented in fi~e 3.

Equations (7) and (8) show that although the velocity
distribution through the boundary layer is assumed to be

..... independent of pcsition along the surface, IIC may vary
with surface posit.ton because cf its dependence on A.
For Integration of the mcm.entlm equ~tlons, the dependence*. of Iic on A may be taken into account by approximating
the curves of fiEures 2 and 3 by the equation

Hc=& + Hi
A-1

.

(9)

,!
\&’ The values of a chosen to fit the curves of figures 2

and 3 with sufficient accuracy over most of the rqnge of
A are plotted a~ainst HI in figure .4.

Integration of momentum equaticn for two-dimensional
fIOW.- ~.srore equation [2) can be integretec$ (HC+Z),

~p 6——
Pa ax ‘ ‘d +

should be “replsced by functions of the

?s velocity distribution over the body, the free-stream Mach
number, and the momentum thickness. The term Hc + 2 is

a
replaced by its equivalent

()

4-
+( Hi+ 2). Bg use

-1
JT_
Uo /
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of the gas law
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the equatlcn of moticn

the Bernoulli equation for com~resslble flow

and the equation

1 bfj
the. term — —

P& ax

P8

for the velocity of sound

co2 =(y- 1) CPTO

can be written as

TO
The local skin-friction coefficient —~ IS ewressed

P5U
as a power function of the local Reynolds number based
on the boundary-layer momentum thickness by

To ()k=kvne-n—— =
p5U2 Ren a

(11)

~ analogy with the work of reference 11, the viscosity
and density used to calculate Re are those at the outer
edge of the boundary layer, The viscosity at the outer
edge of the bcundary layer is assumed to be given by

where w = 0.768 for

(12)
,“

air (reference 11).
.
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The density at the outer edge of the boundary layer is

In which the flow outside the boundary layer Is assumed
Zquations (12) and (13) are used to

give the Mnema;ic viscosity w in equation (11) as a ““
function of the velocity distribution over the body and
the free-stream Mach number. ~quation (2) may then be

This equation is a differential equation of ‘the Rn?noulli
type. Jlmn it is made lineer and Integrated by standard
methods, t]~~~~s~lt is r

}

1
m

.

1

i’
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where el~ ~d U@C) are the values of e~ and U/UO
x

at .=?. The value of @ “is always greater than 1.

By u~e of the Ekrnoulll equation for compressible flow,

()U2n can be shcwn tc be always less than ~. When ~

approaches zero, equation (14) becomes equetion (1) of
reference 6, that is, the lnte~ated momentum equation for
incorupre~sible flow.

Integratio~i of rlomentum equation for flow over a
body of revolution.- ~m tIons concerning H are
he same as those for the two-dimensional case. T~e

equations for ~, @ ~~ 1
P6’ E

as for the two-dimensional case.
. skin friction, b.owever, involves

(3 cm be reqlaced by ~. This

~ azze also the same
(3X
The expression for the

the apprcxiinatlon that

app~roximation is

equivalent to neglecting”the term ~ cos art In the “

equation

e.~.a.os.
rt rt

n
Since the value of — cos a is always less thanrt &e,

It follows that the anprcximation 1s justified only in

cases In which .6 is a small fraction of unity. In
~

regions near the t&il, therefore, the accuracy of the
approxlm.ation for tb.eskin friction may be expected to
decrease. The momentum equation for flow over a body of
revolution (equation (5)) indicates, however, that the
contribution of the skin friction to the boundary-layer
thiclmoss beocmes less important as the tall Is approached.

The ap~roximation that e can be replaced by & i,

therefore allowabie and the term ~ in equation (5)
p~u-

mfq be written

rtTo = bt
n+lJl

~
p?m

-

(15)



ITACAACR No. L6A22 19

,.

This equaticn is a differential equation of’the Bernoulli
typs . When it is made 1hoar and integrated by standard
methods, tke result is.

(1

)]
{@ - (1- a

+.
\!o x~,

[] .[

X##~&jl”

rtmx2

‘h (g)xhL “i+’)
“ - &-/L2];l ‘{ -—)
W

— (q-l) (w ~tl

.
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Inte aticn of momentum equation for flow over i~er
+surfa=o a round channel. - The equatIon resuitlng from

integrat ion of equation (6), wh9n the sam procedure
and assumptions made to integrate equation (5) are used, -
may be obtained from equ~tim (16) by replacing P by
W* Tn the equation fcr ~, the quantities denoting
reference ccndltions, Uo, rt and Mo, are the condl-

~~ectian of tne channeltlons at a convenient referen
and the length L 1s any ccnvemient length.

The definite intepals occurr.tng in equations (ih) .
and (i6) ad the equqtion for W may ba evaluated by
eltner an anal~tical cr a Cra,>hicalmethod, whichever
is more convenient.

DISCUSSION

Refore equ9tion (I&), equatfon (16), or the inhgrated
equation containir:g ti can ba used, it Is ne~esssry to
know the velocity diztrlbution over the surfaca, the con- .
stants in tb.e~l~ln-friction f’ormla, and the value to
choose for Hi ● The veloctty d~st~ibutl.onml~st be that
for the W.ch number and Reynolds n-amber for which the com-
putation is being made.

Skin-frict~.on formlzs.- Tor tl?eturbulent boundary
layer, a newer function of 38 is ‘JsedI’ort-neskin-
friction fcrm~:a. %causei references 7 and ~ Indicate no
noticeable effect of Mach number on skin frlctl~n, G skin-
frictloa fcrmlla for low s~eeds ray be chosen and
approximated by

as ovtlined in re~emnce 6. one fmmla cf the required
form is that of Falkner (reference 12)

If the skin-friction data available are
%;ven ;; ‘; ::mof cd = Rx, they nay bo converted to — -
p&
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of the relations

1“
..........

J

and
i

c
+?Rg-= ~ ~- “

1=-
2

(

.Cd+ Rx
To

pbuz
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-..

Laminar boundary layer .- Although equotion (I-4), “
equation (lb), and the equstlon for .W have been derived
for turbulent boundary layers, these equations may be used
for the approxttnate computation of e, ~, and w in
lamlnar boundary layers by the appropriate choice of a
value for Hi and of a slrln-friction formula. Although
by use of the skin-friction relation for the Blasius flat-
plate profile the effect of pressure gradient on tineskin-
friction coefficient is ne~lected, the error introduced
is small so long as the average pressure gradient over the
exter.t of the laminar boundar~ layer is small. The skin-
friction relaticn then is

To o ● 220—=
p@2 Re

where k = 0.220 and n = 1. Althcugh a small decrease
occurs In k &s the Mach number incregses (reference 11),
the value of k for incompressible flow (0.220) may be
used in view of the approximation already made conc~rnin~
the skin friction. .

Choice of Hi .- In references 1, 3; and .4,the value
of the boundary-l ayer shape parameter H was restricted
to 1.40 If equation (14.)is used, Hi is given an

91
arb~~rary Increment ~H~, and ~ = 0, then the change

()in ~
Lx

may be given by
J4

m.

oAeF x TJ~ *Hi
— =

() L)g. t--
Lx

where UA lies between the maximum

in the interval x, Xo. The term

4

1

and minimum velocity

()

UA dH~
has been

TX

.— — ,. ..—.



evaluated for incompressible flow and a ~traight-line
veloolty diatri~tlon

(Hi +l)(n+l; +2
p

JLTJ.

(Hi + l)(n + 1) +2 + AHi(n+ 1)

J
Although equation (17) is for Incompressible flow

.

(17)

and the

expression for W IS only a-pproximstely correct for
el(eA)x

cases in which ~ # O, equation (17) indicates that
h

excessive errors in tlfi,are possible if a In equation(g)
is made to equal zero and Hi Is replaced by EC andrestrlc~
to a constant low-speed value when the actual varlaticn of
1? is large. Increasing the body thickness, the lift
i~efficient, or the Mach number increases the variation of
EC over the surface.

In the integrated squations the value of Hc may
vary over the surface but that of H

i
Is assumed to be

constant. Because HI can usually e estimated to within
0.2 fcr cases in which flow separation does not occur, the
error in e~, that may be caused by a poor choice of HI
Is unltkely to be more than 10 percent.

When the velocity increases in the direction of flow,
the value of El may be taken as 1.2. When the velocity
decreases In the direction of flow, the value of HI
should be Iricreased from 1.4, for cases In which the total
change of velocity Is about 20 percent of the Initial
veloclty, to values near 1.7, for cases In which the total
change in velocity exceeds 30 percent of the initial
velocity. Because the velocity profile for the lamlnar
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boundary layer has been restricted to the Blasi.us flat-
plate profile, HI IS equal to 2.6. For the Iamlnar

L. baundary”’layer, a
—

h then ‘has-the-value 1~2. . I-

Full thlclme ss of boundary layer. - The full thickness
of the turbul t b d 1 1 the case of two-
dimenstonal f& m&b%bt~~~d ‘~ use of the relation

,.

For the body of revolution, the full thickness of the

turbulent bound9ry layer.may be obteinkd, after +

rt~
Is computed, by use of the relation

6
“-(~)e)+,[~y(:r +4(*)(%)c?s Q ~~

rt- =

k’)

2$2.—
~. 00s a

(18)

Curves of e/6 and C#b2 against X are given in
fl~ures 5 and 6 for four values of Hi.

The variation of 8/6 for the Rlasius flat-plate
profile is given in figure 7 for use In computing the full
thickness of the laminar boundary layer. For flow about
a body cf revel.”dtion,CZ/52 may be neglected since the
laminar boundary layers are usually thin. Tk.eexpression
for tine full thickness cf the laminar boundary layer on a
body of revolution therefore becomes

(19)

For flow over the inner surface of a round channel
when the boundary layer is thin, equations (18) and (19)

“ are replaced by
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and

(21)

In order to obtain a general statement regarding the
effect of density changes on the momentum thickness, com-
putations of e were made for a linear velocity distrib-
ution and a range of Mach number. The velocity distri-”

~ltion for O $: ~ 1 we.sdefined by

u—=l+b:
Uc)

The only variable wes Ml. The curves cf G a~ainst ~
are given in figure 8 for b = O and iil.2. The results
Indicate that th”eeffect of density variation becomes
important only at Mach numbers exceeding unity.

CCNCLT7SIOW3

A comparatively r~pld method is presented for the
complltetlon of boundary-la~er momentum thicknesses for
flow over two-dimensional bodies, over bodies of revolu-
tion at zero angle cf attack, and over the Inner surface
of round charnels all In compressible flow.

The computations Indicate that the effect of density
changes on the momentum thickness in flows with pressure
gradients Is small for subsonic flows.

Langley Memorial AWOnautictil Lahoratcmy
Kational Advisory Committee xor aeronautics

Langley Field, Va.



25

REF~”ENCES
—.. .. *’-- ., ,--- . -=- -.. = _.

1. Young, A. D., and Winterbottom, N. E.: Note on the
Effect of Compressibility on the Profile Drag of
Aerofoils in the Absence of Shock ‘waves. Rep.
NO. B. A. 1595, R.A.E. (British), May 1940.

2. “Prandtl, L.: The Mechanics of Viscous Fluids. Vol.1~
of Aerodynamic Theory, div. G, sees. 14.and 17, .
W. F, Durand, et!.,Julius Springer (Rerlin), 1935,
pp. 8~-90 ~d 102-112.

“

3* young, k. i). : -The Calculation of the Total and Skin
Friction Drags of Rodies of Revolution at Zero
Incidence. R. & M. ?70.1~74, i&itlsh A.E.C., 1939.

4. Squire, H. D., and Young, A. D.: The Calculation of
the Profile gr~g of 4erofoils. R. & M. No. 1838,
Rritish A.R.C., 1938.

59 von Doenhoff, Albert 2., a~d Tetervin, Neal: Determi-
nation of Ganeral I?elatlons for the E3ehnviorof
Turbulent Eom.dery Layers. N4CA ACR NO. 3G13, 19!+5.

6. Tetervin, ?Ipel: A Method for th~ Rapid Estimation of
TLlrbUlent Eoundary-Layer Thicknesses for Calculating
Profile Drag. XACA ACR NOO I,4G14, 191+4.

79 Fr6s&el, “i’.:Flew in Smooth Stre.ightpipes at
Velocities shove and below Sound Velocity. NACA TM
170.E&h, 193&.

6. Theodorsen, Theodors, and Regier, .Arthur: ~eriments
on Drag of Revolving Ilisks, Cylinders, and Stream-
line Rods at High Speeds. NAC~ ACR No. L4F16, 1944. ‘

9. Keenan, Joseph H., and Neumann, Ernest P.: Friction
in iipes”at Sufiersonic
NACA TN No. 963, 1945.

10. Fluid Motion Panel of the
& Committee and Others:

Dynamics. Vol. I., S.
Press (Oxford), 1.938.

end ~ubscmtc Velocities.

Aeronautical Research
Modern Developments in Fluid
Goldstein, cd., The Clarendon

— .-. —



#
. :. “~ NACA ACR No. L6A22

11. Brainerd, J. G., and ?hmons, H. W.: Effect of Varia-
ble Viscosity on Boundsry Layers, w~th a Dis-
cussion of Drag Measurements. Jour. Appl. ii~ch.,
vol. 9, no. 1, March 1942, pp.A-l - A-6.

12. Falkner, V. M.: A New Law for Calculating Drag. The
..Resistance of a Smooth Flat Plate with Turlmlent

Boundary Layer. Alrcraf’tEn keering, vol. XV,
fno. 169, wrch 1943, pp. 65- g.

..



. ..= _

z
o
.

NATIONAL ADVISORY
COMMITTEEFORAERONAUTICS

Figure l.- Coordinates on body of revolution.



,8

< /
/ ~

. + ~ — — — = = — — — — “
l~i= 1.67

,6

,

.4

.2
/

NATIONAL ADVISORY

o COMMITTEEFORAERONAUTICS

/ 3 5 7 9 //

A

Figure 2.- Variation of l/He with A for various values of Hi.

/5

N

z
o
.



.4

.3

I_
UC

42

./

o

Figure 3.-

z
o.

/ 3 5 7 9 (/ /3 /5

A
%
1-

Variation of l~o
Q

with A for tho Blaslua flat-plate velocity distribution. “
m



.9

.8

Q .7

.6

.5

/ 4

- ~
/ ‘

~ H
/ ‘

/ - / “

d -

+ -

NATIONAL ADVISORY
COMMITTEEFORAERONAUTICS

‘%

&.
*

z
o
.

Figure 4=- Variation of a with Hi.



./8

,/6

./4

,/2

.06

,04

● 02

0

/ 3 5 7 9
A

Figure 5.- Variationof e/6 with A for

//

various values

/.3 /5

of Hi.

z
o
●

‘%
P

m
.

Cn”



.06

.04

,024
\

o

I

[ I

NATIONAL ADVISORY
COMMITTEEFORAERONAUTICS

&

/ 3 5

Figure 6.- Vari.atlonof

7

A

9 //

A for various values

/(3

of Hi.

/5

*

z

z
o
.

F
cm

R’
w



.

./4

●/2

,/0

$
,08

,06

.04

.02

0

4

{
I

/

NATIONAL ADVISORY
COMMITTEEFORAERONAUTICS

/ L3 5 7 9 // /r /5
A

z
o
.

Figure 7.- Variation of e/6 for the Blasiua flat-plate profile with A. ?
r.
m.
+



.

Fig. 8 NACA ACR No. L6A22

.0028

.0024

.0020

.00/6

.00/2

.0008

.0004

0
o .4 ,6’ La /,6 2.0

P9~ NATIONAL ADVISORY
COMMITTEEFORAERONAUTICS

Figure 8.- Variation of e/L with M. for velocity distri-

bution given by ~=l+b~; O<x/L<l. Values of
U. L

constants in equation (.L!+):k = 0.006535; n = 1/6;

- Io(; w = 0.768; y = 1.4; Hi = 1.4; a = 0.78;‘L -

?= 0“


