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ADVANCE CCONFIDENTIAL REPORT

INVESTIGATION OF BOUNDARY LAYER TRANSITION
ON CONCAVE WALLS

By H, W, Liepmaun

SUMMARY

Transition of the lhoecundary layer from the laminar to
the turbulent regime was investigated: on the concave side
of ‘& plate with a radius of curvature of 2.7 feet., The
critical Reynolds number was found to be consideratly lower
than on a flat plate and on the corcave gide cf a plate with
a 20--foot radivus of cuvrvature previcusly investigested, It
wag furthermore found that, in agrecemsnt with the thsoretical

N

regults of Gortler, ngfg, here termed the WGortler param—

eter," 1s the proper critical parameter governing bsundary
leyer instability due to concave curvature, The eritical
parameter ai transition was found to have a wvalue of 9,0,

The influence of pressure gradient and of an increased
free-stream turbulence level on the position of the transition
point on the concave side of the plats of 2,5-foot radius of
evrvature has been studied, Small variations of the pressure
gradient d4id not alter the value of the critical Gortlier pa—
rameter, This result ie compared with similer measurements
on the convex side of & plate of 20-foot radius of curvature,
Increased tunnel turbdbulence lowered the value of the critical
parameter 93,0 at 2 turbulence level of 0, Of percent te 6,0
at a turdbulence level of 0,3 percent,

The investigation confirms the previous result that the
mechanism of the breakdown of the laminar boundary layer is
essentially different on convex and concave boundarisas,

A discussion of the practical applicability of transi-
bion measurements is given, and the difference betweeen crit—
ical Reynolds number corresponding to laminar instability and
critical Reynolds number corresponding to transition is pointed
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out, 4 definition of transiticn Reynolds number, based on
the 2pparent shearing stress caused by the laminar oscilla-—
tions, is given, In the case of flow along o flat plste,
values of transition Reynolds number are calculated Approxi--
uately for different intensities of the initial digturbance,

INTRODUCTION

The larger part of the California Institute of Technology
investigation on the effect 97 curvature on boundary layer
stability and transition has been previously reported (refer—
ence® 1), ?This previous research led %o the conclusion thas
the mechanism of the breakdcown of the laminar toundary layer
is essentially different on concave and convex walls, The
instability of' the laminar boundary layer on conveX boundaries

was found to be brought about by plane disturbances, the so-
called Tollmien—Schlichting waves, which were first observed
by Dryden, Schubaver, and Ckramstad on a flat plate, The

renge of unstable frequencies 2nd the amplificzation charascter—
igbtics of the follmien~S8chli~hting waves were found, within
the experimental scatter, to be the same on the convexly
curved boundaries as had garlier been observed by Schubauer
and Skramstad (reference 2) oan the flat plate, It was accord-
ingly concluded that the transition point was es
affected by convex curvature. These meagure t
over a range of effective curvature 6/r from 0
where 6 1s the momentum thickness of the bound
r 1is the radius of curvature of the boundary,

S T O Y

2

oncave curvature was found to have a pronounced dzstabi-
lizing effect on the laminer boundary layer, the critical
Reynolds number decreasing with inereasing effective curvature,
It was, therefore, concluded that the mechanism of transition
On concave walls was different from that on flat and convex
boundaries, It was furtheraore shown that these observatioas
were in general agreement with theoretical results of Gortler
(raference 3) which predicted a strong dynamic instability dus
to three—dimensional disturbances on concave boundaries, The
measurements for the case of concave boundsrics were,  howewer
not sc extensive as for the convex case and covered only the
range of effective curvature between O and 0,0001, = One pur-
pese of the investigations reported here is the extensior of
the previous measurements to values of effective curvature of
about 0,001 on & concave boundary,

The influence of the pressure gradient along ths laminar
boundary layer on the position of the transition point has long
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been known, The measuvrements which have bsen carried out
before were always confined to flat—plate flow or flow

past convex bouandariss, DPased on Gortler's ‘heoretical
results 1t was suggested in the previous report that the
influence of pressure gradient on transition should be less
pronounced on concave boundariesg, Consequently, measure—
ments of the effect of pressure gradient on the position of
the transition point have been corrigd out and the results
are presented in the present report, The effect of an in—
creased free—stream turbulence level on transition was also
studied,

The investigations reported here confirm and supplement
the results reported previounsly, and thus conclude the re—
search program on the influcnce of curvature on boundary-—
layer transition carrisd out over a number of years at the
California Institute of Technelogy under the sponsorship
and with the financial assistance of the National Advisory
Committee for Aeronautics,

v
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SYMBOLS

X distance along surface of piate from leading edge
y distance perpendicular from surface
7 distance along surface perpendicular from leading

edge
r Bedlusy of curvature of the boundary layer
U mean velocity at a point in the boundary layer
158 méan velocity of the free stream
u instantaneous x—component of fluctuation velocity
v instantaneous y—component ef fluctuation velocity
w instantaneous z—component of fluetuastion velocity
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I |

u! |
vi root—mean—square values of wu, v, and w, respectively
wl
u!
E— etc,, turbulence leve., usually eXpressed in percent

" ;
p density
L viscosity
Ve % kinematic viscosity

U
q & iQUC‘ dynamic pregsure of the free streanm
of
Uo : It i ,

b SEE Y4 O : I =Ll @aang (3 AT a el
n y,/cx Blasius' nordiwensional parameter
5 boundary layer thickness
&% boundary layer displacement thickness
A voundary layer momentum thickness
% effective curvature of the boundary layer
R Reynolds number
Rxs Rg, Ry Reynolds numbrrs besed on x, 8, #nd &%,

respectively, Rg= U,yx/V= x~Reynolde
number, and so forth
th Rgt RS* Reynclds numbers at the transition point
g it tr
fg— ;

R — Gortler poremeter

kelic i
L el uv apparent shear

du ;
Ty B i laminar sheoar
y
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) e correlation coefficient
ultv?
°fy, laminar skin—friction coefficient

APPARATUS AND METHODS

Wind Tunnel ard Test Section

The general layout of the wind tunnel ig shown in
figure 1, A detailed description can be found in reference
1, The measurements were carried out on the concave side of
a smocoth glass nlete of 2,5—fcot radius of curvature, This
plate was set in the center of the high (5 ft) and narrow
(7.F in,) test section shown in figure 2, The section '‘con-
sists essentially of two plate-—-glass plates forming cylinders
concentric with the center sheet, on which the measurements
are made, These plates ars mounted in wooden frames which,
by means of a screw adjustuent, allow a varistion of the
width of the channel and of the engie of attack of the center
plate, This adjustment makes it possible to alter the pres—
sure gradient along the test sectioan. Owing to the gecrmetry
of the section i1t is, however, difficult to set for a pre—
determined simvle pressure distribution, for example, a
linear distribution, The investigations on the effect of
pressure graaient on transition were, therefore, rather tedious
and the investigated renge of pressure gradients limited,

Free—Stream Turbulence Level
The normal free—stream turbulence level of the tunnel

was the same s in the previous measuremsnts, The values
were

.1‘_1._‘ = O_‘ 0f percent
UO
oAl e 0.12 percent
UO Uo

The turbulence level in the test section is mainly controlled
by the precision screen "S" (fig, 1) 'in the pressure chamber,
To investigate the position of the trangition poeint at higher
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turbulence levels of the free stream, the tunnel turbulence
was artificially raised in the following way: Strips of
celluvloid tape about 1 inch wide and 5 inches long wers
glued at regular intervals of about 3 inches on the down—
etream side of the screen S, These strips produced a
uniform turbulence level of

LA percent

UO
in the test section, By removing every second strip, and so
forth, the turbulence level could then be lowered to the
normeal free stream level,

Traversing Mechsanism
The traversing mechenism used in this wind tunnel is
described in detail in reference 1, The motion of the
lnstrument, for example, hot—wire anemometer, isg continuous
in the x and y directions and is remotely controlled,

Hot—Wire Anemometer

The mean—-speed distribution in the boundary layer was
measured with platinum wires of 0,6 0005—inch diameter and
about F-millimeter length, The turdbulence level and the
position of the transition point were determined with
0,00024~-inch thick and about 2-millimeter long wires,

Mean speed was always measured using the constant—resistance
method, For measurements of velocity fluctuations the wire
was calibrated using the electrical oscillator method (refer—
ence 4) and the amplifier properly compensated by means of

an inductence—resistance circuit, The amplifier response

is flat between less than F cycles up to 8000 cycles,

Measurement of the Pressure Distribution

The pressure distribution along the test section was
measured by means of a small static tube mounted on the
instrument carriage at a distance of about 1 centimeter
from the test plate, Thus, the pressure gradient close to
the edge of the boundary layer was measured, The irregular
"waves" in the distribution (fig, 3) are due to loecal changes
in the radius of curvature of the rlate,
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Determination

of the Transition Point

was determined by means of the
hot wire was mounted on the
instrument carriage a few thousandths of an inch from the
surface of the plate, The carrisge was then moved slowly
in the direction of the mean flow from the leading edgs
downstream; the first appearance of the turbulent bursts
(see reference 1) on the oscilloscope screen was taken as
indieation of transition,

The transition point
hot—wire anemometer, The

MEASUREMENTS AND RESULTS

Mean Speed Distribution

The test—section
sure gradient as close
sult which could be obtained is
The pressurs gradient i¢c seen to be clo
first 90 centimetexs of the test plate,
was founda to occu distances from tha
less than AO centimeters, this pressure gradient 4 (fig, 3)
coyld, wiih snfficie¢nt approximation, be taken as '"zero"
gradient, The velocity distribution in the laminar boundary
layer was ther measured, The result is shown .in Fflgure 4,
It is seen, that the profile follows, rather closely, the
Blasius flat--plate nrofile There exists a slight system—
atic deviation from the Blesius profile especially in the

drnd n= 6, The me:s -

give a pres—
The best re—
in figure 3,
se to zero over the
Since transition
leading edge of

walls were ad justed to
to zerc as possible,
shown as WA

S

y N

o+
v
&~

£

Uo
Blasius dis—

range bejiween = asured values of

are slightly lower than the ones given by the
tribution,

nts was to establish
thickness 48, "the

so forth could be ccmputed
of these data

The main purpose of the measureme
whether computations of the momentum
Reynolds number based on 6, and
from the Blasius solution, For comrputation

ge

epplied ©o transition measurements, the slight deviation
seen in figure 4 is immaterial end consequently the values
of 8, &%, and so forth, used later on, have been computed
from the Elqsvus formulu. that is,
e,
B PH TR
3w Ug
5% = VX

173/
T

(¢}
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Efifect of Curvature on the Position

of the Transition Point

Transition was measured with the hot—wire anemometer.
By varying the velocity of the free stream, the range of

effective curvature from -0,5 x 10% to —-1,1 x 107* could
be investigated, The revults of the teste are shown in fig—
is plotted

ure 5 where the critical Reynolds uuvmber Ry ¢
versus £, It is seen that Py +po foalls from about 4 x 10°
r v
$ Bl 4 & - in S 9__ — 4
at = = ~Hh x 10 to 1.% 2 10" at - e = 11 X 10
r b

This result agr=ees very well with previous measurements
(referecnce 1), Figure € shows the effect of curvature on
transition for effective curvature rsnging from —0, 001 (con—
cave)) to +0,001 (convex), Here Rg tpr 1s plotted versus

8 It is seen that thes decrease of the critical number found

on the concave side of the 20-foot plate continues with higher
effective curvature,

e
According to Gortler (reference 3) Ry //g is the char-
LY

acteristic parameter for the three-dimensionsl instability
on concave walls, If the value of this parameter at transi-
tion is plotted versus effective curvature (fig, 7a), it is
scen that within the rather large scatter the value of

i —
! A does not systematically vary with 2, The aversge
W e

' T g Ll o
value of 38,/ — found is about 9,0, 'The wvalue of the
k I“ tr .

parameter as mecasured here is somewhat larger than the value
of 7,3 found previously on the concave side of the plate

of 20-foot radius, There exists a pogsible explanation for
this differsnce in ths value of the Gortler parameter at tran-
sition which can best be seen from & plot such as figurse 8,

Instead of plotting the Gortlicr parameter as a function

of effective curvature Ry ¢ty 1is plotted as a function of
. 5 2 3

-g, Since Ry ”'38‘, Ry / 2 = constant corresponds to

J WP

treight lines through the origin in this plot, The measured
lues of R, 4, for the two test sections of 20-foot =and

2.,>-foot radius sre presented in figure 8, and in addition,
the line Ry = 9,4 X 10° corresponding to transition on a
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flat plate in the wind tunnel is shown, Assume that transi-
tion due to Gortler vortices occurs for e2ll concave curva—

=
tures at the value of Re~/ % found on the plate of 2,5~

foot radius, All transition measurements should thus fall
7 PR
on the straight line { R. 23
\ L e,
tion on the flat plate, that is, transition caused by the
two~dimensionel perturb&tion, was found to occur at

94 x 107%, Since the Tollmien—Schlichting wave is

= 9.0 (fig. 8), Traassi-

Rty
but little affected by small curvature, it can be expected
that transition caused by this disturbance~on slightly con—
cave plates occurs at about the same Ry, Hence, starting
from the flat plate, all transition measurements should

follow the straight line RB = 9 4 X 102 in figure g, A

/ /"" N
8% 01 x 10° the 1ine (Re /%) 9,0 and Ry=9.4 X
d p N P tr

107° intersect; that is, et effective curvatures larger

than —11 x 10® +transition is ceused by the three—dimensional
disturbance, A4t smaoller effective curvature the Tollmien—
Schlichting wave is more unstable and thus is responsibles for
trangition, It appears that this is not the case, dut that

a more or less continuous change from the transition due to
Gortler vortices to trensition caused by Tollmien—Schlichting
waves takes place, Since the laminar boundary layser on con—
cave walls 1s unstadle with respect to small perturbations

of both kinds, such a continuous change is possible and
probzble, Roth types of perturbation are excited by the
exterral free—stream turbulence, traveling downstream, that
is, toward higher values of Rg Dboth the waves or the vor-—
tices of a given wavelength increase in amplitude when they
pass through their respective instability region in the
Rgx—a disgram (see reference 1), A transfer of energy from

the one type of perturbation to the other is therefore quite
possible and such a transfer becomes unimportant only if one
of these perturbations is considerably more unzstable than the
other, that is, in the limiting cases of small and large ef-
fective curvature, A more exact analysis of such an energy
transfer is imptssible without a detailed knowledge of the
amplification of both types of perturbaticn and furthermore
of the excitaticn due to free streaw turdbulence,
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Effect of the Pressure Gradient on Transition

It is well known thast a pressure gradient along a
laminar boundary layer strongly influences the position
of the transition point, The so—called low—-drag or laminar
flow a2irfoil represents an applicetion of this result, All
investigations on the influence of the pressure gradient
have previously, however, been confined to measurements on

Tisan on convexly curved boundaries, that is, to boundary
layer flows, where the Tollmien—Schlichting instability 1is
predom inant Based on the theoretical analysis of Gortler

(reference 3) it was suggested previously (reference 1) that
the influence of the pressure gradient on transition should

be less pronouncasd on concave walls where the boundary—layer
instability should be due to the three--dimensional vortices,

To investigate thie gquestion, measurements of the in-—-

fluence of pressure gradient on transition were carried out

on the convex side of the plate of 20-foot radius and on the
concave side of the plate of 2,F—~foot radius, Thus, a typi—
cal Tollmien—Schlichting and Gortler case could be comparead,
The pressurs distributlons for which transition was investi-
gated are shown in figures 3 and 9, respectively., Before a
discussion and comparison @f the measurbm nts can be presented,
the question of the proper pesrameter Ffor the pressure gradl&nu
and the proper critical number for transition must be dis—
cussed,

It is scmetimes useful to present transition data in
the form of & critical Reynolds numbdber R, Dbased on the
distance from the leading edge, that is, frowm the stagnation
peint, However, Ry certainly is not the propsr physicsal
parameter, and it is preferable to base the critical nuzber
on some measure of the local boundary layer thickness, The
momentum thickness appears as the best choice since it is
closely coanected with the shearing stress 2t the wall and
thus with the slope of the velocity profile at the wall. In
this connection the instability of a veIOCitv profile with
respect to Tolimien-Schlichting waves is known to depend ve Ty
much on the slove (and curvature) c¢f the profile in the neigh—
borhood of the wall, Gortler found that for the three-diunen—
sional disturbance alsc momentum thickness is the wmost suitabl
length for the critical parameter, Thus it appe=ars reasonable
to plot for flat and convex sur aces t critical number Rdt”

/e .

’\"9 \/ T ’tr

snre gradient, To represent the pressure gracdient,

w

and for the concave surfaces as funetions of sone

(6}

effective pr
that is,

.

s
g in dimensionless foru, a length is again needed,

Qe
o
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The effective force acting on an element of the boundary

it

layer is the force dus to the pressure gradient, % %£ 4
The boundery layer thickness &8 entering here has nore
kinematlic than dynamic character and thus the displacenent
thickness ©&* appears as the logicel choice, This can
also bs seen from von Karman'ls momentum equation of the
boundary layer

Yo 244 a(eaq §* dp
a q dx q
: - ®d
where also the combination il appears,
ghind x
The results of tha seasurements ar therefore, repre—-
sented in the foram Ry, #nd (Ry Q \ s Tespectively,
8% dp \ RN
Versusg —— —=, It is, of course, not to be expected that a

g dx
complicated phenomenon, such as the lacinar ingtability for

flow with pressure gradlent, can be described by one critical
parameter alone, Under the influence of the pressure #raﬁi"rt
the velccity profile of the leyer will, in fact, change ¢¢ 1w~
uously from the stagnatiocn point up to eventual seperaticn,
The instability zones for small perturbaticns and the ampli-
fication characteristics thus vwary continuously downstreai,
Transiticn ocecurs if perturbationg are asuplified to a suffi-
cient degree, Since the total suplification is thus an into-
Zral effect depemnding on s8ll instability zonecs pessed by . .the
perturbation cn the way frou its origin dcwnstream to the
transiticn point, it seems hardly pessible t¢ give a repre=
sentation invelving only one critlcal nucber such as 2R,,
Only where the instability zones are little affacted by a
change in the profile as,for example, according to Gortler
(reference 3), in the case of flow past concave boundaries
can it be expveted that it will be possible tec represent the
ingtability character by c¢nly one critical parameter, in this
case Rg / g

W

4,

i 51

Except for pressure gradient “C!" on the convex

side of the plate of 20-foct redius, the wmomentun thickness and

displacemesnt thickness were again computed using the Blasius gc-~-

lution, The influences of these couparatively swall gradients =n
the boundarv—layer thickness was found to be neglizible within
the scatter of the transition m ﬂsur“wkhts In the case of ara—

Aient C in figure 9, the mozentun thickness and displacemeat
thickness were coumputed froim the sclution of the latinar
boundary—layer equations for the cazge c¢f & linear dscreese
of the free—-streawu velucity, The eXperin&ntally ictersined




NACA ACR No, 4J28 12

pressure distribution was approximated dy a parabola, and
the momentum and displacerent thicknesses were determined
from the tabulrted solution (reference ), It is seen from
figure 10 that for the case of convex curvature Retr de—

creases with positive and increases with negative pressure
gradient as expected, The largest decrease with positive
pressure gradients occurs close to zero pressure gradient,
Whether or not this is true for negative gradients remains
undecided since no measurements at larger negative values of
L %ﬁ could be carried out due to the limited Reynolds number
a

of the test plates, The rapid change of Retr in the neigh-

borhood of zero pressure gradient and the comparatively small

change at. larger positive values of %:-%% is interesting,

Thus it is indicated that the Blasius solution 1s singular

in the sense that a slight variation of the profile from the

Blasius solution does cause large changes in the stability

character, This is not unreasonable since the Blasius solu-
) o*n

tion is indeed a singular solution with Py = 0 at.anaiGr

A theoretical analysis of the instability character of pro—
files where the pressure gradient is not zero but is small
will be required for 2 physical explanation of this pressure-
gradient efiect.

The absolute values given in figure 10 for Rgy, as a
funection of %} %E are certainly not universally applicable
since they are strongly influenced by the wind—-tunnel charac—
acteristics, that is, turbulence level, turbulence spectrum,
and so forth (see alsc reference 1), The relative variation
of the critical Reynolds number at transition with pressure
gradient, however, is believed to be quite general, Conse—
gquently, it is to be expected that in practical applications,
such as the laminar flow wing, and so forth, the movement of
the transition point when the pressure gradient is altered
is most pronounced in the neighborhood of zero gradient,

Figure 11 shows the effect of pressure gradient on
transition on the concave side of the plate of 2 ,5—foot
radius, It is seen that the critical parameter for transi-—
tion of the boundary layer decreases with increasing pres—
sure gradient, This effect hardly exceeds the scatter of
the points, however, and is not believed to be actually
systematic, A comparison of the values of the critical pa-
rameter for transition at positive gradients with the range




NACA ACR No, a4Jd28 13

of values at zero pressure gradient shows that the apparent
decrease at positive pressure gradient lies within the ex—
perimental error, The comparatively large scatbter of the
points 1is due to the inherent difficulty of transition meus—
urements on a plate with a small radius of curvature and
8ls0 to errors in the detecruinstion of the bvoundary laysr
vy L | /' 8% dp
thickness which enters both parameters Ry J B and o Ir
The measurements were taken at small values of Rx Dbecause
of early transition, and thus 0 and 8* vary comparatively
rapidly with =x, An error in =xy, thus produces larger
eprors ‘in B+p and 8*;, than appears in the case of the

convex plate where Bxt, was five to ten times larger, The
present investigation accordingly indicates that the influence
of pressure gradient on transition at concave surfaces is
either gero or at most very small,

Effect of Free Stream Turbulence on Transition

That free—stream turdbulence has a strong influence on
the position of the trangition point is well established,
The first systematic investigation of this effect was made
by Schubauer and Skramstad (reference 2),who measured the
effect of varied free stream turbulence level on transition
of the boundary layer on a flat plate.

In the present investigation, transition was measured
on the concave side of the plate of 2 F—foot radius for
three turbulenceilevels of the free stream, The results
are given in figure 7, It is seen that an increasecd turbu—
lence level leads to earlier transition, The eritical number

/RH Q\ decreases from ©,0 with . 3 0,06 percent to

\ T/tr : Uo

€,0 with %, = 0,3 percent, The magnitude of the turbulence
o)

effect is of the same order as in the case of a flat plate
(reference 2), Thus it appears that the three—dimensional
disturbances, like the Tollmien—-Schlichting waves, are ex—
cited by turbulence in the free stream, A more detailed
discussion of the turbulence effect meets, as in the case

of the Tollmien—Schlichting waves, with the difficulty that
the phenomenon depends on the spectrum (or on the scale) of
tunnel turbulence, and furthermore on the amplification char—
acteristics of the perturbation along the path traveled by
the perturdbation,
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LAMINAR INSTABILITY AND TRANSITION

The preservation of laminar flow up to very large
Reynoclds numbers is of considerable practical interest
Experimental investigations of transition from the laminar
to the turbulent regime have, therefore, been undertiaken
with a double purpose! To give =2n understanding of the
mechanism of transition or at least of the breakdown of
laminsar motion, 2nd to permit prediction ¢f the ocecurrence
of transition for a given practical case such &s a certain
airfoil, The first part of this problem has found a com-
plete solution: Recent experiments (reference 1 and espe=
cially reference 2) confirmed, in general, the results of
earlier theoretical investigations of Heigsenberg, Tollmien
Sehlichting, Gortler and others, On the basis of this ex—
perimental and tnﬁore ieceal evidence, and also of earlier
work of Taylor on the flow between rotating cylinders, there
appears to0 be no doubt that laminar flow always becomes un—
stable for a sufficiently large Reynolds number, This criti-—
cal Reynolds number will depend on the form of the laminar
moticn, for example, iaminar boundery=lisyer flow, laminar
pipe fiow, and so forith, and on the type of disturbance, for
example, two-dimensional waves or thrce--dimensional vortice
Ingtability in the sense used here means that for all Reyn—
0lds numbers above tha critical one there will exist a range
of, say, wavelengths or frequencics such that a disturbance
or the proper frequency or ﬂavelongch will increase in
amplitude,

0‘}

«

Thus the mechanism of laminar instadility is clear and
the eritical Reynolds number thus defined can be predicted,
However, for practical purposes, it is desiradble %o predict
a different Reynolds number; namely, the Reynolds number at
which the flow becomes turbulent, kh ere ig a digtinct dif-
ference between these two Reynolds numbers; if the first
Reynolds number R,, that is, the critical number in the
gsencee of the small perturbatlon theory, is rsached, amplifi-
cation of certain disturbances begins, The second, or "prac
tical'" critical Reynolds number 2. means that amplification
of disturbances has already taken place and to such an extent
that complste breakdown of the laminar motion occurs,

The critical Reynolds number R, is, in generﬂl, §0 low
and the difference between R, @end R, so large that for
practical apvlications the prediction of R, only is of
little use, For example, the laminar boundary layer along
a flat plate in the absence of a pressure gradisnt becomes
theoretically unstadble at a Reynolds number based on the
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distance from the leading edge, R__ = 6 x 10% TExperiments
in low-turbulence tunnels (referendds 1 and 2) confirmed this
number bdbut showed also that actual transition occurred only
at Reynolds numbers from 2 x 106 to 2.8 x 106, Hence, the
larger part of the boundary layer is in most practical cases
in an unstable state, that is, in a condition similar to that
of a supercooled liquid or a supersaturated vapor. The Rey-
nolds number R, corresponds in this analogy to the melting
or condensation temperature T,. The Reynolds number R,
corresponds to the temperature T, at which under given ex~
perimental conditions the substance actually solidifies or
condenses. Consequently R1 is a definite number for a cer-
tain type ~f laminar motion, corresponding to the definite
melting temperature of a certain substance. On the other
hand, R, depends not only upon the type of laminar motion
but alsc upon the intial disturbances present in the laminar
layer and therefore on the exverimental setup, for example,
the free stream turbulence lev=el. The amplification of these
initial disturbances in the unstable region can be computed
from the small perturbation analysis, provided the magnitude
of these disturbances does nnt exceed the range of this line-
arized theory. Let a(Ry) denote the ratio of the amplitude
of a given cscillatien at a Reynolds numbher Ry to that of
the same oscillaticn just upstream of the instability zone.
The value a(Ry) depends, nf course, on the frequency of the
oscillation (see, for example, references 1 and 2)e 1% 18 now
possible to compare a(R_) for various frequencies and obtain
the maximum possible ampfification a(Rx)maX at a given Rey-

nolds number R._. Such a computation was carried ocut by
Schlichting (reference 1) for flat-plate flow. Schlichting
found in this case
/ m555X1c"SRX

a(Ry) . = 0.55 ¢ (1)
Comparing his result with measurements of Hansen and Gebers,
Schlichting ncted that at transition the "most dangerous"
frequencies had been amplified four to nine times. However,
if the values of R, found in recent experimental work are
inserted into equation (1), a(Ry) becomes of the order of
10°, This print was emnhasized by @. I, Taylowm in 1988
(reference 8) and at that time was considered as strong evi-
This apparent difficulty in apnlying equation (1) is mainly
caused by the lack of a clear definition of R_,, the Reynolds
number of transition; thus, in nrder to bridge the gap between
and R, it is first necessary to define R, 1in such a way
that it can be related tc the small perturbation theory and
hence to R,
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The following definition appears to be reasonable:
"R, 1s the Reynolds number at which the apparent shear

Ty = — p uv due to amplified boundary layer oscillations

at eny point in the boundary layer becomes equal to the

%? in the boundary layer," Beginning
with R,, certain disturbances will be amplified, The per—
turbation components u and v are correlated and con-
sequently give rise to an apparent shear, The magnitude of
this apparent shear incresases as the amplitude of the oscil—
lations increases, When this apparent shear becomes of the
same order as the laminar shear of the undisturbed mean mo—
tion the mean profile can evidently no longer remain unaltered,
Hence, R, defined in this way can be expected to be reason—
ably close to the Reynolds number at which the oscillation has
an effect on the mean flow sufficient to modify radically the
mearn velocity profile,

laminar shear Ty =

The shear whieh existe in the undisturbed laminar motion

TL can be computed as e function of Ry for any given case,

The apparent shear caused by amplified boundary layer oscil—
lations Tp, 1is more difficult to compute since T, depends
upon the initial disturbance in the laminar layer and the
amplification characteristics,

It is, however, possible to bring T, into a ferm
where its general behavior as a2 function of Ry ©becomes
more evident and where in certain cases, at least the order
of magnitude of T, and thus of R, can be obtained by

crude approximations,

by

If the correlation coefficient k = and the
utyvt
! !
fluctuation levels %— and %~ are introduced, TA becoumes
o) 0
— 111 vi <
TA F - p Uv = - L e — U

It is furthermore convenient tc introduce a factor b by
writing

1
b g; .

and thus
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il Ut
spalocn’ ® we, B B (2)
1oy.= Uo/
2P 0
Using the amplification factor a(R), A%i can be related
T 3
to its initial value, %— j , Just upstream of the ampli-
o/
fication zone: i
T /vyt e
A u 2
e @ w8 kW Lol 3 EalRSY (3)
2 \U =
<PV -871
Equation (3) is still quite general, T, will, of course,

vary across the boundary layer and its magnitude will also
depend upon the oscillation frequencies and on the Reynolds
numbsr, However, only the maximum value which T3 can
reach at a certain Reynolds number is necessary for the
present discussion, since an attempt was made to find the
Reynolds number at which T, first becomes equal to Ty,

Consequently,

R '8 & i 2

) # = 23k b= [a(E) ¢ (4)
= A { < max

2PU° /max \Uo/i

as function of the Reynolds number Ry, Now, the distri-
bution of T, across the boundary layer has a maximum close

to the so—called "critical layer" which is usually near the
wall, BHence, for the transition eriterion T3 shall be

replaced, approximately, by its value at the wall, Thus,
in terms of the usual laminar skin friction coefficient,

-
~_ji_ = cf

gl U = L
EP 0

%
and the ratio —Afﬁg becomes:
L
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7 » t3)
et a {F b “‘\ [a(3)3dl
CfL ; !

Ty, 3
nax
R. 18 then determined by
v Ao : &y
el e B %~) (alByy i S ady
°fy it | “max

Application to Flat Plate Flow

max
k haes been computed by Schlichting (reference 7)

of the instability limit curve, Comparing the re

Wl LA

x99

tion (F), The same argument apparently holds for
the neighborhood of the critical layer, b 1is of

=i
(80)

(6)

The results obtained by Schlichting (references 6 and 7)
can now be used to evaluate equation. (F) or (6) numerically,
. Equation (1)* gives a(R) . The correlation coefficient

at one

roint on the lower branch and one point on the upper branch

gsultes at

these two points it appesars that kﬁ ., differs but little
and thus the variation of k with Reynolds number is
apparently very small, Since ch and especially a(RX)
vary rapidly with R it is sufficient to replace k(R)

in equations (%) and () by a constant value, The maximum
value k = — 0,18 found by Schlichting is thus used in equa—

Jo in
the order

0,1. This value also agrees with measurements (reference 1).
The skin friction ecoefficient for the Blasius: layer is given

by
CfL = 0,664 HX——

equation (F) finally . becomes:

*The use of Schiichting'!s amplification function in the

present a@nalysis is not strictly correct; the oscillations are,

=
- 5

=

w

of course, no longer "small perturbations" in the

sense of the

limear theory if T, Tbecomes of the order of Ty, The error

. involved is, however, probably not very large and
megnitude of R_,, which is of main concern here,

affected,

the order of
will be un—
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T / r e
A max 't 1 12X10° B
St = 0, D)e -——> T e i &l
® L \UO i ul
T o
Figure 12 gives ~é7%31 plotted against Ryx for different

values of the initial fluctuation level, In considering
the megnitude of the initial disturbance, it should be kept

in mind thet (%lw is the fluctuation level with the most
o /4

dangerous, wuat is, most highly emplified, frequency, Thus

g

i1 : A : ST : :
) is only a fraction of the total fluetuation lewel an
i

\7..
the laminar layer upstream of the amplification zone,

Two facts are evideunt from figure 12,

T a
(1) The slopes of the curves ~B BAR e
I Ty :
RX are very large in the neighdborhood of ~;?Eé§= Ll
L

Hence R_ does not depend too much upon the exact

, S T T By biy S 44
value of «~—=-——= which is chosen to define transition,

(2) Quantity R_ >> R, even with considerable ini-

N

tial fluctuation levels, (For example, with (%%J
i

1 percent, R, = 10 El.)
The next step would logically involve relating the

guantities entering equation (%) to factors known to influ—
ence transition, Especially the relation between

7 T
{ s . :
5%~) and the free. stream turbulence level is very im-
ot |
portant,

At the present time only a few general considerations
can be given in this ccnnection and the main effects classi—
fied, It is hoped to obtain more complete relations in ths
future,

turbulence.— Turbulence of the

(1) Bffect of free—str

i
l‘:_\

i

LI
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1
free stream will affect the quantity (%-} only. The
074
1
effect will depend upon the free stream level %~>
it 1
and upon the frequency distribution or upon the scale of

turbulence, The relation hetween <Ei> and b %A is
Uo7/

Wy

not simple and requires further study,

2) Effect of pressure gradient.— The pressure gradient
P 13 P g

will affect at least two quantities in equation (3): namely,
cfy and the amplification function a(R), 4n adverse, that

is, positive gradient causes a more rapid decrease of cfy,
with Reynolds number to cfy = 0O at separation, and as

Schubauer and Skramstadt (reference 2) found, a larger
amplification a(R),

(3) Effect of roughness.- Small roughness elements,

e s e — e a2

u!
like free stream turbulence, will mainly affect (ﬁ—» .
07}
The value of ﬂEi\ corresponding to a given roughness

\U, ;

element will depend upon the elementis height and also upon
the width, since the latter influences the frequency distri—
bution of the disturbance caused by the presence of the
elemznt,

CONCLUDING REMARKS

The results of measurements of boundary layer transi-
tion on the concave side of a plate with a 2,F~foot radius
of curvature confirm the previous result that the mechanism
leading to the breakdown of laminar flow differs essentially
at convex and concave boundaries, Transition on convexly
curved surfaces is due to the two—-dimensional Tollmien—
Schlichting type of instability as is the case with a flat
plate, Transition on concave boundaries appears to result
from the three—dimensional G8rtler type of instability, and
is thus related to the instadbility occurring in the flow
between rotating cylinders,
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No infiuence of pressure gradient on transition on the
concave wall was found, The influence of a positive pressure—
gredient cn transition on convex boundaries is most pronounced
in the neighborhocd of zero pressure gradient, Free-stirecam
turbulence appears to have about tlie same effect on the posi-—
tion of the transition point in concave and convex bcundary

layer flow,

The mean velocity profiles in ths boundary layer of a

concave plate with s effective radius of curvature around
10°® was found to be very close to the Blasius fiat—plate
disteibution,

_ A discusgion of the breakdown mechanism of laminar flow
shows the difference betweéen the Reynolds nuuber R, corre—
sponding to the teginning of instadility, in the sense of a
g§mall perturbation theory, and the Reynolds number R_

5 The former number is well

corresponding to transition

defined and can be predicted for a given case with good
accuracy, The latter can be defined by the ccndition that
at R. the maximum apparent shear due to the laminar bound-
ary layer ouec¢illations hecomes equal to the laminar shear—
ing stress at the wall for the undisturbed mear motion, A

rough estimate of ' R. for the case of flat plate flow s
that even with considerable initial disturbances R_ 1is

much larger than R,

California Institute of Technology,
Pagadena, Calif,, October 28, 194,
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