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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE CONFIDENTIAL REPORT

TESTS IN THE 19-FOOT PRESSURE TUNNEL OF A 1/2.75—-SCALE MODEL
OF THE F4U-1 AIRPLANE WITH SEVERAL BALANCED ELEVATORS,
FULL-SPAN FLAPS, AND DROPPABLE GAS TANK

By Robert R, Graham and C, Dixon Ashworth
SUILMARY

An investigation was made in the NACA 19—foot pressure
tunnel to determine the aerodynamic effects of several ele—
vators with varying amounts of balance, of outboard split
flaps, and of a droppsble gas tank on a 1/2.75-scale model
of the #4U-1 airplane., The investigation included:

(2) Measurements of the hinge—moment characteristics
and effectiveness of various elevators;

(b) Heasurements of the effects of adding split flaps
outboard of the normal slotted flaps and ahead
.0f the ailerons, on the stalling and control
characteristics of the model; and

(c) lleasurements of the effects of suspending a drop—
pable gas tank below the fuselage on the 1lift,
drag, and longitudinal stability of the model.

In order to provide a basis for conparison of the
various balanced elevators, sticl forces for various indi—
cated airspeeds were computed for each elevator from the
power—off results. The power—on results are not complete

enough to obtain the effect of power on the elevator stick
forces.

The outboard split flaps increased the maxinmum 1ift
coefficient approximately 6 rercent with power on and 9
percent with power off. They had a negligible effect on
the stalling characteristics and the longitudinal stability
but reduced the aileron effectiveness,

The droprable gas tank had no measurable effect on the
naxinum 1ift coerficient or the longitudinal stability of
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the model. 1Its drag increment at 100 miles per hour
amounted to 9 pounds and 14 pounds at 1ift coefficients
of 0,16 and 0,5, respectively.

INTRODUCTION

During the past several years the NACA has conducted
numerous investigations of a 1/92.75-scaole model of the
F4U~1 airplane, Huch of the aerodrnanic design of the
full-scale airplane has been baced or tho results of these
wvind—tunnel investigations. This Paper summarizes one
phase of thesce tests,

The tests were conducted at atmospheric pressure in
the NACA 19-foot pressure tunnel during the period from
March 20 to April 17, 1942, They. included measurements,
with and without proneller operating, of the effect of
several balanced elevators, of full-span flaps, and of
Croppable gas fank on 1ift, drag, and pitching moment. The
hinge moments of the elevators were also determined, Ailer—
on characteristics vere measured with rartial—span and full-
span flaps, Tuft studies were made of ihe stalling charac—
teristics with the full-span flaps, ” '

&
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This paper was originally issued as s memorandum re—
port to the Bureau of Aeronautics, Navy Department.

HODEL

=

The 1/2.75-scale model of the FaU—1 ai
in figure 1, Section views of the elevator
used on the present model are presented in
For the purpose of this investigation the m
fied as follows:

Plane is shown
and ailerons

igures 2 and 3.
del was modi—

1., A remote—control apparatus for operating the
elevators was installed.

2, NACA remote indicating hinge—~moment balances
were installed in the right aileron and in the
elevator to measure the aileron and elevator
hinge moments,

3. The horizontal tail of the model was arranged to
allow for various modifications to the elevator.




Several elevator noses were supplied. These
noses gave the elevator five arrangements in—
~volving two different hinge lines and various
amounts of aerodynamic balance (fig. 2). The
horn balance of elevator 5 is shown in Tigure 1.

4. The model was equipped with outboard split flaps

(figs., 3 and 4) for use in conjunction with the
inboard slotted flaps. With the slotted flaps
deflected 50°, the following split—flap arrange—
ments were.tested: 0.20c flaps deflected 40°
and 48°, and 0.,30c flaps deflected 40°.

5. A droprable external gas tank was mounted on the
bottom of the fuselage (f ) for some of the

5
ions of the model
6

=
tests, The shape and
tank are presented in

For certain of the tests the airplane model was
equipped with a propeller (see fig. 7) geometrically simi—
lar to that used on the full-scale airplane. The model
propeller is 4,82 feet in diameter.

The propeller was driven by a waser—cooled alternat—
ing—current induction motor capable of developing 60
horsepower at 5000 rpm. (Current was supplied to the motor
by a variable—frequency alternator and speed control was
obtained by varying the frequency. The power output of
the motor was determined from a calibration that involved
current, revolution sveed, and torque.

The power, cooling—water, tachometer, and hinge—
moment leads were threaded behind the wing supports,
through the support fairing, from the wings of the model
to the test chamber below. The leads between the lower
surface of the wing and the top of the support fairing
were exposed to the air stream for all of the tests except
the model—support tare tests. These leads are shown in
ieure 7.

For certain tests the horizontal tail was removed.
The portion of the horizontal tail located within the
fuselage was replaced with bloclks that conformed to the
fuselage contour (fig. 8).

The model was finished with several coats of lacquer
and rubbed with No. 400 carborundum cloth in a chordwise
direction until the surfaces were aerodynamically smooth.




A list of model arrangements tested is presented in table
I. Changes in arrangement do not "efer to changes in con—
trol-surface setting but only to changes in the contour of
the model

SYMBQLS AID COZFFICIEITS

The data in this treport are reduced to standard non—
dimensional coefficient foru, All forces and moments are
given with respect to the wind axes. The coefficients

and symbols invelved are cefinel as follows:

07 1ift coefficient (L/q¢S)
Cp drag coefficient (D/qS)

CRD resvltant~forﬁe coefficient in the drag direction
(hD QS )

2

v ch

;.l.

Cn D ing-moment coefficient (li/qcS)

€1 rolling-moment coefficient (L/qbS)

Ch vawing-moment coefficient (¥/qvs)

-Che elevator hinge—moment coefficient (He/qbeCe®)

Cn, -aileron hinge-moment coefficient (H,/ab,T,%)
a ' al/dP95Cq

Te thrust disk—-loading coefficient (T/2qD®)

where
' - 2 ; 3 : . 1

q dynamic pressure in the undisturbed air stream K;pve

o) nass density of air

v velocity of air

V4 indicated airspeed

£
et
[N
th
ot
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D drag

Rp resultant force along wind axis (propeller operating)
i Pitchiing moment about center of gravity of airplane
L rolling moment about center of gravity of airplane
n yawing monent about center of gravity of airplane
Fe ele#éfor sticlt force, pounds ( O.455H )

Heg elevator hinge moment’

H, aileron hinge moment

& effective thrust of propoi’er ( T—aD)

S wing area (41.6 sq ft) -

c mean aserodynamic chord of wing (2.85 ft)

D wing span (14.91 f£%)

bece? wproduct of elevator snan and mean—square elevator
chord (1.;43 ft° for elevators 1 2, and 5);
(1,178 ft® gop elevators % and 43

bgcCy® oduct of- ileron span and mean—square aileron
chord (0.566 £42)

D propeller diameter (4.82 ft)

and

B propeller blade angle at 0.75 radius

av angié of attack of wing root chord liﬁe

8p slotted flap deflec
line and flap ¢

bg split flap deflection, measured between lower sur—
i face of wing and flap chord line

8¢ e¢ovator deflection, measured betwee stabilizer
chord line and elevator chord line, pogitive de-
flection with trailing edge down




8§, aileron deflection, measured between wing chord line »
and aileron chord line, positive deflection with
trailing edge down
g right aileron deflection
Ay &
8§54, 1left aileron deflection
Al
ig ansle of stabilizer setting (relative t0 the thrust
1ine)
R test Reynolds number baseld on mean aerodynamic
chord (pVe/w)
1 coefficient of viscosity
TEST AND RESULTS
FTor convenience in classifying the results and show—
ing their location in the report, table II is presented,
The tests and results are described in the following
sections. X
Interference corrections.— The effects of support
interference and air—flow misalinement on the 1ift, drag, v

and pitching-—moment characteristics were determined from
tests of the model with flaps neutral and propeller re—
moved. In order to provide proper clearance between the
model and the support fairings, these tests were made

without the vertical taill on the model. All results in
this report Lave been corrected for these effects.

The angle of attack and the drag coefficient have
been corrected for the effect vf jet—boundary infterfer—
ence., Inasmuch as the results presented in this report
are primarily of a comparative nature, no jet—boundary
interference corrections have been applied to the pitch-
ing—moment data. These corrections may be applied by add—
ing algebraically 0,0216 C; for the power—off tests and
0.0258 O for the power—on tests. The effect of these
corrections is to decrease the negative slope of the
pitching—moment curves, The corrections do not apply to
tests wibth the horizontal tail removed.




Effect of various stabilizer settings on 1ift, drag.
and longitudingl stability.— The effect .of various stabi—

lizer settings on the 1if%, the drag, and the pitching-—
moment coefficients was determined from the results of
tests made with the stabilizer set at the following angles:
4,9°9, 3,959, 1.6°, —-2.3°%, and —5°. For each stabilizexr
setting, power—on and power—off runs were made with the
slotted flaps deflected 0% and 50° with the ailerons
drooped 0° and 9.5°, respectively. The elevator gap was
sealed smooth with cellulose tape for this part of the
investigation. The results of these tests ‘are »resentsd
in figures 9 to 20.

‘Two flight conditions were simulsted in the power—on

-tests. The pocwer—on landing apnroach was simulated with
"the slotted flaps deflected and both ailerons drooped.

2

The thrust coefficient required for level flight at a 1ift
coefficient of 1.85 was approximated through the range o
angles .of .attack. The full throttle climb condition was
simulatecd with the flaps and ailerons neutral. The thrust
cbéefficient obtained in the climb 2t a 1ift coefficient of
.55 was approximated through the range of angles of attack.,

Fy |

The power—off tests were made at a dynaunic pressure
of approxzimately 25 pounds per square foot and the power—on
tests were made at a dynamic pressure of approximately 13

~pounds per square foot, 'The propeller blades were set at

15° at 0.75 radius. The thrust coefficients obtained for
the power~on tests are shown in figures 21 anéd ®2.

Effect of various elevator. balances on Lifh,. deas.

pitchinz—moment, and elevator hinge—moment coefficients
and cn stick forces.— Five-elevator arragngemnents were
tested to determine their effects on lift, drag, pitching—
moment, and elevator hinge—moment coefficients. IZlevators
with noses 1, 2, 3, and 4 gfig. 2) were tested with power-—
off and slotted flaps at . The elevator with nose 5.is
similar %o the elevator now in use on the F4U-1 airplane.
It was tested with power on and off and with slottec flap
deflections of 0° and 50°.

For each elevator arrangement, elevator deflections
20T 10 «20%, w207, and B0 e investigated,. A
each elevator deflection the model was tested through a
complete angle—of—attacik range from below zero lift to
beyond the stall.  The angle of stabilizer setting was 1.5°.
For those tests in which the flaps were deflected 50°, the
ailerons were drooped 9.5°. -

ck




The power—off runs were made at a dynamic pressure
of approximately 25 pounds per square foot. The power—on
runs simulated landing approach and climbing conditions
of the airplane and were made at a dynamic pressure of
approximately 13 pounds per square oot

The effects of the various elevators on the 1lift and
drag characteristics of the model are presented in i

2% to 30. The effects of the elevators on the pitching—
moment characteristics are presented in fi 0 .
The hinge-moment characteristics of the various elevators

are presented in figures 35 to 42.

Figure 43 shows a comparison of the stick forec
the corresponding elevator deflections for the five ele—
vator noses for the model condition of propeller off and
flaps neutral., Stick forces and elevator deflections for
the elevator with nose 5 and the model condition of pro-—
peller off and flaps deflected are also showa. This
figure was prepared by obtaining, from Ifigures 23 to 42,
the elevator deflections, elevator hinge—moment coeffi-

cients, and 1ift coefficients for gero pitching moment at
] . &

several angles of attack. The 1ift coefficients were con—
verted to indicated airspeed by assuming an airplane

weight of 10,000 pounds. The hinge—moment coefficients
were converted to full—scale hinge moments at the indicated
airspeeds obtained from the corresponding 1ift coefficients,
The stick forces were then computed from the assumed rela—
tionship, Fg = 0.45 Hg. For the flap—neutral condition,

the stick forces were trimmed at 260 miles per hour indi-
cated airspeed by correcting the hinge—moment coefficients
an amount equal to the coefficient at that airspeed. In
the same manner, the stick forces for the flap—deflected
condition were trimmed at 100 miles per hour indicated
airspeed.

All of these stick forces were compubted with the cen—
ter of gravity of the airplane located aec shown in figure

h
3
1. XNo allowances were made for any Reynolds numb
on pitching—moment, 1ift, or hinge-moment coeffic

e stick foreces 0 levators
¢ considerably less than with
f, flap—neutral condition.

Figure 43 shows that ti
with noses 1, 2, 3, and 4
nose o for bthe propeller—o

3 B

) o

The effect upon the drag coefficient of sealing the
between the stabilizer and elevator is shown in
re 44

»
%

gap
figu
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Bffect of removingz the horizontal tail on 1ift, drags,

L - and longitudinal stability.—~ The horizontal tail was re—

; moved and that portion of the horizontal tail located
within the fuselage was replaced with blocks that conformed
to the fuselage contour. This arrangement is. shown in
figure 8.  Runs were made with the slotted flaps set at 0°

“and 50° and with the ailerons drooped 0° and 9.5°, respec—
‘tively., Power—on and power—off runs were made for each
flap and alleron setting. '

.

=440

The power—on and power—off runs were mace at dynanic
pressures of 13 and 25 pounds per square foot, respective—
ly; the power—on runs simulated the same alrplane flight
conditions as in the stabilizer and elevator tests. The
results of these tests are presented in figures 45 and 46,

Effect of full—snan flaps or 1ift, draz, and pitching-—
noment coefficients.— Tests were made with the slotted
flaps at 50% and with wvarious arrangements of outboard
split flaps. At a dynamic pressure of approximately 25
pounds per .square foot, runs were made with 0.20c split
flaps at 40° (fig. 4) and 48° and with 0.30c split flaps
at 40%, . Further investigation was made with power on and
power off at a dynamic pressure of 8.4 pounds per square
foot for the 0.20¢ and 0.3Q0c split flaps at 40°, The
bower—on runs were male at a dynamic pressure of 8.4 gounds
per square foot with the propeller blade angle set 20~ at

0,75 radius. The angle of the stabilizer was 1.6,

The power—on condition of the model simulated power—
on landing—approach condition of the F4U~1l airplane. The

results of these tests are given in figures 47 to 49.

Figures 47 to 49 show that the ontimum of the three
conditions of outboard split flap tested is the 0.30c¢ flap
deflected 40°. With this outboard split flap condition,
the slotted flaps deflected 50°, and the ailerons neutral,
a mazxinun 1ift coefficient of 2,32 was obbtained with power
6ff and 2,61 with power on as compared with 2,13 and 2.46
with the split flaps off, the slotted flaps deflected 50°,
and the ailerons drooped 9.5?. The effect of the outboard
split flaps on the pitching—momnent coefficient curve is to
slightly increase its negative slope in the angle—of—attack
range just below the stall.

Effect of various flap arrangements on aileron charac—
teristics.— Three groups of tests were made to determine

the ‘effect on aileron characteristics of various outboard
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split flap arrapvenents For t‘ge first group of runs the
slotted flaps were deflected 50 the 0.20c outboard

split flaps 48°, and the left alleron o Tests were then
made without the outboard Spllt flaps, hlth the slotted
flaps deflected 50°%, and the left aileron set at 9,59,
Further investigation was carried out with a slotted flap
deflection of 309, with the split flaps removed, and with
the left aileron set at 7.85°,

All these tests were made at a dynamic pressure of
approximately 25 pounds per square foot with the stabi—
o)

lizer set at 1..6%, The rlfdﬁ aileron (fig. %) was set at
(¢ ~ ) i}

the following argles‘ an° I gy 2l ~15°, and ~20°,

For each aileron settig the model was tested at approxi-—

() ~
mately O, 6°, and 12J angle of attack.
The results of these tests are presented in T
S0l WEl BT o

A comparison of figure 51 with 53 shows that the
effectiveness of the ailerons is considerably reduced by
the installation ¢f the ocutboard split

R

Bffect of droppablo external gas tank on 1ift, drag,

and pitching—moment coefficients.— Tests were made with
the droppable gas tank shown in Tigure 6 located on the
model as shown in figure 5. Two runs were made: one with
the slotted flaps and ailerons at 0°, and the other with
the slotted flaps deflected 50° and tne ailerons drooped
9.50. The model was tested through an angle—of—attack
range from below zero lift %o beyond the stall. The re—
sults of these tests are shown in f igures58 and 59.

From figure 58 i% will be noted that the droppable gas
tank had no effect on the maximum 1ift coefficient of the

model. The tank also had no aserodynamic effect on the
power—off longitudinal stability of the model. From

figure 59, it is seen that the ﬂ'OpUqbu, gas tank increases
the drag coefficient of the model 0.0011 at the high speed
¢y, of 0.16, and 0.0017 at a Cp of 0.55. These drag

increments amount to a drag, at 100 miles per hour, of 9
and 14 pounds, respectively.

Bffect of outboard svnlit flaps on the stalling charac—
teristics of the winz.— A study of the stalling characteris—

tics of the wing for several arrangements of the model was
nade by observing the behavior of wool tufts on the model.
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-Tufts were attached to the upper surface of the wing and
flaps with cellulose tane at 20—, 30—, 40—, 50—, 50—,

70—, 80—, and 9C-percent—chord stations. The {tufts were
spaced about 7 inches in a spanwise direction. The
progression of the stall with increase ih angle of attack
was recorded by sketching the stalled portions of the wing
at various angles of attack. Force measurements were taken
during each of the stall—ocbservation tests.

For this series of tests only the effect of the addi—
tion of outboard split Tlap” on the stalling characteris—

tics of the wing was desired. The 1“"eut1gatlon was made
with the slotted flaps deflected 50°% and with the 0.30c
outboard split flaps deflected 40°. All other control sur—
faces were set at 0°; the stabilizer was set at 1.6

The power—on stall test was made t¢ simulate a powered—
anding—approach condition of the airplane. Power—on and
power—off tests were made at dynamic pressures of 8.4
s pner square foot, re—

v
nds per squars foot and 25 pou:
spectively. The results of %
figures 60 and 61.

B!
ests are presented in

A comparison of f
data shows that with the
ing characteristics are a
onditions of outhoard sp

i

nsooo, and outboard snli
=

anG 61 with unpublished
d flaps deflected the stall—
i atelv the same for the two
aps deflected 40° and ailer—
0 ps 0° and ailerons drooped
9

CONCLUS IONWS

l. The maxinmum 1ift coefficient for the power—on land—
ing approach was 6 percent higher with both inboard slotted
flaps and outboard sn¢1t flaps deflected than it was with
inboard slotted flaps deflected and ailerons drooped.

2. The addition of the outboard split flaps had a
gligible effect on tlre stalling characteristics and the

lOLgltudlnal stability but noticeably reduced the aileron
effectiveness.

3. The droppable gas tank caused drag increments at
100 miles per hour amounting to 9 pounds and 14 pounds at
1ift coefficients of 0,16 and 0.55, respectively. It had
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no measurable effect on the maximum 1ift and no measurable
aerodynamic effect on the power—off longitudinal stability.

Langley liemorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va.




FUU-1 NODEL ARRANGEMENT

TAFLE I

FOR 15-FOOT

i
|

Propeller | Blevator

Outboard |

T o 3 Droppable
lodel Vertical {Horizontal %3 LRE08 ou :i:zfzg;d E?lit Tofts | ons tani
) : s | j_jEeny flaps on N

;gg%gge tail onj tail on Aiso 200 1{2i2 i 5 | smooth i on
B X X X X
¢ X X X X X
D X X X X
B X X X
F X X X
G X X X
H X X X
I X X X
J X
X X X
L X X X X
i x X X X 4
N X X X X X X
0 X P X X X
P SO X X X
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NACA. TABLE II. - LIST OF FIGURES 14
Values of
Model 1 0.20¢c|0.30c 8 Oa
t o an Oe angle of
Figure Type of test Arr:ngo- (deg) |(deg)|%fsp |Ofsp (deg) | (deg)| (daeg) |attack, a
men.y (deg) | (deg) (dogi
0 o] 0
9 |Cp and Cp against a B L.9 50 off | off 9.5 9.5 [¢]
[o] 0 (o]
10 [Cr, and Cgp against a c L.9 50 -do-| =-do- 9.5 9.5 0
0 (o] 0
11 |Cy, and Cp against a B 3.95 50 ~do~-| =-do- 9.5 9.5 0
(0] 0 0
12 |Cy, and Crp agalnst a C 3.95 50 -do-| =-do=- 9.5 9.5 0
(o] (o] [¢]
13 (Cy, and Cp against a B 1.6 50 | -do-| -do- 9.5 9.5 0
(0] 0 0
1y |Cp and CRrp against a c 1.6 50 -do-| -do- 9.5 9.5 0
1 0 0 0
5 CL and Cp against a B -2.3 50 -do-| -do- 9.5 9.5 0
0 0 0
16 |Cp and Cgp against a c -2.3 50 | -do-| -do- 9.5 9.5 0
0 0 0
17 Cr, and Cp against a B =5.0 50 -do~-| =do=- 9.5 9.5 0
o] 0 0
18 |Cp, and Cgp against a c -5.0 50 | -do-| -do- 9.5 9.5 (4]
19 j B range 58 -do- | -do- g. 5 g' 5 0
Cn against a
20 _} L C range 58 -do- | -do- 8.5 3-5 0
2 ) c range| 0 | -do-| -do- | 0 0
T, against a
22 PJ c range 50 -do~- | -do~- 9.5 9.5 0
23 Cr, and Cp against a E 1.5 50 | -do- | -do- 9.5 9.5 |[-30 to 20
2, iCr and Cgp against a D 1.5 50 | =do-| -do- 9.5 9.5 [=30 to 20
25 Cr, and Cp against a E 1.5 0 -do- | -do~- 0 0 -30 to 20
26 |Cr and Crp against a D 1.5 0 | -do-| -do- 0 0 =30 to 20
27 ‘\ F 1.5 (0] -do- | -do- 0 0 =30 to 20
28 i G 155 0 -do~- | ~do=- 0 0 -30 to 20
c a C inst
Sl S S Aelnat:S i H 1.5 0 | -do-|-d0- | 0 0 |-20 to 20
30 J | I 1.5 0 ~do~- | -do~- 0 0 -20 to 20
4
31 ] ! E e 58 s et 8.5 3.5 -30 to 20
’ 0 o] 0
2 ! D 1. -do- { =do=- -30 to 20
72 |cg agatnst a ! 2 | 5o [dopten g [P [
33 Fand G | 1.5 0 { -do- | -do- | 0O 0 |-30 to 20
3L |  Hand I [ 1.5 0 | -do- | -do- 0 0 -20 to 20
35 N fi E 1.5 | 50 | -do- | -do- | 9.5 9.5 |-30 to 20
|
36 D 1.5 50 | -do- | =do- 9.5 9.5 |-30 to 20
37 E 1.5 0 -do- | -do- 0 0 -30 to 20
| 38 J D 1.5 0 | -do- | -do- | O 0 |-30 to 20
Che agalnst a )
39 | F 1.5 0 -do- | =do- 0 0 =30 to 20
Lo ! ¢ 1.5 0 | -do- | -do- 0 0 -30 to 20
|
L ‘_ H 1.5 0 | -do- |-do- | O 0 |-20 to 20
L2 || ( I 1.5 0 | -do- |[-do- [0 0 [-20 to 20
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NACA TABLE II. - LIST OF FIGURES - Continued 15

Model 1 or 0.,20¢|0.30¢ 0a 0a s Valg:- gf
Figure Type of test arrange- (d‘:) (deg) af.p 6f.p (d.!‘) (d.l) (d..) .:flcko
ments (dog)| (deg) . " el
0 0 0
E 1.5 50 off off 9.5 9.5
F 1,5 0 | -do-| -do- 0 0
43 |F, and 5, against Vy G 155 el | 0 0
H 1.5 0| -d0-| -do-| O 0
I 1.5 0 =do-| =-do- 0 0
d
L |cp sgainst Cp B and E | (a) 0 | -do-| -do- [} (4 o
45 |Cyp,Cp, and Cy against e J off 58 -do-| -do- 8.5 8_5 0
L6 |CL,CRp,and Cm against a K ~do=- 58 -do-| -do=- 3.5 3-5 (4]
L7 ] L 1.6 | so| Lbo| 4o | o 0 0
L8 C5,Cp, and Cy against a X 1.6 30 Lo Lo 0 © °
Lo J L L 1.6 50 ﬁg Lo 0 0 0
50 |Cp and Cp against Ba. L 1.6 50 L8 | off |-20 to 20| O 0 1.&'{58.
51 |Cy and Cp against Bay L 1.6 | 50| 48| -do-|-20 to 20| 0 0 1.&:{58,
52 [Cy and Cp against Ogy E 1.6 | 50 | orf | -do-|-20 to 20| 9.5 0 °°2ﬁ.i5'
53 |C, and Cp against Say E 1.6 | 50 | -d0-| -do-|-20 to 20| 9.5 0 Sednl=
54 [Cp and Cp sgainst Oa, E 1.6 30 | =do-| -do-[=20 to 20| 7.85 0 0'15;’55'
55 |C; and Cp against Oap E 1.6 | 30 | -do-| -@0-{-20 to 20| 7.85 0 °"{5'f§3’
E 1.6 | 30 | -d0-| -do-|-20 to 20| 7.85 0 °"{5?'5'
56 |Cn against og, E 1.6 | 50 | -do-] -do-[-20 to 20| 9.5 0 °'51’£.i5'
L 1.6 | 50| L8| -do-|-20 to 20| O 0 1'&758'
L :
1 = 1.6 | 30| orf | -do-|-20 to 20| 7.85 | o | O T37s>
57 |Cng against 8, Ll E 1.6 | 50 | -do-| -do-[-20 to 20| 9.5 0 °'2&.i5'
L 1.6 50 48 | -do-|=20 to 20| O 0 1.3?.8.
58 |Cp,Cp, and Cy against a| P 1.6 Ol o ¥Sao~ R0 9 0
»“D» 50 9.5 9.5
59 |Cp, against Cp E and P | (a) 0 | =-do-| -do- 0 0 0
60 | N 1.6 50 | -do-! Lo 0 0 0
Stall 4
61 * s ey 0 1.6 50 | =do-|{ LO 0 0 0

a
14 values are 1.5 and 1.6.
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Figure 4.- The 1/2.75 scale model of the F4U-1 airplane in the 19-foot pressure
tunnel showing the full-svan flaps.

Figure 5.- Rear view of 1/2.75 scale model of the F4U-1 airplane showing the
droppable external gas tank.
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NACA Figs. 7,8

i ? (MAL .
EIN 27886 /2

Figure 7.- The 1/2.75 scale model of the F4U-1 airplane showing propeller and
slotted flaps deflected 50°.

LMAL - 27955

Figure 8.- View showing the 1/2.75 scale model of the F4U-1 airplane without
the horizontal tail.
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