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STMIARY

The meschaunical S»ubilltv of & rofor having two
vertically hinged blades mounted upon symmetrical sup~-
ports, that is, of equal stiffness =nd mass -in all di-
rections, is invettigated and reported hereins The fre—
quency ecduation. is derived and shows the evistence, in
genaral, of two ranges of rot atlcnal sveeds at which in~
stability occurs. e lower rag on of instadbility is
tounded by two shaft—critical specds. A% rotor cpesds
within this reg gicn, gself—excited divnrgance of the rotor
takes DTahe analogdus to the instability exhivited by a
rotating shaft that is elliptical in cross section, With—
in the sccond instability runge, the rotor system undor—
&0es self—sxciteod oscillaticng, Charts are presented giv—
; ing the boundary p01 1ts of  both Lnstablllty reglong for a
i large variety of valuecs of the physical parameters, The
effect of damping is also included in the analysis.,

INTROIUCTICH

In & recent report (reference. 1), Coleman ;ives an
analytical study of the mechanical stability of a rotor
having three or more vertically hinged tlades, mounted on
flexibls supports, It was shiown thnt, in addition to the
usual shaft—critical speéds, solf—-ecxcited vibrations oc—
curred over a raange of rotational spseds. Fxperiments
with rotary—wing aircraft have confirmed the soundness of
the anazlysis.

*
The present paper is an investigation of the stabile
ity of the twe-blade rotor nounted on gymmetrical supports,
4

As will be shown later, the results differ from those for
a three—~blade rotor., The recason for the different vehavior




lies in the inherent esymmetry of a rotor with only two
bledes, Motion of the center of mass of the blades of a
two~blade rotor witly respegt togthe rotor hub, due to
smell hings deflect¥nsg off ¥ lades, must be normal to
the line of the blades. This restraint, which does not
appear in a rotor of three or more blades, results in the
rotor gystem having different dynamic properties along
end normel to the line of the tladea. Therefore, with
supports thot have oequal etiffness and mess in all direc-
tions attached to a two-blade rotor, two principal vi-
bration exes of the rotor hub can still be distinguished.
No preferred vibration axes can be distinguished for a
three~blade rotor mounted on symmetrical supports. Thils
distinction ghows up physically in the shape of the vi-
bretion modes. Whereas a three-blede rotor whirls in a
circle, a two-blade rotor whirls in an ellipse, of which
the principal axes are along and normal to the lins of
the rotor bledes,

A two-blade rotor can be expected to show, in addi-
tion to some features of a three-blade rotor, some of the
cheracteristice of a rotating shaft that 1s elliptical in
cross section, Such a shaft, mounted on symmetrical bear—
ings, is known to have two critical speeds, which corre—
spond to each of the two principal stiffnesses. (See, for
exemple, roference 2.) For all rotationzl speeds between
the critical epeeds, the shaft is unstabls and diverges.

It will be chown that an oxactly similar phenomenon exists
for a two-blade rotor. The existence of this reglon of
instability for a two-blede rotor is predicted in reference
1, in which the formula for the shaft—critical speeds bound~
ing this instability range 1s givon. In addition to this
region of instabllity, =z second range of instebility anal-
ogous to that exhibited by a three-blade rotor 1s also
presgent,

Only the case of symmetrical supports 1s snalyzed in
the present report. In the case of asymmetric supports,
the squations of motion are llnear differential ogquations
that are difficult to solve because the coefficients vary
periodically with the time (Mathieu type). Similar equa~—
tions are obtained in the problem of a rotating elliptical
shaft mounted on asymmetric besrings. (See reference 2.)

- SYIMBOLS

a radlal position of vortical hinge

b distance from vertical hinge to center of mass of blade
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Xas¥q
Iy, Yy

XoTo

demping force per unit veloclty of rotor-hubd
displacemant

danping force per unit angular velocity of blade
digplacement about hinge

time—derivative operator (d/dt)
dissipation function

moment of inertis of blade about hinge

o (- 5)

spring constant of rotor-hub displacenment

spring constant of bhlade self-—centering spring
effective mass of pylon

effective maes of rotor blade

total effeciive mass of blades and pylon (m+ 2my)

radius of gyration of blade adecut 1ts center of
mass '

arvitrary parameter

t ine

kinetic energy

kinetic energies of rotor blades
kinetie energy of rotor hud
potential ensrgy

displacements of rotor hud in rotating coordinate
system

rotating coordinate axes
fixed coordinate axes

values of x and y when t = 0




X1,¥1 displacement of first rotor blade in fixed

Xp,¥z displacemen®t of second rotor blade in fixed

coordinate system

coordinate systen

B.,B2 angular displacemsnts of blades about their
hinges
b(Bl + Bz)
By = ———— ——
2
o, = 2(B1 = Bz)
i 2
8, = value of 6; when ¢ = 0
3
AN = e—
Hwy,
3
ng = 2B
Iw
r
a
b l+b2/
4
Dy = B
-
Iwr
ny
Ay = ————=C
: r?
i (1 =
b2/
w angvlar velocity of rotor (the dimensionless ratio
w/wr is called w in applications)
Wy natural frequency of rotor system obgerved in

rotating coordinate syctem (used in nondimens

sional form in applications)
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Wi natural frequency of rotor system in fixed coor—
dinate system (nondimemnsional in applicaticns)

Wy reference fraquency (JX/K)
MATHEMATICAL AYWALYSIS

Four degrees of freedon of the system are considered —
horizontal . deflection of the rotor hub in the =x— and
y—directions, and hinge deflection B, and Bz of the
blades in the horizontal plane of the rotor hub, The rochtor
is assumed tc rotate at a constant veloecity w,

‘Deflection of the rotor hub may be dus either to the
bending of a flexitle pylon or %o a rockinz of the rotor
craft upon its landing gear, Ground-resonance vibrations

usually involve landing—gear flex itility. The mathematical
treatuernt is the same in both cases, hut the values of sev—
eral of the physical parameters will depend vpon vhich mode
is being i“vostiga+ed. Throughout this paper, the terns
"rotor supports” and "pylont Jill te used interchangeadly
to dencte the nou*oua+vnc str* ture coupled with the rotor
blades. ‘ :

The mathematical treatment herein differs from that
in reference 1, in which are used the complex notation and
the nolicn of "v11r11q speeds," that is, directional fre-
quencies, resulting fronw the use of complex numbers., Al-—-
though the wmethod ¢f &eferende 1 is valuvable for systems,
such as the three~blade rotor on symmetrical supports,
which have circular wmsdes of vibration, it offers little
advantage for tans present problem, in whiech the rotor per—
forms 21liptical metion. Rectangular coordinates accord—
ingly are useéd in the present pmpgr and frequencies are
used instead of whirling spseds. In comparing the results
of the present paper with those of reference 1, care should
be taken to distinguisn betwveen fregusncies and whirling
speeds, Whirling speeds have dirsctional significance;
whereas frequencies are essentially positive quantitias’

‘and do not give any immediate information concerning the

direction of whirl of t he vibration.

The equations cf motion are set up in a coordinate
system rotating at the veloeity w. DLet the deflection
of the rotor Lub be reprosented by x and y Iin rotating




coordinates, (See fig. 1 in which the intersection of
the coordinate axes reprascnts the undisturted position
of the rotor hub,) The disturbed positions of the two
blades in fixed coordirates are

X, = (x + a2 + becos Bl) cos wt — (y + Dbsin 51> sin wt

vyi1 = (y + bsin B;) cos wt + (x + a + becos B,) sirn wt
ani
x3 = (x —a — bcos Bg) cos wt — (y — bsia Bz) sin wt

v2 = (y — bsin Bg) cos wt + (x — a — becoe Bg) sin wt

The kinetic energies of the two rotor Dblades are
1 roz 3 . 2
T, = 5oy 1%+ yi2 + 2 (w+ By)
7 L J
and
1 lca ° -
Tp = Zmy |xp- + ve° + r° (w + Bg)?
270 [ ®

The kinetic emergy of the »nylon isg

l > -~
7= =m |%% + ¥° 4+ w® (x® + yB) - 2w(Ey — xy)

|
s 2 J
Because cnly small displacenents from the eguilibriunm
position are coensidered, the trigonomeiric expressions con—
tainiag B3 and Bz umay v expanded as power series and
only the terms fthat lead to quadretic terms in the energy
ecxpressions reed de retaincd. Thus
sin By = B,
s 2
cos By = 1 -~ 232~




and

sin Bo = B2

Bo®

cog Bg = 1 — —2n
2
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New variables introduced to replace B; and Bz
are ' .

(By + B3z)

(Bl - Be)

8, =

(s
o wio

where 8, represents the shift, dus to hinge motion, of
the center of mass of the twe blades with respect to the

' rotor hub,..  The introduction of GC and 6, results in
a2 partial decoupling.of the equations of motion.

The total kinetic energy of the system is
T =717+ T+ Iy

Only the quedratic terms will be rTetained in the kinetic=—
energy expression, hecavse the %terms of lower degree vanish
in the Llagrange eguatjiong of motion., Then s '

L=
fi

- L [sca b 37+ 0% (5% + y7) ~ 2w (37 - x;ﬂ

+ Iy 2&51 + ZwaQ; + zwxél - 2wx0,

\ . ) AW -3 r 2 Qa' / a 2
+(1+ Z2V8.7 + 0, > - wPZ (8 ® 4+ 0, )]
L .~< ba/(.é' - b \ ° 4

[ S |

The potential energy of the system is




<t
]
[V

X <%2 + yz> + KB <P12 + ﬂag>
K 2
K<x2+y2>+;%<902+ 91>

Two types of damping of the rotor system are assumed
to exist: (1) damping in the rotor supports, which is
proportional to velocity displacements of the rotor hub
in a fixed coordinate system and (2) damping in the blade
hingess The dissipation functicn F then becomes

o

- . . o-}
F = ip [xa+ y¥ + w® (x® + ¥®) - 2w (XY“XY)_]
2 C

3g (. e N\
=) 2
* ;5 (eo + 0 )

where B 1s the damping force per unit veloclity of rotor-
hub disnlacement and 3g 1is the damping force per unit
ad

velocity of a rotor—blade displacement about the blade hinge.

The Lagrange equations of motion are

_Ei___ 9...: — .b.._T_ 4 .@..Y. + .@.F_'. = 0
dt \ 0% 0% ox 0%
and similar expressions for y, 6y, and 8;., The equa=—

tione of motion becoue

/DE > w® 4 2D 4 g) X - éghw DO, — <3wD + %Q\y = 0 (1)

\ H M

[ 2 B X a
2w DX"‘L 1+£.-\Da+ ZBp e By Ty 0,+(D°~w®) y = 0 (2
‘bﬁ/ mbbz mbﬁe b

:B 1, .3:.
2wD + —w) x+ =% (D2 — w2) 81+/D3—w’?+§33+'—‘{-* = 0 (3)
M M \ M M




(4)
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+
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N4
L=}
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s
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0
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r where the notation
'
-1 2
D’.:-Sl— DE::-.d'-——
at at®
is wused,

Iquation (4) can be soived independently of the others
because it is an equation in only one variable 60. Equa-—
tion . (4), vhich also was sbtained in the study of the three—
blade rotor (reference 1), represents blade mobtion with the
blades moving in phase, mncouploed with pylorn motion, Notion
in tuis mode is damped and dces not lead to instadility.

Agsuming solutions of the ferm

i
x = x e ¥t |
° i
iwgt |
y=yea% (5)
1
iwg t!
Gl=9e3'_;
/
and sutstituting these solutions in =quations (1) 4o (3)
gives the characteristic or frequency equation

—g %524 L Awg e 1 448w 20w, — 1AW !

- Lsa‘ . MW g =~ ‘

!

' . !

2ww, —wa =1dguwathotA w®  —w, Few? §:<OJ(6)

|

/ . '

. SWwwy —1Aw —2A3\§a9+w5> —waz—}3+1kwa+l,

’ where the nondinensional parameters
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rotor is unstable.

DISCUSSION OF FREQUINCY

If the danping parameters A
o

have teen introduced, and the rotati
the fregquencv Wy have also been ma
using Wy =aJK7M as referencs fregue

The frequency w, gonerally is
which the real part is the freguency
thas imazinary mart determines the rat
vibration, If the imaginary nart of
the vibration inereases in amplitude

and
the frequency ecquation (6) may UTe gxpanded to

ral velocity @ and
e nondimensicnal by
necye

of
vibration and

a complex number,

of the

27 damping of the
w, is negative,
th time and the

o]

QUATION

Zero Damping

hﬁ re neglected,
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2, (wa + wa® - £>

—

) 2
+ L4wzwaa é,<wa + was - > ] ["°A3 (93 + W {)
J

where w, 1s the natural frequency of the rotor system

in a coordinate system rotating with the rotor, {(Although
equation (7) is a cubic eguation in both w? and wy®,
rectangular kyperbolas of the form wa® = w® + s, where
s 1is an arbitrary parameter, intersect equation (7) at
only two values of wR, For purposes of computation,
therefore, equation (7) can be reduced to a guadratic

equation in w® by replacing waz with w® + s.)

The solutions for gzero damping (equation (5)) repre—
sent motion of the pylon in an ellipsc expressed relative
to the rotating coordiunate axes. In fixed coordinates,
the pylon would move in an ellipse precessing al the. ve+—
locity we. Thig motion caa be resolved into simultaneous
circular motion at the two froquencies ;w + w, | and [ W Wy,
in which tihe vertical lines indicate that the guantity in-
side is to be considered positive. If the pylon 1s subjecbed
to a harmonic force ian the fixcd coordinate system of fre—
quency Wf, Treosonance will occur at each of the fregquencies

t !
- )
we = iluJ + Wy,

The frequency w, will be referred to as the natural frew
guency of the rotor system in fixed coordinates,

The graph of the frequency equation (7) for a typical
set of values of the parameiors is given in figure 2 in
rotating coordinates ané in figure 3 in fixead coordinates,
For gero coupling between the blades and rotor hud — that
is, when As equals zero — equation (7) factors into
straight linss ani & hyperbola, which are shown as long—
dash limes in figures 2 and 3. The straight lines repre-—

. sont hud moition-and. the hyperbola represents blade motion,.

A swmall incremse in A3 results in a breaking away of the
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curves at their intersections to form two selz~exc1ted
reglons, It is intereatlnb to compare figure 3 with
figure 4, which is the graph of the natural frequencies
of o three—blade rotor having the same values of Ay, Az,
and A,

The shaft—~critical speeds, or natural frequencies
that would be in rescnance with an unbalance in the rotor
system, are found by putting w, = 0O in equation (7).
Figure 2 shows two such speeds, at points A and B (shown
also in fige 3), that bound a region in which wy 1is a
pure imaginary numbor. If w, is a complex root of the
characteristic equation, the complex ccnjugate of wg
will alsoc be a root and one of the twec roots will have a
negative imaginary part implying instabdility. The rotor
system will thus be unstable for all rotational speeds
between unm two--shaft—critical speeds. 3ecause wg is a
pure imaginary numbsr in this rcegion, the freguency of the
resultant self—excited vivration is zoro in a rotating co-
ordinate system -~ similar to the shaft-critical speeds —
and will appear as a seclf—cxcited divergsnce of the rotor,

The squation of the shaft—critical speeds is

[(l -~ w2> (Ae + A1w8> - 2hz0* <1 - w2> =0 (8)

The first factor gives the lower shaft—critical speed,
The sccond factor, which Jdepends cn only the reference fre-—
quency, marks the end of the range of instability and is
the second shaft—critical speecd., JFormula (8) and an ex—
perinental verificaticn of it are given in reference 1.

A contenient graph of equation (8) is given in figure 5,
It will be noticed that it is impossible to remove the
two shaft—critical specds or the instadbility region be—
tween them byamny possible change of ¢ paramstere A,
Az, or Az; that is, without the introduction of damping,
self-cxcited vibrations will always occ below the rotas
tional speecd wy.

1li
b

S
44

)c‘f

ur

Instability also occurs in a range of rotational speods
greater than xr This range 1s shown in figures & and 3
as the regicn vounded by the p

oints € and D and is sim—
1lar in origin t the self—-oxcid

£

d

4 region exhibvited by the
n, the roots of the fre-—

thrce-blade rotor. In thig re .
clf—excitcd vibrations will

guency cquation are complex an
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take place. Unlike the thres—blade rotor, however, the
rotor hub will be seen from a stationary position to be

. simultaneously executing self—excited vibrations at two
gifferent frequencies, Physically, of course, the rotor
is moving in an ellipse at the fregquency w, while pre—
cessing at the velocity w.,

4 chart showing the lower and upper limits of this. . =
instability region for a wide choice of values for the
parameters f;, A;, and L3 ie given in figure 6. The
chart is used by drawing a straight line that roepresents

2 - 2 -

the function {1 — 4Az)w” plotted against A,w + Ag,

The intersections of this straight line with the proper
Ay~curves give.the desired valnes of w. The short—dash
line on tho chart illustrates the method for the parameters
of figura 2.

Tho position of the instability region is very son—
sitive to the value of A,. (See fig, 7.) As A, ine
creases, the region of instability occurs at greater
rotational speeds and moves to-irnfinity for Az = 1/4,
For valuss of As greatoer than 1/4 — that is, when the
total effective mass of the rotor blades is greater than
the cffective mass of the rotor supports — the self-—
exclted region does not appear. o

At certain rotational speeds, we = O, At such speeds
resonance may be excited by a steady force, constant in
direction, acting on the vylon or bdlades -~ for example,
gravity acting on a tilted rotor, The two-—-blade rotor has
two such speeds, shown as points E and F in figurcs 2
and 3. Tho mathematical corndition for such points is that
wg =0 or w,® = w® in equation (7). The cquation giv—
ing the rotational speeds 2t which this condition may ocecur

is
(Alwa + A2> (%wz - 1\ - waifw2<§ - lGA;\ - l} = 0 (9)
| J L | /

Equation (9) is plotted in figure 8, which is used sini—
larly to figure 6.

Iffect of Danping

ke

The effect of damping will be determined in the same
manner as for the thrce-blade rotor in reference 1, When
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the damping parametsars X and KB are retained, equation

(6) in expanded form can bc separated into powers of w,

having rTeal and imaginary coefficients. The terms of equa-—
tion (6) with real coofficients are

21\.:,,<w2 + wg® - 1> + !4w2wa2
L

- (wa + wae - #) J,L~2A3<we + waa + i>'+ wag -~ hg - Alwe}
of N/ | N
>\¢’4 e 2 A A 2 2 — 8> — A 2 / 2 _ 2 ! 0
+ <u.a + Ay + Ajw /Kw w, Angwy® | o w, ® + l/(l )

The terms with imaginary coecfficients arec

ikswa-{z—- [(wg ~w_® 4+ i\ (Alwa + Ny — wa€>

Ag L\ Ya /

_ 2, ® _ o, B _ on® _ 3\® 2 _ 2\0
2w w, 2wy 2w A (wa W Zr (11)
At a boundary between stability and instadbility, wg

is r2al. Buch points ars the intersections of the cgua—
tions formed by scotting cxprcssions (10) and (1ll) scparately
equnl to zero and plotting them ovn the same ccordinnte axes,
Figurs 9 shows a calculated case of damping. The imaginary
cquation is plotted for several valucs of the ratio of the
damping parameters K/he, with A® assumed to be negligi<
ble, It is seen that, for large values of k/kB, the bound—
artes of the higher range of instability are not far differ-—
ent from the boundaries found by neglecting damping. Small
values of K/A ~ that is, when most of the damping 1s con-—
centrated in the blade hingecs — lead to a beginning of the
instabtility at lower rotational speeds.
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For small amounts of damping, the plot of the real
equation is practically the same as when damping is
neglected, By introducing sufficient damping, however,
the higher instability region may be eliminated. (See
fige 10.,) The two shaft—critical speeds and the insta-—
vility region between them can also be removed by putting
enough damping into the rotor supports, altheugh a large
amount of damping is required. : :

Briaf Description of Vibration ifodes

If damping is neglected, the shape of the free vi-
bration modes can be found from the equations of motion
(1) to (4) end the form of the solution, sguation (5),
The rotor hub generally moves in an elliptical path in
rotating coordinates although, at certain zpeeds, the
motion may decome circular or linear. At zero rotational
speed, two of the three modes involve hub motion normal
to the line of the blades, with concomitant blade motion.
In the third mode, the blades do not move about their
hinges and the rotor hub moves in a straight line parallel
to the linoc of the blades at a fregquency equal to wr.

At the first shaft—critical speed, the rotor hud di-—
verges in a direction normal to the line of the blades;
whereas, at the second shaft—critical speed, the hubd ai-
verges parallel to the blades. -

The forced regponses of the system to a vidbrator
attached Yo the pylon can also easily be determined and
show that those responses lying closaest to the lines
we® = 1 are the strongest. When the coupli arameter

£ [ gesta en e coupling p
As is zero, no response occurs along the lines wy = 2w+ 1},

This last conclusion is, of course, necessary 1if the theory
is to give the correct results for the Jdegenerate case of
massless rotor blades.

COWCLUSIONS

The moechanical stability of a rotor having two verti-
cally hinged blades mounted uvpon symmetrical supports has
been investigated and reported herein. This investigation
indicated that the main features of such a rotor system may
be sunmnarized as follows:




16

1. The vibration modes are generally elliptical, as opposed
to circular for the three-blade rotor. The ellipse precesses at
a speed w as observed froum a fixed position; the result is six
resonant or natural frequencies in a fixed coordinate system for
a given rotor speed as against four natural frequencies for the
three-blade rotor.

2. The asymmetry of the two-blade-rotor system gives rise to
a range of rotor speeds in which self-excited divergence of the
rotor ococurs. This instability region is bounded by two shaft-
critical speeds. 'A three-blade rotor, in contrast, has only one

shaft-criticel speed with no aasociated instability region.

3. The two-blade rotor has a second region of erational

. 8peeds at which. self-excited vibrations occur.

Langley Memorial Aeronautical Laboratory,
Naticnal Advisory Ccmmittoe for Aeronautics,
Langley Field, Va.
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Figure 6,~ Stability chart for second instability region,
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Fig. 8
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