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SUMMARY

The solid-blockage interference for a doublet on the tunnel axis
and the boundary interference for 1ifting wings in cirecular, rectangular,
and two-dimensional slotted tunnels have been calculated by substituting
an equivalent homogeneous boundary for the physical boundary of discrete
slots. In the case of small wings, the interference calculated with the
assumption of homogeneity has been found to be consistent with that cal-
culated for the discrete slots for as few as four slots in a circular
tunnel.

Furthermore, available experimental results for blockage interfer-
ence are consistent with the results of the present analysis. As a con-
sequence of the assumption of homogeneity it is possible to express the
interference of multislotted tunnels as a function of a single parameter
which combines the effects of two physical variables: the ratio of open
to total slotted wall perimeter and the number of slots. A curve is
presented which permits the rapid evaluation of this parameter and numer-
ical results for 1lift and blockage interference are plotted against the
parameter.

INTRODUCTION

Several investigators have found that in a wind tunnel with bound-
aries which are partly open and partly closed, the boundary interference
on the 1ift of a wing can be reduced nearly to zero. References 1 to 5
deal with the case of a doublet in the center of the wind tunnel, while
references 6, 7, and 8 consider the effects of wing span. There are
several reasons why i1t would be desirable to have a wind tunnel with
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zero-1ift correction. 1In the first place, the necessity of applying the
corrections would be eliminated, although this, in itself, is not of
large importance as long as the necessary corrections are known. More
important is the fact that the pressure distributions cannot be corrected,
and the distortion of both spanwise and chordwisc pressure distributions,
as a result of boundary interference, places a limitation on the size of
model which can be tested in a given wind tunnel.

The primary interest in partly open or slotted wind tunnels, how-
ever, is connected with the very different problem of wind-tunnel choking
at high subsonic Mach numbers, which is a result of solid blockage inter-
ference and which places a very severe limitation on the permissible
model size for testing in closed wind tunnels. The blockage correction
for a circular slotted tunnel (a wind tunnel in which the open part of
the boundary is distributed around the periphery in the form of several
longitudinal slots in an otherwise solid boundary) has been considered
in reference 9, which indicates theoretically that slot configurations
exist for which the blockage correction is greatly reduced. The experi-
mental results that are also included in reference 9 show that slotted
tunnels can be used for aerodynamic testing in the transonic speed range.
The conventional closed and open tunnels are both unsatisfactory in this
speed range, the closed tunnel because of choking and the open tunnel
because of the excessive power requirements and the large boundary inter-
ference. Much effort has since been expended in the experimental devel-
opment of transonic slotted tunnels, and several large tunnels of this
type are presently in operation (refs. 10 and 11) or in construction.

A knowledge of the lift-interference corrections for the slotted tunnels,
as well as the blockage corrections, is thus of present interest.

The 1ift interference in slotted tunnels has been considered in
reference 12. This work has been extended in reference 13 to include
wings of finite span, and numerical results are presented for several
configurations of practical interest.

The calculations required to determine blockage and 1ift correc-
tions, for a particular slotted-tunnel configuration, by the methods of
references 9 and 13 are very laborious especially for tunnels with a
large number of slots. 1In order to obtain a general solution for this
problem, Dr. A. Busemann of the Langley Laboratory has suggested that the
problems of both 1ift and blockage interference be treated mathematically
from the standpoint of a homogeneous boundary, with the slot effect uni-
formly distributed over the surface of the boundary. It was reasoned
that at some distance from the boundary, in the region of the model, the
flow would no longer show the effects of the individual slots, particu-
larly if the actual boundary contained a large number of slots. Further-
more, the wind tunnels which are now in use contain several slots. It
is felt that this is desirable in order to increase the uniformity of the
interference. This paper will treat the problem in the suggested manner,
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beginning with the development of a suitable boundary condition to
represent mathematically a homogeneous boundary which has the same flow
characteristics, at a point in the flow sufficiently removed from the
boundary, as the actual physical boundary of alternate open and closed
portions of the wall. Numerical results will be presented for circular
tunnels with slots uniformly distributed around the circumference, for
rectangular tunnels with uniformly distributed slots in the top and
bottom walls, for rectangular tunnels with the slot distribution deter-
mined by a transformation from a uniformly slotted circular tunnel, and
for a two-dimensional tunnel.

The results of this paper are derived on the basis of an incompress-
ible potential flow. The subsonic linearized compressible-flow theory
shows that wind-tunnel lift-correction factors are not affected by Mach
number; therefore, the lift-correction factors presented in this paper
should apply directly to subsonic compressible flows, at least within
the range of applicability of the linearized theory. The effect of com-
pressibility upon the blockage interference is to increase the axial-
interference velocities with increasing Mach number in proportion to the

1
factor E;—:—;5557§ (ref. 9).

SYMBOLS

The SyTﬂbOlS An, Bn, Cn, Dn, Cln’ Cen, CBH’ Cj{_n, Ak’ Bk’ ASt’ BSt’
Cgts Dgt represent series coefficients.

A area
b semiwidth of rectangular wind tunnel
c nondimensional restriction constant

ol

chord length of a two-dimensional airfoil

cy section 1lift coefficient

C cross-sectional area of tunnel
C1, 1ift coefficient

d slot spacing

h semiheight of rectangular or two-dimensional tunnel
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stagnation pressure
restriction constant
doublet strength
number of slots
static pressure

open ratio of slotted wall (ratio of slot width to slot spacing)

radius of a circular tunnel
wing area
thickness of slotted wall

x-component of additional velocity due tc presence of a model
in wind tunnel, U - u,

free-stream velocity at upstream infinity
x-component of velocity at any point
y-component of additional velocity

component of additional velocity normal to surface of wall

z-component of additional velocity
complex velocity in Z-plane

distances in Cartesian coordinate system
complex plane, x' + iy’

circulation around a wing

correction factor due to 1ift,

SSIPSZI
|

(o]
99
Q

o

complex plane, & + 1i7

Carteslan coordinates in {-plane
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) angle in polar coordinates

A height-width ratio for rectangular tunnel

A constant appearing in transformation from rectangle to circle

vl csc % To

0] incompressible-flow velocity potential

p radial distance in polar coordinates

p density of air in wind tunnel

o] ratio of vortex span (effective wing span) to diameter of cir-
cular tunnel or width of rectangular tunnel

Subscripts:

0 free-stream conditions at upstream infinity

1 due to model in free air

2 due to presence of tunnel boundaries

C circular tunnel

n in direction normal to wall surface

R rectangular tunnel

n,k,s,t  summation indices

r due to a row of vortices

s signifies additional term required to satisfy boundary condi-
tion at slotted walls

T total

BOUNDARY CONDITIONS

Wall with discrete slots.- Longitudinal and transverse cross-

sectional views of a slotted wind tunnel are shown in figure 1. In the
longitudinal view exaggerated streamlines are drawn to indicate how the
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air in the vicinity of the wall flows out and in through the slots as it
passes the model. The chamber surrounding the tunnel is maintained at a
pressure equal to the free-stream static pressure of the flow inside the
tunnel. The difference between this pressure and the average local pres-
sure of the flow just inside the wall causes the air to move out and in
through the slots. The boundary conditions at thc slotted wall for this
flow configuration will now be considered.

Consider a set of axes in Cartesian coordinates which are fixed with
respect to a model in the wind tunnel, while the air flows by with veloc-

ity components U, v, w. Furthermore, let U = uj + u, where u, 1is

the free-stream velocity at infinity. The pressure at a point inside
the tunnel at the wall is given by

p=H- %(uoe + 2uou R w2)

The free-stream pressure p, 1s given by

- P, 2
po—H——z—uO

Assume now that by some means the pressure just outside the wall is main-
tained at p,; then, the pressure difference across the wall 1s

80 = b - By = - 2fougu + 4 P 4 )

Next, assume that the relationships between the model size and shape and
the distance to the wall are such that u, v, w are all much smaller
than uy, at the wall. The relation between the pressure difference and

the axial velocity inside the tunnel then becomes
Ap = -pugu (1)

This is a known result of the small-disturbance theory. Note that the
small-disturbance assumption is required not in the field of flow near
the model but only at the walls.

It is now required to find an expression which relates the pressure
difference across the wall to the flow through the slotted wall. This
expression, combined with equation (1), will establish the relationship
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between the axial velocity just inside the slotted wall and the flow
through the slots. In order to find such an expression it will first be
necessary to study the energy in the neighborhood of the slots. This
energy is basic to the problem, for the essential mechanism of the slotted
wall is that kinetic energy is stored in the air which flows out through
the slots. This energy is later returned to the flow when the air flows
back through the slots into the tunnel. Consider a thin slotted wall in
a field of flow with a uniform velocity normal to the wall at infinity.
(See fig. 2.) Because the flow pattern is the same for each slot it is
permissible to study a single channel such as the one in which approxi-
mate streamlines have been sketched in figure 2. The kinetic energy
enclosed in a region of this flow bounded by a transverse plane at -xo',

by the "walls" of the channel, and by the slot is given by

Kinetic energy = l-'p P 92 dA
2 A an

The region of integration may be considered to consist of a surface of

unit depth normal to the plane of the page which includes the dashed line
shown in figure 2. The component of velocity normal to the closed por-

tion of the slotted wall must be zero. With regard to the open portion, the
disturbance potential will be assumed to be zero at the slots, in con-
formity with previous papers and with the classical practice in treating

interference in open tunnels. Because ég-= 0O at the channel walls,

on
and because @ = O at the slot, these two regions contribute nothing to
the integral. With regard to the transverse plane at —xo' it is clear

that if this plane is sufficiently far away from the slot the potential

will have a value Q_xon which is essentially constant in this plane.
Also,
éﬂ dA = v A
g on

the quantity flow. Thus,

Kinetic energy =

VN |t

PP_x ' Vnh



8 NACA RM L53E0T7b

In order to complete the evaluation of the kinetic energy it is

necessary to determine the value of the potential ¢_, r. Let the coor-
0

dinate origin be taken in the plane of the slotted wall at the center
of one of the solid sections and consider the flow to the left of this
slotted wall. With the assistance of rcference 1k, the potential of
this flow is found to be

d e kg
= r e I - ox! Q L8 a !
P = Vn(? loge cse S rg = x' + = C e cos kgy (2)
s=1
where k. = 2% 4 is slot spacing, a is slot width, and r, = 2
S 3 I} S50 p g, . ) o~ d.
The plane at —xo' is suffieciently far from the wall that the last term,
which falls off exponentially as x' becomes more negative, may be dis-
regarded. Thus,
o1 =v(Liog, csc Lr o+ x. '
-X0 n\ 5 e o) 0] 0
The insertion of this value of @-Xo' in the previous kinetic-

energy equation results in

1

Kinetic energy = S p(% log, csc %-ro + xo')vheA

In the absence of the slotted wall, the kinetic energy per unit area of
the flow inside the region of integration would be

Consequently, the portion of the total energy which may be regarded as
being due to the presence of the slotted wall is % plvn2 per unit wall

area, where

¥

1 = - log, csc % r, (%)

Note that the gquantity 1 has the dimension of length.
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Eguivalent homogeneous wall.- Consider, now, the flow field that

would result in the region between -xo' and the wall if the slotted

wall were replaced by an imaginary homogeneous wall of zero thickness
through which potential flow is possible and which is characterized by

the existence in the local flow of an energy % van2 per unit wall area
associated with a local normal velocity v,- The velocity of this flow
field, at -xo', will be essentially the same as that of the slotted-

wall flow field; furthermore, the total kinetic energies between the
planes at -xo' and at the walls will be the same. For the purpose of
calculating the flow to the left of -xo', therefore, the homogeneous
wall is equivalent to the slotted wall.

The result which has been obtained by studying the relatively simple
flow from a source at -« 1is that there is associated with the flow
through the slots a kinetic energy that is a function of the dimensions
of the slotted wall and of the average velocity normal to the wall, and
that this energy may be considered to be concentrated at the plane of the
wall for the purpose of determining the potential of the flow at a point
sufficiently far removed from the wall. If the singularity is located
at a finite distance from the wall, or if singularities of types other
than sources are introduced, there will be a velocity component parallel
to the wall in addition to the normal component v,. Application of the

principle of superposition shows, however, that the energy which is asso-
ciated with a given flow normal to the wall will not be affected by the
presence of additional velocity components parallel to the surface of the
wall. Tt is necessary, though, that the slot spacing be small enough so
that the difference in flow through adjacent slots is small. Thus, the
analysis will be applicable only to tunnels with several slots. With
this qualification the homogeneous wall will be equivalent not only to
the slotted wall of figure 2 but also to the slotted wind-tunnel wall of
figure 1 (section A-A) insofar as its effect on the model is concerned.

If the slotted wall of figure 1 is replaced by an equivalent homo-

geneous wall, the energy per unit area at the wall is % plvn2 and the

momentum associated with this energy is plv, per unit wall area. An

individual particle of air which follows the outer streamline shown in
figure 1 flows out and in through the wall as it passes the model as a
result of alternate outward and inward accelerations due to the pressure
difference across the slotted wall. The direction of flow of the normal
corponent of velocity does not, in general, correspond to the direction
of the pressure difference across the wall. Instead, it is the direction
of the normal acceleration which corresponds to the direction of the
pressure difference. This pressure difference, which acts in a direction
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normal to the wall surface must, in the potential flow, be equal to the
rate of change of the momentum associated with the presence of the slots.
Thus,

Ap = %%(plvn) = p %%(lvn>

Although the quantity 1 1is constant in time at a given point on the
wall, it is left under the differentiation sign in order not to exclude
the possibility that the slot configuration may vary from point to point
on the tunnel wall. The only restriction which is placed on the axial
or transverse variations of 1 1is that they must not be too rapid,
because the equation for 1 has been derived on the basis of a two-
dimensional flow and a uniformly slotted wall. The derivative is given
by

I—%:—(lvn) = a—at—(lvn) + U —a%-{-(lvn) + Vv ga—(lvn) + W é%(Zvn)

Since the flow is steady and the slot configuration is constant in time

3

when referred to the fixed axes, ji(lvn) = 0. If now ——(lvn) and

ot dy
o) « 9 :
SE(Zvn) are assumed to be of the same order as S;(Zvn) (or of higher

order) then the acceleration is given by
D ~u. D
Dt(lvn) U, ax(lvn)

to the same order of approximation as was used in obtaining equation (1).
The pressure difference across the wall is thus related to the velocity
through the wall in the following manner:

2p = puy 2 (1vy) ()

Equating (1) and (4) for the pressure difference results in

-u = §§(lvn)
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Let the potential of the flow be given by ¢ = “uyX + @, where ¢ is
the disturbance potential. In terms of this potential the preceding

equation becomes
X__d % S %) _
T\ Pty O

Integrating this equation in the x-direction along the wall gives

Q+ 1 gg equal to a constant. One of the boundary conditions which

n
must be satisfied by the wind-tunnel flow is that there be no disturbance
at infinity upstream, so the constant must be zero. Thus, the boundary

condition at the wall becomes

®+Z—§%=O (5)

At this point let it be emphasized thét, although this condition must be
satisfied everywhere on the boundary, all the symbols, including 1,
refer to only local values of the quantities represented. Thus, 1 has
been left free to vary in both directions on the surface. The boundary
condition may therefore be used in the study of wind tunnels in which
the slot width is variable in the axial direction. Furthermore, adja-
cent slots may be of different width or different spacing.

Although only a plane wall was considered in determining the rela-
tionship between the wall dimensions and the wall-restriction con-
stant, 1, it 1s possible to show that the same relationship holds for

a circular wall. Consider the transformation ¢ = e2 applied to the

region between y' = d/2 and y' = -d/2 in the flow field shown in fig-

ure 2. By using polar coordinates (r,8) in the {-plane, there is obtained
1

r=e* and ¢ = y'. Thus, the line x' = O transforms into an arc of a

circle of radius 1. (See fig. 3.) Because of the linear transformation
between y' and 0, the open ratio of the wall is unchanged by the trans-
formation. The source of the flow in the Z-plane at x' = -» transforms
in the {-plane into a source at r = 0. The line x' = = transforms into
the arc r = «. The expression for the potential inside the wall is

obtained by applying the transformation to equation 2.

. = k. lo T
o = vn<% loge csc T ry - log, T + d E Cqe © Be Topg 2us8 (r < 1)
2 it d
s=1

(6)
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The potential of the source at the origin in the absence of the wall
would be @ = -v, log, r. Thus, it follows that the additional poten-

tial at a point inside the wall, due to the presence of the wall, is

d oo L op , coctricti
nearly vp oy log, cse 5 r,. Consequently, the restriction constant 1

for a circular tunnel is obtained in the same manner as for a tunnel

with plane walls. The function log, csc g»ro is plotted in figure k.

Consideration of equation (6) will give some idea of the degree of
approximation involved in assuming the additional effective energy due
to the presence of the slots to be concentrated in a plane at the wall.
As an example, calculations have been made for a circular tunnel with

T

8 slots, for which p = 7, where p = csc 5T (This gives an open

0"
ratio of slightly over 0.09, which is in the range of practical interest.)
Figure 5 shows the potential given by equation (6) plotted against the
radial distance from the center of the tunnel. The calculations were

made along radial lines through the center line of & slot (e - E) and

8
through the center line of a panel (6 = 0). Also presented is a curve
calculated from the approximate or homogeneous wall equation

Q= %]pge M - loge T (1)

Inspection of figure 5 shows that the approximation is quite satisfactory
for the flow in the central part of the tunnel (say r < 0.6). For tun-

nels with more than 8 slots, the region of validity of the approximation

will be even larger.

ANALYSIS

Circular Wind Tunnel

Lift interference.- Consider a lifting wing symmetrically located
in a circular wind tunnel which has a homogeneous boundary through which
potential flow is possible. Let the wing be represented by a single
horseshoe vortex. The downwash at the wing will be determined, in the
classical manner, by finding the downwash in a tunnel cross section far
downstream due to a pair of vortices of opposite sipn with circula-
tion T /2, where [' is the circulation of the horseshoe vortex in the
tunnel. The disturbance potential in the plane will be taken as P + @y,
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where @, "is the potential of the vortices in a free field and Pp 1is

the interference potential due to the walls. All length dimensions will
be made nondimensional by dividing by the tunnel radius R. The boundary
condition at the wall (p = 1) is then

cpl+q32+c(m+9?£>=o (8)

where ¢ = 2%, the nondimensional restriction constant.

i
R

The interference potential Po must satisfy the equation V2$2 =0

throughout the interior of the tunnel. In polar coordinates this equa-
tion becomes

dp°

82
19% _,
02 92

+ 1 +
p

99
dp

By the method of separation of variables, the following family of solu-
tions can be obtained:

o0

Po = E (Cln sin no6 + Czn cos nO)(CBnpn + Cunp-n)
n=0

Since @ must be finlte everywhere inside the tunnel, it must be finite
at p =0 and, therefore, Cyn=0. Let 6 =0 be in the plane of the

wing. Then, because of the symmetrical location of the wing, it is
apparent that @o(8) = @s(n - 0). The cosine terms, which do not satisfy

this requirement, are omitted by setting C2n =0 (except wvhen n = 0).
The solution may now be put in the form

P = ﬁi.Ao + }:; A p"sin né (9)
n=

The potential of the vortex pair in a free field is, in polar coor-
dinates,
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_ r -1{2po sin O
L= tan (———————) (10a)

7 p2 =

where o 1is the nondimensional semispan of the vortex pair. Also,

Q
[

P _ 20 sin 9(p2 + 02) (10b)

Lix 2
. (p2 - 02) + 4p20°sin?e

|

Q/

In order to find the interference, equations (10a) and (10b) can be
expanded in Fourier series at the position of the wall. These series,
together with equation (9), can then be inserted in the boundary condi-
tion, equation (8), in order to determine the constants A, 1in the dis-

3
turbance potential. The expansions for ml and 5?; at p =1 are of
op
the form
(e o)
bt Py = —tan-l 20 sin 6 _ E B, sin né (11)
r 1 - g2
n=1

be 1 _ 261 + 0@ sin 6

5 sin né (12)

- c
(1 - 02)% 4 4p2sine ;

No constant terms appear in -these expansions so Ay = O. By substi-

tuting (9), (11), and (12) in (8) the following equation is obtained for
each value of n:

An sin no + Bn sin n® + ann sin n6 + ch sin n6 = 0O
Thus,

_ Bn + ch

Ap = (13)

1 +cn

After A, 1is found, there remains the problem of determining the

vertical interference velocity, and from it the interference factor b&.
The vertical interference velocity along the line 0 = O 1s given by
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1% N n-1
27708 s Zl P (1he)
n=

The average interference velocity between the origin and the point (0,0)
is

g w0
o 1 I n-1
o= -g | ) maet
O n=l
. = -1
Wy = - f;zil N (14p)
n:

The interference factor & as given in reference 15 can be written as

& = W2C
UoSCL,
where
C cross-sectional area of tunnel (x for the tunnel of unit
radius)
S wing area .
Cy, 1ift coefficient
u, tunnel free-stream velocity at upstream infinity

The circulation is related to the 1ift by

_ Lor
scp, = 2ol

Using this relation there is obtained & = —ﬂ—-ﬁé. Substituting for W,

hor
from equation (14b)
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B
5 = L

n t n-2 1
16 1+ cn ° (15)

Instead of actually making the expansions indicated in equations (11)

and (12), it is possible to infer the values of the constants B, and C,

from the known corrections for open and closed circular wind tunnels.
For a closed circular tunnel Silverstein and White (ref. 15) give the
equation

2
6:_]-__]_()%8;__";_9__
1602 1 - o2

Making use of the series expansion (ref. 16)

1 2
logefii;—) = g = (n =1,3,5,...)
X -1 nxt
n=1
the following equation may be written after setting o2 = %:

8 = fg:E:: 2 %; oh-2 (n = 1,3,5,...) (16)
n=1

But equation (15) gives, for c = o,

C
5 = j%-g 7? o2 (17)

Because equations (16) and (17) must agree, and since they can only agree
if the series coefficients are identical, term by lerm, then

C., = 200 (n=1,3,5,...)

(18)
C, =0 (n = 2,4,6,...)
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The correction for an open circular tunnel is simply the negative of
equation (16). For this case (¢ = 0) equation (15) gives

B = i%-§:j Bnon'2 , (19)
n=1

Comparison of equations (16) and (19) shows that

n
an-gg_ (nzl,5’5"")
(20)
Bp=0 (n = 2,4,6,...)
Substituting equations (18) and (20) in (15) results in, finally,
= 2n-2
_ 1 cn - 1\o _
° = gz (Cn + l) n (n = 1,3,5,.0.) (21)
n=

This correction is plotted as a function of the nondimensional restric-
tion constant in figure 6 for wings of small span.

For the circular tunnel the nondimensional restriction constant is
a
b8
slot center lines. Since the number of slots N around the circumfer-
ence of the tunnel is given by 2n/d, then

given by c¢ = log, u, where d 1s the angle between two successive

¢ =% log, u (22)

= o

for a circular wind tunnel.

Solid-blockage interference.- Consider next the problem of solid-
blockage interference in the circular wind tunnel. The solid body in
the tunnel is represented by a doublet with axis alined with the axis of
the tunnel cylinder, and located at the origin of coordinates on the axis
of the tunnel. The flow potential is again represented by P + Pss

where Py is the free-field potential of the doublet and P is the

interference potential due to the presence of the homogeneous wall. The
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boundary condition which must be satisfied at the wall (p = 1), for all
values of 8 and all values of x, is again given by equation (8).
Laplace's equation in cylindrical coordinates, which must be satisfied
by @p, 1s

in the case of circular symmetry about the longitudinal axis x. The
solution of this equation which will be used for the problem under con-
sideration is

Po = Z AkIO(lEEE-) sin(k_{l>
. L (23)

P _ N kx ko) s flax
AL, et () sin(52)

where IO and Il are the modified Bessel functions.

The free-field potential of the doublet is ml = - X 5/2.
(2 + ¢2)
The value at the wall of this potential and its derivative is now expanded
in Fourier series form.

N X = - . sin HX

L .

=2 X sin XIX =2 kx
R o @+ 1)5/2 ey QO(L) (2
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<5¢1> Ax < s Kax
1 = 2 Cy sin =X (26)
%l (e, 1) kéo t
L
3% i KIX =2 kxt
Cy = 2 sin dx = £ Q (&% (27)
L A (X2+1)5/2 L L <L>

The functions Q, and Q) are defined by equations (25) and (27). Upon

substituting the preceding equations into equation (8), the boundary
condition becomes

} 2 ka1, ki E kx knx
- kh6 i- Q,O(—L—)Sln _]'_,_X + £ AkIO(T> sin —L— +

00

c Z % Ql(k—§->sin

k=0

- |§
+
(@]
™
o)
=g
s
-
[
P S
&
N
w
}_J
=
al
>
I
(@]

For each A there results an equation

. %@;(%) - CQl(_kLﬁ)]

kx kat kn
IO(T) + c I Il T)

Substituting this in the equation for the interference potential gives

_ - 2 Qo(kl.i) - ch(l%) knp) 4, dox
*2 *;L 10(1—) +c % Il(%) IO( L) T (28)



20 NACA RM L53EQTb

If, now, the fundamental wave length of this expression L is allowed
to approach infinity, the summation can be replaced by an integral. The
necessary relationship can be obtained as follows:

Since k takes only integer values, the interval d(%?) is simply ﬁ/L.

Thus,

w9 20 - |, re(s)

L—=>>%0
(See, also, ref. 17.) By using this relationship and setting q = %?,
equation (28) becomes
2 Qo(q) - CQl(q) . -
P = £ I,(gp)sin gx dq (29)
2 J; “[;o(q) + cqI;(a)] ©

The remaining task is to evaluate Qg and Q. If equations (25)

and (27) are integrated by parts the results can be brought to the form
(see ref. 18)

Qo(a) = aKy(a)

W

Q,(a) qQKl(q)



NACA RM L53EO7b 21

The final recsult for Py is, then,

= 2 o0 qKO(q) - ngKl(q) |
2 ) [IO(Q) + Cqu(q) Io(qp)S]_n qx dq

The interference velocity is

B M@__g olcaKy(a) - K (q)
up = - €= i q oy (a) + IZ(Q) I (gp)cos gx dq (30)

This equation is for a doublet of strength ﬁ&.: 1 in a tunnel of
7

unit radius. For the general case, at the origin,

. m caky(a) - K (q) 24 N
2 o5 R3 o caI;(q) + I (q) e (31)

where R 1is the tunnel radius. The axial interference velocity is

. ( 1 )1/2
plotted as a function of —

c + 1
chosen because it results in an approximately linear variation of the
blockage interference. The values were obtained by mechanical integra-
tion of equation (31). Fortunately, the value of the integrand converges
rapidly toward zero with increasing q. At q = 5, for instance, the
value of the integrand was 1/2 percent or less of its maximum value in
the calculations which have been made.

in figure 7. This parameter is

Rectangular Wind Tunnel With Top and Bottom Walls Slotted

Lift interference.- Consider a rectangular wind tunnel of semiwidth
unity and semiheight A. Inside the tunnel is a vortex pair of semi-
span 0 located with the span parallel to the width (y) axis of the
tunnel and with the center on the center 1line of the tunnel. The verti-
cal walls at the sides of the tunnel are closed, but the horizontal walls
at the top and bottom, with nondimensional restriction constant 1, are
partially open. The boundary condition at the closed side walls (y = +1)
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is, of course, 0. This condition is satisfied by a horizontal row

LA
Sy
of vortices along the plane z = O (the reflected images, out to y = *w,
added to the vortex pair inside the tunnel). The potential of such a

row is given by

tanh & z tanh L =z
Pp = L J_ten~1 + tan~1 2 (32)
Ly tan !éf_(y - o) tan g—(y + a)

and the vertical derivative by

oL _ l:[; sin n(y - o) N sin n(y + o) i] (33)
)

oz 8| cosh nz - cos n(y - 0) cosh nz - cos n(y + ©

To the potential ¢, another potential ¢g 1is added in order to

satisfy the boundary condition at the horizontal walls. The total poten-
tial Pp = P + @ must satisfy the conditions

Aty =41 %: (34)
At z = A ¢T+lg—;ﬂ=0 (35)
At z = -A @T-1g=o (36)

Since ¢, already satisfies equation (34), @, must also satisfy (34).
A solution of Laplace's equatlon which meets this requirement is

[ee]

Qg = ﬁl g cos nﬂy(An sinh nxz + B, cosh nﬂz) + Az (37)
7
n=1
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Because ¢, 1s an odd function of 2z and is an even function, it

X
dz
is necessary that 95 be an odd function of 2z in order that both equa-
tions (35) and (36) may be satisfied. Consequently, B, = 0, and

00
P = fl EE: A, cos nwy sinh nxz + A,z
1C
=1

% - (38)
—s _ I
i }:j-nnAn cos nmy cosh nxz + Aj

n=1 J

Now, let equations (32) and (33) be expanded in Fourier cosine series
at the boundary 2z = A. Then,

P = ﬁ%-iz:jcn cos nny (39a)
n=0

apr _r =

S - GZ D, cos nxy (39b)
n=1

(It is apparent from the form of equation (33) that there can be no con-
stant term in equation (39b).) If equations (38) and (39) are substi-
tuted in equation (35) the following coefficient relationships are found:

CO+A0)\+2AO=0 (n = 0)
Cp + Dy + A sinh nxA + A, cosh nxh = O (n # 0)
Thus,
C
= - [e]
Ao A+ 1
(ko)

A - - Ch + 1D,

sinh nmA + Inn cosh nxA
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Let ¢@p = 97 + 9o where again @; is the free-field potential of the
vortex pair inside the tunnel and @, is the interterence potential.

From the free-field potential of the vortex pair

by oo 1 y-o y+o
r 4 ' dz

(y - 0)2 + 22 (y + 0)2 + 22

Thus, the interference velocity at any point (y,z) is

b o, - x sin n(y - o) _ sin n(y + d) _
r 2 2lcosh nz - cos n(y - 6) cosh sz - cos n{y + a)

y - O y+ 0o

+
2 (y+0)2+ 2

(41)

niA, cos nuy cosh nnz - Ay -

(y - o) + z 2

o
I
p—

The average interference velocity in the plane of the wing (z = 0) is

o]

= 1
W = —— Wr 4
2% 25 |, ° J

In order to evaluate this‘integral, obtain lirst

y oo
Lyt 1 -cos nly - o) . .
4 vn dy = 1o -0 ; sin nny -
r 2 & Ee 1 - cos n(y + o) a *n Y
-y n=1
2
oAy + log, (y + 0)2
y - o)

As ¥y approaches o the first and last terms approach minus and plus
infinity, respectively. In order to eliminate the indeterminateness,
the two terms are combined and the cosine is expanded in series form.
Finally, the limit is taken as y approaches o.
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13 (y + 0)° 1 - cos n(y - a)
im =
y_»g 1 - cos 7(y + o) (y - 0)2

im (y + 0)® 2 L
1 - cos n(y + o) (y - 0)2

Yy—>0

Lg© ;ﬁ
1l - cos 2no 2

By using this 1imit, the average interference velocity becomes

0o

- C.o
r ng ; o
Wy = —|log, (—22 ) - sin nno + i¥e)
2" bxo ge(sin nc) E:; An A+ 2 (h2)
n=
VoA
For this rectangular tunnel & = w? ; SO
o]
_ _A 1o E Co0
5 = 1o — ) - sin nno + ———— L
g2 ge(sin no> L An (A + 1) (43)

Correction factors are plotted as a function of the restriction
constant for several values of o 1in figure 8(a) for a square tunnel
(N = 1) and in figure 8(b) for a tunnel with A = 0.5. The nondimen-

sional restriction constant is defined as ¢ = %, where h 1s the semi-

height of the tunnel. For the tunnel under consideration then, c¢ = %.
The value of ¢ for a rectangular tunnel of height-width ratio A with

N slots 1n each horizontal wall is given by

= 2_ N
c =y lny (h )
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Solid-blockage interference.- Consider next the problem of solid-
blockage interference in the rectangular wind tunnel with top and bottom
walls slotted. The solid body in the tunnel is again represented by a
doublet with axis alined with axis of the tunnel and located at the ori-
gin of coordinates on the tunnel axis. The boundary condition at the

Ny _
dy
a horizontal row of doublets with axes alined with the axis of the tun-
nel and placed along the line x =0, z =0 at y=0, y=+#2,
y=#*h, . . .y = to. The potential of such a row is given by

op = - ﬁ%—;{:: = (45)

k=-o {Ey + 2k)2 + 22 + 3%]5/2

closed side wall (y = *1) is This condition is satisfied by

and the vertical derivative by

&
8

r_om
z bn

3z

k= ~o0 Ky + 2K)2 + 22 + xﬂb

Q/

The total potential @p = @ + @g must satisfy equations (34), (35),
and (36). As before, @4 must satisfy equation (3+). A solution of
Laplace's equation which meets this requirement is

[0 4] [o4) 2
Qg = ﬁ;; Ag cosh E\ﬂsn)z + (t—ﬁr—)jl +
=0 1=
B., sinh|z \|(sn)2 + tx)2 cos sny sin HX (47)
st L L

As in the case of 1ift interference Pr is an odd function of 2z and

dz
in order that both equations (35) and (36) may be satisfied. Conse-
quently, Bgi = 0, and

is an even function; therefore, ¢y must be an odd function of z
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- m 2, (tm)2 in tx
Py I ZZ Agy coshlj\j(sx) + (L >]cos sty sin a (48)
Agt \l(sn)g + (—%‘)esinhlg\l(syr)2 + (%‘)ﬂcos sty sin tnTx

(49)

Now let equations (45) and (46) be expanded in Fourier cosine series
at the boundary =z = A. Then,

o0 2]

t
s=0 t=0
w o0 00 ) .t
IR DIDTL ST
s= t=

where Cgy and Dgy are given by

s Lx
upf X sin T COS sny
0 k_-oo [y+2k +>\2+x:’37

1/2
1

p t t“X cos sxy dx dy
CSt = ? Tf (52)
0 k—-m \Iy+2k + N2+ x@

where P =

—~—~~
n 0
o O
~—

~
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1 L N
) = Dx sin Y¥X cos sny
DSt = _p % L dx dy
t jrampr >, 2., 25/
o Yo (y + 2k)= + A© + xj]

1 L %
2 A cos ¥X cos sy

FEE | | 2 L o

—— . 3 /2
Jo Jo k= J[Ey + 2k)2 + A2 4 x%] /

(53)

By substituting equations (48), (49), (50), and (51) into equation (35),
Ast can be written as

Cst - ZDst

cosh x&sn)z + (35)2 + z\](s,oz ¥ (EL’L)gsinh \j(sn) (tn)e

(5k)

Ast -

By substituting the equations (52), (53), and (54) into equation (L8),
the result is

n] .
o S._ ! ’J ] 1A cos —t%E cos snQ cos —LE CO8 GRQ 45
Lﬁ—_., fJ x’zx)“+)\2+ ]}/ [a+ak)2+)\2+ﬁﬂ
' R LUBh[‘J(B‘)2 cos say sin 9‘—’5
bht(ﬂﬁ) + t")‘] + l\[(su)2 s (= (sinnigqi(sn)z + %—) ]

B.O t=0
(%)

As 1 approaches w, the integral with respect to L in equation (55)
becomes
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L
IN cos B cos 251(0 cos tnf COS SnQ
L _ L ap =
2 1/2
Ea + 2k)2 + A2 4 BQ:P/ [(a + 2k)2 + N° 4+ BE:] /
0
Y 00 t 0 t
cos tnp ap cos tnp ap
1A L 5/2 - L 7 cos snQ
o Ea+2k)2+)\2+ﬁ2:] o Ea+2k)2+7\2+[32:|
In reference 19, the first integral on the right is written as
o0

(g2 + RQ)B/2 R

where q = %%— and R = V(a + 2k)2 + A2, Multiplying both sides of equa-

tion (56) by -RdR and then integrating both sides with respect to R
from R to o gives

cos gf 4dp - Ko(Rq)

Jo (24 212

Let 1 approach . Then, the interference potential Pg and its
derivative with respect to 2z can be written as

Vo + 202 + 22

cosh E\E? + (sx)ﬂsin gx cas sxy| dg
coshE\ﬁz + (51)2] + c)\dqz + (ai)zsin.hE\Jq2 + (51)2]

- - . 2- fl{qc)ﬁxlEl‘J(u + 2k)2 4+ kg] - |a k“ 202 + {2]} cos s dx
k=-a
mp % (]

(o1
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- - 2 g f‘ {q( A?KIE\J(G *221()221— xz] Ko[ @+ 202+ A]} o Sre A
d& _ . m o \Fa ' Lk) +¥ sosh I:Z\EE + (sx)?]cus yx con say| dy
=0

coun bk + (007 + AP+ mBatan W ¥ (07

= = 2[ °H - Hy(h,s ] .
. . f a” Jach I(R,S’Q) 0( 3,4) cosh Z\EZ + (59()2(:05 gqx cos sxy dq (98)
2
o

c(r,s,q) + cs{A,s,q)

2
2
ol

where

Z Ky |a [\j(a + 2k)2 + ?\] cos sna do

k= (a + 2K)C + A°

1 2 .2
o f g K, E{(a + 2k)° + ?\‘I cos sna da
O

K= ~00

c(7\,s,q) = cosh que + (sn)@
S(A,s,q) = RJ&Q + (sx)®sinh xdqz + (s1)?

and where 1 has been replaced by ch. The interference velocity up

=
i

of a doublet symmetrically located in a tunnel with its axis alined with
the axis of the tunnel is given by

Up = Up + ug - Uy

By S (oK) 4 2? - R
ox b k=0 Ey + 2k)2 + z€ + xé]S/e

(x # 0)
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This is for a doublet of strength m/4x in a tunnel of unit semi-
width. For the general case, at the origin,

1 s m 1
Y . (5
3% /x0  3om03 L 13
y=0
z=0

Equation (59) was solved numerically for the interference velocity us

of a doublet in a square tunnel (A = 1), and the ratio uebé/m is plotted

1

in figure 9.
c + 1

against

Lift Interference in Rectangular Tunnel
With All Sides Slotted

Consider the 1ift interference for a small lifting wing symmetrically
located in a rectangular wind tunnel of semiheight A and unit semiwidth
and with all four sides slotted. The widths of the individual slots are
determined by calculating the points on the walls of the rectangular tun-
nel which correspond to the slot edges of a uniformly slotted circular
tunnel, with the assistance of a transformation which maps the perimeter
of a rectangle of semiheight A and unit semiwidth into the perimeter
of a circle of unit radius. 1In the analysis of this particular problem
the transverse cross-sectional plane of the rectangular tunnel, which has
been previously the y,z-plane, will be taken as the complex Z-plane where
Z = x + iy. The cross-sectional plane of the circular tunnel, which has
previously been treated in terms of the polar coordinates (p,e) will here
be taken as the complex {-plane where { = & + in. 1In reference 20 the
transformation which maps a rectangle in the Z-plane into a unit circle
in the {-plane is given as

_sn AN'Z dn A'Z
¢ = cn A\'Z (60)
or
(2 - L= cn 2\'2 (61)

1+ cn 2\'Z
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and A' 1is determined from

o1
!

= = A (62)

n
>

where K and iK' are the quarter periods of the preceding Jacobian
elliptic functions. A method for calculating A' and tables of the
preceding Jacobian elliptic functions are also given in reference 20.

The quadrantal perimeter of a square (A = 1) and the gquadrantal perimeter
of a rectangle (A = 1/2) were mapped into the quadrantal arc of a unit
circle by using equation (61) and the results are given in figure 10.

The lift-correction factor for a small 1lifting wing symmetrically
located in a rectangular wind tunnel may be written as

Noor _ M2R), g
5g = ~ (63)
URP O'RF

since ;éR = (VgR)Z:O for a small lifting wing.

The complex velocity in the Z-plane at a point on the x-axis is

—- dw: —iVR: - gﬂ%: —ivcg_';..
az dt az az
or
ag
VR = Vp —= an
R= Ve D (64)

The interference velocity for the rectangular tunnel is thus
af
vor = {vic + V2c)§ - ViR (65)
In reference (21) d{/dZ is written as

= A (66)

KIS
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at the origin. Evaluation of equation (10b) at the origin gives

I 150 W
vic = '<§5" b=0  2nog (67

p=IL
2

From the analysis of 1lift interference in a circular tunnel (eqs. (1ka),

(13): (18)) and (20))

e
- Cl ~ 1 68
pE v 1) (68)

at the origin. The vortex semispan in the circular tunnel oc 1is deter-
mined from equation (61) by setting Z = OR (whence, t = cc). The
velocity Vigr 1is given by

_ _ _r 6
le 2x GR ( 9 )

at the origin. This differs from vyo (eq. (67)) only because of the

change in vortex span. If, now, equations (66), (67), (68), and (69)
are substituted in equation (65) the result is

I 1 C = 1Y+t 1
Vop = —|{- = + o =—==\" + = 0
2R = of ( oc Cox l) cé} (70)

Substituting this in equation (65) gives, for the lift-correction factor
at the center of the vortex span,

- _A 1 c -1 _ 1 1
°r = EncRE(GC c+ 1 UC) * UR:[ (72)

In the limit as OR — O this becomes
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_AC e = 1 1 -om\| _AEfe -m 1
6R 2% K} + l) * ( 3 }] bt ( 3 c + l> (72e)

where m 1is the parameter (see ref. 20) of the elliptic functions of
the transformation. The behavior of m 1is such that if A < 0.5 it is
sufficient to use

= A2 1 - (1 _ _ 1 ob
°r T (3 c o+ l) l6%<§ c o+ l) (720)

When A = 1.0 (square tunnel), m = 0.5 and

oy = M'g% .1 ) - 0.27%(% - 1) (72c)

x c+ 1 c +

When A > 2.0, the correction factor is approximately

n

5R=m‘2<§_ 1 >=r_t_%_g_ l) (724)

Equations (72) apply to wings of small span.

The 1ift correction at the center of the wing has been calculated
for a small wing in a square tunnel (A = 1) and for a small wing in two
rectangular tunnels (A = 0.5 and A = 2); the lift-correction factor oy

1

is plotted against p—

in figure 11.

Two-Dimensional Tunnel

Lift interference.- Consider the problem of the 1lift interference
in a two-dimensional wind tunnel with the top and bottom walls slotted.
The wing in the tunnel will be represented by a two-dimensional 1ifting
vortex located at the origin of the coordinate system, which is centered
between the slotted walls. The potential of this vortex in a free field
is




NACA RM L53EOT7b 35

and the vertical derivative is

39,

- x
oz 2n 42 , .2
The interference potential takes the form
o©
= in BXX g4 nnz
P, = E (An sin L sinh 0 ) + Az (73)
n=1

There is no axial interference along the tunnel center line (z = 0)

because —=2 = O. The vertical interference at the origin is simply
X

Inasmuch as the summation does not contribute to the wall-induced
velocity at the origin, it is sufficient to study the term A,z by

itself. If the multiple-valued function for P 1is set equal to zero
at the upstream infinity (z = -») it is apparent that the Fourier series

expansion of P71 at the top wall will result in a constant term - L

plus an odd function of x. The expansion of BQl/Bz will be an odd
function with no constant term. Thus, if the constant terms in P15, Po,
and 8¢2/Bz are inserted in the boundary condition at the upper wall

(z = h)

SPp _
Pp + 3 S (74)

the result is

r
-t Ah+ 1A, =0

ro1
A = 4
© khhoe+1
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where ¢ = %. The vertical interference velocity al the origin is given
by
S
WA = =
e bh e + 1

Thus, the interference is found to be downwash at the origin which
varies in magnitude from zero for a closed tunnel to a maximum for the
open tunnel. Because

e (72)
where
c = ﬁ%-loge;Fsc %,ro
and
d slot spacing on horizontal walls
h half-height of tunnel
L open ratio of the uniformly slotted horizontal walls
cy airfoil-section 1ift coefficient
c alrfoil chord

The induced angle is, of course, not constant along the chord of the
airfoil; therefore, the wall-induced flow can be considered to have a
certain curvature. This curvature has an effect similar to that of camber
in an airfoil, and if the length of the chord of the airfoil is suffi-
ciently great compared to the height of the tunnel, a curvature correction
is required (ref. 3). This curvature can be determlned from a complete
solution for ¢, (eg. (73)) under the boundary condition of equation (74) .
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Solid-blockage interference.- Consider the problem of solid-blockage
interference in a two-dimensional wind tunnel with top and bottom walls
slotted. The solid body in the tunnel will be represented by a two-
dimensional doublet with axis alined with the tunnel axis, and located
at the origin of coordinates on the tunnel axis. The potential of this
doublet in a free field is given by

m X
Py = - &+ —E— (76)
2 2 , ;2
and the vertical derivative by
X _m__xz (77)
Jz x 2
(x2 + 22)

The interference potential P> must satisfy Laplace's equation. Since
@1 1is an odd function of x and an even function of 2z, @p must also
be an odd function of x and an even function of 2. Therefore, o,

can be written as

o0
= L A, cosh KXZ gip lax 8
P2 2;:2 k L L (78)
n=1
and the normal derivative by
&) o0
—e =0 kxt p, sinh KIZ g3 kox
2 mli L k L L (79)
n=

The boundary conditions to be satisfied along the slotted walls (z = %h)
are

at Z=h q)1+q)2+l—a§z—(q)l+q)2)=o (&)a)
and
at z = -h P+ P -1 g%cPl + @2) =0 (8op)
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These conditions are satisfied by expanding ¢ and &pl/az into

Fourier sine series in x along the slotted walls and then solving for

the coefficients of ¢, that satisfy these equations. Along the

line 2z = h, equations (76) and (77) can be written as

=1
(2]
__Bcpl = 3 E ¢, sin KX
Z 21 k
=1
where
L
2 X s KX
= £ sin dx
P L (x2 + h )
0
and
L
Cy = %— hx 5 sin BXX gy
2 2
0 (X 4+ h )
A single integration by parts results in
L cos XXX
Cx = knh L dx
L x2 + h2

0

(81)

(&)

(83)

(84)

By substituting equation (83) for B, and equation (84) for C, into

equations (81) and (8), respectively, and then solving equa-
tions (80), (81), and (82) for Ay, the result is

L
uo X2 + h2

L
[ _hllm cos —kix - sin k:th dx

coshk—“—}l+ lk-isinh#kl@-
L L L

(85)
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By substituting equation (85) for A, into equation (78), the result is

® L [hiks kna . kna
cos - a sin =
L L L
do
P = - L x cosh KIZ g4y kux
x° L cosh ¥th 3 KX g4y kah L L
L L L
k=1
(86)
Let q = 1;—“, N = %, and let L —> «». Then equation (86) becomes
00
r hikn cos g@ - @ sin g
L do
m 0 (22 + h2 .
Po = - — cosh gz sin gx dq
22 cosh gh + 1q sinh gh
Jo
o0
-gh _ ¢-gh
= - lge < cosh qz sin gx dq
2n cosh gh + Iq sinh gh
o
-gh -
= - o e (1 - 1) cosh gz sin gx dq
2% cosh gh + 1q sinh gh
0
” q
= - o e(cq - 1) cosh 32 gin & dq (87)
2nh cosh g + cq sinh q h h
0

where gh has been replaced by q and c¢ = £. The interference veloc-

e

ity uw 1s
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aq)z m ge"Y(cq - 1) qy gx
- - = cosh =L cos 2= 4 88
U2 % osh 4 (88)

2ﬁh2 cosh q + cq sinh g
o)

At the origin, equation (88) reduces to

e 9(cq - 1
w = 2 qe(eq - 1)__gq (89)
Drhe cosh q + c¢q sinh g
0

Equation (89) has been evaluated numerically, and the axial-interference-

in figure 12.

velocity function ne/m  is plotted against
Y 2 c + 1

DISCUSSION

Application of the Results of the Interference Analysis

Consider the problem of determining, say, the correction factor &
for a particular wing in a square tunnel. The tunnel has four slots in
each horizontal wall, with an open ratio of 0.164. The vertical walls

are closed. From figure k, log, csc g~ro = 1.37. After using equa-

tion (44) to determine c, the value of 1 T is computed to be 0.82.
c +

The wing has an effective span of one-half the tunnel width, and for this
case, figure 8(a) gives the value of the correction factor as -0.062.

If a semispan reflection-plane model of a wing of twice this span is
tested, the effective height-width ratio of the tunnel will be 0.5 and
the correction factor will be -0.146.

Comparison With Previous Results

A comparison of the results for the 1ift interference of circular
tunnels with the results of reference 13, in which the individusl slots
are considered, shows striking agreement for wings of small span (fig. 6).
In the case of a lifting doublet in the center of the tunnel the results
agree within 2 percent for only 4 slots and even more closely for greater
numbers of slots. This agreement would seem to be sufficient proof of
the justification for the basic assumption underlying the present theory,
that the wall can be considered to be homogeneous. This assumption is
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not made in reference 13. The theory of this reference indicates that

for small numbers of slots, say 2 or 4, the 1lift interference varies
appreciably with the orientation of the slots. This variation, of course,
cannot be predicted by the present theory.

The results of the analysis of solid blockage interference are com-
pared with the results of the analysis of reference 9 in figure 7. The
results of this reference are seen to straddle the curve obtained in the
present analysis. The spread in the results of reference 9 may be due
to the fact that the series used in the calculations converged very slowly
in the case of ten slots.

The present theory will now be compared with the experimental results
of reference 9. For the 10-slot circular tunnel the present theory pre-
dicts a small negative interference. The magnitude of this predicted
interference is about 1/13 that for a closed tunnel and about 1/3 that
for an open tunnel. An inspection of figure 7 (ref. 9) shows that the
measured Interference in the slotted tunnel checks very closely with
these values. This is a single-point comparison at the midpoint of the
body, however, so it can not be regarded, in itself, as a complete veri-
fication of the theory. In fact, this body was so large with respect to
the tunnel diameter that the present theory, btased on a doublet in the
tunnel, could hardly be expected to apply.

A much smaller body was tested in the 8-slot octagonal tunnel of
reference 9. For thils tunnel the present theory predicts the value of
the axial-interference-velocity function to be ~0.006. This is less than
> percent of the magnitude of the interference in a closed circular tun-

nel. The predicted interference velocity ratio for the l%--inch model
in the slotted tunnel is E% = -0.0002 for incompressible flow. Even

when multiplied by the compressibility factor (l - M2)-3/2, it is obvi-
ous that this correction is within the usual experimental accuracy for
Mach numbers within the range of application of the linearized theory.
For instance, at M = 0.9, the axial interference velocity is approxi-
mately l/h of 1 percent of the free-stream velocity. The experimental
results in figure 12 of reference § show that the interference was negli-
gible along the whole length of the body at all speeds up to a Mach num-
ber of about 0.9, Thus, these experimental results are consistent with
the present theory with regard to blockage interference.

Application of the Concept of a Restriction Constant

The concept of a restriction constant can be useful in other ways
than in the direct solution of problems in slotted wall interference as,
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for instance, in providing a common basis of comparison for walls with
different slot spacings. As an example of this type of problem, consider
a circular tunnel with cight evenly spaced slots arcund the circumfer-
ence, with an open ratio of 0.15. OSuppose it is desired to construct
another circular tunnel with the same interference characteristics as
this tunnel but that it is also desired to increase the number of slots
to 12. For the given 8-slot tunnel ¢ = % loge M = 0.365. For the same

value of c, the 12-slot tunnel must have an open ratio of 0.071.

Using this concept, it is also possible to determine the effects of
changing the shape of the slot cross section. With the realization that
the theory depends upon an essentially potential flow in the slots, for
instance, the question arises as to whether the sharp-edged slots could
not be improved upon. It might be advisable to try smoother shapes in
an attempt to obtain a closer approximation to potential flow in the
slots. The restriction constant 1 could be determined for any slot
shape either analytically by calculation of the potential flow through a
group of such slots in cascade or experimentally by a simple electrical
analogy. Once 1 has been determined the results of the present analysis
could be used to predict the interference for such slots.

Experimental Determination of the Restriction Constant

If experimental data of sufficient accuracy to permit the evaluation
of the 1lift- or blockage-correction factor for a particular slotted tun-
1
c + 1
from the curves presented in this paper. Once the value of this parameter
is known, corrections may be computed for other wings in the same tunnel.

nel are available, the effective value of can be read directly

Limitations of the Theory

Some question arises as to the range of validity of the equation
for the restriction constant of a slotted wall, inasmuch as the open ratilo
required to obtain a given value of ¢ decreases rapidly as the number
of slots increases. Since the normal mass flow remains constant with ¢,
this requires a continuously increasing normal velocity in the slots
which, although it is permissible in the assumed incompressible flow, is
not possible in the actual physical flow. It appears, from these consid-
erations, that the limit of applicability of the restriction-constant
equation will be determined by the required normal flow velocities rather
than directly by the smallness of the slots. This limitation should be
considered in the application of the results of this analysis to the
design of wind-tunnel test sections.
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There is, also, some question regarding the use of potential-flow
theory in the region near the slots. This question arises because the
potential theory omits certain flow phenomena, in particular, the pres-
ence of a mixing region at the boundary between the moving tunnel air
and the essentially static air outside. The adequacy, for the purpose
of interference computations, of the potential theory must be determined
by experimental studies.

The restriction constant has been determined by assuming the effec-
tive free boundary (p = 0) to be located along the line between the slot
edges. If the boundary were actually located outside of this line, the
slot restriction constant would be somewhat larger. If the slots had a
finite depth +t, instead of being essentially sharp-edged orifices, and
if the effective free boundary were at the outside of the slots, the

restriction constant would be approximately 1 = % loge u + gL. Actu-~
o

ally, it is likely that in the case of slots of considerable depth, the
location of the effective free boundary would be a function of the local
outflow or inflow. Not only would this make any calculation of the inter-
ference questionable but it would also present the distinct possibility
that the correction factor might be an unpredictable function of model
size and angle of attack.

CONCLUDING REMARKS

The solid-blockage interference for a doublet on the tunnel axis
and the boundary interference for lifting wings in circular, rectangular,
and two-dimensional slotted tunnels have been calculated by substituting
an equivalent homogeneous boundary for the physical boundary of discrete
slots. In the case of small wings, the results calculated with the
assumption of homogeneity have been found to be consistent with those
calculated for the discrete slots for as few as four slots in a circular
tunnel. Furthermore, available experimental results for blockage inter-
ference are consistent with the results of the present analysis.

Through the concept of a wall restriction constant it is possible
to reduce the interference due to all different slotted-wall configura-
tions for the same tunnel shape to a single curve. Thus, the number of
computations required to describe completely the interference for a
given-shape slotted tunnel with different slot spacings and open ratios
is greatly reduced.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May 12, 1953.
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Figure 2.- Sketch showing physical arrangement and nomenclature used in
equation for potential difference across a thin, straight slotted wall.
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Figure 3.- Sketch of the transformation of the section of the straight
slotted wall between y = t%d into an arc of a circular slotted wall.
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Figure 5.- Comparison of the potential as given by equation (6) and by
the approximate equation (7). d = n/4 (8 slots); u = 7.



NACA RM L53EO7b

50

.o.chm oso °BoT W = 5 ‘gq0Ts UfY3 J04 °STTBM Pa330Ts UYITM sTawmmi

PUTA JBTNOJIFO UT STUTA BulIFIT I0F SI0308F U0T308II00-AIBPUNOG =*9 aan8T

1+
H . .
o 8 9 t 2 o
T T T T _
* \hﬂ\lﬂs.mwam\(hvu !
b.
ID/ | -
J@Jw@r
/@/
B
ﬂ/@/ ;
/@//
.
sjo)s v O ¢0040=0 [
//
sjo|s 8 ] // y
sjois 21 o} ///
€1 @aoudisjey
2

g ‘J0}0EJ UOT}O8II0D)



51

Ol

N

c
z =0 ‘sq0Ts utyy 104 -STTBM P9130TS

Oy T 0289 °So1

UITA sTsUUNg PUTA JIBTNOJTO JOF 9OUSISJISIUT 28eqd0Tq-pITog ~-*/ oanSTg

NACA RM L53EO7b

T+0
1
—8 =2 L ¢ %o
e N
M~
d//o.
FaY /
— :
o
a1
//} e m,
~_ 5
// m
<1 <
/ m
.0
~] 80 z
suonendb /// m
ro1 1Enbs snosueitnwls $7 ‘syors S
(6 "300) sucTienbs snosuwiTnWIs p ‘sy01s ﬁouw mDu / >
2l g
Bl=
w
or



NACA RM L53EQTb

52

“sTTeM TB4UOZIJIOY aY3 Jo 0138 usdo ayz st ©a pus ‘1TBM TBIUCZTJIOY
(0w C 5 N
suo uT 83078 JO JaquWnu U3 ST N SIous ‘Pax = 08D FoT = =9

‘gq0Ts UTYL JI04 *P9330TS sTTBM wozjoq pus dog syj3 YITA STaUUMYG DUTM
JeTnSueloas ufl SFuUTmM FUTFITT JOJ SJI030BF UOTAISII0O-Arspunog -'Q aMBT g

*0'T = OT2BJI YIPTIM-3UBTIaH (B)

T+
oy 6 8 L 9 3 v € 2 _ Q.
R
./// _.l
— Lr /IT /
/ =
T — //U//
/r ,,/
L0= e I S Y 1'0=0
— /l..l/. 0
o Il S
r o~ /n/
/..///..l//d ...I/,.’
—~ T S
—~—— — /
-~ = I
- ,/ l/
/4/: ~L T3
1
Gg0=0 h
2

Q ‘J010B] UOTIDBII0D)



NACA RM L53EO07b

1.0

S
\\\

oc=0.1
~—_

T~
==

Q ‘JI0}0B] UOT}08JICD

C.5.

(b) Height-width ratio

Figure 8.- Concluded.

55



NACA RM 153EO07To

"STTeM TBIUOZTIOY 8y} Jo of3ex uado ayy ST ©OX pus TTeM TBIUOZTIOY
€04y C 3 N
SUC UT $30Ts Jo Joqumu Y3 ST N aaeus ‘Oxu T oso Bot =
utyy 203 f0°T = OT38d UIDPTM-3USTOH °D93a0TS STTBA wojjoq pus doj ouyg
Y3TA STOUUNG PUTM TeTNIUBI0ed JOJ SOUSISIISAUT 8FeN00Tq-DPITO8 -'6 omSTJ

0 §30TS

(@)

®)

(&V

q.
o

%)
©

<
O
]

‘uonioun) AJ100[@A- 9DUBIIINUT- [RIXY

joss

7
gaen



NACA EM L53EOTb 55

20

75 ////

N\

60 iy

N
N\
AN
<
G

30 /// ///

A

// S NACA”

) 15 30 45 60 75 90

8, deg

Figure 10.- Transformation of the quadrantal arc of a unit circle into
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