S E CURestiction/Classification. - ~AT ION

NACA RM A51120

Cancelled DEC 7 1953
i\ 4 M \-ull\:e"ed—-—-—_
REOPPRICITEY RM AbBI1IZ20
ARRUSHTICE iRoARy

e L R L el e e g
Caicrnia hisiiisie Ui TBU;HID:OQV

| RESEARCH MEMORANDUM

- ARRANGEMENT OF BODIES OF REVOLUTION IN SUPERSONIC

FLOW TO REDUCE WAVE DRAG
By Morris D, Friedman

Ames Aeronautical Laboratory
Moffett Field, Calif.

Restriction/Classification

Cancelled
This 1al  F vy W swevisms avavasw va we wesswew StB1€S within the meaning
of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any
manner to unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

WASHINGTON
December 17, 1951

L M ATALASAT RS ,.,.,.ev‘.,d —
Restriction/Classification CancelledCan<tilcid-——

QEC 7 1953




~ ¥

Restriction/Classification Cancelled

NACA RM A51I20 KESTRICYED™
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ARRANGEMENT OF BODIES OF REVOLUTION IN SUPERSONIC
FLOW TO REDUCE WAVE DRAG
By Morris D. Friedman

Sﬁmmary

The wave drag of a combination of slender bodies of revolution at
zero angle of attack is studied with a view to determining the arrange-
ments for which the total drag is a minimum. Linearized theory is used
to calculate the pressure distribution in the field surrounding the

bodies. The interference drag coefficient is computed for different
arrangements. : :

The special cases of two bodies and of a three-body combination with
.bilateral symmetry are considered. The bodies treated are of the form
determined by Sears and Haack as having minimum wave drag for prescribed
volume and length. They also have equal fineness ratios. Numerical
calculations of the drag coefficient of interference are carried out and

curves are drawn which show the relative positions at which minimum drag
ocecurs.

A three-body configuration is found for which the total wave drag

is about 35 percent less than the sum of the individual wave drags of
the three bodies.

INTRODUCTION *

The drag of a body of revolution in supersonic flow has been con-
sidered by von Kirmin, Haack (references 1 and 2), and others. Haack
and Sears (reférences 2 and 3) have determined theoretical body shapes
for which the wave or pressure drag is a minimum. Such bodies have
important present-day flight applications since this wave drag, as an

additional form of drag at supersonic speeds, limits the performance of
modern aircraft.

If, in respect to the wave drag, the components of an aircraft such
as the fuselage and wing-tip tanks and nacelles, say, are replaced by
equivalent bodies of revolution, then the question of the combined wave
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dfag is of interest. Different arrangements of the bodies of revolution
at zero angle of attack are investigated and that combination which has
the smallest combined wave drag is determined. A practical combination
would consist of a large body or fuselage and/or two smaller bodies
which could represent either wing nacelles or tip tanks. In particular,
the drag coefficient for the case of two slender bodies of equal fine-
ness ratio (ratio of total length to maximum diameter) and unequal
lengths is ¢onsidered. (See fig. 1.) The procedure to be outlined,
however, permits generalization, for the body shape chosen, to any num-
ber of bodies of any relative size.

SYMBOLS
a speed of sound
b . abscissa of center of body of revolution
- ' constant, the value of which determines the fineness ratio
Rmax?
nS
. , - L Dt
Cpt coefficient of interference drag agg
Cpy drag coefficient of the configuration based on the total fron-
tal area of the configuration

Cp pregsure coefficient
Dt drag change due to interaction of body pressure fields
E complete elliptic integral of the second kind of modulus k

2 L

2
Fo : K
K complete elliptic integral of the first kind of modulus k
k modulus of the complete elliptic integrals
L ‘path of integration
m half-length of body
M Mach number <é£>
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Ao - free-stream dynamic pressﬁre,
r cylindrical coordinate (v y2+ 2z2)
To particular value of r
R - radius of a section
Rmax 1 - radius of maximum gection
S  cross-sectional area of body or bodies
v A free-stream velocity : '
X,Y5% rectangular coordinates
Bt MZ -1
< argument of the elliptic integrals of the third kind
Ag term which occurs in the circular case of the elliptic 1ntegra1
of the third kind
: dummy Viriible:of intagration
P perturbation velocity potential
o Subsecripts
L parent body p
2 satellite body

I,1I,ITT regions of integration'

;= _ combination as a whole

.

GENERAL CONSIDERATIONS

The type of configuration studied is illustrated in figure 1. It
consists of a large and a small body each of the form having minimum
wave drag for given volume and length and each of the same fineness ratio.
The large body is situated on the axis with its center at the origin.
The smaller body has its axis parallel to the axis of the large body and
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may be within the flow field of the large body. The equation fer the —_
shape of such bodies, which may be supposed to be created by distributing- vl
sources and sinks along an axis, is given by Haack (reference 2) as

2 = ¢ [m® - (x-b)2]%/2 (1)

with b = O  for the parent and b = b for the satellite body. (For ) -\, ‘:;‘
b = 0, this formula is the expression for a thin body of revolution of = - -
length 2m with center at the origin and fineness ratio 2m/2Rpax.)

To calculate the interference drag of such a configuration, two ki et P
possibilities must be considered: o .

1. Only one of the bodies is within the disturbed flow field of R,
the other. « : : SE

2. Each body is in the disturbed flow field from the other. R e

When one of the bodies lies within the disturbed flow field of the - Far
other, the effects of the flow field in which this body is located must . s
be considered. In other words, if all or part of either body is behind ' 4
the Mach wave from the nose of the other body the streamlines will be i T SR
distorted and a pressure will be exerted by the flow field of one body SR
on the other. T

The potential field which results from the interaction of the flow
fields consists of the sum of the individual potentials and an interfer-
ence potential. In the cases when there are multiple reflections
between the bodies a series of interference potentials may occur. Since ' o
the interference potentials are usually of higher order of smallness, F e
they will be assumed negligible. Of course, at very high Mach numbers, LR
or when the bodies are relatively close to each other, the effect of '
this interference may not be negligible.

The interference drag coefficient due to the location of a body in
the flow field of another can be evaluated by integrating the product of
the additional, disturbed, pressure at a point and the slope of the body
surface at that point. In a similar manner, the interference.drag coef-
ficient for the case when each body lies within the disturbed flow field
of the other can be calculated. _

As a preliminary step, therefore, it is necessary to find an expres-

sion for the pressure around each body for the whole region behind the
Mach wave from the nose of the body.
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METHOD OF CALCULATION

Tne Pressure Field Surrounding A Single Body

Under the assumptions of linearized theory, the shape.of a slender
body of revolution is described by the distribution along an axis of
gsources and sinks which satisfy the potential equation and the boundary
conditions of uniform flow at infinity. Under these assumptions the
source strength is given by ‘ :

i%s

' =
2nf'(x) Vm
where S is the expression for the area of a section.
The pressure coefficient, in this theory, is found from the relation
B e T 2

where, as given in reference 2, BCP/Bx ~1s given by

LA e S T (3)
ox nose # (x-£)2 - p2r2

Here

' A _ =3¢ _[m2 - 2(&-b)2
£1(8) = =2 V[./ma.- (§-b)2:]

is the expression for the source strengﬁh in terms of the following
coordinates of integration:

g2=M2.1

r2=y24 22

i When f'(&) is replaced in equation (3) by its equivalent, and the
substitution is made for 39/Ox in equation (2), the pressure coeffi-
cient is found to be determined by the integral

_ (m2 - 2(¢-b)Zlat |
2 '3°fL JTm? "

- (£-b)2][(x-8)2 - B°3¢°]
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This integral is elliptic, and the limits of integration and the method
of solution depend on the following tnree regions (see fig. 2):

Region I is bounded by the Mach aftercone from the nose and
the Mach forecone from the tail. The limits of integra-
tion are b-m and x-Br.

Region'II is bounded by the Mach forecone from the tail and
the Mach aftercone from the tail. The limits of integration
again are b-m and x-Br. :

Region III is bounded by the Mach aftercone from the tail and -
infinity. The limits of integration are b-m and b+m.

With these limits the elliptic integrals for the different regions
are complete and the solutions are:l

Region I
Cp = ot {2+ 2pr(mib-x) - 2(x-b)2] Fo(kr) -
2/ (mrpr) 2 - (x0)2
[(m+pr)® - (x-b) ] Eo(kr) +
2(x0) J/Tawr)2 - (102 Aglir,br) | (5)
where

Kp = (m-Br) - (x-b)zigl = il +Br+X=b.
(mtpr)” - (x-b) : J om

and the change of variable

. . /m+Br+b-X)(§+m"b)
u = sn (m-Br-b+x) (m+b-£)

transforms equation (4) into normal elliptic form.

1Solution of these integrals was accomplished with the aid of a table of
elliptic integrals compiled by Mr. Paul F. Byrd of the
Ames Aeronautical Laboratory.
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Region II

Cp = =3xe {m(m+26r+2b-2x)Fo(kH)-mBrEo(kII)""’“(x’b)"‘ mpr AO(kII’QII)}

2J mBr (6)

where

(x-b)z - (m-Br)2 t iy 2m
k1T = H = gin e
1T / B Tl 8 3 -

and the change of variable

2pr( & -b+m)
(x-b-Br+m)(x+pr-£)

u = sn 2

transforms equation (4) into normal elliptic form.

N
P T———— e

Region IIT

c +3nc

e - @en)®

{ (x-b=Br)Fo(krrr) + [(x-0)2 = (m-pr)?]

[Eolkrrr) ] - 2(x-b) & (x-b)Z - (m-Br)zAé(kIII,QIII)} (7)

where

' 4Brm X+Br-m-~b
k = 3 = gin-)} /—
Il / (x-b) 2 - (m-gr)2’ e v x+fr+m-b

and the change of variable

(x+pr-m-b) (& -b-m)
om(x+Br-t )

u = sn—?

transforms equation (4) into normal elliptic form.
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The functions Fp, Eo, and Ao are tabulated in reference 4, where
they are also defined as:

Fo(k) = 2 K(x)
Eo(k) = 2 E(k)

Bo(k,8) = Bo(IF(k!,8) + Fo(K)E(K',L) - Fo(KIE(K',t)

where

K(k) complete elliptic integral of the first kind of modulus k
E(x) complete elliptic integral of the second kind of‘modulus k
F(k',8)

' incomplete elliptic integrals of the first and second kind of
E(k',¢)
modulus k' (= 4/ 1-k2), and argument {, respectively

Thus, according to linearized theory, equations (5), (6), and (7)
completely determine the pressure field in the region behind the Mach
wave from the nose of a body of revolution of the prescribed shape. An -
isometric sketch of the pressure coefficient at fixed values of the
radial distance is shown in figure 3.

Interference Drag Coefficient

An inspection of figure 3 shows that the gradient of the curve of
the pressure -coefficient in the stream direction changes from negative
to positive behind the center of the body. This region of positive
pressure gradients is a zone of favorable buoyancy in the pressure field
around the body. Therefore, a small body placed anywhere within this
zone should have a negative interference drag (i.e., a thrust) due to
this pressure field which should cause a decrease in the combined drag.

If the pressure coefficient surrounding a body at a given lateral
distance r = ro be called CPt’ the interference drag coefficient may
then be calculated from the expression

tail :
5 Cpy 2x % ax (8)

CDI =

2
7Rmax nose
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where Rpgx is the radius of the frontal area of the reference body.
Substitution of the respective values for the quantities in equation (8)
yields

Cpy = — b+mc {-3ﬂc (x-b) o/ m° - (x-b)*} ax (9)
1" wfpex® Jpg TC |

Actually, the integral in equation (8) or (9) is made up of one or more
integrals depending on the number of regions in which the small body is
located. The limits of integration depend on the parameters b, m, r,
and B which determine the regions of integration. This integral must
be computed numerically.

For a clearer exposition of the mathematical computations in the
cases where interference exists, it is necessary to distinguish between
the bodies. In the present case, if the central body situated on the
x axis be denoted by the subscript 1 and the other body by the sub-
script 2, then, depending on which body is being acted upon, the inter-
ference drag coefficient is

< b+m,
oDy, > . 2\/P Cptl {}3nc2(x-b2)[m22 - (x-b2)2]1/2 dx (10)
"Rmax~ Jp o-m, :

or

1R
hmax 17,

by+my
i fb Cpyp {3ea(rm) Iy® - (20?1 Fax (1)

. Equations (10) and (11) are, to a first approximation, the drag

. coefficients due to the effect of body 1 on 2 and body 2 on 1, respec-
tively. The integration extends from the nose to the tail of the body
which is in the disturbed flow field. Similarly, for the calculation,
to a first approximation, of the drag coefficients due to the inter-
action of the bodies, formulas (10) and (11) are both used.

The preceding equations permit the calculation of the interference
drag coefficient for any arrangement of bodies. In particular, equa-
tions (10) and (11) apply to the special case when two identical bodies
are symmetrically placed with respect to a central body so that each

body may be in the flow field of the others. The formulas may be applied

to any configuration, whatever the interference pattern.
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Numerical Calculations

As an exploratory investigation, the simple case of a small body
having one-half the length of the large body was chosen. This combina-
tion is derived by assigning the follow1ng values to the parameters in
equation (l)

B
o

Cc

0.005 my
.01 my

Cy
Ca

wu
no
o'
v

nou
o

The equations which describe the bodies are ’

3/2

0.005 (4-x2)

2
Rl

R22 2]3/2

.01[1 - (x-b)

It is to be noted that each body has the fineness ratio 10 but that one
is twice as long as the other. ;

The pressure coefficient depends on B and ro. "The dependence is :
on Brg, rather than on either parameter individually, and the calcula-
tions were carried out for Brp = 0.5m,, 1.0my,, and 2.0mp; where, as
shown previously m, = 1. A change in B and in ro which keeps Bro
invariant will not change the calculations.

The drag coefficient, with respect to the frontal area, oﬁzthe

2 .
individual body is given by Haack (reference 1) as E R%:x , or in

8
0.09x2
this case —5 The interference drag coefficient is computed from
formula (9). For each value of Bro, therefore, the remaining parame-

ter b, in this case the longitudinal distance between the centers of
the bodies , is given values between -3m and +im,.

The interference drag coefficients based on frontal area of the

small body are sketched for different 22: and — in figure 4. Since
mz

the reversibility of drag (reference 5) holds true, the curves would be

expected to be symmetrical sbout the line %L = 0 (where gL is the
2 2
nondimensional longitudinal distance between the centers of the bodies).

The symmetry in the figure is a measure of the accuracy of the numerical
calculations. From the figure, it is evident that minimum drag occurs

when the small body is close to the large one <%9 = O.5> and with
2
its center just forward of the tail wave from the large body.
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It may be observed that, while the interference drag varies markedly
with fore and aft position, for the range of pr, considered the maxi-
mum favorable interference that can be obtained generally decreases with
increasing separation between the bodies. It is interesting to note
that drag minimums occur whenever the center of the satellite body is
just forward of the tail Mach -wave of the parent body. - Also of interest
is the fact that, in the case when both bodies had their centers on the
vertical axis, the lowest drag occurred when the lateral separation
parameter (Brp) was equal to the length of the small body and higher
drags resulted as the bodies were brought closer together.

In figure 5, there are plotted the values of the total.drag coeffi-
cient, based on the total frontal area of a three-body combination with
bilateral symmetry, against the longitudinal distance between the centers
of the parent and satellite bodies. Since interaction between all three
bodies occurred only for the lowest value of Brg (= 0.5m2) where it was
found to be negligible, the interference drag coefficients previously
calculated for the two-body configuration could be used directly to
determine the total drag of the three-body configuration. As a conse-
quence, the variations in drag coefficient are similar to those of
- figure 4.  Again the lowest drag occurred at PBrg = O. Sm, and was
approximately 35 percent less than the drag of the three bodies without
interference.

Because of the unusual shapes of the curves in figure 4, it was
considered advisable to investigate the drag interaction of a combina-
tion of bodies of different shape. The slender pointed body derived by
Jones and Margolis (reference 6) was selected for this purpose since for
the same fineness ratio the drag coefficient is comparable to that of
the Sears-Haack body. The interference drag coefficients of a cambina-
tion of two such bodies with m;/mp = 2 were calculated for b = 0, and
different values of PBro. Reasonable agreement was obtained with the
results of figure 4 for Bry = 2.0mp and Bry = 1.0mp. In the case when
Bro = 0.5mp, since the bodies are close together, there is a discrepancy
which may be due to the differences in body geometry.

1

CONCLUDING REMARKS

It is found that the combined wave drag of a combination of bodies
of revolution can be decreased if an arrangement is chosen which takes

advantage of a favorable pressure zone which exists behind the center of
each body.

In the cases discussed, where the ratio of the lengths of the
bodies was 2 to 1 but the fineness ratios were equal, numerical calcula-
tions showed that the maximum favorable interference occurred when the

RESTRICTED
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center of the small body was just forward of the stern Mach wave from
the large body and the bodies were close together. For the range of

Br, considered the magnitude of the favorable interference generally
decreased with increasing separation between the bodies.

In the case of a bilaterally symmetrical arrangement of three bodies
with a lateral separation equal to one-quarter of the length of the small
body the total wave drag was found to be 35 percent less than the com-
bined wave drag of the three bodies.

National Advisory Committee for Aeronautics
Ames Aeronautical Laboratory
Moffett Field, Calif., Sept. 20, 1951
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