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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


ADVANCE RESTRICTED REPORT 

DERIVATION OF CHARTS FOR DETERMINING THE HORIZONTAL 


TAIL LOAD VARIATION WITH ANY ELEVATOR MOTION 

By Henry A. Pearson


SUMMARY 

The equations relating the wing and tail loads are 
derived for a unit elevator displacement. These equations 
are then converted into a nondimensional form and general 
charts are given by which the wing- and tail—load—increment 
variation may he determined under dynamic conditions for 
any type of elevator motion and for various degrees of 
airplane stability. 	 In order to illustrate the use of 
the charts, several examples are included in which the 
wing and tail loads are evaluated for a number of types of 
elevator motion. Methods are given for determining the 
necessary derivatives from results of wind—tunnel tests 
when such tests are available. 

INTRODUCTION 

Because airplane failures in which tail surfaces were 
involved have occurred in flight recently, considerable 
impetus has been given to the tak of setting up more 
rational methods of evaluating tail loads. Particular 
interest has been shown 

in 
the analysis of dynamic tail 

loads associated with more or less sudden elevator motions. 

The problem of determining the dynamic tail loads in 
a . rational manner has been treated. by many authors. Vari-
ous approaches and assumptions have been employed, but the 
methods available at presen are too len g thy to be suitable 
for the routine computations that would have to be made in 
design studies. This statement is particularly true if the 
critical types of elevator motion are to be varied, consid-
erably . from the simple types that have usually been 
treated. Although equations were given in reference 1 for 
determining the tail load with any variation of elevator 
motion, the equations were not in the best form for making 
computations.	 It has been found recently, as a result of
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a number of computations, not only that the method of ref-
erence 1 can be shortened but also that some of the minor 
factors which were previously omitted can now be included 
in a method that will be' suitable for use by designers. 

SYMBOLS 

The following is a list of the symbols employed in 
this paper,:  

W ' airplane ;: weight, pounds	 0 , 

g	 'acceleration, of gravity, feet per second2 

m	 'airplane .mas , W/g, slugs 

S	 gross wing area 1nc1ud1n'area within fuselage,' 
square feet 

5	 gross horizontal—tail area including'that Intercepted 
by fuselage, square feet 

b	 wing span, feet 

b t	 tali span, feet	 . 

radius of gyration' about pitchthg axis, feet 

nitching ' moment of inertia, slug—feet square 

xt Ian gth from center of gravity of airplane to aerody— 
namic center of tall. (negative for conventional 
:air pl,anes), feet'  

V	 'airplane velocity, feet per, second  

p	 mass density of air, slugs per cubic foot  

q	 dynamic: pressure, pounds. per squarefoot(pV2) 

t 	 t'ail.,e.fi'ciey fct or* : '(q./q) 

L	 lift , pounds  

C L lift coefficient (L/qS) 

M	 moment, foot—pounds
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C	 pitching—moment coefficient of airplane without 
horizontal tail	 (Mb/qS2) 

a. wing angle of attack, radians 

CL t tail angle of attack, radians 

i t tail setting, radians 

6	 elevator angle, radians 

üownwash angle, radians	
(	

a.) 

Y	 flight—path angle, radians 

9	 angle of pitch (a. + 'Y), radians 

K	 empirical constant denoting ratio of damping moment 
of comp lete airplane to dam p ing moment of tail 
alone 

n	 airplane load factor 

t	 time seconds 

7	 aerodynamic time, unit = m/pSV 

airplane density ratio (—m/pSxt) 

a,b roots of basic differential equation when they are 
imaginary 

m 1 , m 2 roots of basic differential equation when they 
are real 

K 1 , K 2 , K3 dimensional constants occurring in basic 
differential equation 

K 1 1 , K 21 K 3 ' nondimensional constants occurring in basic 
differential equation 

The notations c. and a., 6 and	 , and so forth denote 
single and double differentiations with respect to. either 
t	 or T.
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Subscripts 

o	 Initial or selected value 

t	 tail 

Max	 maximum value 

d	 down 

zero lift 

geo	 geometric 

THEORETICAL RELATIONS BETWEEN WINS AND TAIL LOAD 

The mathematical treatment of the longitudinal motion 
of an airplane following an elevator displacement involves 
three simultaneous nonlinear differential equations. The 
correct analytical solution of these equations must be ob-
tained either by a series substitution or by step—by—step 
methods. A close approximatin to the correct solution.is  
obtained if it is assumed that, in the. interval between 
the start of the maneuver and the attainment of maximum 
loads on the wing and tail surfaces, neither the initial 
velocity nor the initial attitude changes materially. 
These assumptions eliminate one of the three equations of 
motion and the trigonometric coefficients that occur in 
the other two eauations. 	 In addition, the assumptions 
agree with experimental flight results and have been gen-
erally used in all treatments of the longitudinal motion 
of an airplane following a control deflection. 

If the sign conventions of figure 1 are used, the 
following equations will apply to the steady flight con-
dition

dCL 
W cos YO-	 L 

a. 0 q3 = 0	 (i) 

S 2	 dOL r /	 dadc + ___1 !ao(1 -	 j + it + ___8 o J(ri t )S t x t = 0 (2) 
b	 dat L \	 d 	 d 

Equation (1) represents the summation of the forces 
perpendicular to the instantaneous flight path and equa-
tion (2) represents the moments about the center of grav-
ity.
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In accordance with the assumption that there is no 
loss in speed during the Dull-up, the corresponding dy-
namic equations can be written as 

CD dC L 	 dCLt 
W Cos (Y

o
 +Y)---- do; (a0+Aa)qS---	 qS66+ m'YV = 0 (3) 

for the vertical forces. 	 In this equation the term 

dCLt is introduced to allow for the change in 

the Z force that will occur with elevator deflection. 
If the slope d.CL/da is used for the complete airplane 

with the tail surfaces in place and elevator fixed, most. 
of the effect of the tail load on the vertical force will 
be taken into account. 

The moment equation is 

)
Cm
	
s 2 .dCL.r l	 d€	 K 

	

+_m	
b 

q—+----(ct 
a  

dat	 -T	 d 	 s t 2 

+ i t +_(oo+o)j Ti t cis txt - -tI ---A& - mky 2 8	 0 () 

	

 d8	 bt 

In equation (4) the term containing & is introduced to 
correct for the effect of time lag in downwash at the, 
tail, the term containing O is introduced to account 
for the change In tail angle due to rotation, and the 

dCmt	 S t 
2 

term	 ,	 rq - A8 is introduced to account for the 
bt 

moment due to elevator camber. Computations have indi-
cated that in some cases it is necessary to include both 
the camber term and the elevator-f orce term. 

If equations (1) and (2) are subtracted from equa-
tions (3) and (4) , respectively, and if It is assumed 
that only a small change in attitude takes place (so that 
cos ( 0 +	 = cos ('Y)), the following equations of mo-
tion are obtained

dCL ctq,S - ____	
= 0	 (s) m'YV - -	 ____ 

dct	 dô
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aq	 +---- [i.aji -	 -	 - . JL 
da	 b	 da.. L '	 dm J	 V dmV 

da t	 1	 dCmt 
+ 

d8	 - dÔ	
1d1 -_ t6 - ink 2 e = o	 (6) 

•	 Fromf igure 1 the following relations are seen to 
exist:

8 = (ct, + &) + ('y 0 +	 y)

(7) 

=	 + 

Thus, from equations (5) and (7) 

	

dC L	 S	 dCLt 
cx.	 St = 9 - a = --- iq -- + -- 71 	 (8) 

	

dct	 mV	 d8	 mV 

and

dC	 S	 dCL	 S 
= 0 - a = - aq	 + -----. r q - 8 	 (g) 

da	 'mV	 d8	 t mV 

•	 If equations (8) and () are substituted: into eua:— 
tion (6), the term	 g s containin 	 z, &,	 a,. 18,	 and 6	 are 
segregated and, if the resulting equation is divided by 

	

_mky 2 	 —I, there is obtained 

+
	

IDntv(+ .c) + 	 ii	 q 

L f. Sx	 A5 [ dCL,t(r q) 

	

da	 I	 6a	 2• m J	 d&	 t 

	

0m t	 q)St	 dCLt	 flt2Pt2S 

	

Xt2ql	 [.dCL qtl (10)
d8	 Ib	 da	 d.6	 2 -ml	 J	 d6	 mV] 

The effect of the term containing 6 is small and may be 
omitted.. Thus equation (10) can be written as 

c + K 1 a. + K 2 91 = K3 68	 (11)
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This equation is the equation for a damped oscillation 
with an impressed moment KA5 where 

K	 al. I1	 !L r, ( _L + .!.'\+
 dCL S] 

'	 2m	 dat	 k2	 t%. f	 cJ	 dcL 

t 

P . V 2 
fdOm S 

2	
dCL t	 X.1	 A.^	 dOL K 0 

Sx t1l 

2m	 da k b	 dat	 Icy2	 2 m 

K -	
Sxm	 St2d	 Ki2	 x2s] 

2w L dO	 2 • 	 d.&	 btky dat 	 dO	 2 mky2


(ila) 

The increment in wing l.ad., wing-load factor, and tail• 
load can bo found by solving equation (ii) for Am and a. 
by the u sua l methods. The increment in wing lad and wing-
load factor could then be obtained from the equations 

dCL 

	

AL 
= •--- 

AaqS	

(12)

da 

dC L Aaq 

It is seen from the bracketed. term in equation (6) 
that ,'in order to determine the effective tail angle of 
attack, Am t , at any time, the pitching velocity and the 
rate of change of the wing angle of attack must first be 
known.	 If substitutions are made from equati .sns (7) and 
(8) into this bracketed term, the increment in effective 
tail angle of attack at any time is very closely given by 
the following equation 

= [Aa(1 -	 -	 a .	 -	 +	 + -AS (13) 
L '	 da	 da 2 m	 V da	 d5	 J 

The value of 6a t l given in equation (13) is to be inserted 
in the equation

dCL 

	

AL t = --f-	 (14) 

to obtain the tal-lad increment at any time.
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Up to this point the equations and method are straight-
forward and similar to the analysis previously presented in 
reference 1 with the exception that the rate of change of 
vertical force with elevator angle and the-change in moment 
caused by tail camber have been-Introduced into the equa-
tions. These additional factors are usually small, but they 
tend to gain in im-ortance as the amount of static stabil-
ity is increased. For the case of a very stable airplane 
their contributions may affect the results in the order of 
about 5 to 10 percent. 

The solution of the differential equation of motion 
(equation (11)) is not particularly difficult but would 
become rather tedious when the elevator motion is a corn-
pli.cated function of the time or when various types of 
elevator motion are to be considered. Also, In the form 
given, new computations would be required for each alti-
tude and for each speed and the computations made for one 
airplane would not be applicable to another. 

The first difficulty can be avoided by evaluatin g the 
results for a unit instantaneous elevator—angle change; 
then, since the e q uations are linear an' d the principle of 
superposition applies, Carson's or Duhamel's integral 
theorem maybe used (see reference 2 for application) to 
obtain results for any assumed elevator variation 	 The

second difficulty can be partly overcome by selecting, as 
did. Glauert, new units of time and length and presenting 
charts for the unit solutions of Am and a for the 
various degrees of stability that would be obtained for 
center—of—gravity positions between the aerodynamic cen-
ter and. the -neutral point, 

In line with these ideas , the increment i-n elevator. 
angle will be taken as unity and the unit of time,. in—. 
stead, of being taken as 1 second, will be taken as 

m 
1'	 --- seconds. The unit of length will be taken as 

pSV	
xt Xt feet so that the unit of velocity will he 	 or 

v/	 where 4 = —m/p Sxt. Since x	 is a negative quan-
tity, with the system of axes used,	 will be a.posi-.--




tive quantity the value of wh-icI'i may range from about 10 
to 100. 

Introducing the above-quantities into equation (11) 
allows a similar differential equation to be obtained, 
which can he written as
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a + K, 'ci. + K 2	 = 1(3 '8 (i)	 (15) 

where 66(1) is a unit displacement and 

'1	 =	 n 
2	 J Ldt S k2	 dct	 dcL j

Sxt = 

	

dCm  _!_ -4 ri	 !	
2	

L	 -] 2 1... d.ct ky 2 b	 da	 S ky 2	 d.	 da	 2 W 

i3	 ---- 2	 d8	 S k?	 b SiC,12 

	

- ----	 1	 (15a) 

	

da. t	 dô	 2m Sky 2 J 

The value of K ' is always positive and the valüë of 
K 2 '	 is positive if the centr of gravity lies ahead of 

the rear neutral point. The rear neutral point is de±ined 
here as the position along the mean aerodynamic chord at 
which the center of gravity would. have to he in order that 
the slope of the moment curve for the	 airplane

about this point be 0. The value of d.C/da that is 
used in this report is taken about a forward neutral point 
(with tail off), which has been called the aerodynamic 
center. The quantity 1(31 is always negative and depends 
only on the geinetric and aerodynamic qualities of the 
tail.

The solution of equation (15) cantake any one of 
three forms, depending on whether both rocts of the auxil-
iary equation are real and unequal (m 1 , m 2 ), real and 
e q ual Cm 1	 , or imaginary In the form of a±ib. With 
the stipulation that the center of gravity be forward of 
the rear neutral point, the motion indicated by equation 
(15) always subsides and. the solutions for Lia and & 
are as follows:
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Unequal real roots m1 A m2 

	

ACL = 	 _ [1 —----
e2	

sinh	 t 
K2 

I	 1	 2	 ' 2 1 

L J__—K2!

 T — — —	 — 
. 
— 

+ coh (/:ri	 ]} (16) 
K1' 

	

K 3 ? 6(l)	 - 2
sinh	 --, —K	 t 

Equal real roots m 1 	 m2 

	

[	 K11t 
K 3 '6(l)	 -	 7K11t 

	

a = -------- -.1 - e	 ----- + 1 
K2' H	

\2 

	

1	 K 
't1	

(16a) 
K 3 !6 (i)	 (K '	 2 

	

a ---------'	 t e 
L 2 I 

Imaginary roots a±ib 

	

=	 + e •Sifl/ t 
y	 K	 2	 (^2 

Cos (/K 2	 t 

;L t ___ 

	

a	 Sifl[21 -(--)j t	 (16b) 

J2 (KI
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In these solutions, the 'boundary conditions are at 
T = 0, Aa.	 & = 0, 8(i) = 1.0. References to equations 

(5) and (7), however, indicate that the boundary condi-
tions should be at	 ¶ = 0, Lc = 0, t6(1) = 1.0,	 = 0, so 

dCS	 11 
that

	

	 = —.Y = -- - -. The inclusion of. these condi-




d8 S 2 
tions complicates the solution and introduces factors that 
prevent the presentation of results in a few 'basic charts. 
Actual plots of the unit—solution curves obtained with 
either boundary condition indicate, in examples that have 
been tried, such small differences that the two curves 
can be hardly distinguished. For these reasons, the sim-
ple boundary conditions have been used. 

It has 'been found by direct substitution that the 
value of K 1 ' will range from. about . 5 to 9 in the case 
of conventional airplanes.	 (See equation (15a).) Similar 
substitutions for' K 2 1	 Indicate that this quantity may 
range from about 2 to about 300 when all possible values, 
of 4 and p are considered. There are, however, com-
pensating factors that enter into the problem so that the 
likely range of K 2 ' is much smaller than this even when 
the possible present—day extremes of the separate items 
are considered. 

CHJRTS FOR DETERMINING A a AND ck. 

Charts are given in figures 2 to 6 showing the varia-
tion of ictK 2 '/K 3 ' and a/K 3 	 against aerodynamic time 
T	 for all values of X 1 1 and K' that are likely to 
occur. The charts given apply as long as 	 2' remains a

p ositive quantity, which will always be the cse when 
there is a small margin of static stability, namely, when 
the center of gravity is ahead of the rear neutral point. 
4ccording to the bracketed term of equation (15a), the 
center of gravity could be slightly behind the neutral 
point and the motion given by equation (15) would still 
subside because of the greater stability which the air-
plane has on a curved path.  

USE OF THE CHARTS IN A TYPICAL EXAMPLE 

In order to illustrate the generality of the charts 
given in figures 2 to 6, an example is worked for a
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typical fi ghter airplane which is now under investigation 
for tail loads. The necessary geometric and aerodynamic 
characteristics of this airplane are as follows: 

Geometric 

Gross wing area, S,	 sq ft	 ............	 300

Gross horizontal tail area, S, sq ft ....... . 60 
Airi,lane weight, W, lb	 ............. 12,000 
Wing soan, b, ft .........0 	 . . 41 
Tail span, b t , ft	 ...................... 
Radius of gyration, k, ft ..............6.4 
Distance from aerodynamic center of airplane less 

tail to aer,odynamic center of tail, Xt, ft	 . . .-21.0 

Aerodynamic 

dC. 
Slope of airplane lift curve, -c, radians .....4.87 

d.CL a 
Slope of tail lift curve, ----a, radians	 3.15


dat 

Downwash factor, d/da. .................0.54 
Tail efficiency factor (q/q),r ..........1.00 
Empirical airplane damping factor, K .........1.1 

dOL 
Elevator effectiveness factor, ---k , radian . . . . 1.89 

d8 

Rate of change of tall moment with camber due to 

dCmt 
elevator angle,-  

 
----, radian	 ...........0.57 T 

Rate of change of moment coefficient with angle of 
attack 
(a) center of gravity, 30 percent, radian . . . 	 0.703 
(b) center of gravity, 25 percent, radian . . . 	 0.475 

It was determined from tests of this airplane that 
for the conditions desired the slope of the moment curve 
per rat9tan for the airplane less tail could be given by 

= —0.665 + 0.0445 c.g.. 
da

Substitution of the geometric and aerodynamic values 
into e q uation (iSa) and the assumption that results are 
required for an altitude of 19,100 feet (p 	 0.0013.06) 
give the following values for K , ! , K 2 1 , and K3
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K1' = 8.0 

K2' ( c.g. at 30 percent) = 20.0 

K 2 J-(c.g. at 25 percent) = 40,0 

K 3 - - 100.0 

For these values of K 1	 and K 2 ' , the variation of 

K 2 '	 . 
and --- with T can be obtained from figures 

K3'.	 K3' 

5(a) and 5(b) for an instantaneous unit elevator deflec-
tion. A slight amount of labor can be saved at this 
stage if the curves are taken directly from these figures 
onto a work sheet (see middle grou p of curves in fig. 7) 
without transforming them into curves of La and i. 
The transformation can, of course, be accomplished Im-
mediately by multiplying the ordinates of the curves ob- 

•	 K' 
tamed by -i- and K31, respectively.	 It has been 

found more convenient, however, to make the change-over 
as a final step. 

The next step in the próced:e iz to plot the assumed 
elevator—motion curve on the work sheet using the same 
abscissa (i). This change is accomplished by dividing the 
actual assumed time variation of elevator deflection by 
the factor m/PSV in order to obtain the variation in 
aerodynamic unite. For an indicated speed of 400 miles 
per hour at 19,100 feet, the factor m/PSV for the 
airplane in question would be 

-	 40	
1.202 seconds 

(gp )vJp 0 / p ( 88/60)
	

0. 0420x400x 1. 349x 1.466 

The O.etermintion of La	 and -s- at any time 
K3' K3' 

T due to the assumed elevator motion is then found by 
the following graphical construction. This construction 
is essentially that given in reference 2 except for minor 
modifications that were found to be worth while in effect- 

K2' 
in the computations. The values of Aa. --- and --- at 

1( 3 '	 K3' 
the aerodynamic time t 0 = 1, for example, due to the 
assumed elevator motion is found as follows:
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1. First, the point on the A6 curve at T = 1 is 
projected horizontally in both directions until it strikes 
the 450 lines. The intersections with these lines are 
then projected or deflected vertically until they inter-
sect the -horizontal projections of the values of &1K 31 

equato zero.* 	 The- points

K3' 

labeled -ae1 ed® are thus established, 

2. The ordinate of the Ab curve at, say,	 T = 0.8 
Is next projected horizontally as before until it strikes 
the 450 lines, where it is reflected and points of inter-
section with the horizontal projections of the values, of 

L a	 -, and	 /K' at T =0.2 second are established. 

The paints labeled 2 are obtained In this manner. 
Other points labeled 3 to 	 for T = 0.2, 0.1, and ' 0 
are then similarly obtained to complete the curve for the 
example chosen and for the time To '= 1.0. Note that the 
addition of •. T on the elevator curve and 7 On the unit—
function curve always equals T. Curves are then drawn 
through these - points and the areas under them are propor-
tional.-to . 	 and	 .fox-the aerodynamic time of 1 unit. 

.3The-.areas.are.found by . integratI.in the'direc-
tion shown, tht is 	 and so forth 
It is Importanl to follow in this directiOn In order that 
ne gative.areas, ifthey.sboüld..occur, maybe properly 
taken into account..	 If.. the. points are fOlwed in the 
order noted and a counterclockwise path is followed-in 
enclosingthe area, the value is posit°ive 'r'1	 of 
the quadrants involved and vice versa for clockwise in-
tegration. When a fiure--of—eiht area is involved, the 
same statement also applies. The areas are then converted 
to Am and & by multiplying the number of squar.e units 
(square inches or square centimeters) by the appropriate 
convrsior factors, which are obtained.1y multiplying the 
ordinate scales of Am or '&. by the ordinate scales of 

curves as the 'case may . be . 

4. Othercurves .re similarly drawn in for the dif-
ferent time intervals, T 0 , at which -the values of 
and a. are desired. For exam p le, see the heavy curve 
drawn In for the time	 r = 2.2 with points labeled 

and so forth. 

K2' 
and Am --- at the time 7
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5. After a sufficient number of time intervals are 
considered and the resulting areas determined, the final 
step is to convert the areas into the values of AQ and 
a associated with the elevator motion assumed. The var-
iation of load factor and tail—load increment may then 
be found by substituting for La and 6, into equations 
( 1 ;2), (13), and (14).	 It is convenient at this state to

arrange the results in tabular form and to convert from 
time	 7	 to time	 t. 

Figure 8 gives the final variation of the load fac-
tor and tail—load increments for the example of figure 7. 
The type of elevator motion used in these figures is that 
previously suggested i .n reference 	 in which the horizon-




tal tail would be designedto withstand a maneuver in 
which the V—G diagram. from maximum positive to maximum 
negative g would be covered. The duration of the time 
intervals at which the elevator was held at maximum val-
iies ±ômax w.s adjusted so that the full acceleration 
corresponding to each elevator throw would be reached.. 
The rates of movement were purposely token quite high in 
order to Obtain as large downtail or control loads as 
possible without eceed.in. the speed at which the pilot 
Might move the controls, The relation between the ele-
vator throw	 and the load factor increment An 
that is finally reached. is given by 

K 2 ' W1/S 

Aö inax = An -------
K 3 ' dOT 

---q 
da 

This relation is easily obtained by substituting the val-
ues for	 ct from equations 6) (with t large) inti equa-
tion (12). 

In order to obtain this range in acceleration, it is 
not necessary that the pilot restrict himself to the type 
of elevator motion assumed., as ha may actually move the 
elevator twice as far as is necessary and check the motion 
earlier so as not to overshot the desired acceleration. 
Such a motion is illustrated by the results given in fig-
ures 9 and 10 for the same airplane (K1 f = 8, K 2 '	 20) 
but with the elevator motion required to cover approxi-
mately the same acceleration range.

1 

It will be noted in figure 10 that the maximum accel-
eration reached with the elevator motion assumed was 8.75g
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instead of 8g. A number Of trial computations made in 
connection with thefiuréindiâted that, other things 
be.in. equal, a delay of as little as 0.06 second in tie 
time of- the elevator reversal would cause the accelerá-
tion to overhoot by 1.5g. Thi& delay indicates that 
the particular t ype of elevator iuotion shown in figure 
10 would probably never be used by a pilot in . a high g 
pull-out and where the elevtor motion Is small because 
of the extremely fine timing required - to prevent over-
loading. 

Comparison of the results of- figure 10 with those 
of figure 8 for the same values of K 2 1 indicates a much 
more rapid variation in load factor for the type of mo-
tion used in figure 10. Jones and Fehiner, in reference 
3, have shown that the trans lent effects of wing wake 
on the tail are likely to be severe only when the rate of 
change of wing angle of attack is great. These effects 
are not included in the method given because in the usual 
case they apparently are of little importance in the de-
termination of the critical-maneuver tail load 	 In order

to illustrate the combined effects of aerodynamic lag and 
transient wing wake on tail loads, a portion of the tail-
load curve in the critical region, including transient 
effects, has been computed by R. T. Jones for the case 
illustrated in figure 10.The comparison is given in fig- 
ure 11 where it will be seen that even in this particu-
larly severe case the discrepancy amounts to only about 
10 percent on the im p ortant maximum loads. 

Because actual elevator motions are almost certain 
to be less severe than the one illustrated, the transient 
effect will be less than that shown and within the limits 
of accuracy with which some items entering into the com 
Dutations are known. Fcr this reason, and because of-the 
increased mathematical com plexit y that is introducby 
its inclu'ion, transient effects are omitted.	 This state-




ment, however, cannot be assumed to apply to the gust..-.. 
condition wherein the angle-of-attack changes may occur. 
more' rapidly.	 .	 .. 

POSSIDLE SHORT( CUTS .. 	 .	 .	 ., 

The receding section illustrated •a general proce-
&ure that can be followed There one or two elevator motions 
are t o be I nv e s t igate d,,-bu.t ;there are a number of varát1ons 
w'hidh might have ' been used
	

If, however, the effects of a
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fairly large number of elevator motions are to be inves-
tigated at a given speed and altitude, the following 
method can be used with a saving in time. 

1. Determine a unit tail load AL t . and wing load 
An directly by using values of it and Am- ,obtained 
from figures 2 to 6 and substituting these values into 
equations (12) and (14). 

2. Plot the values An and ALt of step 1 as a 
function of time instead of plotting Act and c as a 
function of time as in figures 7 and 9. 

Plot the elevator—motion curve to be investigated 
and proceed as before. The areas now obtained will give 
directly the increments of tail load and wing load. 

A quicker method of obtaining the areas, in some 
cases, and one that is readily apparent after a little 
experience is gained, is to prepare grids for evaluating 
either Act and a or	 n and ALt. The abscissas of

the vertical lines of the grids are simply the ordinates 
of the considered elevator—motin curve taken every 0.1 
or 0.2 second, say; the ordinates of the horizontal lines 
of the-grid are then the ordinates of the respective unit 
curves. Figure 12 shows such a :'rid. for determining 

Ac.	 .1	 for the conditions of figure 7(a).	 In order to 
.1( 3 '	 '

' 
obtain the value of Ac. -- for the specific time of 

K3' 
T0 = 1.0, the points of intersection of the horizontal 
and vertical grid lines adding up to 1.0 are connected. 
Such a curve is shown in figure 12 for comparison with 
the similar one given in figure 7(a)'. 

DETER'iIL&TI0N OF THE NECESSARY AEODYNA?4IC DERIVATIVES 

The accuracy. with which the load increment 's maybe 
determined for a given elevator motion depends largely 
upon.the accuracy with which certain aerodynamic charac-
teristics are known and, in some measure, on how well 
these characteristics may he approximated by a straight 
line. The values re q uired for the 

'
com putation may be 

obtained with sufficient accuracy from wind—tunnel tests 
of a model in which the lift, drag,'and moment are meas-
ured with and without the tail in place and with the
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power condition for which calculations are - to be made. 
Lift and moment measurements should also be made for a 
range of elevator angles from ±lOo then, with elevator 
fixed, the lift and moment variation with tail setting 
should be determined through a range of about 50• 

The value of dCL/da to. be used should be that 
obtained with the tail in place and should be based on 
the gross wing area. By the use of this value, most of 
the effect of tail load on normal acceleration will be 
taken into account. 

The value of dCrn/da to be used is the slope of the 
moment curve with the. horizontal tail . re,noved. Usually, 
the moment variation is taken with respect to a selected 
center—of--gravity position, but it is desirable that the 
variation of dCm/da with center—of—gravity position be 
determined for at least two center—of—gravity positions. 
For the conventional fighter airplane it appears that the 
critical total down load, at the tail will occur with the 
center of gravity in its most forward position during 
dive pull—outs at high altitude and at the limit.ingepeed. 
The maximum up—load at the tail is likely to occur during 
pull—ups from high—speed level flight with the center of 
gravity in its most rearward position and at ,a relatively 
low altitude,

dCL 
The value of the factor 	 can be obtained 

dat 

from moment differences obtained at the same angle. of 
attack from two settings	 i t 	 of the horizontal tail 
plane.	 Thus,

d.CT,t	 LC -- S2 
rb---- = --- 

- da t 	 itbStxt 

It will not generally be necessary to separate the factor 
71 t but this se p aration could be accomplished by reference 
to tests. of isolated tail surfaces of a similar plan form. 
.eference 4 gives results for tests of a number of isolated 
tail surfaces.	 - 

dOL 
The previous value obtained for 	 ---can be used 

dat	 dCL 
to find the elevator effectiveness dat/d6 	 or	 from 

-either the moment or the 1it differences obtained from 
tests in which the elevator' angle was varied.
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Moment differences 

d(tt _ ACM avS2__-

dô	 dCLt
S.xbLô 

t da. 

dCL.	 (C	 S2 
t -	 av r	 - ------- 

dS	
Stxtb1 

Lift differences

=
dCL 

t da
t 

dC Lt	 CLvS 
t -.- = --

The differences	 CL and AC m are to be taken at the 
same angle of attack. In general, the moment differences 
will prove to be the most reliable because the quantities 
involved are larger. 

Similarly, the dcwnwash factor can be determined on 
the basis of either moment or lift differences with and. 
without the tail in piece together with the previous value 

CICLt 
obtained for ni t --

dat 

Moment differences 

( de	 (dC m	 S2	 1 
I 1 - -- = A --- 

dal	 da I Sbx	 dCT 
r

d  where A (_a2± )	 is the increment in the slope --
da 

caused by the addition of the tail.
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Lift differences 

dE	 S
	 F ('dCL "\	 (dCL.	

1 -	 dCL L	 tail on	 tail off 
Strt dat 

The values obtained from the moment differences are the 
more reliable. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va. 
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