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STUDY BY THE PRANDTL-GLATJERT METHOD OF COMPRESSIBILITY 

EFFECTS AND CRITICAL MACH NUMBER FOR ELLIPSOIDS OF 

VARIOUS ASPECT RATIOS AND THICKNESS RATIOS 

By Robert V. Hess and Clifford S. Gardner 

SUMMARY 

By the use of a form of the Prandtl-Glauert method 
that is valid for three-dimensional flow problems, the 
value of the maximum incremental velocity for compressible 
flow about thin ellipsoids at zero angle of attack is 
calculated as a function of the Mach number for various 
aspect ratios and thickness ratios. The critical Mach 
numbers of the various ellipsoids are also determined. 
The results indicate an increase in critical Mach number 
with decrease in aspect ratio which is large enough to 
explain experimental results on low-aspect-ratio wings 
at zero lift.

INTRODUCTION 

Recent tests (references 1 and 2) have shown that 
an appreciable Increase in the critical Mach number, 
together with other improvements of the aerodynamic 
characteristics at supercritical Mach numbers, results 
from the use of wings of very low aspect ratio, These 
improved characteristics have been somewhat qualitatively 
ascribed to "three-dimensional relief .." although no 
quantitative theoretical discussion has yet been provided. 

In the present paper an effort is made to provide 
such a study by considering the flow, at zero angle of 
attack, about a series of thin ellipsoids of various 
aspect ratios end thickness ratios. Ellipsoids were 
chosen because they are emenablo to calculation.
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Although they differ apnreciably from the wings of 
reference 1, which hsd an NA P A 0012 airfoil section and 
rectangular plan forn, ellipsoids should nevertheless 
show similar as pect-ratio effects. The calculations 
were made for elliisoids of thickness ratios 0.10, 0.15, 
and 0.20, and for the entire range of aspect ratios 
from the elliptic cylindor to the ellipsoid of revolution. 

The compressibility effects were com puted by the use 
of a form of the Prandtl-Glauert method that is valid for 
three-dimensional flow p roblems. The method has been 
given by Gthert (reference 3)' without, however, very clear 
mathemat±cal p roof. Since the methods that have been 
commonly used (see, for example, reference )4, 5, and 6) 
are applicable only to two-dimensional problems a detailed 
proof of the method correct for three-diri.eniona1 flov: is 
included in the a.mendix.. A brief discussion of 1he 
accuracy of the Pr.ndtl-Glauert method, as alied to 
ellip soids, is also given. 

This study was made daring the period from October 
1945 to April 1946,

SYMBOLS 

U 

C 

M 

Y

_2 

x, y ,	 z 

B 

U, V, W

free-stream velocity 

velocity of sound in free stream 

Pree-stream Mach number (U//U-) 

ratio of secific heats 

rectangular coordinates 

thin bothr 

velocity potential 

x-, y-, and z-components of incremental 
velocity for compressible flow about B 

B'
	

body obtained by stretching B in direction 
of x-axis by the factor i/p 

U 1 , V, W t x-, y-, and z-components of incremental 
velocity, for incompressible flow about B' 
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a	 maximum semichord of ellipsoid 

h	 semispn of ellipsoid 

a	 maximum semi thickness of ellipsoid 

=

aspect ratio	 = (2b) 2 = 

rdb rra/ 
umax 

U 

i(M)	 value of 7, when the Mach number is equal 
to M 

U(0)	 vQlue of T for incompressible flow (M = C) 

( 
£	 thick	

Thickness
ness ratio _Chd 

(	 value of raO of incremental veldc.ty to 
free-stream velocity for compressible 
flow having Mach number M about a body 
having thickness ratio € 

U.	
value of ratio of incremental velocity to 

U

	

	 free-stream velocity for incompr&ssible 
flow about a body having thickness ratio c 

Subscript: 

max	 maximum value 

lTTHODS OF CLCULATEON 

The Prandtl- giauert method for three-dimensional 
flow.- The Prandtl-c-iauort method is used in the present 
paper in the following form: The incremental velocities 
at a point P on the surface of a thin body B in three- 
dimensional compressible flow mar be obtained . in three 
stes: 

(1) The x.-coordinates of all points of B are 

increased by the fact;or i/P, where	 = -Ji - M2 and
the x-axis is in the stream direction. This trans-
formation takes B into a 'stretched" body B', 

_C-OTP IDL-T I-
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(2) The velocity increments Ut, Vt, and w' 
p arallel to the x.-, y-, and z-axes, respectively, at 
the point. P' on the stretched body B' corresponding 
to the point P on the original body B are calculated 
as though B' were in an incompressible flow having the 
same free-stream velocity as the original compressible 
flow.

(3) The values u, v, and w of the incremental 
velocities at the p oin lC, P on B in compressible flow 
are then given by the equations 

P2 

p 

=
p 

A derivation of this form of the Prandtl-Glauert 
method is given in the appendix. The method in essentially 
this form has been given by Gbthert (reference 3) without, 
however, a very clear oroof. (Gthert prefers to shrink 
the lateral coordinates of the body by the factor 3 
rather than to expand the coordinate in the stream 
direction by the factor 1/3; obviously the two pro-
cedures lead to the same result.) Prandtl (reference L) 
and von Karmn (reference 5) state the method in a form that is valid for two-dimensional flows but in general is 
incorrect for three-dimensional flows. Goldstein and 
Young (reference 6) also give a discussion. leading to 
results that are correct only for two dimensions. A 
discussion of the reasons for the failure of these 
commonly used methods for three-dimensional flow problems 
is included in the appendix. 

Calculation of incremental velocity for compressible 
flow about _ellipsoids.- In order to determine, by the 
Pdtl-Glauert	 the incremental velocity on the 
surface of an elli p soid having seniaxes a, b, and c, 
where a is the length of the semiaxis in the stream 
direction, the incremental velocity is calculated for a 
stretched elliosoid having semiaxes a', h, and c, where 

a t = , in an incompressible flow having the same 

stream velocity, and the result is multiplied by i/p2.
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For incomrresble : fow about the stretched ellipsoid, the 
velocity potential on the surface of the elli p soid is 
given by

CL 0
TJx 

2 - . 

where
di 

a0 = a'bc / (a'
2 + j:/(t2 + ?) (h2 + X) (c2 + X) 

............... 

(see, for exam-,)le, reference 7). The incrementsl velocity 
at x =0 (hal.f-hord line on the 'stretched elli p soid in 
incornrressible flow) is then given by 

a0 
U' =	 U 

.	 •.	 .-	 0 

This value : is the maximum value f u' (reference 7) 
and evidently is the same at all points on the half-chord 
line. The incremental velocity at the half-chord line for 
the compressible flow about the original lmstretched ellipsoid 
is given b-

a 
U	 1	 0 

T2	 •.22-a0 

Various formulas are necessary for the evaluation of the 
integral a0 w	 s. hen	 ' > b > c, b > a' > c, or a'. > b = c 
(ell insoid of revolution). 

-	 For a' > h > c, the value of a0 is given by the 
formula	 .	

2a 'bc 
a .= 2. (a'2-b2)/a'-c 

where F and E are incomplete elliptic inteF?TalS of the 
first and second. 11-Ind, respectively, defined as follows: 

F= I	 c1/ __ 

2 III / j j3 in

(1)

(2)
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Ei k2sin2 d 

where  

	

k -	 /a'2 - b2 

	

T	
at2 - 

and :.-.........	 •..•.•. .......
. 

	

sin cc; =	 c2 
a' 

For b > a' .> c, the value of a0	 sgivenby.the 

formula	 . 

a	
2abc\/b2:c2	 . L	 (t2 - c2 F i	 2c2	 () o	

('h2 - at 2) ca' 2 -c2) L - kb2 - 2,I 
I - a' 2 - 

where F 'and-- ': F are defined as before, with 

1b2_at2 
- 

and	 •.	 .	 .	 .	 .	 .	 .	 . 	 .	 .	 . 
.2 

	

sin CO	
c 

b 

Equation (2) is derived
'
 -from the first equation given 

.f in equations (5.1 .3) of 	 7, by substituting a' for 
a and by using the expression .for, k in terms of a', b, 
and c. Equation (3) is derived from the second equation 
given in equations. (5.13) of reference 7 by interchanging a 

and b, subs ' tituting a' for a, and using the expression 
for k in terms of a', b, and c. 

For a' > b = c, (ellipsoid of revolution), a 0 is 

given by the equation 

2'   
a0	 a'b-/	 ---- 

.(at 2	 2)3/2 (b2 +x) 

—NF IDTI
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which resolves into

2 
a0	 -	 ( loge 	 e-. 2ea) 

1-	 / 
where

e  
at 

If this value for a0 is.substituted in equation (1), 
the incremental velocity at the half-chord line for the 
elliosoid of revolution is found to be 

loge	 + -- - 2e I - e	 Ti U 

2e _._ ba 
1-a2 

The limitina case of infinite asoect ratio (elliotic 
cylinder) was treated by the use of formulas for the 
elli p se in two-dimensional flow (reference 8). 

Calculation of the critical i'cach number.- For flow 
about  two-flmensi bodjTe free-strem Mach number 
for which sonic speed is first reached at some p oint on 
the surface is called the critical I'ach number, becau;e 
of the development of shocks and the accomanying deteri-
oration of the aerodynamic characteristics shortly ' after 
this Mach number is exceeded. For the general three- 
dimensional body, however, exceeding the the Mach number at 
which sonic soeeds fist spuear does not necessarily 
imny the oosihii.ity of shock formation; for example, 
in the case of the infinite yawed cylinder (reference 9) 
shocks may be impossIble even when supersonic speeds 
exist cn the surface. In this case, since the flow 
must he the same at corresponding points of the sections 
along the cylinder, any shock front must be p arallel to 
the axis of the cylinder. Such an oblique shock requires 
that the velocity component normal to the shock front - 
that is, normal to the cylinder axis - be supersonic. 
The.mas:nitude of the velocity component p arallel, to the. 
axis is immaterial. 

—1 
- 

By what. seems areasonable extension of this concept, 
the following criterion for the possibility of shock
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formation on the general three-dimensional body is 
tentatively pr000sed: Consider the line on the body 
MI-1t, forms the locus of those points where the total 
velocity on each streamline is a maximum (that is, 
where the pressure is a minimum); a shock will Corn 
when the velocity normal to this line exceeds sonic 
velocity at some point along, the line. 

It shculd be emphasized that, for the three- 	 ( 
dimensional body, the shock may begin to form- over 
only a very smsll region of the surface, so that, in 
general, existence of the condittcn just defined does 
not necessarily imply an imminent deterioration of the 
aerodynamic characteristics of the body. 

For the special case of the unyawed ellipsoid 
considered in the present paper, however, no aopreoi- 
able analysis of shock formation or shock extent alone 
the lines just indicated seems to be required. As is 
shown in the section "Calculation of Incremental Velocity 
for Comoressible Flow shout Ell1 S oid S tt , the maximum 
velocity for an unyawed ellip soid is in the stream 
direction and occurs simultaneously at all points aong. 
the hell-chord line. Sonic velocity is thus reache1 
simultaneously along a line that, extends across the 
entire span of the body and is normal to the stream 
direction. These ccndition.s also exist in the case of 
the unyawed infinite cvlin.dei', that is, the two -dimensiona] 
body.

The critical 1iach number of the ellipsoid was 
accordingly determined by solving graphically the 
equation

+	 2 
(M) = & /	 -1 

Y+l 
2 

where	 (ii) is the ratio of the incremental velocity 
at the half-chord line to the stream velocity at the 
ivhic h number M. 

kccuracy of the Prandtl-Glauert nethod.- The 
Prandti-Glauert method is based on the assumotion of 
small perturbations. Consequently, near the nose of 
the ellipsoids discussed in the present paper, where 

—O(hTIDLTTIAL -
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the assumption of small p erturbations is violated, the 
results given by the Prandtl-Glauert method cannot be 
expected to bereliable. More reliable values, however, 
should be obtained for the maximum increme.ntsl velocity, 
which occurs at the half-chord line. The accuracy of 
the Frandtl-Glauert approximation for the maximum more-
mental velocity may he estimated by c6mp arison with more 
exact solutions of the compressible flow problem. An 
iteration method In which the Prandtl-Giauert method is 
used as the first approximation hes been proposed by 
Busemann (reference 10). The first and second aproxi-
rntions have been calculated. by Fantzsche and Wendt for 
the elliptic cylinder (reference ii) and by Schrdeden 
and Kawalki for the elli p soid, of revolution (reference 12). 
Calculation of the maximum incremental velocity for the 
elliptic cylinder having thickness r !-to 0.20 by a 
formula for the second approximation given in reference 10 
shows that the value given by the irardt1-G1auert method 
at a Mach number or 0.9 is almost 20 cercent lower than 
the value giv.n by the second aporoximatin. For the 
ellipsoid of revolution, however, the value of the 
maximum incremental velocity given y the Prandtl-
Glauert method agreed with the value given by the second 
approximation to wIthin. 5 percent at a Mach number of 0.8 
for thickness ratios up to 0.30'. Althou gh the second 
sonroxirnation is not the exact solution, it indicates 
that the error involved in using the Prand.tl-Glauert 
method to estimate the maximum incremental velocity for 
ellipsoids having a given thickness ratio is greatest 
for the limiting case: of the eilip.tic cylinder (A = 
and very small for the elli p soid of . revolution, which 
has a very low aspect ratio. . :The error may he expected 
to be intermediate in magnitude. for intermediate viues 
of the aspect ratio and tc decrease with' as pect. ratio. 
The reduction of error of the Frandtl. -(flsuert method with 
a decrease in aspect ratio was to be expected, as the 
incremental velocities are smaller for ellipsoids having 
low as p ect ratio.

RESULTS AND DISCUSSION 

Results.- Figures. 1, 2, and 3 show the value of the 
velocity ratio U = at the half-chord line plotted 

against the Mach number for elliosoids at zero angle of 

._.___iJ 0IDEUTIAL
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attack for various aspect ratios and section thickness 
ratios equal to 0.10, 0.15, and 0.20. In the same 
figures the sonic velocity boundary having the equation 

•	 l2 
-	 1 	 2 
u=±\	 -.1 

+ 1	 - 
2 

is plotted. The abscissa of the intersection of this 
boundary line with the curve of U plotted against M 
for any aspect ratio is the critical Mach number. In 
order to show the effect of compressibility , more directly, 
the ratio	 of maximum. incremental velocity for corn-

u( o) 

pressible flow to the maximum incremental velocity for 
incompressible flow for the same free-stream velocity is 
plotted against the Mach number in figures L, 5, and 6 
for the same aspect ratios and thickness ratios. Similar 
curves for the ellipsoid of revolution, which is a 
special case of the ellipsoid, having three unequal axes, 
are plotted for the sane thickness ratios in figures 1 
to 6. Figure 7 presents curves of critical Mach number 
against aspect ratio for thickness ratios of 0.10. 0.15, 
and 0.20. 

Three-dimensional relief.- It may be seen from 
figur	 I. to 5 that the three-dimensional relief, that 
is, the difference between the velocity on the ellipsoid 
and the velocity on the corresponding ellipsoid of 
infinite as pect ratio (elliptic cylinder), increases 
with a decrease in the aspect ratio. This increase has 
two causes: 

(1) For a flow with M equal to zero (incompressible 
flow), the relief effect increases with a decrease in the 
aspect ratio. 

(2) For larger values of M (compressible flow), an 
additional relief effect occurs with a decrease in the 
aspect ratio because of the fact that the compressibility 
effect (increase of incremental velocity with an increase 
in the Mach number) decreases with a decrease in the 
aspect ratio. (See figs. L to 6,) It may be seen that 
this additional three-dimensional relief increases most 
rapid.ly.at high Mach numbers. 

0T' ID1TTIA
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From figures 1 to 6 it may be seen that the compressi-
bility effect on the maximum incremental velocity is 
greatest for A equal to infinity (infinite elliptic 
cylinder) and is smallest for the ellipsoid of revolution. 
The compressibility, effect on the maximum incremental 
velocity for the elliptic cylinder is proportional to 

which is in agreement with the usual form of 
' v'l	 M2 

the •Prandtl-Glauert method in two dimensions. The com-
pressibility effect on the maximum incremental velocity 
for the ellipsoid of revolution is small in comparison 
with that of the elliptic cylinder. In fact, as the 
thickness ratio of any type of body of revolution 
approaches zero, the compresib±lity correction factor 
approaches unity, for In this limit" the incremental 
velocity in incompressible flow is proportional to the 
square of the thickness ratio .,-so that the effect of 
stretching the body (first step of.Prandtl-Glauert method, 
see the appendix) is exactlyconpensated for by the multi-
plication of the incremental velocities by 1/p 2 (third 
step of the Pi'andtl-Glauert method). For ellipsoids of 
practical thickness ratios, however,,- the incremental 
velocIty varies more slowly than. the square of the thickness 
ratio.. The compressibility effect for the ellipsoid of 
revolution (figs. 4,'5 ., and 6) is thus considerable at 
high Mach numbers. For example,. for a thickness ratio of 
0.20 and at a Mach number of 0.8, the compressibility, effect 
amounts to about 30 percent of the incremental velocity in 
incompressible flow. 

The effect of the thickness ratio on the three-
dimensional relief maybe seen bya 'comparison of fIguresl, 
2, and 3. From figuTel. it maybe seen that, for a 
thickness ratio of 0.10; at a Mach number of 0.75, the 
maximum incremental velocity for A 2 is 76 percent 
of the maximum incremental velocity for A co. From 
figure 3, on the other hand, it may 	 seen that, for 
a thickness ratio of. 0.20, at a Mach number of 0.75, the 
maximum incremental velocity for A = 2 is 75 percent 
of the maximum incremental velocity for A =oo. Thus, 
an increase in the thicknoss ratio causes only a very 
small increase in the three-dimensional relief. 

Critical Mach number..- L : igurec 1, 2, 3, and. 7 
indicall na an increase in the critical Mach number 
of an ellipsoid at zero , l:Lf may be obtained by decreasing 

'--0tFiI)iITT Lr
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the •aspect ratio. For example, for ellipsoids having a 
thickness ratio of 0.10, a decrease in the as pect ratio 
from infinity to 2 •causes the critical Mach number to 
increase from 0.227 to 0.857. For .a thickness ratio of 
0.20, a decrease in the aspect ratio from infinit y to 
2 causes the critical Mach number to increase from 0.741 
to 0.783. Although ellipsoids having greater thickness 
ratio have lower critical Mach numbers, a decrease in 
the as pect ratio is slightly more effective in increasing 
the critical Mach numbers for ellipsoids of greater 
thickness ratio. Figure 7 indicates that only a large 
reduction in aspect ratio will cause a sigificant rise 
of the critical Mach number. 

Comparison with test results on low aspect ratio 
winos.- Figure 6 of reference 1 shows the minimum drag 
coefficient (CT) for zero lift) plotted against the Fach 
number for wircs having an 	 0012 sect !ion and various 
asp ect ratios. The critical Mach number for any aspect 
ratio may be estimated roughly as the Mach number for 
which the drao coefficient first begins to rise. The 
rough estimate of the critical Maci numbers obtainable 
by this consideration is not. sufficiently accurate to 
warrant comparison of the numerical values with the 
numerical values of the critical Mach number obtained 
in the present pacer for thin ellipsoids. Comparison of 
the numerical results is, moreover, not warranted inasmuch 
as the wings of reference 1 did not have an elliptic 
section and furthermore had a rectaneular plan form. 
A qualitative comparison may be made, however, between 
the results of the present Paper and. those of reference 1. 
The increase in critical Mach number with decrease in 
aspect ratio indicated, in figures 1, 2, 3, and 7 of the present p aper, is considered sufficiently large to explain 

 the corresponding effect indicated in figure 6, reference 1. 

It is mentioned in reference 1 that the Mach number 
for a significant rise in the drag coefficient is approxi- 
mately 0.1 higher for an aspect ratio of 2 than for an 
infinite asnect ratio. This vlxe is considerably higher 
than the increase in critical Mach number due to a decrease 
in the aspect ratio. Since, for low-aspect-ratio winos, 
the drag coefficient increases only gradual ly after the 
critical Mach number is reached, the critical Mach number 
for a wing having low as pect ratio does not indicate so 
critical a change in the flow phenomena as the critics]. 
Mach number for -:a wing having high aspect ratio. It is



iTAC.i F1M No. L70a	 COPTDLiTI,	 13 

thought that the smaller rate of increase of the drag 
coefficient for wings having low aspect ratio is due to 
the fact that, at the critical Mach number., the rate of 
increase with Mach number of the incremental veloctty is 
less than for high aspect ratios, as may be seen from 
fi gures 1, 2, and 3.

CONCLUSIONS 

A Study by the Prandti-Olauert method of compressi-
bility effects and critical Mach number for ellipsoids of 
various aspect ratios and thickness ratios indicated the 
following conclusions: 

1. The flow about the unyawed ellipsoid is analogous 
to that about the infinite unyawed cylinder in that 
sonic velocity is reached, simultaneously along a line 
that •extends across the entire span of the body and is 
normal to the stream direction. 

2. The critical Mach number for a thin ellipsoid. 
may he predicted with good accuracy by means of the 
Prandtl-Glauert method, and the accuracy increases with 
decrease in aspect ratio. 

3. The compressibiity effect on the flow about an 
ellipsoid decresses as the aspect ratio decreases. 

L. The three-dimensional relief for ellispoids is 
essentiai,i y inde pendent of the thickness ratio, for 
thickness ratios from 0.3.0 to 0.20. 

5. For ellipsoids of thickness ratio 0.20, the 
critical Mach number increases by 0.04 when "the aspect 
ratio is changed from co to 2; for ellipsoids of thickness 
ratio 0.10 the increase is 0.03. 

6. The calcuiatd increases in critical Mach number 
are sufficiently large to explain the experimentally 
observed increases in the Mach number at which the drag 
first begins to rise. 

7. The experimentally indicated reduced rate of 
drag rise for low-aspect-ratio wings at zero lift as
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compared to that for wings having infinite aspect ratio 
may be explained qualitatively on the basis of the 
reults obtained for the three-dimensional relief for 
ellipsoids. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee For aeronautics 

Langley Field, Vs. 

—Q O:IDlT
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APPENDIX 

Ti-TI. PRNDTL-c-IATJgRT IiF.TIiCD FOR TP.RIF-DIIv'BNSIONAL FLOW 

A derivation of the Prandtl-0-lauert method for three- 
dimensional _flow.- A brief derivation of a.form of the 
PraiTTlaueimethcd correct for three dimensions may 
he Qiven as follows: A first-order aoroxImation to the 
subsonic comoressible flow about a thin body B, the 
surface of which has the equation 

IS (X, y, z) = 0 

may be obtained by finding a solution of the linearized 
differential equation for the potential çp of the 
incremental velocities, 

rz 2 co 	 +	
+	

= 0	 (Al) 

where the x-axis is in the stream direction and the 
incremental velocities co,CD 0 g lad (p	 are small 
conmsred with the stream velocity U. At all points on 
the surface of B, the octential cp must satisfy the 
houndarr condition 

(U + (P,ç) S + 2S + cPS = 0	 (A2) 

which states tha t the flow IS tangential to B. Since B 
is assumed thin, Sx is small cornered with S	 and 
consequently the second-order term C2S	 may he neglected, 
and the boundary condition be Comes 

US+(P7S 1 +q). S =0 

In order to solve the 
by equations (Al) and (A2) 
flow the following. trensfo 

(pt

houndary_ r alue problem given 
in terms of incompressible 
mation of variables is used: 

- xl
(:3) 

= 

S
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Under this transformation equations (Al) and (A2) become, 
resective1y,

qJ',	 +	 +	
ZZ =
	 ( A)4) 

USX  + cPIS + cPtS = 0	 (.5) 

Equations (A4) ,and (A5) are, respectively, the differ- 
ential equation and boundery condition for the potential 
(p' of the incremental velocities of an incompressible 
flow with free-stream velocity U, in the Y t

, y, z 
space, about a thin body B I , the surface of which has 
the equation

Y, z)	 0 

The incremental velocities in the compressible flow 
are thus given by 

U	 =CP =Jyp', =-' 

p 

1 V = (p q'	 = 
y p i p 

W = ( = .cp'	
= wt

where u, v, and w and u', v', and w' are the 
incremental velocities at corresponding points in the 
compressible flow about B and the incomrressibl.e flow 
shout B', respectively. 

The foregoing analysis establishes the Prandtl-
Glauert method for three-dimensional flow in the 
Cal-lowing form: The incremental velocities at a point 
P on the surface cC a thin body B in comoressible 
flow may be obtained in three steps: 

(1) The x-coordinates of all poihts of B are 
increased by the factor i/3, where 

P = i/i - 

and where the x-axis is in the stream direction. This 
transformation tekes B into a stretched.hody B'. 
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(2) The incremental velocities u', v', w, in the 
direction of the x-, y-, and z-axes, respectively, at the 
point P t on B' corresoondin to the point P on B 
are calculated as though B' were in an incompressible 
flow havin .g7 the same free-stream velocity es the original 
compressible flow. 

(3) The values u, v, and. w of the incremental 
velocities at the point P on the oriina1 unstretehed 
body B in compressible flow are then found bT the 
ecue tions

U =	 U' 

13 
2 

= 

W = J w1 

Failure for three-dimensional flow problems of the 
commonly stated forms of the .PrsndtI-iauert, method.- 
Iccoing to the form of the Prandti-Giau.ert method given 
by Prandtl (reference	 K and von a'rmên (reference 5), 
the incremental velocities for a compressible flow about 
a thin body B are the same as the incremental velocities 
of correspondino points for incompressible flow having the 
sime free-stream velocity about a bod y obtained by expanding 
B in the directions normal to the free-strosm direct'-on 
by the factor l/. That is, for bodies of revoThtion, or 
two-dimensional bodies,

(, 0) 

According to Göthert's method, however, 

IJ
(c, N) =	 ( , o)	 (A6) 

Thus, Prandtl's and von Karmn's method is valid only if 

u (*c, 0) =

	

	 0) 
P2 u 

IDTiA
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that is, if and only if the incremental velocity for 
incompressible flow about the bodies under consideration 
is r xoportiona1 to the thikriess ratio. This relation 
is apnroximately valid for thin two-dimensional bodies, 
so that the method of Prandtl and von K,rman may he 
exected to he 'valid for two-dimensional flows. The 
relation is not true in general for three-dimensional 
bodies; for example, for a very, thin body of revolution 
the incremental velocity is more nearly proportions], to 
the square of the thickness ratio than to the first power. 

Von K 'rmdn aprroaches the problem by making the 
transformation

= 

z' 

qt =C4 

Under this transformation the linearized equation of 
compressible flow goes into Laplace's equation; however, 
the transformed boundary condition is not satisfied on 
the surface of the transformed (contracted) body but on 
the surface of an expanded body. Thus, the boundary 
condition is not satisfied en the boundary but at points 
neerthe boundary. This procedure is aoplicable to two-
dimensional prcblem.s (as, for exsmp].e, in the thin-wing 
theory, reference i), because the velocity increments 
induced, by the equivalent line distribution of singu-
larities vary only slowly in the neighborhood of the 
line of singularities. For a body of revolution, how-
ever, the velocity increments induced br a line of 
singularities go to infinity at the line of singularities; 
for such bodies, accordingly, the location of the point 
at which the boundary condition, is satisfied is imp.ortant. 

&ccording to Goldstein and Young (reference 6), 
"in compressible flow the pressure increase at any point 
of the body is 1 /P times the pressure increase in 
incompressible flow at the same point." That is, 

(c, lvi) =	 (€, 0) 

o-or IrJLIIT'IAL-
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Comparison of this relation with equation 06) shows that 
the Goldstein-Young method is also valid for two-dimensional 
oroblems but gives an incorrect result for three-dimensional 
problems.
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