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SUMMARY

The solid-blockage interference for a doublet on the tunnel axis

and the boundary interference for lifting wings in circular, rectangular,

and two-dimensional slotted tunnels have been calculated by substituting

an equivalent homogeneous boundary for the physical boundary of discrete

slots. In the case of small wings, the interference calculated with the

assumption of homogeneity has been found to be consistent with that cal-
culated for the discrete slots for as few as four slots in a circular

tunnel.

Furthermore, available experimental results for blockage interfer-

ence are consistent with the results of the present analysis. As a con-

sequence of the assumption of homogeneity it is possible to express the

interference of multislotted tunnels as a function of a single parameter

which combines the effects of two physical variables: the ratio of open

to total slotted wall perimeter and the number of slots. A curve is

presented which permits the rapid evaluation of this parameter and numer-

ical results for lift and blockage interference are plotted against the

parameter.

INTRODUCTION

Several investigators have found that in a wind tunnel with bound-

aries which are partly open and partly closed, the boundary interference

on the lift of a wing can be reduced nearly to zero. References i to 5

deal with the case of a doublet in the center of the wind tunnel 3 while

references 6, 7, and 8 consider the effects of wing span. There are

several reasons why it would be desirable to have a wind tunnel with
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zero-lift correction. In the first place_ the necessity of applying the
corrections would be eliminated, although this, in itself, is not of
large importance as long as the necessary corrections are known. More
important is the fact that the pressure distributions cannot be corrected,
and the distortion of both spanwise and chordwise pressure distributions,
as a result of boundary interference, places a Ibnitation on the size of
model which can be tested in a given wind tunnel.

The primary interest in partly open or slotted wind tunnels, how-
ever, is connected with the very different problem of wind-tunnel choking
at high subsonic Machnumbers, which is a result of solid blockage inter-
ference and which places a very severe limitation on the permissible
model size for testing in closed wind tunnels. _meblockage correction
for a circular slotted tunnel (a wind tunnel in which the open part of
the boundary is distributed around the periphery in the form of several
longitudinal slots in an otherwise solid boundary) has been considered
in reference 93 which indicates theoretically that slot configurations
exist for which the blockage correction is greatly reduced. The experi-
mental results that are also included in reference 9 show that slotted
tunnels can be used for aerodynamic testing in the transonic speed range.
The conventional closed and open tunnels are both unsatisfactory in this
speed range, the closed tunnel because of choking and the open tunnel
because of the excessive power requirements and the large boundary inter-
ference. Mucheffort has since been expendedin the experimental devel-
opment of transonic slotted tunnels, and several large tunnels of this
type are presently in operation (refs. i0 and ii) or in construction.
A knowledge of the lift-interference corrections for the slotted tunnels,
as well as the blockage corrections, is thus of present interest.

The lift interference in slotted tunnels has been considered in
reference 12. This work has been extended in reference 13 to include
wings of finite span, and numerical results are presented for several
configurations of practical interest.

The calculations required to determine blockage and lift correc-
tions, for a particular slotted-tunnel configuration, by the methods of
references 9 and 13 are very laborious especially for tunnels with a
large numberof slots. In order to obtain a general solution for this
problem, Dr. A. Busemannof the Langley Laboratory has suggested that the
problems of both lift and blockage interference be treated mathematically
from the standpoint of a homogeneousboundary, wlth the slot effect uni-
formly distributed over the surface of the boundary. It was reasoned
that at somedistance from the boundary, in the region of the model, the
flow would no longer showthe effects of the individual slots, particu-
larly if the actual boundary contained a large numberof slots. Further-
more, the wind tunnels which are now in use contain several slots. It
is felt that this is desirable in order to increase the uniformity of the
interference. This paper will treat the problem in the suggested manner,
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beginning with the development of a suitable boundary condition to
represent mathematically a homogeneousboundary which has the sameflow
characteristics, at a point in the flow sufficiently removed from the
boundary, as the actual physical boundary of alternate open and closed
portions of the wall.. Numerical results will be presented for circular
tunnels with slots uniformly distributed around the circumference, for
rectangular tunnels with uniformly distributed slots in the top and
bottom walls, for rectangular tunnels with the slot distribution deter-
mined by a transformation from a uniformly slotted circular tunnel, and
for a two-dimensional tunnel.

The results of this paper are derived on the basis of an incompress-
ible potential flow. The subsonic linearized compressible-flow theory
showsthat wind-tunnel lift-correction factors are not affected by Mach
number; therefore, the lift-correction factors presented in this paper
should apply directly to subsonic compressible flows, at least within
the range of applicability of the linearized theory. The effect of com-
pressibility upon the blockage interference is to increase the axial-
interference velocities with increasing Machnumber in proportion to the
factor i (ref. 9).

(:_

SYMBOLS

The symbols An, Bn, On, Dn, Cln , C2n , C3n , C4n, Ak ' Bk, Ast, Bst,

Cst , Dst represent series coefficients.

A

b

c

c

c Z

C

CL

d

h

area

semiwidth of rectangular wind tunnel

nondimensional restriction constant

chord length of a two-dimensional airfoil

section lift coefficient

cross-sectional area of tunnel

lift coefficient

slot spacing

semiheight of rectangular or two-dimensional tunnel
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H

m

N

P

r o

R

S

t

U

Uo

U

v

Vn

w

W

x_y_z

Z

F

stagnation pressure

restriction constant

doublet strength

number of slots

static pressure

open ratio of slotted wall (ratio of slot width to slot spacing)

radius of a circular tunnel

wing area

thickness of slotted wall

x-component of additional velocity due to presence of a model

in wind tunnel, U - uo

free-stream velocity at upstream infinity

x-component of velocity at any point

y-component of additional velocity

component of additional velocity normal to surface of wall

z-component of additional velocity

complex velocity in Z-plane

distances in Cartesian coordinate system

complex plane_ x' + iy'

circulation around a wing

correction factor due to lift_

complex plane, _ + i_

Cartesian coordinates in L-plane

uo SC L
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@

h

q)

P

P

angle in polar coordinates

height-width ratio for rectangular tunnel

constant appearing in transformation from rectangle to circle

csc _--r o
2

incompressible-flow velocity potential

radial distance in polar coordinates

density of air in wind tunnel

ratio of vortex span (effective wing span) to diameter of cir-

cular tunnel or width of rectangular tunnel

Subscripts:

0

i

2

C

n

R

n,k,s,t

r

S

T

free-streamconditions at upstream infinity

due to model in free air

due to presence of tunnel boundaries

circular tunnel

in direction normal to wall surface

rectangular tunnel

summation indices

due to a row of vortices

signifies additional term required to satisfy boundary condi-

tion at slotted walls

total

BOUNDARY CONDITIONS

Wall with discrete slots.- Longitudinal and transverse cross-

sectional views of a slotted wind tunnel are shown in figure I. In the

longitudinal view exaggerated streamlines are &rawn to indicate how the
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air in the vicinity of the wall flows out and in through the slots as it

passes the model, ale chamber surrounding the ttmunel is maintained at a

pressure equal to the free-stream static press1_e of the flow inside the

tunnel. The difference between this pressure and the average local pres-

sure of the flow just inside the wall causes the air to move out and in

through the slots. The boundary conditions at the slotted wall for this

flow configuration will now be considered.

Consider a set of axes in Cartesian coordinates which are fixed with

respect to a model in the wind tunnel, while the air flows by with veloc-

ity components U, v, w. Furthermore, let U = uo + u, where uo is

the free-stream velocity at infinity. The pressure at a point inside

the tunnel at the wall is given by

(uS+2UoU+u2+¢ +p=H-_

The free-stream pressure Po is given by

P
Po = H - _ Uo2

Assume now that by some means the pressure just outside the wall is main-

tained at Po; then, the pressure difference across the wall is

Zip= p - PO -
2

Next, assume that the relationships between the model size and shape and

the distance to the wall are such that u, v, w are all much smaller

than uo at the wall. The relation between the pressure difference and

the axial velocity inside the tunnel then becomes

Ap -Puou (l)

This is a known result of the small-disturbance theory. Note that the

small-disturbance assumption is required not im the field of flow near

the model but only at the walls.

It is now required to find an expression which relates the pressure

difference across the wall to the flow through the slotted wall. This

expression, combined with equation (i), will establish the relationship
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between the axial velocity just inside the slotted wall and the flow
through the slots. In order to find such an expression it will first be
necessary to study the energy in the neighborhood of the slots. This
energy is basic to the problem, for the essential mechanismof the slotted
wall is that kinetic energy is stored in the air which flows out through
the slots. This energy is later returned to the flow whenthe air flows
back through the slots into the tunnel. Consider a thin slotted wall in
a field of flow with a uniform velocity normal to the wall at infinity.

(See fig. 2.) Because the flow pattern is the same for each slot it is

permissible to study a single channel such as the one in which approxi-

mate streamlines have been sketched in figure 2. The kinetic energy

enclosed in a region of this flow bounded by a transverse plane at -Xo' ,

by the "walls" of the channel, and by the slot is given by

Kinetic energy : i I I _9

The region of integration may be considered to consist of a surface of

unit depth normal to the plane of the page which includes the dashed line

shown in figure 2. The component of velocity normal to the closed por-

tion of the slotted wall must be zero. With regard to the open portion, the

disturbance potential will be assumed to be zero at the slots, in con-

formity with previous papers and with the classical practice in treating

interference in open tunnels. Because _---= 0 at the channel walls,
_n

and because _ = 0 at the slot, these two regions contribute nothing to

the integral. With regard to the transverse plane at -x o' it is clear

that if this plane is sufficiently far away from the slot the potential

will have a value __Xo, which is essentially constant in this plane.

Also,

the quantity flow. Thus,

i
Kinetic energy = _ p__x o,vnA



8 NACARML53E07b

In order to complete the evaluation of the kinetic energy it is
! •

necessary to determine the value of the potential _-×o Let the coor-

dinate origin be taken in the plane of the slotted wall at the center

of one of the solid sections and consider the flow to the left of this

slotted wall. With the assistance of reference ]4, the potential of

this flow is found to be

= Vn (d log e
__ k :<csc o - x' + cs s cos ksY' (2)
S:J

where ks _ 2_s d is slot spacing, a is slot width, and ro : a.
d ' d

!

The plane at -x o is sufficiently far from the wall that the last term,

which falls off exponentially as x' becomes mor{_ rlegative, may be dis-

regarded. Thus,

( )9_Xo, : vn _d log e csc _-2r° + x°

The insertion of this value of qD_xo,

energy equation results in

in the previous kinetic-

Kinetic energy : _ O log e csc _-2r° _ x°

In the absence of the slotted wall, the kinetic energy per unit area of

the flow inside the region of integration would be

t

OXo Vn 2

Consequently, the portion of the total energy which may be regarded as

being due to the presence of the slotted wall is ]-P ZVn 2 per unit wall
2

area, where

Z : _d log e csc !2 r°
(3)

Note that the quantity _ has the dimension of length.
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Equivalent homogeneous wall.- Consider, now, the flow field that

would result in the region between -xo' and the wall if the slotted

wall were replaced by an imaginary homogeneous wall of zero thickness

through which potential flow is possible and which is characterized by

the existence in the local flow of an energy _ OZVn2 per unit wall area

associated with a local normal velocity vn. The velocity of this flow

field, at -Xo' , will be essentially the same as that of the slotted-

wall flow field; furthermore, the total kinetic energies between the

planes at -x o' and at the walls will be the same. For the purpose of

calculating the flow to the left of -Xo' , therefore, the homogeneous

wall is equivalent to the slotted wall.

The result which has been obtained%y studying the relatively single

flow from a source at -_ is that there is associated with the flow

through the slots a kinetic energy that is a function of the dimensions

of the slotted wall and of the average velocity normal to the wall, and

that this energy may be considered to be concentrated at the plane of the

wall for the purpose of determining the potential of the flow at a point

sufficiently far removed from the wall. If the singularity is located

at a finite distance from the wall, or if singularities of types other

than sources are introduced; there will be a velocity component parallel

to the wall in addition to the normal component vn. Application of the

principle of superloosition shows, however, that the energy which is asso-

ciated with a given flow normal to the wall will not be affected by the

presence of additional velocity components parallel to the surface of the

wall. It is necessary, though, that the slot spacing be small enough so

that the difference in flow through adjacent slots is small. Thus, the

analysis will be applicable only to tunnels with several slots. With

this qualification the homogeneous wall will be equivalent not only to
the slotted wall of figure 2 but also to the slotted wind-tunnel wall of

figure i (section A-A) insofar as its effect on the model is concerned.

If the slotted wall of figure i is replaced by an equivalent homo-

geneous wall, the energy per unit area at the wall is i _Vn 20 and the

momentum associated With this energy is D Zvn per unit wall area. An

individual particle of air which follows the outer streamline shown in

figure i flows out and in through the wall as it passes the model as a

result of alternate outward and inward accelerations due to the pressure

difference across the slotted wall. The direction of flow of the normal

component of velocity does not, in general, correspond to the direction

of the pressure difference across the wall. Instead, it is the direction

of the normal acceleration which corresponds to the direction of the

pressure difference. This pressure difference, which acts in a direction
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normal to the wall surface must, in the potential flow, be equal to the
rate of changeof the momentumassociated with the presence of the slots.
Thusj

Ap : D-_(PZVn): p D_(ZVn)

Although the quantity Z is constant in time at a given point on the

wall, it is left under the differentiation sign in order not to exclude

the possibility that the slot configuration may vary from point to point

on the tunnel wall. The only restriction which is placed on the axial

or transverse variations of Z is that they must not be too rapid,

because the equation for Z has been derived on the basis of a two-

dimensional flow and a uniformly slotted wall. The derivative is given

by

D b

Since the flow is steady and the slot configuration Is constant in time

_ (_Vn) = O. If now _(_Vn) andwhen referred to the fixed axes,

_-_{ZVn_\; are assumed to be of the same order as Ox _ j.8 (_Vn] (or of higher
bz

order) then the acceleration is given by

Uo

to the same order of approximation as was used in obtaining equation (i).

The pressure difference across the wall is thus related to the velocity

through the wall in the following maruner:

Z!_P= PUo _(ZVn)
(4)

Equating (i) and (4) for the pressure difference results in

_u:
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Let the potential of the flow be given by ¢ : -UoX + _, where _ is

the disturbance potential. In terms of this potential the preceding
equation becomes

_x "_x or _x + Z : 0

Integrating this equation in the x-direction along the wall gives

+ Z _n equal to a constant. One of the boundary conditions which

must be satisfied by the wind-tunnel flow is that there be no disturbance

at infinity upstream_ so the constant must be zero. Thus, the boundary
condition at the wall becomes

z =0 (5)

At this point let it be emphasized that, although this condition must be

satisfied everywhere on the boundary_ all the symbols_ including _

refer to only local values of the quantities represented. Thus_ Z has

been left free to vary in both directions on tae surface. The boundary

condition may therefore be used in the study of wind tunnels in which

the slot width is variable in the axial direction. Furthermore_ adja-

cent slots may be of different width or different spacing.

Although only a plane wall was considered in determining the rela-

tionship between the wall dimensions and the wall-restriction con-

stant, Z, it is possible to show that the same relationship holds for

a circular wall. Consider the transformation _ = eZ applied to the

region between y' = d/2 and y' = -d/2 in the flow field shown in fig-

ure 2. By using polar coordinates (r,e) in the L-plane, there is obtained
X'

r = e and 8 = y' Thus_ the line x' = 0 transforms into an arc of a

circle of radius i. (See fig. 3.) Because of the linear transformation

between y' and e, the open ratio of the wall is unchanged by the trans-

formation. The source of the flow in the Z-plane at x' = -_ transforms

in the _-plane into a source at r = O. The line x' = _ transforms into

the arc r = _. The expression for the potential inside the wall is

obtained by applying the transformation to equation 2.

I_ _Cs eks= Vn { log e csc _2 r° - l°ge r + _d l°ge

s:l

(r < i)

(6)
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The potential of the source at the origin in the absence of the wall

would be T : -v n log e r. Thus_ it follows that t:he additional poten-

tial at a point inside the wall; due to the presence of" the wall, is

d log e cse _ ro. Consequently, the restriction constantnearly Vn _ 2

for a circular tu_mel is obtained in the same m_mcr as for a tunnel

with plane walls. The ftmction log e csc [ ro is plotted in figure 4.
2

Consideration of equation (6) will give some idea of the degree of

approximation involved in assuming the additional effective energy due

to the presence of the slots to be concentrated in a plane at the wall.

As an example_ calculations have been made for a circular tunnel with

8 slots, for which _ = 7, _here _ = csc _ ro. (This gives an open
2

ratio of slightly over 0.09, which is in the range of practical interest.)

Figure 5 shows the potential given by equation (6) plotted against the

radial distance from the center of the tunnel. The calculations were

made along radial lines through the center line of a slot (9 = _) and

through the center line of a panel (9 = 0). Also presented is a curve

calculated from the approximate or homogeneous wall equation

= _ log e _ - log e r (7)

Inspection of figure 5 shows that the approximation is quite satisfactory

for the flow in the central part of the tunnel (say r < 0.6). For tun-

nels with more than 8 slots, the region of validity of the approximation

will be even larger.

ANALYSIS

Circular WindTunnel

Lift interference.- Consider a lifting wing symmetrically located

in a circular wind tunnel which has a homogeneous boundary through which

potential flow is possible. Let the wing be represented by a single
horseshoe vortex. The downwash at the wing will be determined, in the

classical manner, by finding the downwash in a tunnel cross section far

downstream due to a pair of vortices of opposite si_n with circula-

tion F/2, where F is the circulation of the horseshoe vortex in the

tunnel. The disturbance potential in the plane will be taken as _i + _23
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where MI is the potential of the vortices in a free field and _2 is

the interference potential due to the walls. All length dimensions will

be made nondimensional by dividing by the tunnel radius R. The boundary

condition at the wall (p = i) is then

_i + _2 + \_)p + = 0
(8)

where c - _-, the nondimensional restriction constant.

The interference potential _2 must satisfy the equation _2_2 = 0

throughout the interior of the tunnel. In polar coordinates this equa-
tion becomes

b2m.____2+!_kP2+ 1 b2m2

_p2 P _p p2 be 2
-0

By the method of separation of variables, the following family of solu-
tions can be obtained:

q)2 = h (Cln sin n@ + C2n cos nO)(C3npn + C4n p-n)
n=O

Since _2 must be finite everywhere inside the tunnel, it must be finite

at p = 0 and, therefore, C4n = O. Let 8 = 0 be in the plane of the

wing. Then, because of the symmetrical location of the wing, it is

apparent that q_2(e) = _2(_ - e). The cosine terms, which do not satisfy

thls requirement, are omitted by setting C2n = 0 (except when n = 0).

The solution may now be put in the form

F IAo £ Anpnsin ne1me = + (9)
n=l

The potential of the vortex pair in a free field is, in polar coor-

dinates,
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_ F tan-l/2P _ sin _I
\ p2 _ ]

(ioa)

where 0. is the nondimensional semispan of the vortex pair. Also,

_i _ V 2_ sin e(p 2 + _2)

_p
4_ (p2 - o2) 2 + 4p2d2s_n2e

(lOb )

In order to find the interference, equations (lOa) and (lOb) can be

expanded in Fourier series at the position of the wall. These series,

together with equation (9), can then be inserted in the boundary condi-

tion, equation (8), in order to determine the constants An in the dis-

turbance potential The expansions for _i and ____i at p = i are of
• _p

the fom

4___ 20. sin 8 _
F q01 = -tan-i -- _2 i Bn sin me

I n=l

(il)

4n _Pl_ 2q(l + 0"2) sine : C

(i - 0.2)2 + 4p2sin2e /n=l

C n sin ne (12)

No constant terms appear in .these expansions so Ao : O. By substi-

tuting (9), (ii), and (12) in (8) the following equation is obtained for
each value of n:

Thus,

A n sin n8 + Bn sin n8 + cnA n sin n8 + cC n sin n8 = 0

Bn + CCn (13)
An= l+cn

After An is found, there remains the problem of determining the

vertical interference velocity, and from it the interference factor 5.

The vertical interference velocity along the line 0 = 0 is given by
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OO

i _2 _ F _ nAnpn-i (i4a)w2 - o Be. 4_
n=l

The average interference velocity between the origin and the point (_,0)

is

i _ nAnpn-ld_

4_ n=l

w--2" = - -_-_ An_n-i4_
n=l

(i4b)

The interference factor 8 as given in reference 15 can be written as

where

C

S

CL

Uo

UoSC L

cross-sectional area of tunnel (_

radius)

wing area

llft coefficient

tunnel free-stream velocity at upstream infinity

for the tunnel of unit

The circulation is related to the lift by

SC L _ 4_F
uo

Using this relation there is obtained 5 -

from equation (14b)

N

4_F w2" Substituting for _2
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i _Bn + CCn on-2 (15)- 16 i + cn
n=l

Instead of actually making the expansions indicated in equations (ii)

and (12), it is possible to infer the values of the constants B n and Cn

from the known corrections for open and closed circular wind tunnels.

For a closed circular tunnel Silverstein and White (ref. 15) give the

equation

_ i log e I + _2

16_ 2 i - _2

Making use of the series expansion (ref. 16)

l°ge< --VT)
n: 1

(n : 1,3,5,...)

the following equation may be written after setting _2 : _:
x

OO

n=l

But equation (15) gives, for c = _,

(n : 1,3,5,...) (16)

OO

8 : i____ C__n_non-216 n
n:l

(17)

Because equations (16) and (17) must agree, and since they can only agree

if the series coefficients are identical, term by term, then

cn : 2_n (n : 1,3,5,...) [
(18)

fCn : 0 (n : 2,4,6,...)
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The correction for an open circular tunnel is simply the negative of
equation (16). For this case (c = O) equation (15) gives

= l---£Bn_n-26 16
n=l

Comparisonof equations (16) and (19) showsthat

(19)

Bn - 2_nn

Bn=0

(20)

Substituting equations (18) and (20) in (15) results in, finally,

5 = _£ c(_n'n-+ 1) d2n-2n
n=l

(n = 1,3,5,...) (21)

This correction is plotted as a function of the nondimensional restric-

tion constant in figure 6 for wings of small span.

For the circular tunnel the nondimensional restriction constant is

= d log e _3 where d is the angle between two successivegiven by c

slot center lines. Since the number of slots N around the circumfer-

ence of the tunnel is given by 2_/d, then

c = _ log e _ (22)
N

for a circular wind tunnel.

Solid-blocka6e interference.- Consider next the problem of solid-

blockage interference in the circular wind tunnel. The solid body in

the tunnel is represented by a doublet with axis alined with the axis of

the tunnel cylinder, and located at the origin of coordinates on the axis

of the tunnel. The flow potential is again represented by _i + _2 _

where _i is the free-field potential of the doublet and _2 is the

interference potential due to the presence of the homogeneous wall. The
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boundary condition which must be satisfied at the wall (p = i)_ for all
values of _ and all values of x, is again given by equation (8).
Laplace's equation in cylindrical coordinates_ which must be satisfied
by _23 is

_2_2 i _@2

_p2 P _p

_292
+ - 0

_x 2

in the case of circular symmetry about the longJtud_nal axis x. The

solution of this equation which will be used for the problem under con-

sideration is

k=O

oo

_p L
k=O

(23)

where Io and II are the modified Bessel functions.

The free-field potential of the doublet is @i = - x

+
The value at the wall of this potential and its derivative is now expanded

in Fourier series fom.

oo

x = - _ Bk sin ka____xx (24)

2 x sin k_x dx _ 2 Qo

(x2 + 1)3/2 -L-
(25)



NACABM L53EOTo 19

CA _ _x =j
_pJp:i (_2+ i)_/2 k:o

Ck sin k_x
L

(26)

_0 L

2 3x

ck=_ (_2+ 05/2
sin_---__x-=2-QlI_)L_, (27)

The functions Qo and ql are defined by equations (25) and (27).

substituting the preceding equations into equation (8), the boundary

condition becomes

Upon

- __ [ Qo sin _L + Akl O sin k____XL+

k:O k=O

c _ QI sin -- + c -- AkI IL L L
k:O k=O

For each Ak there results an equation

AM -_-

- eQ 1 _-L

Ik_ k_ll(_)

Substituting this in the equation for the interference potential gives

_2 = L

k=O _o(_-) + c _-k_Ii<_--D,k_'II°(_)sin-

(28)
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If_ now_ the fundamental wave length of this expression L is allowed

to approach infinity_ the summation can be replac_d by an integral. The

necessary relationship c_ be obtained as follows:

lira 2.F = L--*_

L--*_ k=0" d

SO _lira _ F : _ \L/ \L/
L--* °° k=0

(See, also, ref. 17.)

equation (28) becomes

k_
By using this relationship and setting q = ---,

L

"_rQoIql-_Q_<_I]_2= _I-_ +c-_l(_IO(qp)sinqxdq (29)

The remaining task is to evaluate Qo and QI" If equations (25)

and (27) are integrated by parts the results can be brought to the form

(see ref. 18)

Qo(q) = qKo(q)

Ql(q) = q2Kl(q)
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The final result for q_2 is, then,

q_2= _-JO LI°(q) + cqIl---_q]_±°<qp;sin qx dq

The interference velocity is

_x q2 qKl q Ko q io _qIl(q) +Y_o(_J qp)cos qx dq
(3o)

This equation is for a doublet of strength m
4_

unit radius. For the general case, at the origin,

- 1 in a tunnel of

m CqKl(q) - Ko(q)

u2 - 2_2R 3 cqIl(q) + Io(q) q2dq
(3±)

where R is the tunnel radius. The axial interference velocity is

( 1  112
plotted as a function of \c--7-_] in figure 7- This parameter is

chosen because it results in an approximately linear variation of the

blockage interference. The values were obtained by mechanical integra-

tion of equation (31). Fortunately, the value of the integrand converges

rapidly toward zero with increasing q. At q = 5, for instance, the
value of the integrand was 1/2 percent or less of its maximum value in
the calculations which have been made.

Rectangular Wind Tunnel With Top and Bottom Walls Slotted

Lift interference.- Consider a rectangular wind tunnel of semiwidth

unity and semiheight k. Inside the tunnel is a vortex pair of semi-

span _ located with the span parallel to the width (y) axis of the
tunnel and with the center on the center line of the tunnel. The verti-

cal walls at the sides of the tunnel are closed, but the horizontal walls

at the top and bottom_ with nondimensional restriction constant _ ame

partially open. The boundary condition at the closed side walls (y = ±i)
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_D _ O. This condition is satisfied by a horizontal row
is, of course, By
of vortices along the plane z = O (the reflected images, out to y = ±_,
added to the vortex pair inside the tunnel). The potential of such a
row is given by

I- E tanh _ z --_ _ tanh _--z_]
Dr = -_ tan-i ...... + tan-ll - ---'2"''--I_

LP °W
(32)

and the vertical derivative by

_r _ F F sin _(y - o)

_z 8[ cosh _z - cos _(y - _)

sin _,(y + _) __
+ (33)

cosh _z - cos _(y +

To the potential _r another potential Ds is added in order to

satisfy the boundary condition at the horizontal walls. The total poten-

tial DT = Dr + _s must satisfy the conditions

_mm_ o (34)
At y = ±i By

At z = h DT + _ _ - 0 (35)
Bz

_T_ o (36)
At z = -k DT - _z

Since Dr already satisfies equation (34), Ds must also satisfy (34).

A solution of Laplace's equation which meets this requirement is

Ds = _ cos n_y(A n sinh
1

rmz + B n cosh rmz) + AoZ_
(37)
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Because 9r is an odd function of z and _r is an even function, it
8z

is necessary that 9s be an odd function of z in order that both equa-

tions (35) and (36) may be satisfied. Consequently, Bn = O, and

cos r_y sinh r_z + ADz )

r_A n cos n_y cosh _z +

(38)

Now, let equations (32) and (33) be expanded in Fourier cosine series

at the boundary z = _. Then,

_ F _---Cn cos n_yq_r 4_
n=O

(39a)

_r _ F L Dn cos r_y_z 4_
n=l

(99b)

(It is apparent from the form of equation (33) that there can be no con-

stant term in equation (59b).) If equations (38) and (39) are substi-

tuted in equation (35) the following coefficient relationships are found:

Co + AoA + L_o = 0 (n : O)

Thus,

Cn + _Dn + An sinh n_ + _nxA n cosh nxk = 0

C o

A°= _+Z

Cn + ZDn

(n ¢ O)

(4o)

sinh r_k + Zn_ cosh n_h
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Let _T = _i + _2 where again _i is the free-field potential of the
vortex pair inside the tunnel and _2 is the interference potential.
From the free-field potential of the vortex pair

4__Wl = 4a _Pl _ y - o _ y + o

r r _z (y _ 0)2 + z2 (y + 0)2 + z2

Thus, the interference velocity at any point (y,z) is

4___w2 = __ sin _(y - o)

r 2kt_sh _z - cos _(y - o)

sin _(y + O) q

- co h - 7&os + 07_]-

rmA n cos rmy cosh n_z - A o - y - o
n:l (Y - 0)2 + z2

+ y+o

(y + o)2 + z2

(41)

The average interference velocity in the plane of the wing (z = O) is

foi
w2 dy

w2 = _d bo

In order to evaluate this integral 3 obtain First

OO

w2 dY = log e I - cos _(y - o) >I - cos _(y + o) - 2
n=l

An sin rmy -

2AoY + log e
(y + 0) 2

(y- 0)2

As y approaches 0 the first and last terms approach minus and plus

infinity_ respectively. In order to eliminate the indeterminateness,

the two terms are combined and the cosine is expanded in series form.

Finally_ the limit is taken as y approaches o.
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lm (Y + °)2
y___ 1 - cos _(y + _)

l- cos_(y- o)

(y- o)2

(y + o)2

l- cos _(y+ _) - 1 + _2(y _ o)2 _ _4(y _ o)4
2 4'.

(y - o)2

+

4a2 _2

i - cos 2_ 2

By using this limit_ the average interference velocity becomes

w2 = ge "_ An sin n_o +
n=l

(42)

For this rectangular tunnel 5 -
_2_.

SO

(43)

Correction factors are plotted as a function of the restriction

constant for several values of o in figure 8(a) for a square tunnel

(X = i) and in figure 8(b) for a tunnel with h = 0.5. The nondimen-

_ Z where h is the semi-
sional restriction constant is defined as c - _

height of the tunnel. For the tunnel under consideration then, c = !.

The value of c for a rectangular tunnel of height-width ratio h with

N slots in each horizontal wall is given by

c = _ _np (44)
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Solid-blocka_e interference.- Consider next the problem of solid-

blockage interference in the rectangular wind tunnel with top and bottom

walls slotted. The solid body in the tunnel is again represented by a

doublet with axis alined with axis of the tunnel and located at the ori-

gin of coordinates on the tunnel axis. The boundary condition at the

closed side wall (y = ±I) is _T _ 0. This condition is satisfied by
3y

a horizontal row of doublets with axes alined with the axis of the tun-

nel and placed along the line x = O_ z = 0 at y = O, y = ±2,

y = ±4, . y = ±_. The potential of such a row is given by

_r - m± x (45)

and the vertical derivative by

_q)r_ m oo _zx

_z 4_ 2__ Ey x_5/2k:-.oo + 2k) 2 + z2 +

(46)

The total potential 9T : _r + _s must satisfy equations (34), (35),

and (36). As before, _s must satisfy equation (34). A solution of

Laplace's equation which meets this requirement is

- m s___ st_s - _-_ t=0

,,st
As in the case of lift interference q_r is an o(k_ function of z and

_r is an even function] therefore 3 _s must be an odd function of z
3z
in order that both equations (35) and (36) may be satisfied. Conse-

quently, Bst = O, and
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m 1-- coss,,ysin
_s = 4_ (s_)2 L

s=0 t=O

(ks)

_%°s - m s_O_ Ast _(s_)2 + I_)= (s_)2 + c°s s_Y sin t_--_XL_z 4_ t=O

( 49)

Now let equations (45) and (46) be expanded in Fourier cosfne series

at the boundary z = h. Then,

r z=l = - --4_ Cst cos s_y sin t_xL

s=O t=O

(5o)

££_r = m

Z=k _ Dst
s=O t=O

cos s_y sin tx___xx
L

(51)

where Cst and Dst are given by

/01E 4p _ x sin t__ cos s_y

Cst = "_ k:"_ _y + 2k) 2 + "h2 + x2---J3/2" dx dy

where
-L/2 (s= o)

P=l (s{o)

cos -- cos s_y dx dy

4p {__{t_ _ L
Cst

k=-__(y+ 2k)2 + x2+ .2

(52)
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Dst - I IIL£
4p 3Zx sin t____x cos s_y

L d_x dy

4p-_-'t_:'-(_ _ = h COS t_____XLCOS s_y

+ 2k) 2 + +
t O

dx dy

(53)

By substituting equations (48), (49), (50), and (51) into equation (35),

Ast can be written as

Ast =
Cst- _Dst

(54)

By substituting the equations (52), (53), and (54 ) into equation (48),

the result is

i_ _ L 0 c+ 0 " __ ............ :- co_h (_)2 + ¢os _y aln

_0 _0

(sb)

As L approaches _, the integral with respect to L in equation (55)

becomes
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L<_ Zh cos _ cos s_a

L

+ 2k)2 + h2 + p2_3/2 _

q
cos t____cos s_ I

L __ __ _

+2k)2+_2+ _211/_I- _'
-..3]

dp=

ij fo+cos t____dp cos t____Bdp

h L _ L i/
cos s_

In reference 193 the first integral on the right is written as

_ qKl(Rq)

R
(56)

q _ _t and R : J'_(G+ 2_k)2 + _2. Multiplying both sides of equa-where

L

tion (56) by -RdR and then integrating both sides with respect to R

from R to _ gives

_0 ® cos q_ d_, (_2 + R2)I/2 = K°(Rq)

Let L approach _. Then, the interference potential _s and its

derivative with respect to z can be written as
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= _ -_ z._ao_ __ _

where

H 1 =

m 0

,I 2k) 2 _2k:-- _(_ + +
I

cos s_C_ d_

Ko o_ + 2k) 2 + cos s_tO_ d_

c(x,_,q): co_hx_2+ (_,,)2

and where Z has been replaced by cX. The interference velocity m2

of' a doublet symmetrically located in a tunnel with its axis alined with

the axis of the tunnel Is given by

u9 = ur + us - uI

ax bx

_Ps m k_ (Y + 2k)2 + z2 - 2x2
(k ¢ o)
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This is for a doublet of strength m/4_ in a tunnel of unit semi-

width. For the general case, at the origin,

u2 _ i s + m l (59)
x=O 32_b3 :

y=O

z=O

Equation (59) was solved numerically for the interference velocity u2

of a doublet in a square tunnel (_ = i), and the ratio u2b3/m is plotted

against d i in figure 9.
c + i

Lift Interference in Rectangular Tunnel

With All Sides Slotted

Consider the lift interference for a small lifting wing symmetrically

located in a rectangular wind tunnel of semiheight _ and unit semiwidth

and with all four sides slotted. The widths of the individual slots are

determined by calculating the points on the walls of the rectangular tun-

nel which correspond to the slot edges of a uniformly slotted circular

tunnel, with the assistance of a transformation which maps the perimeter

of a rectangle of semiheight _ and unit semiwidth into the perimeter

of a circle of unit radius. In the analysis of this particular problem

the transverse cross-sectional plane of the rectangular tunnel, which has

been previously the y,z-plane, will be taken as the complex Z-plane where

Z = x + iy. The cross-sectional plane of the circular tunnel, which has

previously been treated in terms of the polar coordinates (p,8) will here

be taken as the complex L-plane where _ = _ + i_. In reference 20 the

transformation which maps a rectangle in the Z-plane into a unit circle

in the _-plane is given as

= sn _'Z dn _'Z
cn k'Z

or

_2 = 1 - cn 2h'Z (61)
i + cn 2h'Z



32 NACA RM L53EOTb

and h' is determined from

K K' ,- - h (62)
2 2h

where K and iK' are the quarter periods of the preceding Jacobian

elliptic functions. A method for calculatit_ h' and tables of the

preceding Jacobiam elliptic functions are also given in reference 20.

The quadrantal perimeter of a square (X = i) and the quadrantal perimeter

of a rectangle (h = 1/2) were mapped into the quadr:intal arc of a unit

circle by using equation (61) and the results are given in figure i0.

The lift-correction factor for a small lifting wing symmetrically

located in a rectangular wind tunnel may be written as

_R-
gR r aRF

(63)

-- ( ) f'or a small lifting wing.since v2R _ V2R Z=O

The complex velocil.y in the Z-plane at a point c)n tlte x-axis is

dW _ iv R = dW d_ _ iv c d_
d_ _

or

a_ (64)
vR = vO

The interference velocity for the rectangular tunnel is thus

v2_R = (vlC + V2C) d__- - vie
(65)

In reference (21) d_/dZ is written as

(66)



5Q NACA RM L53EOTb 3]}

at the origin. Evaluation of equation (lOb) at the origin gives

v1 C

= ___._7_}_=o -

e=_:
2

2_g c
(67)

From the analysis of lift interference in a circular tunnel (eqs. (14a),
(13), (18), and (2O))

V2c = 2--V-t,c---j-f/

at the origin. The vortex semispan in the circular tunnel oc

minedfromequation(61)bysettingZ --oR (whence,_= OC).
velocity VlR is given by

(68)

is deter-

The

r (69)
VlR - 2_ oR

at the origin. This differs from vlC (eq. (67)) only because of the

change in vortex span. If, now, equations (66), (67), (68), and (69)
are substituted in equation (65) the result is

_!+ _c c- l' h,V2-R = b oc c + 17 +
(70)

Substituting this in equation (63) gives, for the lift-correction factor

at the center of the vortex span,

5R 2 R c+l oc
(71)

In the limit as oR ---+0 this becomes
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5R _ kX'2 c - i

where m is the parameter (see ref. 20) of the elliptic functions of
the transformation. The behavior of m is such that if X < 0.5 it is
sufficient to use

c + c + 1 (72b)

When _ : 1.0 (square tunnel), m : 0.5 and

5R- _'2(I_ c +i _): 0.274__i e +1 i) (72c)

When X > 2.0, the correction factor is approximately

_'2{2 i ) _{_2 i ) (72d)5R- c + f : Yg<Y o + 1

Equations (72) apply to wings of small span.

The lift correction at the center of the wing has been calculated

for a small wing in a square tunnel (_ = i) and for a small wing in two

rectangular tunnels (_ = 0.5 and _ = 2)_ the lift-correction factor 5R

is plotted against 1 in figure ii.
c + i

Two-DimensionalTunnel

Lift interference.- Consider the problem of the lift interference

in a two-dimensional wind tunnel with the top and bottom walls slotted.

The wing in the tunnel will be represented by a two-dimensions/ lifting

vortex located at the origin of the coordinate system, which is centered

between the slotted walls. The potential of this vortex in a free field

is

_ V tan-i z
ml- _
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and the vertical derivative is

_PI_ F x

_z 2_ x2 + z2

The interference potential takes the form

o0

= _--- (A sin n_--xsinh _) + A z_2 n L o

n=l

(73)

There is no axial interference along the tunnel center line (z = 0)

because --_2 = 0. The vertical interference at the origin is simply
3x

w2 : _z -A°

Inasmuch as the summation does not contribute to the wall-induced

velocity at the origin, it is sufficient to study the term Aoz by

itself. If the multiple-valued function for _i is set equal to zero

at the upstream infinity (z = -_) it is apparent that the Fourier series

F

expansion of _i at the top wall will result in a constant term -

plus an odd function of x. The expansion of _i/Oz will be an odd

function with no constant term. Thus, if the constant terms in _i_ _2,

and 3_2/_z are inserted in the boundary condition at the upper wall

(z : h)

_T + _ APT_ 0 (74)_z

the result is

- F_ + Ao h + ZA° = 0
4

r i
A° - 4h c + i
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where c = -.
h

by

The vertical interference velocity :_t the origin is given

w2 : _ _U_ i
4h c + I

Thus, the interference is found to be downwash at the origin which

varies in magnitude from zero for a closed tunnel to a maximum for the

open tunnel. Because

C _Uoe
F =

2

the induced-flow angle at the origin is

7 l (75)
52 = 8 h c + I

where

and

d

h

r o

cz

c

c = s_---log e csc ! ro
_h _ 2_

slot spacing on horizontal walls

half-height of tunnel

open ratio of the uniformly slotted horizontal walls

airfoil-section lift coefficient

airfoil chord

The induced angle isj of course, not constant along the Chord of the

airfoil; therefore, the wall-induced flow can be considered to have a

certain curvature. This curvature has an effect similar to that of camber

in an airfoil, and if the length of the chord of the airfoil is suffi-

ciently great compared to the height of the tunnel, a curvature correction

is required (ref. 5). This curvature can be determined from a complete

solution for _2 (eq. (75)) under the boundary condition of equation (74).
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Solid-blocka_e interference.- Consider the problem of solid-blockage

interference in a two-dimensional wind tunnel with top and bottom walls

slotted. The solid body in the tunnel will be represented by a two-

dimensional doublet with axis alined with the tunnel axis, and located

at the origin of coordinates on the tunnel axis. The potential of this

doublet in a free field is given by

m x (76)
_i - 2_ x2 + z 2

and the vertical derivative by

_z
_ m xz (77)

(x2+ z2)2

The interference potential q_ must satisfy Laplace's equation. Since

91 is an odd function of x and an even function of z, _2 must also

be an odd function of x and an even function of z. Therefore, _2

can be written as

n.

_ m k Ak cosh k____zzsin kx___xxq_2 2_ L L
n=l

(78)

and the normal derivative by

h_ %-

_2 _ m__> b___Ak sinh k_z sin
k_____x

_z 2_ __ L L L
n=l

(79)

The boundary conditions to be satisfied along the s_tted walls (z = ±h)

8/-e

and

)at z = -h q_l + q92 - Z _-z 1 + q_2 = 0 (80b)
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These conditions are satisfied by expanding CPl _id _pl/_Z into

Fourier sine series in x along the slotted walls and then solving for

the coefficients of qD2 that satisfy these equations. Along the

line z = h, equations (76 ) and (77) can be written as

_I = m _B k sin k_x
L_ L
k=l

(81)

where

and

f .8qgl _ m Ck sin k_x

8z _ L
k=l

_0 L
2 x sin k_x dx

_0 L

2 hx sin kax dx

ck: (x2.hJ2 T

(a2)

(83)

A single integration by parts results in

_0 L cos kax
Ck = k____hh L

L x2 + h2

dx

By substituting equation (85) for Bk and equation (84) for

equations (81) and (_), respectively, and then solving equa-

tions (80), (81), and (_) for Ak, the result is

Ak=

k_____x_sin dx
L h_____cos L

x2 + h2
m

_2 L cosh k___hh+ _ ____sinh k___hh
L L L

Ck

(m)

into

(85)
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By substituting equation (85) for Ak into equation (78), the result is

foC
L h____ cos L _ sin

_2 + h2
m _ cosh k___zzsin k_x

qD2 = _2 L cosh k_--hh+ _ k_ sinh k_h L L
L L L

k=l

da

(86)

k_
Let q = ---, 2_ = =-, and let L _ =. Then equation (86) becomes

b L

cos qa -c_ sin qa

_+_
cosh qh + Zq sinh qh

0

da

cosh qz sin qx dq

m fO'_ / 'qe'qh - e-qh qhlCOSh qz sln qx dqkcosh qh + lq sinh

_0 F e-qh( _q- l) qh_COS h_osh qh + lq sinh

qz sin qx dq

m

2_h re"_ e_(_-_l) -leo__--_s_q-_d_

7

_cosh q + cq slnh q_ h h

(87)

where qh has been replaced by q and c = !.
h

ity u2 is

The interference veloc-
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c)x 2_ h 2 4
qe-q(cq- l)

cosh q + cq sinh q

At the origin, equation (88) reduces to

(:osh cos qx dq (88)
h h

u2 --

qe-q(cq- l)

cosh q + cq sinh q
dq (89)

Equation (89) has been evaluated numerically, and the axial-interference-

velocity function u2h2/m is plotted against _Ic 1 in figure 12.+ i

DISCUSSION

Application of" the Results of the Interference Analysis

Consider the problem of determining, say, the correction factor 5

for a particular wing in a square tunnel. The tunnel has four slots in

each horizontal wall, with an open ratio of 0.164. The vertical walls

are closed. From figure 4, log e csc K ro = 1.37. After using equa-
2

tion (44) to determine c, the value of i is computed to be 0.82.
c + i

The wing has an effective span of one-half the tunnel width, and for this

case, figure 8(a) gives the value of the correction factor as -0.062.

If a semispan reflection-plane model of a wing of twice this span is

tested, the effective height-width ratio of the tunnel will be 0.5 and
the correction factor will be -0.146.

Comparison With Previous Results

A comparison of the results for the lift interference of circular

tunnels with the results of reference 13, in which the individual slots

are considered, shows striking agreement for wings of small span (fig. 6).

In the case of a lifting doublet in the center of the tunnel the results

agree within 2 percent for only 4 slots and even more closely for greater

numbers of slots. This agreement would seem to be sufficient proof of

the justification for the basic assumption underlying the present theory,

that the wall can be considered to be homogeneous. This assumption is
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not made in reference 13. The theory of this reference indicates that

for small numbers of slots, say 2 or 4, the lift interferemce varies

appreciably with the orientation of the slots. This variation, of course,

cannot be predicted by the present theory.

The results of the analysis of solid blockage interference are com-

pared with the results of the analysis of reference _ in figure 7- _le

results of this reference are seen to straddle the curve obtained in the

present analysis. The spread in the results of reference 9 may be due

to the fact that the series used in the calculations converged very slowly
in the case of ten slots.

The present theory will now be compared with the experimental results

of reference 9- For the lO-slot circular tunnel the present theory pre-

dicts a small negative interference. The magnitude of this predicted

interference is about 1/13 that for a closed tunnel and about i/3 that

for an open tunnel. An inspection of figure 7 (ref. 9) shows that the

measured interference in the slotted tunnel checks very closely with

these values. This is a single-point comparison at the midpoint of the

body, however, so it can not be regarded, in itself, as a complete veri-

fication of the theory. In fact, this body was so large with respect to

the tunnel diameter that the present theory, based on a doublet in the

tunnel, could hardly be expected to apply.

A much smaller body was tested in the 8-slot octagonal tunnel of

reference 9. For this tunnel the present theory predicts the value of

the axial-interference-velocity function to be -0.006. This is less than

5 percent of the magnitude of the interference in a closed circular tun-

nel. The predicted interference velocity ratio for the i_- inch model
3

in the slotted tunnel is u2 = -0.0002 for incompressible flow. Even
uo

when multiplied by the compressibility factor (I M2) -3/2- , it is obvi-

ous that this correction is within the usual experimental accuracy for

Mach numbers within the range of application of the linearized theory.

For instance, at M = 0.93 the axial interference velocity is approxi-

mately 1/4 of i percent of the free-stream velocity. The experimental

results in figure 12 of reference 9 show that the interference was negli-

gible along the whole length of the body at all speeds up to a Mach num-

ber of about 0.9, Thus, these experimental results are consistent with

the present theory with regard to blockage interference.

Application of the Concept of a Restriction Constant

The concept of a restriction constant can be useful in other ways

than in the direct solution of problems in slotted wall interference as,
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for instance, in providing a commonbasis of comparison for walls with
different slot spacings. As an example of this type of problem, consider
a circular tunnel with eight evenly spaced slots around the circumfer-
ence, with an open ratio of 0.15. Supposeit is desired to construct
another circular tunnel with the sameinterference characteristics as
this tunnel but that it is also desired to increase the numberof slots

2 log e _ = 0.365. For the sameto 12. For the given 8-slot tunnel c =
value of c, the 12-slot tunnel must have an open ratio of 0.071.

Using this concept_ it is also possible to determine the effects of
changing the shape of the slot cross section. With the realization that
the theory depends upon an essentially potentia] flow in the slots, for
instance, the question arises as to whether the sharp-edged slots could
not be improved upon. It might be advisable to try smoother shapes in
an attempt to obtain a closer approximation to potential flow in the
slots. The restriction constant _ could be determined for any slot
shape either analytically by calculation of the potential flow through a
group of such slots in cascade or experimentally by a simple electrical
analogy. Once Z has been determined the results of the present analysis
could be used to predict the interference for such slots.

Experimental Determination of the Restriction Constant

If experimental data of sufficient accuracy to permit the evaluation
of the lift- or blockage-correction factor for a particular slotted tun-

nel are available, the effective value of i can be read directlyc + I
from the curves presented in this paper. Once the value of this parameter
is known, corrections maybe computedfor other wings in the sametunnel.

Limitations of the Theory

Somequestion arises as to the range of validity of the equation
for the restriction constant of a slotted wall, inasmuchas the open ratio
required to obtain a given value of c decreases rapidly as the number
of slots increases. Since the normal massflow remains constant with c,
this requires a continuously increasing normal velocity in the slots
which, although it is permissible in the assumedincompressible flow, is
not possible in the actual physical flow. It appears, from these consid-
erations, that the limit of applicability of the restriction-constant
equation will be determined by the required normal flow velocities rather
than directly by the smallness of the slots. This limitation should be
considered in the application of the results of this analysis to the
design of wind-tunnel test sections.
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There is, also, somequestion regarding the use of potential-flow
theory in the region near the slots. This question arises because the
[_otential theory omits certain flow phenomena,in particular, the pres-
ence of a mixing region at the boundary between the moving tunnel air
and the essentially static air outside. The adequacy, for the purpose
of interference computations, of the potential theory must be determined
by experimental studies.

The restriction constant has been determined by assuming the effec-
tive free boundary (9 = O) to be located along the line between the slot
edges. If the boundary were actually located outside of this line, the
slot restriction constant would be somewhatlarger. If the slots had a
finite depth t, instead of being essentially sharp-edged orifices, and
if the effective free boundary were at the outside of the slots, the

d log e _ + t_t_. Actu-restriction constant would be approximately Z = _ ro
ally, it is likely that in the case of slots of considerable depth, the
location of the effective free boundary would be a function of the local
outflow or inflow. Not only would this makeany calculation of the inter-
ference questionable but it would also present the distinct possibility
that the correction factor might be an unpredictable f_ction of model
size and angle of attack.

CONCLUDINGRI94ARKS

The solid-blockage interference for a doublet on the tunnel axis
and the boundary interference for lifting wings in circular, rectangular,
and two-dimensional slotted tunnels have been calculated by substituting
an equivalent homogeneousboundary for the physical boundary of discrete
slots. In the case of small wings, the results calculated with the
assumption of homogeneity have been found to be consistent with those
calculated for the discrete slots for as few as four slots in a circular
tunnel. Furthermore, available experimental results for blockage inter-
ference are consistent with the results of the present analysis.

Through the concept of a wall restriction constant it is possible
to reduce the interference due to all different slotted-wall configura-
tions for the sametunnel shape to a single curve. Thus, the nun_er of
computations required to describe completely the interference for a
given-shape slotted tunnel with different slot spacings and open ratios
is greatly reduced.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., May 12, 1953.
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Figure 2.- Sketch showing physical arrangement and nomenclature used in

equation for potential difference across a thin, straight slotted wall.
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Figure 5.- Sketch of the transformation of the section of the straight

slotted wall between y = _+_d Into an arc of a circular slotted wall.
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