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l~'ATIONAL AD\T1SOl-~Y COl,rr.:1TTEE ?OR A:2RONAUTICS 

fOl' the 

THE EFF'EC l' OF AF'TEB.30I'Y LmTG'r~: ON 

STfdJ1LIl'Y OF A DYIT AJ'i~IC I,:ODEJ.., OF A ii'LY1HG JOAT -

LANGLEY rrANK 1.1\)DEL 134 

By norman S . Land 

.4. program of model tests has been cO:::ro10ted at 
Langley tank no . 1 which will fu:"'nish 8. qual:"tative 
guide as to the relation of lengtb of afterbody and 
denth of stene The model used for t.he tests was a 
1/12- size unpowered dynamic model of a hypo::;hetical 
160,ooo- pound airplane . Th~ results showed that an 
increase in length of afterbody requi~es an accompanying 
increase in depth of step to maintain adequate lan6ing 
stability. CLanging the length of afterbody and depth 
of step in such a manner as to maintain a gi ven landing 
stability will result in only small cha..Ylges in take - off 
stability. 

I~JTRODUCTION 

Until recently li tt le infor~ation has been available 
to guide designers toward a r.:.i.tion",l choice of di;'7lensions 
for the afterbody of a flying boat . The tests descri~ed 
in this report were made in order to partially supnly 
this need ... ··or design information by gathering data on 
the e ffe c ts of length of afte rbody on i'lydrodynamic 
stability . A model with four afterbodies ranging 
from 1.6 to 3 .1 beams in 1-2ngth 'Nith a const..mt keel 
ai'1.gle was tested . The test program VIas based onelLe 
premise that landing stabllity is o.f pararlOunt impor'cance . 
From prev:Lous experience, it was ~mown that the depth o!' 
step is Der-haps the major dimension controlling the 
la1.ding stabili ty of' any conventional afterbody . 
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Therefore, e2.ch of t:'-:le afte""bodies was tested with 
several depths of step to dotermine ehe depth necessary 
for adequate landing sta.biL.ty . In addition , t11.e trim 
limits of stability and the range of stable locations 
of the center of gravity were determined for each after ­
body wIth its optlnium depth of step. These data then 
incicate tb.e proper relation bet1A'een the depth of step 
and afterbody l ength and the variation in take - off 
stabil ity resulting from any choice of afterbody 
dimens:1.ons satisfy~_ng the a'.Jove relation. 

DESCRiPTI0N OF MODEL 

The 'TIode l used fop the tests was 1/12- size unpowered 
model of a hypotJ. etlcal flyIng boat with a design gross 
load of 160 , 000 pounds und a span of 200 feet . A full ­
size flying boat comparable to the model tested \wuld be 
generally similar to the Martin XP32h; - 1. The win.; and 
tail sur face J are similar to those of the XPB2r.:-l in 
si ze an.d in location "li th re spe c t; to t'w step . A ;:1ro­
file of the model is sho'Nn in fJ.g-"'1re 1 and photOGraphs 
of it in fi~lrre 2. Th~s modol is de sc ribed in cre~ter 
detail in reference 1 . 

Profi Ie and plan views of rne rour afterbodies 
te sted are shown in :igure 3. Tlv~ f our aiterbodies 
tested had a consta.."1t keel allele and l ength- bear:;. ratios 
of 1 . 6 , 2 . 1, 2.6 , and 3.1 . These mode ls are desi~nated 
as follows: 

Designation ! 

1 
I 
i 

~ 11.fterbo:iv 
length-beam ~atio 

3.1 
2.6 
2 . 1 
1. 6 

--~~----~--.. - .. .. --

Where dash m.unbersfollow the above clesisnr·tion , tiley 
indicate the depth of step in J.vrcent of the ~':HlximlUn 
beam. 
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APPARATUS AND PROCEDURE 

The apparatus used and the methods of testing 
employed are , 1r: general, as des c ribed in reference 2 . 
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The first test made wi tll each ai'terooo. ~r '''''0..3 w: tl~ a 
depth of step of 7 percent of tr'.e beam . As indicated by 
the 1 ~l:ndi.ng s tabili ty of trle mode 1, the step was then 
al tered i n deDth in a direction which wOl:~ld a)proach 
marginal landing stability. Every test included the 
dete!'mination of thA trim limits of stability data as 
well as the landing stability. Vv1:en a de~)th of' step 
was l.~eached which was just sufficient to .::;i \'e adequate 
landing stability, the limits of stable locations of 
the center of gravity were determined as well . 

All of the tests we re made with a gros3 load of 
91 . 8 pounds ( 160,000 pouLds full size) and a flap 
setting of 200 • All landing s were made with a carriase 
deceleration of 1.0 foot per second ·~Ier s econd . EaC1.1 
Ytlodel was tested over a range of landing trJ.ms from 40 

to 140 • "Records of the tr:i.l!l and the ve rtic ul location 
at the center of gravity were taken during each h;.nding . 
The limits of stable locations or the center of Gravity 
were deter:nined from accelera ted runs Made at a rate 
of 1 . 0 foot per se c o~d per second with elevators nettral 
or ful l - up . 

RESULTS AJlID DISCUSSION 

Analysis of landing s . - A landing of a flying boat 
is obvious l y undesirable if it results in either 
critically high structural loads or large uncontrollable 
motions or both . 'Tb e present landing tests dea l only 
with the motions involved . Each landing record was 
analyzed to c1.etermine : (1 ) the trim at contact , (2) the 
number of times the main step cleared the wel t er (mI'nbe~ 
of t! skips n ), (3 ) the l arge s t chwe;e in rise in a skipping 
cycle, and (4 ) the l argest change in tr.LYn in a skir'::-Jins 
cycle . Since time was not recorded , the above analysis 
g ives no indication of the r apidity of such motions 1;ut 
serves nevertheless to indicate the relatlve landing 
stability of a model . From such an analys13, .;he 
stabili ty of a mode l may be judged by i ts )'~ot ion in 
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ri83, its motion in pi tch, the n'Lunber of skips J or some 
comblIla tion of the se fac tors . 

Tt.e re sul ts of landing tes ts made with one af'tel.~!.;ody 
aDd se lieral deptLs of s te::> were analyzed on the bas is of: 
(1) average and maximum change in trim, (2) average and 
maximum Change in rise, (3) average and maxiIT-UIn n1...1Y:l0er of 
skips, (~_) average p~~oduct of Chb.ng3 in trim anc. change 
in rise , (5) average produc t of the number of skips, 
change in trim and change in rise . In addition , these 
cr1 teris. were further extended by a c(!:Jnsideration of the 
mag.li tude of the raYlGe of' land~Ll'lg trims in which such 
motions were appreciable . A careful consideration of 
each cri te rion .:.~or· Id!",c.ing s ta'oill ty led to approxImate ly 
the saYl!e conclusion as to tL.e :proper depth of step 
as sociated wi th a gi ven af:erboc1y. TIle concl us ion based 
on the analysis of the data alone was a lso borne out by 
the visual observations of the behavior cL.lring landings . 

Effect of afterbody length on depth o~ step required 
for landing stability.- The results ot the analysi3 0:2 
tLe landing tests with dif:'erent afterbody lengths and 
depths of step are shown in figure 4. It is apparent 
that an increase in aft.erbody length is accon'i.panied by 
a large increase in the minim-LUil depth of step which ".o1ill 
gi ve adequate landing stab:1.li ty . The increase in depth 
of step required as the afterbodv is lengthened is 
approximately that which results in a const1int sternpost 
angle . In this case, the average sternpost angle for 
the four afterbodie s is 8 . 20 to the fore body kee 1. 

Effect of afterbody length on ta~e - off stability.­
The effects of afterbody length on the range of stable 
trims is sho,n in fig~re 5 and on t~e range of stable 
locations of the center of gravity is shown in fig-
u r e 6 . No data a:-oe given in figure 6 for the shortest 
afterbody as this was not obtained. As shovm in figure 5, 
shorte~'ling the afterbod~r raises t;l-e UDDer trim limits . 
This increase in stable trim range is small , rowever , 
being approxlmately 1 0 &t a speed .ius t below' take off . 
The effect 0'" lengtr:enlng tre afterbody on the r::tnge of 
stable locations of the center of gravity , (fig . 6) is 
also small and probably within the accuracy of deter ­
mination . 
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CONCLUSIONS 

Within the range of these tests, the following 
conclnsions may be drawn : 
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1. An increase in length 0:' aftertod:T requires un 
acco":'lp£'.nying increase in depth 0:': step in orcer to 
mc.incain ade~uate la..1.ding sta0ility . The increase in 
depth of' step required is aTyt::ro:;dmatel~' thut ',"!hich 
results in a constant sternpost 2.ngle . 

2. Changing afterbody ~engt~ and depth of step in 
such a maD.ller 3.S to maintain a i3i ven landing stability 
will result in little ct.anges in the take - off· stability . 

Langley Me~norial l\eronautical La~oratory 
Natiol1al Advisory Co:n."l1i ttee f·or .;'erona1.1tics 

Lru1.gley FieIG, Va . 
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Figure 1.- Profile of Model 134A 
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(a) Profile view. 

(bl Three-quarter front view. 

Figure 2.- Model 134A. 
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Profile 

Model Afferb01!c Depfh of 
LCl7gfh - cam stefj pcrcenf 

ratio beam 
151f-J2.2 J. 1 12.2 

154A-I/'S ~? 6 I/.5 
/34;=-8 2 . / 8 
1346,-.5 /.6 .5 

Max"beam '"' 11.24/n, (elll models) 
. Affcrhoaj kef angie ::5.0" (c!11 models) 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

FlgureJ. - Model/54. Delo/15 of 5fo};/e qfferfxx//es 



MR No. L5128a 



MR No. L5I28a 



MR No. L51 28a 

tt 

:ct: 
, , 

, 

I::.: I-fr 

I-f ' H-t J-: 

r 
U:t:. 

lor 
1+ >+ ' 

FH l ..... p. R: 
ft! .rr. !mH" It;:[ , .... H+r 

~ ,tt I; H.i+, W R+tl l! tdE: 

~+, : IHj::' " H+r ~,l l+i ,~ 

~ r; ft' I.J:I 
',' I ~ ~ Iti M I";' t;j 

-'1 I:H :\ It !:':i 
. ttl 

:+i J±t 

rt! rn ~ ~ Hi ~ Hi, If ~~ r1 Ht:! . 

~ , ~t: '- 11i '1): >- Ii IFWdt~ 0t:: , [.;-'-+t , 

I=t'h-t ~: rm m ITt; Em~!f1 to:t, . 

U 14"' !i fW NA" .J..~ .r"ISO liT"''' 
LU1"I ' 'I E~ , , 

If t::: I":' t:~, ~!P ~ 8t Ilfl g:; '-:: Eiit l !'i IH . f.., 

t4 ij '" I ~~' Wt~ r;: ~r >+< P:; ~ i ~~:ti Fli L1 rT lti 
':Q ~ ~l;-Jkrri ~, 

1 -' J llr~ b:tt± Ldc ~ 
itH$ 1 Jijl1f f-!-~ 1'''' 1'-' IA ttl l'-$ :~ n 

fl f!::, 1:£ . 
,+ If 

l:til:! 
~.,.+ 

Ir. ~ 

~~ =!+II +- [;;;£ ,-iF 6't ..t~ ..;t w. 
}:! 

I.!:J:tt 1+±lI rD. 
:t+ 

:':t :t 1'* n ~ :t;: !!t 
, 

~~I'.:iWt . "!:ti c-r rr.-, 
:F 

:+ 14 
,'+1 
!.d 

PI 1+ 'i~ f;t.t~Illi: -il: ~'F +' ::J:t ~ IPC ~[fu.' fa: 'tt 1:;; '-r -:: Ii; . G:: ti.=B 
'+: ,"' .-4 

ffi$f~H11~, ,~ tffi. rm l=t =r,c: t:f1#I:I: 'At :;+1' :f~ I!=f I+t l+tlc' ;:f rtf ;! ~ hl'iK. If tI±littt± m: ~ 


