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S 

THE FLOW OF A COMPRESSIBLE FLUID PAST 

A CURVED SURFACE 

By Carl Kaplan 

SUMMARY 

An iteration method is employed- -to obtain the flow of a com-
pressible fluid past a curved surface. The first apnroximation, 
which leads to the Prandtl-Glauert rule, is based on the assumption 
that the flow differs but little from a pure translation. 	 The 
iteration process then consists in improving this first approxi-
mation in order that it will apply to a flow differing from pure 
translatory motion to a greater degree.	 The method fails when the 
Mach number of the undisturbed stream reaches unitybt permits a 
transition from subsonic to supersonic conditions without the ap-
pearance of a compression shock. The limiting value of the 
undisturbed stream Mach number, defined as that value at which 
potential flow no longer exists, is indicated by the apparent dir. 
vergence of the power series representing the velocity of the fluid 
at the surface of the solid boundary. 

For small c.h numbers and for thin shapes, the results ob-
tained by the iteration process agree with those obtained by the 
Poggi method.	 For highr values of the streai Mach number less 
than the critical value, numerical calculations are in agreement 
with the results obtained by von Krm6'n by means of the hodograph 
method. For values of the stream Mach number higher than' the 
critical value, the iteration process yields some information about 
the region of flow comprised between the critical stream Mach num-
ber and the limiting stream Mach number. 

INTRODUCTION 

When a body is' held fired in a compressible fluid moving at a 
uniform speed less than, but comparable with, that of sound, there 
may be a region near the surface where the velocity of the fluid 
relative to the body exceeds the local velocity of sound.	 The flow 
in such cases may be perfectly regular with no indication of shock 
waves.	 Several such types of flow have been described by Taylor



(reference 1) and, more recently, by Görtler (reference 2). 	 In con-



nection with this type of flow it is important to know when the ir-

rotational motion ceases to be possible.	 It is certain that ir-



rotational motion is no longer possible as soon as the Mach number 
of the undisturbed stream reaches a definite value, always less than 
unity, which depends on the shape of the body.	 In the past com-



pressibility shock has often been assumed to occur when the maximum 
velocity of the fluid at the surface of the body equals the local 
velocity of sound; however, the papers of Taylor and Görtler (ref-
erences 1 and 2) question whether this is correct for the first ap-
pearance of a shock wave. 	 In addition, a recent paper by von Krmn 

(reference 3) suggests that the envelope of the Mach lines in the 
supersonic region of flow probably introduces the first shock wave 
in the flow. The stream Mach number at which the envelope of the 
Mach lines first appears ma thus be identified with a limiting 

value of the Mach number. 

The present paper treats the flow of a compressible fluid past 
a- curved surface by means of an iteration process based on that of 
Ackeret (reference 4).	 The boundary was so chosen as to conform
with the requirements of the method; namely, no stagnation points 
and small variation of the local velocity from that in the stream. 
The process, furthermore, permits values of the stream Mach number 
ranging from zero to the neighborhood of unity.	 The method proves 

to be quite laborious when more than two stages in the iteration are 
demanded; but, because of the importance of the problem, it has been 
thought worth while to perform the third step. 	 Most of the details
of the calculations have been relegated to appendixes in order not 
to disturb the continuity of the main ideas.	 (The equations in the
appendixes have been assigned numbers prefixed by letters denoting 
the appendix; for example, equation (A-3) is the third equation in 
appendix A.)

THE ITERATION PROCESS 

The fundamental differential equabion governing the flow of a 
compressible fluid is 

/2- U 
2\ÔU	 (2	 fv	 u	

(1) uv—+-
-	 - 

- -o 

where 

X, Y rectangular Cartesian coordinates in plane of profile
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U P V fluid velocity components along X and .1 axes 

c	 local velocity of cund. 

The condition for irrotational motion is that 

àu ày 

6Y 6X

and leads to a velocity potential 0 defined by 

U*1
(2) 

Cy 

0 

If the body is held fixed in a uniform stream of velocity U, the 
relation between the local velocity of sound c and the velocity of 

the fluid V97 v2_ is given for adiabatic processes by 

=1+ '-'-.2 	 u2co 2 	 )	
(3) 

where 

co	 velocity of sound in undisturbed stream 

ratio of specific heats at constant pressure and constant 
volume 

M	 !ch number of undisturbed stream (U/c0) 

With 'the introduction of a characteristic length s. as unit of 
length and the stream velocity U as unit of velocity, the various 
quantities thus far defined can 'be rendered nondimensional. 	 Thus 

X,. Y, u, v, and	 denote, respectively, the nondimonsional 
quantities X/s. Y/s, u/U, v/U, and 0/us while c and c0 

retain their original meanings.	 By use of equation. (2), equa-

tions (1) and (3) then become, respectively,	 ' 
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C2 	 CO2	
2'	 21 	 0	 (14) 

co 

2 Jàx	 c2	 / 6y2	 àXàYàXÔY 

and

02	 (2	 (5) 

Let t denote a characteristic parameter of the shape, such as 

the thickness coefficient; then, the .followin expansions are as-

sumed:

6X	 6X
a	

(6) 
oø'l	 aø'2 

by	 by	 ày.	 by 

When these expressions for u and v are introd uced into equa-

tion (14), together with the expression for	 given by equa-

tion (5), and when the coefficients of the various powers of t are 

equated to zero, the following differential equations for  

03i • • . result: 

à20•1	 a20'i 
+	 = 0 

ax2	 C) y2 

a202 a20	 ____	 aøl øl àØ1 e201 
(i_i)	 .i.	 = L (y^1) - . + (y_f .-	 .+ 2—	 (.8) 

ax2 ày2.	 ax 6 X	 ' ax ày' by àXàY

(7)
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(i -) 
o20 + a2 	 [	 2 1 

2 
+ (y-1). 

6x2	 y2	 12X, L	 a-	 aY-J 

ll\2

	

	 2 1)à2øl + (p1) 1 

L 

2V6 Y/ 

a' — . ___ 
+	 j(y+l)-'--.--- +. 

	

axL ax2 	 ay2j

- 
+ -- I(+l)-	 + ( y-l)	 2 

x L 

+2	
1	 2	 2)

(9) 
ax àY a xàY àY àxà'r àY a xàY 

These differential equations may be put into more familiar 
forms by introducing a new, set of independeit variables x and 
where

x 	 I

•	 (10) 

y 4 - 1•Y J 

Thus, for TBA < 1, equation (7) is transformed into a Laplace equa-
tion and equations (8) and (9) into Poisson equations. The solu-
tion of equation (7) yields the well-known PraxcIt1-Glauert rule,



whereas the solutions of equations (8) and (9) provide higher ap-
proximations to the flow of a compressible fluid and thus will ap-

ply for larger departures from an undisturbed uniform flow.. 

The procedure to be followed in solving equations (7), (8), and 

(9) is very simple in principle. 	 The first step is to obtain an 
expression for the velocity potential of the incompressible flow 
past the chosen boundary and to express it as a power series iii the 
thickness coefficient t. 	 Then the solution for the first approxi-



mation Ø to the compressible flow is e&sily obtained by analogy 

from the coefficient of the first power of t. 	 The second and 

third approxlma.tions '2 and	
are obtained by solving equa- 

tions (8) and (9) . 	 The boundary conditions - that the flow is 
tangential to the solid boundary and that the disturbance to the 
main flow vanishes at infinity - aresatisfied to the same power of 
the thickness coefficient t which is involved in the expression 
for the velocity potential 0. 

Flow past a Curved Surface 

The solid boundary chosen for use in this paoer is a symmetri-
cal shaoe with cusps at both the leading and the trailing edges, 
thus insuring no stagnation points in a uniform flow parallel to 
the axis of symmetry. 	 Appendix A contains the derivation of this 
shape and also the solution for the flow of an incompressible fluid 

past it.	 Appendixes 13, C, and D contain the detailed calculations 

for	 02, and Ø, respectively.	 The final expression for the

velocity potential 0 takes he .following form: 

0 cosh +	 _(3e	 cos i - e cos cos i 

• t2 (F3 cos r	 + F3 cos 31i + F5 cos 5T)) 

• cos 71 + 03 cos 3	 + G5 cos 51i + G7 cos 711

( sinh, cos 1)
- 

\cosh 2, - cos 2q 

- C	 COS 7T) + .. • •

r 
ecos i - e_cos 3q - e	 cos

(ii) 
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where 

T)	 elliptic coordinates related to the Cartesian coordinates 
x and y by the equations 

x	 cosh cos
(12) 

ysinhsin r, J.. 

F1, F3, F5	 functions of and of M given by equations (c18) 

G1, G3, G5, G7, G0 functions of , and M given by equations (D-l6), 

( D-l7), (n-iS), (0-19), and (D-22) respectively 

Equation (11) represents the solution of the fundamental dif-
ferential equation (1) that satisfies the boundary conditions at the 
surface of the body and at infinity,	 insofar as the terms inclu-



sive of the third power of the thickness coefficient t are con-
cerned.	 The coefficients of the various powers of t are exact
and are valid for all values of the Mach number M from zero up to 
but not including unity.	 On the other hand, the method of Poggi
yields the cmponents of the fluid velocity in the form or power 
series in M, the coefficients of which are exact and valid for 
the entire range of values of the thickness coefficient t.	 Ap-



pendix E contains the solution of the problem of this paper by the 
method of Poggi as far as the.	 terms are concerned. 

Because the iteration process and the Poggi method yield solu-
tions of the same equation (1) in the form of power series in t 
and in M2, respectively, the two methods must agree in the range 
common to them; that is, the iteration expression for the fluid ve-
locity at the solid boundary, expanded according to powers of M 
and with all terms containing powers of M higher than the second 
neglected, must agree with the corresponding Poggi result, expanded 
according to powers of t and with all terms containing powers of 
t higher than the third neglected. 	 This calculation is shown in
detail in ap pendix F.

Numerical Applications 

Calculations are now made for the velocity distribution at the 
surface of a bump - that is, a member of the :family of shapes derived 
in appendix A - for several values of the Mach number. 	 Because terms 
involving powers of the thickness coefficient t higher than the 
third have been neglected throughout the present paper, the fluid
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velocity . q should be expressed in the following form: 

q	 1 + alt + a2t2 + a3 t3 + .	 (13)

From equations (F- 6) it follows easily that 

= - --- cos 2a 
2 

a2

	

	 1)(

___	 9.

	

1 P_ + _L_ -+	 cos 2a 
2 J	 8p2 	 16	 4I3 

+ '1)	 2	
+ 3 6 +. op - 3 

L2	
16	 2 1

>	 .	 (iL') 
a3 =, -	 + (1 + 3Q7 + 5G5 + 7)	

.	 I

0 . 

16  

+	 -	 lp) + 2(3G3 + 5G5	 cos 2a 
L64 	 32	 - 

+
 [

9

	

	 + 5P + 3P2 
2(5G5 .+ 7G] cos 4a

16	 P	
7)0

	

+ 82p ^.2	
cos 6a L	 .	 0_. 

The expressions for ccrl), ('G 0 (G5)0	 and (G70 are given at

the end of appendix F, and table IV shows the calculated values for 
M	 0.50, 0.75, 0.83, and	 0.90.	 Table V gives the calculated 
values of a1 , a2, and a3 'at various positions along the profile 

for M	 0 .5 0 , '0 .75, 0.83, and 0.90.	 With t	 0.10, the expres-
sions-for the maximum fluid velocity q	 at the surface can be max 
written as follows:



for M	 0.50 

for M = 0.75 

for lv! = 0.83 

for M	 0.90

('5) 

9 

t	 t2 t3 

qmax = 1 + 0.17321 + 0.074 + 0.003414 

1 + 0.23026 + 0.05435 + 0.02183 

qmax 1 + 0.26893 + 0.110114 + 0.07240 

q x 1 + O. 3L 1412 + 0.19268 + 0.3784

An examination of the foregoing series shows thatq-m x *ill piobahly 
diverge for some value of M in the neighborhood of 0.83. 	 This
value of M marks the limit of irrotational potential flow and 
probably indicates the first appearance of a compression shock at 
the solid boundary.	 Farther on in this section arule will be for-



mulated for estimating this limiting value of the stream Mach 
number. 

The velocity distribution for a profile of thickness coeffi-
cient t	 0.10 is calculated by means of table V and equation (13). 
Table VI lists the values of q for Iv! = 0.50, 0.75, and 0.83 and 
figure 1 shows the corresponding graphs.	 The broken curve repre-
sents the velocity distribution for t 	 0.10 and M * 0. 50 calcu-
lated according to the Poggi method. 	 (See table III.) 	 The curves
of figure 1 show the agreement between the values of q calculated 
by means of the Poggi and the iteration methods for M = 0.50 and 
also the gradual change in curvature of the velocity-distribution 
curves in the neighborhood of the leading and the trailing edges as 
the stream Mach number is increased. 

The critical Mach number, defined as that value of the stream 
Mach number at which the local fluid velocity first attains the local 
speed of sound, is calculated as follows: 

In equation (5), (u2 + v2 ) is put equal to

	

	 or
U2. 

q 2= 1 
or  

Table VII lists values of q r for various values of the Mach num- 
Tr ber M.	 From equations (1)4 with a =	 and the expressions for 

(16) 

(Gi)0, (G3) 0 (G5) 01 and (G7 )01 it follows that the maximum velocity 

at the boundary is given by
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3	 '3M2 
qmax 1 +	 t	 (i)( 

2P	 2 

+	 16 16— + 12

3 P t2
 

6	
_j 

+ (^2

2/'\ i 

M(2 + 382) 
+ 1 (0.6c - 10D) + 22 

2	 320	 3

1 
+ (-6A+42B-5c+6D) + (i)-(-6A+33B-2.145 C+3 . 3 D) t3 + ...	 (17) 

Table II gives the values of A, B, C, and D obtained from ecia-
tion (D-3) for various values of the Mach number.	 Table VII lists 

the values of qjrax for t	 0.10 calculated by means of equa-

tion ( 17) .	 Values of qrri
a7 calculated by the Poggi method are 

also given in table VII.	 For low Mah numbers the approximate 
values for q1	 obtained by the two, methods arree, but for high 
Mach numbers the Poggi method yields values that are too low. 
Figure 2 shows the graphs of qcr and of qmax as functions of' the 
Mach number.	 The intersection of the two curves gives the critical 
Mach number.	 The iteration method (solid line) yields the value 
Mer	 0.742 whereas the Poggi method (broken line) yields the value 
Mcr	 0.788. 

The value of qcr for	 = 0.83 obtained from equation (16) 
is 1.1731.  The last column in table VIII shows the values of 

q/q	 for the shape t	 0.10 with M= 0.83.	 Values of /q0 >1

designate a region in which the flow is supersonic whereas values of 
q/qcr < 1 characterize the subsonic region.	 The supersonic region

of flow is s ymmetrical with regard to the Y axis and corresponds to 
a calculation given in reference 1 for the flow through a nozzle, in 
which a similar supersonic region' of flow was found at the wall at 
the narrowest cross section of the tub. 

In order to find the extent to which the supersonic region 
penetrates the flow, it is sufficient to utilize for the calculation 
only the terms inclusive of t'-, since the series for .q converge 
rapidly away from the solid boundary. 	 Thus, along the Y axis, the 

following expression for q is obtained from equations ( F-3) and
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q 1 +	 e2 + J2Ae2 - 60Be	 +	 [c(e	 - 3e	 + 
2	 L	 cosh 

- D(8e- 5e	 + 3e 52 + 

Then for t	 0.10 and N = 0.83, 

q = 1 + 0. L0316e_ 2 + 0.02753e 
-Ii

 

1  
+	 (_0.O2762e	 + 0.012142e 3 - 0.01520e5) 

cosh 

The value of	 for which q = q0	 1.1731 is 0.38.	 The corre-
sponding value of Y obtained from equation (B-16) is 

Y	 -.- sinh 

= 0.20 

The supersonic region of flow thus extends into the fluid a distance 
equal to almost seven times the maximum height of the bump. By use 
of several chosen values of In, the constant velocity profile 
q	 1-1731 can be plotted by means of equations (F-3) and 
(F-Li.). In figure 1 the lower broken curve represents this profile. 
The region inside the profile is completely su personic and therefore 
contains real Mach lines. The region outside the profile is every-
where subsonic and therefore the Mach lines are imaginary. 

The pressure coefficient CpM is obtained from the expression 

.1 y/y-1 1' + ( yl)M2(lq2)j	 - 1	
(19) 

1
YI

(18)
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- where

p - p0 

1- p0tJ 

and q is the velocity of the compressible fluid, referred to the 
velocity U of the undisturbed stream. 

Since, throughout this paDer, terms involving powers of: t 
higher than the third have been neglected, Cn,M should be expressed 
as a power series in t. 	 Thus, if q from equation (13) is sub-
stituted into equation (19), it follows easily that 

Cp, M -2a 1t +	 (a 12 + 2a2 ) + a i2M2 t2 

+E2(aia2+ az) + (a 2 +2a )a
i2	 ai3H t + . . .	 (20) 

Vith the help of table V, values for C M along the profile 
can be easily calculated for the case t	 0.0 and M	 0.83. 
Table IX shows these values of Cp,M together with corresponding 

values calculated according to the Frandtl-Glsuert rule and the 
von Krmn method.	 The Prandtl-(Glauert rule is 

cp,o 

Cp,M = ______ 

and the relation obtained by von Krirn (reference 3) is 

Cr,O 
Cp,M ir

	
+  

1+v4_.M2 2 

Figure 3 shows the graphs of the various calculated results. 	 It is
observed that the results of the Prandtl-Glauert and the von .Ka'rmn 
methods differ considerably from the results of the iteration method. 
The reasons for these differences are that the Fraridtl-Glauert ap- 
proximation, though valid for Lach rumbers in the neighborhood of 
unity, should be utilized only for very thin shapes; whereas the
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von K 'rxnnmethod, though applicable to any reasonable shape, is no 
longer valid for Mach numbers beyond the critical value. 

As final numerical applications of the results of this paper, 
the maximum values of the negative pressure coefficient 

the critical pressure coefficient 	
(Cp,Al)or
	 and the limiting 

pressure coefficient -(c1.. ' J ivr\lim
are calculated for various '  

values of the thickness coefficient and . of the stream Mach number. 

The maximum values of the negative pressure coefficient for 
various values of t and of M are obtained by means of equa 
tions (17) and (20).	 Table X shows values of a 1, a2, and a3 

defined, respectively, as the coefficients of t, t 2, and t3 in 
equation (17).	 The corresponding values of 0nM' obtained by

means of equation (20), are listed in table XI, together with values 
of Cp,M calculated by the von Ka'rxnn method.	 Figure t shows the 
variation of ('CPR')
	

with.Mach number for several values of t.
max 

The critical pressure coefficient, pM)	 is calculated by

meaxs of the following expression obtained by substituting for q2 
in equation (19) the expression for	 02 from equation (16): 

( 

	

2	
2 + (y-l)1v12 

(cpM)	
;-	 +	 + 1 -

	

(21) 

Table. XII gives, the values of (CflM'	 calculated by means of this 

equation, and figure L. sho 
sections of the (c M" '¼ P "max -  

the critical values of the 
table XII.

\ 'icr 
s •the corresponding granh. 
curves with the 

stream Mach number which are

The inter-
curve yield 

listed in 

As noted once before, for a given value of t, the series for 
q (equation (13)) apparently diverges for a definite value of the 
stream Mach number.	 It is reasonable to assume that this value of, 
the Mach number marks the limit of irrotational potential flow and 
also probably indicates, the first appearance of a compression shock 
at he solid boundary.	 Equation (17) forqmax can be used to 

estimate the limiting values of M according to the following rough 
criterion.	 By means of table X, expressions for	 in the
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form of power series- in t, can	 obtained fr any .vahie of the 
stream Mach number in the range 0 'M <1. "Far a given value 'of 
the thickness coefficient t, a series for o 	 can then be found' 
so that a term-for-term comparison with the hainioni' series 

CO 

2 ! yields a depreasing sequence for the ratio of corresponding 

terms.	 The value of the Mach . number thus obtained' is chosen as the 
limiting value of the Mach number. 	 Table XI  lists both the values 
of(C	 and the corresnondjno values of M for different

\P' lim 
values of t.	 Figure 14 shows the curve cohnecting the lining 
values of C M .	 The region between this curve and the Ic M)or 
curve represents the supersonic range without compression shocks. 
It is emphasized that the mathematical procedure outlined in this 
paragraph is a highly speculative one. 

The maximum speed that can be attaInedby an adiabatic fluid 
is equal to the speed when 'p = p =c = 0 and is given by Bernoulli's 
equation

2 

(y-1 ) M 

Values of the pressure coefficient 

(cP ,M)	 -	 (22) 

are listed in table XIII for various values of the —undisturbed-
stream Mach number M, and figure 4 shows the corresponding curve. 
The region between this curve and the (c M)	 curve represents 

r Urn 
the supersonic range with compression shock. 	 On and beyond the

(CP,M)abs
curve the adiabatic fluid ceases to exist; that is', ab- 

solute vacuum prevails. 

In conclusion, it may he remarked that the results of von K'rmn, 
shown by the small circles in figure 4, are obtained independently 
of any assumption concerning the shape of the solid boundary, whereas 
the results of this paper were--obtained for a specific family of 
shapes.	 As shown by the curves of figure 4, nevertheless, the re-
sults of this paper agree with those obtained by von Karmn' s method. 
This agreement has some justification, for the values of (CP,M)Max 
and Mar depend mainly on the dimensiofls of a body - that is,
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thickness coefficient - and not on its shape.	 The hodograph method
as employed by von Ka'rman, however, yields results that cease to he 
valid when the local Mach number equals or exceeds unity, whereas 
the iteration method utilized in the present paper is valid for local 

o

	

	 Mach numbers greater than unity and, for the family of shapes chosen, 
yields some information with regard to a supersonic region of flow 
without shock.	 The limiting value of M for a given shape, beyond 
which supersonic flow vdthout shock does not exist, appears to de-
pend on the convergence of the power series in t for the velocity. 
Although only a few terms of the series have been obtained and 
therefore the limiting value of M cannot be given precisely, 
nevertheless it .is believed that a reaGonable estimate of the value 
for Mum can be made by the comparison test with the harmonic 
series. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va.



d  
-= (1+

,)(I _ _2_) 
dZ'

(A-2) 
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APPENDIX A 

THE INCOMPRESSIBLE FLOW PAST A CURVED SURFACE 

In the search for a shape which satisfies the conditions that 
it he thin and that it possess no stagnation points, the first 
thought is of a straight-line segment.	 It is well known that a 
straight-line segment of length 4c is obtained from a circle of 
radius c by means of a Joukowski transformation. 	 If Z denotes
the planp of the segment and Z' the plane of the circle, then 

t +
ZI
	 (A-i) 

The singular points of this transformation are determined by the 
equation

which shows zeros at Z' 2. ±c.	 In order to raise the top surface
and lower the bottom surface of the line segment, it is necessary 
only to place two additional zeros at Z' 	 ±id where d < c. 
Analogous to equation (A-2), 

dZ	 /	 c'	 c	 id \/	 id\ 
+	 1	 1 +-(l - 

dZ'	 \	 -	
(A-3) 

Then, on integration of equation (A-3), it follows that 

Zzt	
02 - d2	 c2d2 

+
3Z

(A-Li.) 

The parametric equations of the shape in the Z plane corresponding to 
the circle of radius c in the Z' plane are obtaind by substi-
tuting Z = ce 9 in equation (A-Li.); thus,
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X 2c cos 9 -
	

( 3 cos 9 - cos 38) 1 (A-5) 
d2 Y — (3 sin O-sin38) 
3c 

The family of shapes given by equations ( A-5) includes, on one hand, 
the straight-line segment with d 0 and, on the other hand, a 
shape having four cusps srrnetrioa]ly placed with respect to the co-
ordinate axes with d c. For 0< d <c, the slope dY/dX is 
zero for e	 o, 1r/2, and Tr.	 The shape thushas ouss at 

/d2 
X ±2c(1 - - ), Y 0, and the maximum and minimum points are 

.\	 3c/ 
•Ld2	 Ld2 at X 0, Y - -	 and X 0, Y -	 , respectively.. 3c	 3c 

The complex potential for a circular cylinder of radius c, 
fixed in a stream of uniform velocity U in, the positive direc 
tion of the real axis, is given by 

/ 
F = U (Z' + 

C2)
(A-6) 

The complex velocity past the corresponding shape in the Z plane is 

dF	 dFdZ' 
U - iv - = - - 

dZ	 dZ' dZ 

or

	

q2 U2 	 = 2	 2	 2	 dF d!: dZ' dZ' __. 
dZ' dZ V dZ dZ 

By means of equations (A-Li.) and (A-6), it follows that
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(

1)( c2'\ 

-- l-Ii. 

q2	 T,,2	 - 

(1	
- d2 c2d2\ I' - 2 - 2 C2d2\ 

Z 12	 -  
-	 z /	 - \ 

and at the surface of the profile, where Z' = ce ie  

2 ______ 	 ( A-7) 

1 +2— cos 29 +1 — 
C? .
	 'c 2) 

It will be convenient to consider F, Z, 
mensional quantities. Thus, in the plane Z' 
is the radius c of the circle; whereas, in t 
of length is the semi.chord s of the shape. 
denote Z'/c, Z/s, and F/Us, respectively. 

d 
2/c2 is designated by

and Z' as nondi-
the unit of length 

he plane Z, the unit 
Then Z', Z, and F 

Also, the ratio 

According to equations (A-5), the semichord s is given by 

s2c(1_E) 

and the thickness coefficient t by 

2€ 
t= 3- € 

With the introduction of these new designations, equations (A-4), 
(A-5), (A-6), and (A-7) become, respectively, 

2^t	 1-ti	 t 
Z	 Z +	 -- + — — (A-3) 

2	 Z'
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2+ t 
=	 cos 9 -	 (3 cos 8 - cos 38)1 

0	 (A-9) 

	

(3 sin 8 - sin 39)	 J 

F	 -fr- (zt +	 S	
(A-b) 

 ZI) 

q2 =

	

	 1	 0 

2	
(A-li) 

1 + 2c cos 28 + C 

As a numerical example of the use of equations (A-9) ., (A-b), 
and (A-li), table I gives the coordinates for the sha pe t 0.10 
together with the velocity and pressure distributions along the pro-
file.	 The pressure coefficient C 	 is calculated by means of 
Bernoulli's equation:

C 
-pU2 

where 

p	 local static pressure 

PO	
static pressure in undisturbed stream 

P	 density of fluid 

Figure 1 shows the curves of the shape and the velocity distribu-
tion, and figure 3 shows the graph of the pressure distribution. 
Because the body is placed symmetrically with respect to the undis-
turbed stream, the flow is identical with that over a solid boundary 
composed of the X axis from X	 to X 1, the upper surface of 

the shape with 0	 9 rr, and the X axis from X -1 to X 
This boundary is called a bump.
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APPENDIX B 

THE COMPRESSIBLE FLOW PAST A BUMP 

0 and Y in positive, integral powers of the thickness parameter t 
Before proceeding with the iteration process, developments for 

must be obtained.	 From equation (A-8), 

if I	 .1 

t '.- -' tS-.i) 

 -1, 
'\	 z') 

and from equation. (A-10),

Z _ — (Z ? +—) 
2 \	 Z'j1, 

F (B-2) 2
Tf'1_L\2

"	 z?J 

— zti.J.I
By means of a Taylor expansion in the neighborhood of t 0, it is 
possible to express F as a power series in t in which the coef-
ficints are functions of Z.	 Thus, according to equation (B-i), 
t0 when

Z -IZ' + - 
2\	 Z', 

or

zt = z + \/Z- •i 

where the positive sign is talk-en with the radical because the points 
at infinity of the Z and Z' planes must correspond.	 Now 

LF 
F	 (F)t0 + t (\)	 +	 • 

t=O 
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on the right-hand sides of equations (B-i) and (B-2), Z is cOfl-
sidered constant and Z' is considered the parameter, it follows 
that	

0 

F z +
	

z - (z2 - 1) (z - Jz2 -1 t 
Since F 0 + ij, whore '4i is the stream function, 

=: X +.LF (B-3) 

In a similar manner, equations (A-9) can be written as follows: 

- C os9 

sin2 9 cos 9
(B-Li.) 

Y-(X-oosQ)tan9 

If X is considered constant and 9 is considered the parameter, 
a Taylor ex pansion yields 

Y= (1 - 
x2 )3/2 

Ft - 3X2 t2 + (aX - 3X2 ) t3 -	 (B-5) 

Determination  of $1 

	

By means of the transformation x = X, y 	 3Y, where 

P = vl - iv, equation (7) for	 becomes 

à 2	 a 20 	 /
(B-6) 

By analogy with the coefficient of t in equation (B-) for 0, it is suggested, that
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Ø(z21)(z/)(1)( l)]	 (B-7) 

where the coefficient k is determined by means of the boundary 

condition

ôXdX ô 

or

ax dx	 ày
	 (B-8) 

and where the boundary, obtained from equation ( B-5), is given by 

( -

	 )3/2 [	 3x2 b2 + 	 (x - 3x2 ) t	 . .
	

(B9) 

It is clear that the boundary condition need he satisfied only to 
the same degree in 1 as is involved in the development of the ve-

locity poteitia1 0'.	 Thus,

+....	 (-io) 

=+l+1-2z (-)- 2&-l) 
àz àz	 -.

...	 ii)

2z ( z - Vz	 ),27( 6^ . i. (6^ - 
ày	 àr	 - 

rz^^-1  (z - VZT - 1 )+ V^Z^- i	 +	 (B-12) 

-3x v'i - 2 t + , • •	 (B-13),
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Suppose that x cos a.	 Then, insofar as the terms of the first 
power in t are concerned, it follows that, on the boundary, 

o	 z = cos a + it sin3a 

z = cos a - i3t sin3a 

V'Zl	 I sin a (i - i3t sin3a) 

1-2	 ( VZ - 1	 -i sin a \l + i3t sin-'a) 

Then, on the boundary, 

1 - 3kt sin 2a 

6^ = -3kt sin 2a 

dv 3 
= -_13t sin 2a 

dx	 2 

The boundary condition, equation (3-8), then yields 

1 
k

2 

Therefore

(-'1) 

This expression for 0 can he put into a simple form by means of 
the transformation

z	 cosh	 (B-l5) 

where



21 

Also,

x cosh cos
(B-16) 

y sinh sin 

Then from equation (B-u.) it follows that 

00 cosh	 coi1	
1

(B-17) 

01 =
In -(3ecos n - ecos 31)1 

Inversion of Equations-(B-16) 

The relationship between the rectangular Cartesian coordinates 
X,	 and the elliptic coordinates	 ,	 . is obtained as follows: 

Invert equations (B-16) and solve for	 and r1 ; thus 

(c osh

x
+

 ;,	 \sinh 

and

2

 (siah çosh  	 ) 

.	 2 
Solve for sixth ,,

2 sinh2 , = -b + V+ 
and solve for sin2r

2 sin2i b + 

where

b i - (x2 + 2)
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By means of the transformation 

xX 

Y= 

it follows that

2 sinh2	 -b ++	 1 (B-la) 

2 sin2ii = b + /

_

+ L2Y2 

where

/'	 2 
b = 1 -	 +
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APPENDIX C

DETERMINATION OF 0'2 

The differential equation (8) for ø'2 in terms of the co-
ordinates x and y becomes 

L2	 62	

p2- 

L2- + ; 6 1 - 	
(Y+'), 

I 	 a% a2ø1 
+ 6 X y2	 2	 ax

21 
+ (y-1)3	

a2 
2 + 23 _ 

ax 6 Y	 ày 

By means of the symbolic relations 

ax àz àz 

a 2	 a2  
—=—+2 
ax2 àz2 

a	 ./a	 a -=11-.- 
ày	 àz a? ) 

2	 2	 2 
a	 a 

6y2	 62	 àzà? oz 

a2	 .(a	 a2

(C-i)
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and the transformation

z = cosh 

a	 equation (c-i) can be expressed in terms of the complex variables 

and	 as follows-: 

* 60o 1 - 2. 1I +1) - (yl)2] (si
n h_

i 

sinh	 sinh	 p2 

1-1 Pi i 	 - cosh	 1	 à2Ø'1 - cosh	 %l"\ +

	

sinh ÔJc1flh2	 2	 sinh3 6 t
:S 

inj,2E	 2	 sinh à) 

2(
 1 _"\(_L -i

	

sinh	 à	 sinh	 à)sin2	
2 

- cosh	 1

	

62Ø	 cosh 

	

sith3 62 - sinh2	 2 + sinh	 à	
(c-2) 

•1 

Now, equation (B-17) for 01 can be rewritten as follows: 

	

01 (3e	 - e	 + 3e	 - e 3 )	 ( c-3) 

The substitution of this expression for 	 into the right-hand 

side of equation (C_2) then yields the following differential equa-
tion for 02: 

	

+202	
2	

+ (3Y)2](e5 - e3)cos 
8 

+ (y_l)(1_p2)(e5cos q - ecos 	 (c-a)
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The right-hand side of this equation suggests a solution of the form 

X,,, ,	 F1 (,)cos	 + F3()cos 3 + F5 (,)cos 5i	 (C-5) 

If this expression for Ø2 is inserted into equation (c-4) and the 

coefficients of cos 1, cos 3i, and cos 5i are equated on both 
sides of the equation, the following differential equations for 
F1(), F3(), and F5() are obtained: 

:	

- F1	 +l)+(3y)2l (e	 - 

9F3	 (y+l)	 ;2)
 e-5-r';	 (c-7) 

25F5 - (y+l) ( 2)e	 (c-a) 
dg	 8 

The solutions for F 1 . F3, and F5 are easily obtained and are 
as follows: 

F1	
2 1 +	 + ( 3 )p2] -s - 3e3) 

F3	 [e3 + (+1)(ip2) 

F ZX	
1	 2	

+ (y+l)(lp) e -3 
128

(c -9) 

(c-b) 

(c-il) 

where A1 , A3, and A5 are arbitrary constants.	 It is noted 
that, in general, the expressions for F 1 , F3 1 and F5 should 
each contain tvro arbitrary constants however, the condition that 
F1 , F3, and F5 vanish at infinity requires that the omitted 
arbitrary constants be taken equal to zero.
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The arbitrary constants Al, A 3 , and A5 are determined by 
means of the boundary equation (B-8).	 In terms of the variables 
and	 equation (B—B) takes the form 

0 
C"	 ^dy 

(sini	 cos Tj	 cosh	
Jdx 

	

2	 sin il	 + sinh	 cos -q	 (0-12) . (
	 611 

and the velocity potential Ø has the form 

cosh cos r	
t 

+ - (3e cos n -
	

3n) e	 cos 

+ t2 ( i cos	 + F3cos 3i + F5 cos 5)+ ..	 (0-13) 

With x cos a, the boundary is given by 

y = 31 s 4 n3 - 33t2 sin 3a cos2a+t3 (8sin3a cost a_3sin3a cos2ci)_ 

and 

dL

	

sin 2a +	 t2 (2sin 2a + 5sin La) 
dx	 2	 6 

- _-_t3 (9sin L.a + lLi.sin 6a) + . . .	 (C—lL.) 

At the boundary, inclusive of terms containing the third power of t,



pi_(x2+ y2)=sin2a (i_ p2t2 s in4a + 6 2t3sin4a cos2a) 

sin	 t sincL(1 - 3t cos 
2
a)

t sin a 
cos 2

a cosh ,	 1 + - 2t2sinL!4•a - 332 3 . 14	 2 

-	 2	 12214	 2 2 
e	 1 - 3t sin a +	 t sin a, + 3t sin a cost a	 ,>	 (C -15) 

(l 1 - - t sin a + - 3 tsinTh 1 22.14	 1 22	 2 
2	 2 

+ 30 2t3sin4a cos2a	 3 32t3sin2 a cos2a) 

1 22.14 
cos r	 cos a (i - . 3 •t sin a + 23.14 

At the boundary then, 

dF1	 3 1 _2	 —:	 21i 
-	 -Al. 	 + 14 1 (y+1) + (3-y)p 

d,	 614	 P I- 

d	 128 	
F3A3 - 5(y^1)(1 2)1	 (c -16) 

-	 I 

dF5	 9 
i - 2 1--5A5 - 

Hence, with all terms involving powers of t higher than the second 
excluded, the boundary condition (equation (C-12)) yields the
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following expressions for the arbitrary constants A l ,-A3, and 
A5:

3(i - 2) 
a	 Aly+1)+(3_y)2]_8 i_2 
('J

A3 = - (Y+1)	 2) - p2l	
+ 2) 

3	 i-.2	
(c-17) 

8 p2(3 + 53 + 22) 
A5 - 

(+i)(i 2) +	
- 

The expressions for F1 , F3, and F5 then become: 

3 1 -	 - +	 - 3. 3 	 -5) 
64 p

0	 +0 

_l -23 

8 

F () =	 (Y#1) '
	

- 5e3) 
128

(c-18) 

- i 1 + + 2p e3 
16	 p2 

F5() =	 (y+1) (i ;2)(5e	 - 3e) 
640

80
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Equation (C-13), together with equations (C-18), represents a solu-
tion of the fundamental differential equation (1) and satisfies the 
boundary conditions at the surface of the solid boundary and at 
infinity, insofar as the terms inclusive of the second power in t 
are concerned.	 The present process can be extended to the higher 
terms in the development of the velocity potential ', but it can 
readily be seen from the complexity of the right-hand side of equa-
tion (9) that the labor involved would increase rapidly with the 
degree of aproximation.	 In view of the importance-of the problem, 
it has nevertheless been thought worth while to extend the calcu-
lation to the third approximation Ø•
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APPENDIX D 

DETERMINATION OF 
0

The differential equation (9) for	 in termof the' cmpiex
variableE z and z can be written as follows: 

y+l)(ip2 )2 + 21 (̂ j .. +	 + 
3z'F	 2 F 

+ ( i+1 ) (l_	 + 

+y+l) (i )+ 2 t(i +	 ) (ø z + 2 ) +	 +	 ) ( z + 

+ 2[(+l)(l+2) - 22j(Øl 
+ 1l)02z 

2[(Xjz2_XlZ%j7 _^JEZ)+
ø2!l%1ff)

X2 ilz +	 -	 -	
(p-i) 

where, for example,

p3 

3zz àzàz 

Again, complex variables , 	 and	 are introduced in place 
of z and z by means of the transformation 

zcosh
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According to equation (c-3),

-	 + 3e- e 3)	 (03) 

Consider the term 

- L(y+1)(12) +	 +	 +	 2\ 
lz I 

+ ( y+1 )(1 - 314X 'i +	 232(Øj - 0'ir)('iz2 _i2) 

Now

d - 3 -2 

e2 0	 --- - lzz
23 sinh

and

0 2 +	 2	 9 e	 cos 
- 82 

ø'1z2 01z-	
9j esin Lp 

e 
162 

3 e	 cos 311 - e 3 cos T 0lzz  
213	 sinh sixth - 



Iji;j 

ø'lzz - 01 11	
e- ^ sin 31- e 3 sin Ti 

2P	 sinh sinh 

0 
CM

It follows then that 

T 1 sinh t sinh 

k+l)(l2)2 +82 ] e	 - 2(+1) (1)e 7 }cos 1 

+(y+i)l-e 5 _r+l)(l 2 +	 cos 

- ( y+l ) (l 2)2e 7cos 51 +(+1)(1_2)2o_5 cos 71	 (D-2) 

In the handling of the terms on the right-haid side of equa-
tion (D-1) that contain the derivatives of 02, it is convenient 

to separate 02 into two prts: namely, 02', which is a function 

of	 plus a function of t, and 02", which is a function of 

and t.	 Thus, if the variables t and t are introduced into
the expression for X20 it follows easily that 

X2 
'=A6e- t -	 + 

34 - e 3 )+Be 3 - 3e	 + 5e-31 - 3e5) 

02" C(Le	 3e- t-2	 (D-3) 

+ D(-8e + e	 +ec	 - 8e+ e"	 +e')	 J
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where

A =1(Y+l)(1t25 _l —2

32	 \ 	 16p 

B	
((1\_3+52P 

	

+l)	

i6op2 1280	 2 )  

C	 (+1)	
- 1 - 

128	 2 ) 

+ 

32 

= (y+1)4
P) 

 
256  

• Table II gives values of A, B, C, and D for values of 
the Mach number M ranging from zero to nearly unity. The value 
of y taken is 1.405. 

Consider the term 

= [(+1)(1_p2) + 2P2] 

+	 + ø1)(ø'2'zz 
+ 

- 2p 2 [^^l Z z /1 i V2 z- /2 ' 0 + V1 z ^l 2) V2 7 z X2 Z—z 

+ 2(Y+1)(1+02) - 2p2](Øl 
+



"ow

- 3OBo -6Ae 0	 '2z cJ

12Ae_2 + 12OB& 
'2 ' zz 

sinh 

and

	

ø'2'z + ø2'i	 -12Aecos 2r - 60o'oos Lr 

-	 12iAe'	 sin ?r + 6OiBe'rin 1rn 2z	 2z 

02 ' zz +	 --	
oos	 - eco6 

sinh t stnh	 - 

+ 120B (e 3 cos 511 -	 3'i)} e -cos 

zz - 2 zz	
-	 2A(esin 3r - e-39 sin 11)

si.nh t sinh gl '. 

+ 12OB(e 3 sin 5ij -	 sin 

37 

It follows that
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T2 sinh sink =	 !	 y+1)(l_2) + 1	 Ae3 

+	 i(y+l)(l- p2) +ii(2A-5B) +(y+l)(l+2) ,2p2!c 

+ 20y+1)(l2)+2]B 

+	 (y+l) (l- 2)A - 20- L( y+l) (1- 2) +	 B 

6 
^	 - 2j (3c 

+	 +l)(l2)+4P2tB.!!+1)(1+2) 

+	 8(y+l)(12)Ae3 

+ 
15(Y+1)(lp2)B -	 1(y+l)(l+2) - 2 2 D e	 Cos 

(y+1)(l2)3+!I(y+1)(1+2) 2P2jDjecos 7	 (D-) 

The calculation of Tl and T2 has not been very involved. 
The calculations for the remaining terms on the right-hand side of 
equation (D-l), however, are quite laborious and therefore only the 
final results will be presented. 	 The terms to be calculated are 

+ 2D)

2il- 3i
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The expressions for the constants AqP are as follows: 

A =	
+ 2] (-3A -	 + aD) 

3	 P 

=	 I(y^1)(i_p2)2 + e 2 t + (y+1) (1_p2)(6A - 15B + 28C - 7D) 

6t.p	 -	 p 

+ 12	 (3y + 22)C + 6A - 1513 - 8Dj 

A71	 - L 
32 p3 

(y+1)(1-p14) + (y+1)1_p2)(30B - 19C - 2L) 

- 120 [(3c + 2D) -. 30B + 7C + 20Dj 

= - 22 (Y+1)(1_32)(3c	 2D) - 120p(2C - D) 

[(Y+l)(i_p2) i4p2Jc 

A131 =	 ky+ii- 2) + 4 lc 

27 (+i)(i_p14) + 2 (+1)(1_p2)(2A - 103 + 50) 
32P3 P 

+ 12p Iy(3C + 2D) - 3013 - 50 + 1201 

A	 - 27 f( i+l)(1_p2 )2 + 8p2 ]+ 2 (y+1)(lp2)(15B - 16c - 0) 
614p	 p 

+ 12 I(-	 + io)c + 15Bf 

A 3	 1R y+1)(1p2) +	 - 80) 

A11 3 = - ! (yi-1)(1_p2)(3c - 2o) - 16813(20 - D) 
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+ 42 JD 
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A5 7	 (y+1) (_2)2 -	 (y+1)(12)(5B + 12C - 29D) + 12(2y + 1)D 
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APPENDIX E

THE FLO7 PAST A CURVED SURFACE BY THE POGGI METHOD 

Equation (D-21) represents a solution of the fundamental dif-
ferential equation (1) that satisfies the boundary conditions at the 
surface of the solid body and at infinity, insofar as the terms 
inclusive of the third power of the-thickness coefficient t are 
concerned.	 The method used has been called Ackeret's iteration 
process and is valid for all values of the Mach number H from zero 
to unity.	 On the other hand, the method of Poggi yields the com- 
ponents of the fluid velocity in the form of power series in I.F. 
Since both Ackeret's and Poggi's methods provide solutions of equa-
tion (1), the two solutions must agree in the region common to both. 
The flow past the shape treated in the present paper will be calcu-
lated by means of Poggi s method and compared with that obtained by 
Acke ret 's method. 

Poggi's method cjnsiss in regarding a compressible fluid as 
an incompressible fluid with a continuous distribution of sources 
in the region external to the solid boundary. 	 In order to express
the intensity of the source distribution, it is first necessary to 
determine the incompressible flow, which serves as the zero approxi-
mation to the flow of the compressible fluid.	 The first-order 
effect of compressibility on the velocity of the fluid is then given 
by a set of double integrals extended over the entire region of flow. 
In reference 5 the surface integrals are replaced by line integrals, 
which are evaluated by the methods of the calculus of residues. 
For the example treated herein, the general results given in refer-
ence 5 are immediately aoplicable and are as follows: 

Let Z	 Z(Z') be the conformal transformation of the profile 
in the Z plane into the circle of radius c with center at the 
origin of the Z' plane.	 Then, if VT is the complex velocity of 
an incompressible fluid past the circle, the following expressions 
are formed: 

= WQ2W0	 +	 (Wc	
')J2	 dP 

dZ dZ	 dZ'\	 dZ,	 ° dZ

(E-l) 

= w 2	 + =_ (w -;) Jw2	 dZ' 
dZ dZ	 dZ'	 dZ	 dZ
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The complex velocity W of the compressible fluid past the profile 
in the Z plane is given by 

= (w0 + wi ') 
dZI-	 (E-2) 
dZ 

where only the terms involving the squere of the Mach number M are 
shown.	 The expression for	 is as follows: 

-(- 
_2!_	

z 
Z'	 \Z',	 Z! 2	 Z  

-	 - F(Z',')+	
-	 (E-3) 

141J	 1	 \ 
2'\ 

where Ft -,Z'I is obtained from F(Z',Z') by replacing Z' by 

,2	 ) 
\z'J	 / 

	

; s(z') denotes the sum f the residues of	 _. F(Zt,E 
Zt -Z t	 \ L 

at the poles within the circle C 1 of radius c, the subscript P 

being dropped after the evaluation; and S( C
2 
—) is obtained from 

2 
the expression for	 () by replacing	 ' by Q. 

For the present example, according to equations (A-3), (A-Q, 
and (A-6), 

d' 
(1	 _;)(i 

^\)( 
_)	

(A-3) 

c2 -d2 c2d2 
z = z' +	 +	 7	 (4) 

2:'	 3Z' 

and

wo 
= 

(1 - T)
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- d2 z'2 + d2
(E-6) 
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Consid er now the contour integral' 

	

/	 2' 

fc;

	 dZ' = 2TdS(Z') 

1	
zP P( '\

ifl the first term on the right-hand side of equation (E-5) only the 
simple poles at Z'	 ±id are internal to the circle C l .	 The 

contributions of those simple poles to the residue are, at Z' 	 id, 

	

U304	 1 

	

21d(02 -	 Z'	 - id 

and, at Z'	 -id, 

21d(C2 -i2) Z' + id 

If the two expressions are added and the subscript P is dropped, 
the result is

The second torm on the right-hand side of equation (E-5) can be re-
written as follows:

ic2 

2U3	 d2c __jUd(c2+d2)	
2	

210 d 
(z' - id) (z' + id)	 (Zr- id(Z'+id)

d* 

The	 contributions 
to the residue are, 

173c2 Z' - 2id 

2id (z' - Id)a

of the double poles at 
respectively, 

1 iTJ-d	 1 
4. -
2 ?_ d? Z' t -. id

Z'	 Id and 1' = -id 

I 3'	 2"	 •1	 c2-d2 

	

+Uc +d)	 ,	 log 2 
14	 i - d)	 c +
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and 

U3c2 Zi p + 2id	 1 iU3c2d	 1 

2 i ( zt + id )2	 2 c2 - d2 Z' + id 

+	 + d2)	 1	 c2 - d2 

•(z'+id)2	 c2+d2 

If the two expressions are added and the subscript P is dropped, 
the result is 

2Uc2d2	 U302d2	 I 

(t2+d2)2C2d27?2+d2 

+ 1 
u	

2" Z?2 - 2	 C2 - d - -	 + d )	 log	 (E-7) 2	
(zt2+d2) 

If the expressions (-6) and (E-7) are added, it follows that 

c2+d2log 2 _a2\ Z,2 - d2 
+	 - s(z')	 U3 c 2 (1	

2c 
2	 C2 + d) z, 2 + d2)2
	 (E-8) 

From equation (E-t), 

-	 (z'2	 2\Z 12T,2 

Z 12	 12 
F(Z' 7t\ =	 / 

+ d2)(T2 + 2) 

I 
2U-1d	 /	 c + d	 Z' + id 

+ -	 ( Z'Z' +	 Z' log.—	 -	 (E-9) 
•	 + d2) '\	 2id	 ZI- id 

If s(') is formed from equation (E-8) and Z' is replaced by 

, it follows that
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_/2\	
3 2(	 c2 +	 c2 - d\	 - a2z,2)z,2 

= U c	
+	

log	
d2)(j. + d2Z?2)	

(E-iO) 

Finally, if V(,Z') is formed from equation (E-9) and Z' is 
replaced by 02/Z 1 , it follows that 

( 2 	 ') z'2) 7, t- -c	
+ d2Z? 2)(d2 + 712) 

+ 2U)d2c2	 ZT3	

2	
2 + d2 log Z' + id\ (E-11)

+ d2Z'2) \\ 	 21d,	 - id) 

By means of equations ( E-6 ) 1( B-9), (E-lO), and (E-li) and by re- 
placing z'/, 2v/c, r1/u, and d/c2 by Z, 7 1 , W 	 and €,

respectively, it follows that 

+ €	 i. + €Z
, 2 - 	 - i 

W1 —<l -	 lo	 -	 -	 + 

2	 1 - €) 
L	

+ )2	 (€712 + 1)2 

- 1	 2€	 1 2	 ____	 Z'+i/ 

	

------------"-Z' +I+E ) —	 log 

	

+ '1%, Z,2
+ i) (€z2 + l)[	 2i 

1	 2(z2-1) 
- 1 +	

+ ( 
,2 +	 +) 

+ (2	 )2 I'' ^ (1 + 
€) 2iV 

log	
+	

(E-12) 

The corimlex velocity W of the comDressible fluid past the 
Profile in the Z plane is given by equation (E2) where 

dZ'	 7J4-- 
=	

---	 (from equation (A-3))	 (E-13) 
dZ	 (z t2 - l,)Z' 

+ C)
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1 - -	 (from equation (A-6))	 (E-lL.) 

and WI, is given by equation (E-.12). 

The velocity at the surface of the, profile is obtained: br. means 
of equations (E-2), (E-12), (E-13), and (E-lLi) with Z' ' e 	 ' and 

	

Thus	 - 

profi1e	

(	
+ 2€	 + .2	

c(l - -. 2cbs 29) 

	

(1 +	 )2 [	 2(1 -	 1	 1 + c	 •,	 '	 ' 
-	 l	 log	 .. 

	

2	 l+2€ cos 29+ €	 1-c 

	

L+ (l +c)	 1	 !2c.+(l+c2)cos 29 log	 +2Vi.sin 9" 

2'	 1+2c cos 2+E 2 	 sin 9	
. :"	

€-2,/€ sjn 0 

- (' -	 cos	 tan	
2	 co: $	

(E15)' 

For O=o,	 .	 .

	
+ 

profie	
c	

+
	 J(l

c(1€)

	
log 

	

- 2(1	 ) 2	
(E16) 

	

(1 +	 1 .- c I 
•1
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For 8=,

1	 i+l(1iog+ € 

profile	
- C	 14	 -c)	 21

(l	 'log 	
('L17) 

The velocity along the. X. axis external to the profile is 
obtained from 'equations (E-2), (E-12), (E-13), and (E-114) by taking 

= X'.	 Thus 

r2 

X l + 
€	

14 •_	 \	 2	 1 - €)(x'2 +	 + 1)2 

2 
x,-. -1+ 

(x v2 +C)(x t2 +l) 	 (xt2+c)2 

2'c(l -	 + 1) (
	 +	

2	
(E-15) 

(x'2 + c) 2 (€x 2 + 1) 2 \\	 2'i	 - €) jJ  

The velocity along the Y axis external to the profile is 
obtained from equations (E-2.), (E-12), (E-13), and (E-114) by taking

	

ly ' 'd' T, = -iY'.	 Thus
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12	 t	 + 

___ 

_(l+)(l _±

1o g	 _ 

2	 i_c,) ( - __- cyt2)2 

Y t4 -	

- '2)(i -€y'2) -1 

+ 2cYf3(Yt 1 + 1Y' +Vi(i+C2(Y?2+l2^(l;+r)2Y?2li 	
(E-19) \	 2V€	 + i)(i - cY v2)(c - y12 2 

Table III gives values of the 

the profile for the numerical 

ntmibers M = 0.50 and 0.75. 
velocity distribution for L 
lation according to the itera-

velocity corre s ponding to points along 

case	 =	 (or t •= 0.10) at Irjach 

Figure 1 shows a comparison of the 
0.50 with the corresponding calcu-

:ion method. 

It is noted that by Pogo-i t s method the solution of the problem 
is given by the components of the fluid velocity, whereas by Ackeret's 
method the solution is obtained in the form of the velocity potential 
of the fluid motion.	 Before a comparison of the two methods can be 
made, therefore, it is necessary to obtain from the velocity potential 
(of Ackeret) the velocity components along the coordinate axes. 
This calculation is performed in appendix F.
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APPENDIX F

DETERMINATION OF THE VELOCITY COIONENTS 

In terms of the complex variables t	 and i the velocity 

components in the direction of the coordinate axes are given by, 

• cj +' 1 
U

oX

- 

sinh	 O sinh

(p-i) 

àY \	 inh à sin àJ

where the velocity potential 0' is obtained from equation (D-21). 
According to equations (6) 

ul+tu1 +t2 +t3U3 +. ...

-. 

where, in general,

oø,n 
Ufl 

vn:.

(F-2'

In terms of the complex variables 	 and L 

i	 -	 + 3e	 - e-3t) 

Therefore,

3 -2, 
* - e	 cos 21j 

2 

Vi 	 - e	 sin 2 

Similarly, with reference to equations. (D-3), it follows that: 
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42 = c (2 - 3e 2 
+ 3e	 - e 6) 

+ 8D (e2	 2 + e	 1 
+	 L_3Ae 2 +L i e)cos 211^)4[)4De 2 +(D-l5B)ecos 4q1 

32 sinh 3 cosh2D + C(2e*2 + e)I 
cosh 2, - cos 2 TI 

72	 sin 21	 - 3Ae_2 + Le) 

+ 2e_2 - (D + 15B)e'jcos 2n 

sinh2D '+ C(2e	 + -)1 -	
cosh 2 - cos 21j J 

The general expressions for the velocity ccmponents u3 and 
V3 are too cumbersome to be given here. 	 Instead, only the expres- 

sions for the velocity components along the profile will be given. 
Thus, along the profile, if powers of t higher than the third are 
neglected, 

= (G1 + 3G3 + 5G5 + 7G7) + 2(3G3 +. 5G5 + 7G 7) cos 2a 

+ 2(5G5 + 7G7) + 14(G7) cos 6a. 

V3 -2 [(G3 ' + G5 ' ^G7 ') sin 2a	 I 
+ (G5 1 + G

77
t ) sin La + (G7 T ) sin 6aJ 

where the primes denote differentiation with regard to the in-de- 
pendent variable , and the zero subscripts denote evaluation for 

0.	 Explicit expressions for (c11 ) ' 	 G3), (G5 , (G.7), 

(GlO, (G3 i), (G5 t), and (G7 t ) are given at the end of 

this appendix;
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In order to compare the velocity of the fluid given by equa-
tions (F-6) with that obtained by Poggi's method given by equa- 
tion (E-15), explicit expressions for equations (F-6), with powers 
of the Mach number higher than the second neglected, are obtained 
and may be expressed as follows: 

u ( - t2 ++	 t +	 +	 tcos 2a 
\	 L.	 16 /	 \ 

(_ 
2	 L1.	 32 

+(32
	

L1.5 
3\\ 

t -----t ,cosLi.a_2!t 3 cos 6a 
16'	 32 

+	 1/" t2 _!t 3)+	 ^2 -	 tcos 2a369 3) 

8	 320	 ,' 160 

+ ( t2 - 32 ) cos ha -	 t3 
\i6	

cos 6a1	
(F-7) 

J 

2a.+(32 b5 3\	 201 v	 t+t2+	 t3sin	 t -	 t )sin La-- t sin 6a 
16 ,/	 32 

+ 1t3  sin 2a +(2	 sin ha -t 3 sin 6a 
1 32 	 '\i6	 L	 ,1

-J 

The magnitude q of the velocity, to the same degree of approxi-
mation, is then given by 

t2) + (_ t + t2 +	 tcos 2a + ( t2 - t 3 ) cos ha 
16 	 \2	 b	 64	 \16 

-	 t3 cos 6a+ 1( t -	 t+	 t2- 	 J) cos 2a 
64	 k8	 160 /	 L.	 8	 6ho 

+
 (

33 t2 -	 3'\ cos L - 663 3 cos 6a	 (F-a)
16	 32 1	 128	 J

q	 -

 

which is to be compared with the corresponding expression obtained 
by Pogi t s method.	 Thus, if in equation (E-15) € is replaced by
3t/(2+t and all terms are expanded in powers of t up to and 

including t 3 , the resulting equation is as follows;



614

(3)

 1
)profi1e =	 + 16	 l	 2	 14	

cos 

+ .L (t2 -	 o	 - t3 cos 68 
16 " 

+ IF 	 t2 -	 +	 t +	
- 2163	 cos 20 

140	 /	 8	 6140	 1 

+ 1	 - t 3) cos 148 - . 405 t 3 cos 60	 (F9) 
1 .6	 .	 128 

From the first of equations ( A-9) with X cos a, it follows that 

cos a	 ( 1 - t sin2O) cos 0 

and therefore 

cos 2a = cos 20 - 81n228(t - t2 sin2e) 

cos ij.a	 cos itO - 2t sin 140 sin 20 

cos 6a = cos CO 

If cos 2a, cos 14a, and cos Ca in equation (F-B) are replaced by 
these expressions, equation (F-9) is again obtained. 

The expressions for	 G1 0 , (c)0, (G5)0, (), (G1?), 

and 
@7') 

are as follows: 
0 	 0	 0 

(Gl)O T2 =	 - 1-	 - —., ) ^ I 

IF	 27+1)(lp14) +	 (Y +	 + 9 +	 C D) 
567	 128 

+ (Y+l)	 A+ 15 B- C + 2 D) + 0 6A + 15B	 C + 14D 

	

P (- 
2	 T-	 8	 2	 2



65 

(G3) =E	 ++4+(i+1)() ^fr+i)(4) 

- 2[2563 
(y^i)(114) -

64o	 p 

 L (y+1)	 + D) 

+ ( y+i ) A	 B +C	 D)+ P 9 +C +2D)1 

2 
(G\ 23 9	 9 9 + 31 +-+-+ 

	

510 16o[2	 2	
+1)()++1)() 

(y+1)-yD + (y+1)	 (A+B+1D 

	

L 1- 1280	 3 s	 20	 14	 20 /	 5 

= [-	
4+(Y+')(T)'(Y+')() *] 

+ 
[7792

92
(y+1) - 1) + 

2 28— (Y+l)	 7 D] 

(G
21 2	 5 =	 L 3 + 1

1	 1	 1 
+ +-+ 1i)	

L	 2p	 _(Y+i)(> + (+i)(
P^^) 

@3')o = t L 2	
0 
2 2p3 2 ' ^,T)	 8	 (^2)



(G5t)=	

[	 1 

(G7?) = - - 
6

13 20 5 •3
'2 8	 .(p2) 32 3 2 2p3



67 

REFERENCES 

Ri
1. Taylor, G. I.: The Flow of Air at High Speeds past Curved 

Surfaces.	 R. & N. No. 1381, British A.R.C., 1930- 

2. Gdrtler, H.: Gasstrmungen mit Ubergang von Unterschall- zu 
Uberschallgeschwindigkeiton. 	 Z.f.a.M.M., Bd. 20, Heft 5, 
Oct. l9L0, pp. 254-2. 

3. von Krmn, Th.: Compressibility Effects in Aerodynamics. 
Jour.. Aero. Sci., vol. 8, no. 9, July 1 91.1, pp. 337-356. 

Li.. Ackeret, J.: tTber LuftkrKfte bel sehr grosson Geschwiudigkeiten 
insbesondere hei ehonen StrSmunen. 	 Helvetica Physica Acta, 
vcl. 1, fasc. 5, 1928, pp. 301-322. 

5 . Kaplan, Carl: Or the Use of Residue Theory for Treating the 
Subsonic Flow of a Compressible Fluid.	 Rep. No. 728, NACA, 
19L2.



68	 TABLE I 

VELOCITY AND PRESSURE DISTRIBUTIONS A!I' ThE SURFACE 
OF A BIJ1,1P, t	 0.10 

o X Y q Cp 
(deg) (Equation (A-9)) (Equation (A-9)) (Equation (A-b)) (Equation (A-li)) 

O 1.000 0 .8750 .2344 
5 .9954 .0001 .8764 .2318 

10 .9818 .0005 .8808 .2241 
15 .9595 .0017 .8881 .2113 
20 .9287 .0040 .8983 .1931 
30 .8444 .0125 .9272 .1404 
40 .7344 .0266 .9667 .0654 
50 .6051 .0450 1.014 -.0292 
60 .4625 .0650 1.068 -.1395 
70 .3118 .0830 1.117 -.2476 
80 .1568 .0955 1.15 -.3299 
90 0 .1000 1.167 -.3611 

TABLE II 

VALUES FOR A, B, C, AND D OBTAINED FROM EQUATION (D-3) 

M B A B C D 

0 1 0.06250 -0.06250 0 0 
.10 .99499 .06221 -.05285 .00095 0 
.20 .97980 .06160 .06390 .00400 .00015 
.30 .95394 .06169 -.06570 .00982 .00083 
.40 .91652 .06499 -.03830 .01990 .00307 
.50 .88603 .07786 -.07171 .03751 .00939 
.60 .80000 .11322 -.07551 .07057 .02675 
.70 .71414 .24561 -.07741 .14211 .07805 
.75 .65144 .40177 -.07394 .21371 .13977 
.80 .60000 .73343. m.06322 .34482 .26722 
.83 .55776 1.11855 -.04583 .48400 .41460 
.85 .52678 1.53475 -.02476 .62619 .57315 
.90 .43589 4.07940 .12446 1.4241 1.5367 
.92 .39192 6.81182 129917 2.2282 2.5674 
.94 .34117 12.9343 .70926 3.9598 4.8722 
.96 .28000 31.0576 1.97342 8.8910 11.683 
.93 .19900 132.428

I	
9.30328 34.423 49.732
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VELOCITY DISTRIBUTIOT AT TME SURFACE OF A BU, t 0.10,
ACCORDI1G TO T:1E POGGI 1-11ETHOD 

8 
(dog)

q 
(incom-. 

pressible)

Coeffi- 
dent 
of M2

q 
(compressible) 

(Equation (E-17)) 

M = 0.50 Ill =	 0.75 

0 1.000 0 1.000 0 0.8750 -0.0540 0.8615 0.8446 
5 .9962 .0872 .9954 .0001 .8765 -.0535 .8631 .8464 

10 .9848 .1737 .9818 .0005 .8808 -.0521 .8678 .8515 
15 .9659 .2588 .9595 .0017 .8881 -.0497 .8757 .8601 
20 .0397 .3420 .9237 .0040 .8983 -.0462 .8867 .8723 
30 .8660 .5000 .8444 .0125 .9272 -.0359 .9182 .9070 
40 .7660 .6429 .7344 .0266 .9667 -.0192. .0610 
50 .6428 .7660 .6051 .0450 .1.015 .0039 1.016 1.017 
60 .5000 .8660 .4625 .0650 1.068 .0330 1.07 1.086 
70 .3420 •93971 .3118 0830 1.117 .0645 1.133 1.153 
80 .1737 .9848 .1563 u955 1.15:3 .0795 1.173 1.198 
90	 10 1.000 0 .1000 1.167 .1002 1.192 1.223 

TABLB 111 

VALUES OF (G1)0, .(03)0, (G5) 0 , AND (G7)0

GIYBU AT END OF APPENDIX F 

(&i)
.
	 (G3)0 (5)0 (G7)0 

0.50	 0.86603 0.10344 -0.79011 .1.6714 -0.91449 
.75	 .65144 .2.3075 -2.1139 2.8975 -1.9512 
.83	 .55776 9.8911 -6.7071 5.9329 -4.0650 
.90	 .43580 68.849 -42.316 26.227 -19.649
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	 TABLE .V 

VALUES OF a, a2 , AND a3 OBTAINED FROM EQUATIONS(14) 

0.50	 0.75 0.83	 0.90 

0 1.7321 2.3026 2,6893 3.4412 
1 1.6974 2.2565 2.6355 3.3724 0 1.5935 2.1184	 1 2.4742 3.1659 

.3 1.4203 1.8881 2.2052 2.8218 

.4 1.1778 1.5658 1.8287 2.3400 

.5 .86603 1.1513 .1.3447	 .. 1.7206 

.6 .48497 .64473 .75301 .96355 

.7 .03464 .04605 .05379 .06882 

.8 .	 -.48497 . -04473 -.75301 1	 -.96355 
-1.0739	 . -1.4273 -1.6674 -2.1336 

.975 -1,5610 -2.0752 -2.4237 -3.1014 
1.0 -1.7321 -2.3026 -2.6893 -3.4412 

a2 

0 2 i 2743 543501 10.136 19.268 - 
.1 2.0399 4.9892 9.3921 18.076 
.2 1.3673 3.7088 7.2538 14.643 
.3	 I .34809 1.7641 4.0015 9.4302 

-.86531 -.56063 .10228 3.1662 
.5 -2.0593 -2.8678 -3.7900 -3.1035 
.6 -2.9594 -4.6459 -6.8342 -8.0405 
.7 -3.2325 -5.2746 -8.0105 -10,022 
.8 -2.4744 -4.0011 -6.0811 -7.0773 
.9 -.23520 .01270 .33212 2.9861 
.975 2.7276 F4013 9.0381 16.723 

1.0 4.0063 7.7376 12.825 22.708 

a3 

0 3.4379 21.877 72.397 47.84 
.1 2.5124 18.507 63.333 386.94 
.2 .07542 9.4933 38.871 251.93 

3 -2.9313 -2.1171 6.6216 72.788 
.4 -5.1915 -12.039 -22.646 -92.533 

•	 .5 -5.3952 -15.937 -37034 -184.67 
.6 -2.7710 -11.097 01.701 -164.59 
.7 2.2311 1.4456 -5.9844 -41.555 
.8 7.0916 14.256 22.646 92.580 
.9 6.2552 10.459 14.506 23.206 
.975 -.82172 -20.694 -56.978 -385.70 

1.0 -10.033 -39.831 7101.38 1633.92



TABLE VI. 

VELOCITY DISTRIBUTION FOR A BUTVU'., t 0.10, CALCULATED
BY MANS OF TABLE V AND EQUATION (13) 

q 

1r	
0.50	 .	 0.75	 1	 0.83 

0 1.199 1.307 1.443 
.1 1.193 1.294 1.421 
.2 1.173 1.258. 1.359 
.3 1.143 1.204 1.267 
.4 1.104 1.139 1.159 
.5 1.051 .	 1.071 1.059 
.6 1.016 1.007 .9752 
.7 .9734 .953 .3 .919 3 

.9339 .9098 .8865 
.9 .8965 .85'76 .8444 
.975 .8704 .8258 .7910 

1.0 .8568 .0072 .7579 

TABLE VII 

VALUES OF CRITICAL VELOCITY OBTAINED FROM EQUPT ION (is) 
AND NAXIMUM VELOCITIES FOR A BUMP, t = 0.10, 

OBTAINED FROM EQUATI ois (17) AND (E-17) 

qmax
q cr Iteration Poggi 

!lot hoc riothod 

0 1.157 1.167 cc 
.2 1.171 1.171 4.578 
.3 1.176 1.176 3.067 
.4 1.185 1.133 .2.316 
.5 1.199 1.192 1.869 
.6 1.222 1.203 1.574 
.7 1.255 .	 1.216 1.366 
.8 1.371 1.231 1.212 
.85 1.523 1.239 1.145 
.90 1.093 
.95 1.O't4 

1.0 1.000

71 



72	 TABLE VIII 

VALUES OF q/qcr FOR A BUMP, t 0.10, WITH Ii = 0.83 

X 

0 1.443 1.230 
.1 1.421 1.211 
.2 1.359 1.160 
.3 1.267 1.080 
.4 10159 .9881 
.5 1.059 .9028 
.6 .9752 .8314. 
.7 .9193 107837 
.8

 
08865 .7558 

.9 .8444 .7200 

.975 .7910 .6744 
1.0 .7579 .6461 

TABLE IX 

C0IARISON OF TIF, PRESSURE DISTRIBUTION AT TI SURFACE OF A BUIfl, t 0.10 
FOR M 0.63  OBTAINED BY RANS ,OF,TI ITERAT ION, T1II PRA1mTL-GLAUERT, 

AND T1Th VC)" KAPJ'IAN METHODS 

Cp,M 

Iteration Prandii- von Iarinan 
X method Glauert method • (Equation (o)) method 

0 •.	 -0.9133 -0.6342 -0.7376 -0.3537 
.1 I	 -.8677 -.6142 -.7107 -.3426 
.2 -.7389 -.5558 -.6337 -.3100 

•	 .3 -.5486 -.4665 -.5202 -.2602 
.4 -.3294 -.3514 -.3810 -.1960 
.5 -.1184 -.2150 -.2257 -.1199 
.6 .0514 -.0647 -.0656 -.0361 
.7 .1617 .0765 .0752 .0426 
1 8 .2221	 • .2062 .1972 .1150 
.9 .2868 .3196 .2983 . .1783 
.975 •	 .4048 • .3935.' .3620 .2195 

1.0 .4708	 • .......4163 •:3] .2322
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VALUES OF a, a2 , AND a3 CALCULATED FROM EQUATION (17) 

.M.. .	 al a2. a3	 - 

O 1.50000 1.50000 1.50000 
.2 1.53093 1,58726 1.67024 
.3 1.57243 1.71149 1.93357 
.4 1.63663 1.92091 2.43349 
.5 1.73205 2.27425 3.49200 
.6 1.87500 .	 2.91036 5.75400. 
.7	 . 210042 4.22402 12.56611 
.8 2.50000 .	 7.76704 43.7829 
.85 2.84747 12.52960 112.7760 
.90 3.44124 .	 25.7418 446.847 
.92 . -	 3.82733	 - 38.5963 964.722	 - 

TABLE XI 

MAXIMUM VALUES OF TuE PRESSURE COEFFIC lENT C ,j CALCULATED
BY JVflIUTS OF EQUATION (20) 

t 0.05 0.05 0.08 .0.10
1 .0.12 J	 0.12 0.15 

(a)  

0 0.16406 0e16406 0.27744 0.36000 0.44856 10.4,S856 0.59344 
.2 .16764 .16773 .28369 .36830 .45913 .45994 .60787 
.3 .17248 .17266 .29221 .37964 .47363 .47537 .62779 
.4	 ... .18008 .18035 .30570 .39771 .49688 .49963 .66002 
.5 .19.166 .19188 .32661 !42606 .53375 .53657 .71196 
.6 .20971 :	 20937 .36000 .47200 .59437 .59401 .79907 
.7 .24055 .23753 .41994 .55715 .71014 .69006 .97236 
.8 .	 .30606 .	 .28925 .56134 .77066 1.0165 .87903 1.4634 
.85 .38190 .74868 1.0737 .1.4759	 . 1.066-4 2.2485 
.90 .59091 .42108 1.3551 2.1252 

2480  

\ 018 . 0.18 0.20 0.21 0.22 0.25.. 0.25 
IA \ . (a)  

0	 . 0.75384 0.75384 . 0.37000 0.03098 0.99396 1.1953. 1.1953 
.2 . .77275 .77541 .89226 .95504 1.0199 1.2274 1.2352 
.3 .79699 .80489 .92326 .98859 1.0561 1.2724	 . 1.2903 
.4 .84179 ..	 .85192 .97408 1.0437 1.3470 1.3793 
.5 . 91186 .92436 1.0581 1.1353

11.1158* 
1.2154 1.4732 1.5208 

.6 1.0315 1.0403 1.2031 1.2943 11.31391 1,6964 1.7566 

.7 1.2702 1.2431 1.5088 1.6326 1.7623 2.1889 2.1973 

.8 2.0175 1.6781 2.4539 2.6938 2.9491 3.8118	 I 3.3117

' aMetIod of von Karmfn. 
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	 TABLE XII 

CRITICAL AND LIMITING VALUES OF IA AND CRITICAL VALUES OF Cp,M 
CALCULATED DY AEANS OF EQUATION (21) 

M _(Cp,M)cr t -C Poe Mcr Mum 

0.45 2.70639 .	 0.05 0.16406 0.832 0.890 0.50 
.50 2.0953 .08 .27744 .775 .855 .77 
.55 1.65519 410. .36000 .742 .833 .92 
.60 1.29190 .12 .4485 .	 .712 .815 1.09 
.65 1.00661 .15 .59344 .670 .790 1.33 
.70 477758 .18 .75384 .634 .760 1.58 
.75 .59008 .20 .87000 .610 .743 1.74 
.80 .4381 .21	 . .93098 .598 .735 1.82 
.85 .30124 .2. .99396 .587 .725. 1190 
.90 .18605 .25 1.1953 .558 .698 2.15 
.95 .08783 

_1.00 0 

TABLE XII I 

VALUES OF ThE PRESSURE COEFFICIENT (Cp,M)abs CALCULATED

BY MEANS OF EUAT ION 1 22) 

N -.(Cp,M)bS .	 M	 . 

0.70 2.90508 ..	 1.25 .91103 
.75.	 . 2.53064 .	 1.30 .84230 
.80 2.22420 .	 1.35 .78106 
.85 1.97022 1.40 .72627 
.90 1.75739 1.45 07705 
095 1.57727	 . 1.50 .63266 

1.00 1.42349 1.55 .59250 
1.05 1.29115 1.60 .55605 
1.10 1.17644 1.65 .52286 
1.15 1.07636 1.70 .49256 
1.20	

J
.98853 1.75 .46481
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Figure 1.- Velocity distribution at the surface of a bump, t = 0.10, for 
several values of the Mach number. 



Figure 2.- Maximum velocity at the surface of a bump, t = 0.10. 
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Figure 3.- Pressure distribution at the surface of a bump, 
t	 0.10, for M = .83. 
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