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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

WIND-TUNNEL TESTS OF A MODEL OF A WINGLESS FIN-CONTROLLED 

MISSll.E TO OBTAIN STATIC STABILITY AND CONTROL 

CHARACTERISTICS THROUGH A RANGE OF 

MACH NUMBERS FROM 0.5 TO 0.88 

By Dale L. Burrows and Ernest E. Newman 

SUMMARY 

An investigation at medium to high subsonic speeds has been con
ducted in the Langley low-turbulence pressure tunnel to determine the 
static stability and contr ol characteristics and to measure the fin 
normal forces and moments for a model of a wingless fin-controlled missile. 
The data were obtained at a Reynolds number of 2' ~1 X 106 based on the mis 
sile maximum diameter or 17.7 X 106 based on missile l ength; this Reynolds 
number was found to be" ),arge enough to avoid any large scale effects 
between the t est and the expected flight Reynolds number. 

With the horizontal-fin deflection limited ~o a maximum of 60 , 

longitudinally stable and trimmed flight could not be maintained beyond 
an angle of attack of 170 for a Mach number of 0.88 and beyond 200 for a 
Mach number of 0.50 for any center-of-gravity locat ion without the use 
of some auxiliary stability or control device such as jet vanes. Mach 
number had no appreciable effect on the center-of-pressure posit ions and 
only a slight e f fect on neutral-point position. There was a shift in 
neutral-point position of about 1 caliber as the angle of attack was 
varied through t he range f or which the neutral point could be determined . 
Yawing the model to angles of sideslip up to 70 had little effect on the 
longitudinal stability at angles of attack up to 150 ; however, above 150, 
the effect of sideslip was destabilizing. 

With the vertical fins at a ±6° roll deflection, the rolling moment 
caused by yawing the model at high angles of attack coula be trimmed out 
up to angles of sideslip of 6 .50 and an angle of attack of 260 for a Mach 
number of 0.50; this range of sideslip angles was reduced to 30 at a Mach 
number of 0.88 . The data indicated that, at lower angles of attack, the 
trim range extended , ~o h i gher angles of sideslip. 

The total normal-force and h inge-moment coefficients for both hori
zontal fins were slightly nonlinear with both angle-of-attack and fin 
deflection. The effect of Mach number was to reduce the slopes of the 
hinge-moment coefficient wit h angle of attack and deflection angle. In 
general, the effect of increasing t he sideslip angl e was to reduce the 
values of the fin normal - force and hinge -moment coefficients. 

CONFIDE~ON canceT1ed , -----' 
CLA.$S 
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INTRODUCTION 

In the launchtng of miss iles from the earth ' s surface, the problem 
of stability and contr ol may be especially critical in the subsonic speed 
range where high surface winds can impose serious conditions of high 
angles of attack and sideslip. Because there is a lack of data for 
controllable - fin missiles at subsonic speeds and at h igh angles of attack, 
a test program was conducted on a wingless fin- controlled missile model . 
The small 600 delta fins are mounte d in cruciform at the missile base a nd 
may be defl ected for missile control . 

Th i s report contains the results of tests conducted in the Langley 
low-turbulence pressure tunnel to determine the aerodynami c characteristics 
for the complete missile, fin control effectiveness, and fin "f orces and 
moments at Mach numbers from 0 .5 to 0 .88 for angles of a ttack to as high 
as 260 and for combinations of angle of attack and Sideslip . 

SYMBOLS 

The coordinate system used and the directions of positive forces, 
moments , and angl es are shown in figure 1 . ' 

Cy 

normal- f orce coeffic ient, Normal force 

qA " 

longitudinal - force coefficient, 
Longitudina l force 

'latera l - force coeffiCient , 

rolling- moment coeffiCient, 

pitching- moment coefficient , 

qA 

Lateral force 

qA 

Rolling moment 
qAd 

Pitching moment 
qAd 

lift coefficient , s in QCX + cos QCN 

drag coeffiCient , - cos Q cos ~CX - sin ~Cy + cos ~ sin QCN 

yawing-moment coeffiCient , Yawing moment 
qAd 

f i n normal - force coeffiCient , Fin normal forc e 
qS 
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A 

a 

b 

c 

c 

d 

M 

p 

q 

R 

r 

fin moment coefficient measured about fin balance electrical 

axis which is not at the fin hinge axis, 

fin hinge -moment coefficient, Chea + CNF ~ 

Fin moment 
qSc 

difference between value of coefficient at some fin
deflection angle and zero fin deflection 

missile base-pressure coeffiCient, 

maximum cross-sectional area of missile body, 

distance between fin balance electric,al axis and fin hinge 
axis 

total fin span 

local ,exposed-fin chord parallel to ' plane of symmetry 
, \ 

mean aerodynamic chord of exposed fin, 

maximum diameter of missile body, l caliber 

decrement in free-stream total pressure 

Mach number 

static pressure inside of open base of model 

free-stream static pressure 

free-stream dynamic pressure, ~U2 

pUd 
free-stream Reynolds number, ' ~ 

radial distance from missile center line 
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s exposed horizontal-fin area 

u free-stream velocity 

angle of attack (see fig. 1) 

complement of angle of attack, 900 - a 

angle of sideslip (see fig. 1) 

azimuth angle in plane normal to missile axis 

angle of horizontal-fin deflection (see fig. 1) 

angle of vertical-fin deflection (see fig. 1) 

p free-stream mass density 

absolute viscosity 

MODEL AND APPARATUS 

The model used in the present investigatio~' was designed and con
structed for subsonic tests in the Langley low-tur.bulence pressure tunnel 
described in referenc~s 1 and 2. Sketches of the model details are pre
sented in figure 2 and photographs of the model mounted in the tunnel are 
shown in figure ). 

The body of the model was an assembled group of conical sections of 
turned aluminum alloy. The body of 5-inch maximum diameter and fineness 
ratio of 8.45 had a )1.50 nose section and a 4.50 boattail . 

Four 600 triangular fins of double wedge section having the maximum 
thickness at 70 .percent chord were mounted in cruciform at the base of 
the missile. Two of the diametrically opposed fins were constructed of 
aluminum alloy and were stationary at zero deflection angle; the other 
pair were made of steel and could be deflected. At zero fin deflection, 
there was a 0.026-inch gap between the body and t he fins. A clearance 
gap of 0.021 inch around the fin pivot shaft allowed a leakage. between 
the inside and outside of the model. This clearance hole was sealed 
when fins were removed for body-alone tests. 

Total forces and moments were measured on the sting-mounted model 
by means of an internally located six-component, electrical strain-gage 
balance which was attachable to the model in two positions of roll so 
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that the adjustable fins could be tested in either the horizontal or the 
vertical plane. An additional strain-gage balance was mounted inside the 
boattail and attached to the interlocked movable fins to provide measure
ments of the {in normal force and hinge moments. 

Static-pressure tubes for measuring base pressures were installed 
on the side of the sting, inside the model, approximately 3/8 inch forward 
of the base. A rake of total pressure tubes was used to survey the model 
wake at a station cOincident with the model base. 

TESTS 

The tests were made with the use of Freon-l2 as a flow medium 
(ref. 2) through a Mach number range up to 0.88. The maximum Mach num
ber at choke was approximately 0.92 with the model at an angle of attack 
of 00 • The stagnation pressure was somewhat below atmospheric and was 
adjusted to maintain about constant maximum aerodynamic loading; coinci
dentally, a nearly constant Reynolds number of 2.1 X 106 (based on maxi
mum diameter of miSSile or 17.7 x 106 based on ~issile length) was main
tained throughout the Mach number range ., 

Measurements wer~ ~de at values of the Mach number of 0.50, 0.10, 
0.80, and 0.88 through a range of angle of attack from _160 to 260 and a 
range of sideslip angles from -~ to 40 . For the missile with all fins 
removed, measurement s ~ere made of the normal and chord forces and the 
pitching moments. Nc~~l- and chord-force coefficients were converted to 
lift and drag coefficients by the relation shown in section "Symbols." 
In order to explain the effect of the body flow on the fin, wake surveys 
were made at the base of the body for the missile without fins. 

For the missile complete with fins, total forces and moments associ
ated with the model reference axes and horizontal-fin normal forces and 
corresponding fin moments were measured for fin-deflection angles of 00 , 

_20, _40 , and _60 with the vertical fins at zero deflection. With hori
zontal fins at zero deflection and vertical fins adjustable, total forces 
and moments were measured for vertical-fin roll deflections of ±2°, ±4°, 
±6°, and +60 upper fin with _20 lower fin. 

A general lack of scatter in the data is an indication of the repeat
ability of the measurements. Flagged (0) and plain (0) symbols used in 
some cases indicate representative repeat measurements. Maximum varia
tions in the various coefficients from the mean faired value in percent of 
the maximum value of the coefficient were about as follows: ±3 for CL, 
±l for CD, ±l for ~,±l for CH ,and ±2 for CNF' ea 

8eNFIDEN'!':tMs 
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CORRECTIONS 

The usual blocking corrections described in reference 3 were applied 
to all force and moment coefficients, Mach numbers, and pressure data. 
The angle of attack was corrected for model - support deflect ion due t o 
aerodynamic loading. The angle of attack was also corrected by the method 
of reference 4 for upwash induced by the tunnel wall . The l ongitudinal
force data were adjusted by an amount equal to the change in pressure 
force on the base that would be obtained by changing the measured base 
pressure to free - stream stat ic pressure . 

The coefficients of force, moment, and pressure as well as free 
stream Mach numbers measured in Freon- 12 were converted to corresponding 
coefficients and Mach numbers in air by the method of reference 2. 

All forces, moments, and pres sures were examined for sting tare 
effects by comparing data at three sting sizes and extrapolat i ng to zero 
sting area. Only the drag, lift, and base pressures required tare cor
r e ctions and these only for the case of the missil e without fins. 

INVESTIGATION OF SCALE EFFECT . 

Because the test Reynol ds number was limited to a va lue wel l below 
the possible flight val ue , and , in particular , b~cause the Reynolds num
ber based on the cross - component of velocity was fairly low, the possi
bility was considered that the test results might be subject to consider
able scal e effect. It would be expected, however, on the basis of the 

. data for yawed cylinders ( ref . 5) shown in figure 4, that the model 
crossf~ow Reynolds number was sufficiently high to avoid subcritical 
flow conditions . As for the possible scale effect on the fins, it has 
been shown (ref . 6) that the aerodynamic characteristics of some sharp
edge airfoils are dec idedly nonlinear at low Reynolds numbers and at low 
angles of attack but become l i near as the Reynolds number is i ncreased; 
the same investigation showed that roughness largely eliminated the non
linearities at low Reynol ds numbers and suggested the possibility that 
roughness should be used on the missile fins . 

In order to make certain that the values of the aerodynamic coeffi 
cients at some flight Reynolds number would not be appreciabl y different 
from the values obtained in the test, the complete missile was tested 
with fins and body rough to induce leading- edge tranSition, the essential 
characteristic of high Reynolds number flow . The body roughness consisted 
of four full-length longitudinal bands 1/2 inch wide located midway 
between the fins and two i - inch bands around the body Circumference, one 
at the nose and the other at the station of maximum diameter . The 

C ON;U'IDFNT TAL .... 

-~~- ~-- -- ------
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roughness on the f ins was a 1/4-inch band near the leading edge of both 
surfaces of each f in. The roughne ss used i n all cases was 0.010-
to 0.012-inch carborundum blown on shella c stripes. 

As shown by the dat a in figure s 5 and 6, the addition of roughness 
did not appreciably aff ect t he a e rodynamic cha racteristics of the fins 
or the complete missile. For convenience in the test procedure, the 
tests on stabili t y and control were made with the body smooth and the 
fins rough. 

RESULTS 

A list of the basic data obtai ned in the s e tests is shown indexed 
to configuration and figure number in t able I. 

Pitching and yawing moments are presented as measured about a point 
6.15 calibers f rom t he model nose, which was t he electrical axis of the 
balance. (See f ig . 2{a) . ) 

The base pressure coefficient s are" not pres'ented for other than the 
body-alone case because of leakage arou~d ' the f in pivot shaft. 

'I , 

DISCUSSION 
, \ 

Body Alone 

Forces and moments.- The longitudinal-force and moment coefficients 
for the missile without f ins are shown in figure 7. Qualitatively, the 
increase in value of the coefficients with Ma ch number agreed with the 
usual trend due to subsonic compressibility effects. The i ncrease of 
lift-curve slope with angle of attack i s similar t o the trend predicted 
by body theory. 

Wake-flow surveys.- Contours of total-pressure loss coefficients as 
measured at the model base are shown in figure 8 for the body without fins 
at three angles of attack (3.50 , 100 , and 200

) and at Mach numbers of 0.5 
and 0.88. It will be not ed from figure 8 t hat t he wake size increases 
with angle of a t t ack ~nd , at the h i ghest angl e of attack, the wake size 
increases appreciably wit h Mach number. At t he h i gher angles of attack, 
a characteristic of t he wake typica l of s l ender bodies is the development 
of regions of large l oss and thus low velocities at azimuth angles of 
about ±16° whereas between the two regi ons a low- loss region exists. 
This type of flow probably indicates the presence of vortices such as 
were investigated i n refer ence 7. The rapid changes of velocity for a 

COPW IDElH'!PIAL-
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fin rolling through the wake region might be expected to have important 
effects on the fin performance. 

Fin Forces and Moments 

Unyawed condition.- The variation of normal-force coefficient on 
the horizontal fins was nonlinear with oR (fig. 9(a)) due in part at 
least to the usual effects of l ocalized regions of leading-edge separa
tion on thin swept wings. The increment of normal-force coefficient 
produced by the deflection of the fin from 00 to _60 does not change 
much with M or a as shown in figure 9 (b) . 

The curves of fin hinge-moment coefficient CRF in figure lO(b) 

were obtainefrby transferring the values of the moments measured about 
the electrical axis of the strain-gage balance (fig. 10(a)) by the use 
of faired values of the normal force. The accuracy of the CR

F 
curves 

is est imated to be ±O.003 and, therefore, conclusions on the variation 
of CRF that require greater accuracy are not justified; however, some 

general observations may be made. The noticeable changes in the slope 
of CRF against a at a equal to about 't8° are due to changes in 

the center-of-pressure pos~t ion inasmuch as the normal-force coefficient 
in this range of angle of attack is linear with angle of attack. The 
hinge-moment coeffi~ient was, in general, nonlinear with both OR and a. . . \ , 
Average values of the rate of change of hinge-moment coefficient with OR 
(fig. lO(c)) and a (fig. lO(b)) decrease with inereasing Mach number. 

Sideslip.- Although the hinge-moment and the fin normal-force coef
ficients vary rather irregularly with ~ at high values of a (fig. 11), 
a general effect of increasing the sideslip is to decrease these coeffi
cients . The irregular results at high angles of attack are due possibly 
to dissymmetry in the wake flow which at those angles can easily result 
from very small surface irregularities. 

Longitudinal Stabi lity and Control Characteristics 

Unyawed condition.- From figure 12, it may be seen that the lift 
coefficient is not affected much oy Mach number. The nonlinear lift
coefficient variation with OR is probably due to the effect of OR 
on the fin normal-force coefficient inasmuch as the finned missile had 
a lift of about three times the body-alone lift. The increasing slope 
of the lift curves with increasing a results partially from nonlinear 
lift contributions of the body and may also result from the leading-edge 
vortex effect on .the fins. It may be of interest to note that a deflec
tion of the fin through a given angle changes the lift about two-thirds 
as much as an equal change of angle of attack. 
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The pitching-moment coeff i cient (f i g . 13 ) was found to be Quite 
nonlinear with ~ and to some extent with bH ' Near ~ = 0 the value 

9 

of the slope of em wi th ~ at constant bH. was nearly zero and there 

fore the moment-measur ing axi s was near the aer odynamic center of the 
missile. 

In order to discuss the mi ssile stability and control characteristics 
without limiting t he obser vations to a spec i fi c center-of-gravity posi
tion, these characteristics can be discussed i n terms of the variation of 
the center-of- gravity positions re Quired for ·tr im and neutral stability 
through the range of angle of attack and f i n deflection~ The center of 
gravity for trim at any condit i on of ~, bH' and Mach number investigated 

is the center of pressure f or the same set of 
pressure positions may be obta ined f rom plots 

in figure 14 (where t he cent er of pressure i s 

conditions. Such center-of
of em against CN shown 

Cm/CN). The center- of-
gravity position for neutr al longitudina l st ability combined with trim is 

(
OCm) em the neutral point corresponding to --- = --. All combi na-oC . eN 

N, b
H 

cons,tpnt 

tions of em and CN that fall on the same line ,drawn from the origin 

in figure 14 have the 'same center of pressure. For conveni ence, the 
value of the center of pressure for a given line drawn from the origin 
may be read from~he semicircular scale superimposed in figure 14. A 
neutral point for a given fin deflection can be f ound in figure 14 by 
drawing a line fr om the origin tangent to the cUrve of em against CN 
at constant bH. The slope of the line from the or igin gives the positi on 
of the neutral point and the point of tangency gives the corresponding 
angle of attack. Because of the nonlinearit y of the normal-force and 
moment characteri s tics, the neutral point changes with angle of attack. 

The region of center-of-pressure travel through the range of 
horizontal- fin deflections from _60 to 60 i s shown in figure 15 f or t he 
measured range of angles of attack; this region d i d not change much from 
a Mach number of 0. 5 to 0.88. The travel of center of pressure becomes 
small at the high angles of attack; for example, at ~ = 160 the travel 
is between 5 .6 and 6.5 cal ibers from the nose ; hence, any longer travel 
of the center of gravity can not be trimmed . 

The variation of neut ral point with angl e of attack is also shown 
in figure 15 for Mach numbers of 0. 5 a nd 0.88 , comparison of which indi
cates that the variation is small with Mach number . The variation of the 
neutral point with angl e of attack was about 1 cal iber through the range 
of angle of attack f or which t he neut r a l point could be determined. 
Stable and trimmed flight is obtained, of course, if the center of gravit y 
is ahead of the neutral point and behind the center-of-pressure boundary 
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for tr im at maximum deflect i on of the fin . At a Mach number of 0 .88 , 
stable flight cannot be maintained simultaneously with trim at angles of 
atta ck greater than 170 for any center of gravity without larger fin 
deflections or the use of some auxiliary device for stability and con-
trol such as jet vanes; at a Mach number of 0.5, this angle-of-attack range 
is extended to 200 • 

The drag coefficients for the same attitudes and flight conditions 
as discussed for control and stability are shown in figure 16 . 

Sideslip .- Lift, pitching-moment and drag coefficients are presented 
in figures 17, 18, and 19, respectively, for several roll deflections of 
the vertical fins. At low angles of attack, an increase in sideslip up 
to -~ (fig . 18) does not appreciably affect the longitudinal stability; 
in the angle-of-attack range from 150 to 200 , however , an increase in 
sideslip angle is obviously destabilizing . These observations remain 
unchanged t hroughout the Mach number range and t hrough the fin roll
deflection range of 00 to ±6° . 

Lateral Stability and Control Characteristics 

Unyawed condition.- The effectiveness ' of t he fin for producing a 
rolling-moment coefficie~t , increases slightly with angle of attack but 
does not change appreciably with Mach number as shown in figure 20(a). 
The greater effectiveness of the fins in roll at 'the higher angles of 
attack (near 200 ) occurred primarily at the low angles of fin deflection. 
The crossover of rolling-moment coefficient at the low deflection and 
the high angles of attack and high Mach number i s probably the result of 
an erratic body-wake effect on the fin. As may be seen from figures 20(b) 
and 20(c ), the effects of fins deflected for roll are small on the side
force coeffic ient and yaWing-moment coefficient . 

Sideslip condition.- Figure 21 (a ) indicates that the directional 
stability ~Cn/~~ decreases at the higher angles of attack. At fin 

deflections of zero, the data indicated that sideslip causes no rolling 
moment for the test angles of attack of 00 and 'about 160 ; however , at 
angles of attack between 00 and 160 , small rolling moments may exist in 
a direction opposite to the rolling moments 'measured at higher angles of 
attack due to a positive dihedral effect of the horizontal fins. For 
angles of attack greater than 160 the rolling moment increases rapidly 
with s i deslip angle; this result at the high angl es of attack i s to be 
expected for the upper fin moving into the body wake and lOSing effec
tiveness in counteract ing the rolling moment produc ed by the lower fin. 
At t he highest angl e of attack tested, the rolling moment at a Ma ch num
ber of 0 . 5 could be trimmed out with a roll deflection of 60 for values 
of the sideslip angle between ±6 .5° and at a Mach number of 0 .88 t he 
r ange of sideslip angles for trim was r educed to i 3° . This effect of 

corWIDEU3?lMJ ,. 
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Mach number is consistent with the wake surveys where at the higher Mach 
number a larger wake would envelop the upper fin at the high angles of 
attack for the yawed condition. 

The data presented in figure 2l(c) are the lateral-force and moment 
coefficients for a combination of roll deflection and yaw deflection of 
the vertical fins . In order to determine the effect on the roll effec
tiveness of superimposing a yaw deflection on the ,vertical fins already 
deflected for roll, compare rolling-moment coefficients at a Mach number 
of 0.88 for a roll deflection of 40 (fig. 21(b)) and a combination of 
60 upper fin and 20 lower fin (fig. 21(c)) which geometrically corre
sponds to 40 of roll and 20 of yaw. It may be seen from this comparison 
that roll effectiveness is very little affected by the addition of a yaw 
deflection at least for small deflections and for the range of angle of 
attack and sideslip tested. 

CONCLUSIONS 

Static stability and control .tests have been made of a model of a 
wingless fin-controlled missile and the -fallowing' conclusions are pre
sented for a Mach number range of 0.50 to 0.88 and a fin-deflection range o . 
up to 6 : ., . 

1. Trimmed stable longitudinal flight cannot be maintained with fin 
deflection limited to Ii maximum of 60 , for angl'e's of attack greater than 
l~ at a Mach number of 0.88 or angles of attack greater than 20° for a 
Mach number of 0. 50 for any center-of-gravity location without the use of 
some auxiliary stability or control device such as jet vanes. 

2. Mach number affected the position of the neutral points only 
slightly. Through the angle-of-attack range for which the neutral point 
could be determined, the neutral point varied over a distance of about 
1 caliber. The centers of pressure were not appreciably affected by Mach 
number. 

3. Up to an angle of attack of 150 , the longitudinal stability was 
little affected by sideslip up to angles of sideslip of~. In the angle
or-attack range from 150 to 210 , an increase' in sideslip resulted in 
decreased longitudinal stability. 

4. At the highest angle of attack tested (26.50 ) and with a roll 
deflection of the fins of 60 , t he rolling moment could be trimmed out up 
to angles of s ideslip of 6 .50 at a Mach number of 0.50; this range was 
reduced to, 30 at a Mach number of 0.88. At lower angles of attack, the 
missile could be trimmed in roll to higher angles of sideslip. 
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5 . Both the horizontal-fin normal - force and hinge -moment coefficients 
were somewhat nonlinear with angle of attack and fin deflection. 

6 . As t he Mach number was increased the magnitudes of slopes of fin 
hinge moments with angle of attack and fin deflection ( dCHF/ 2h 

and dCHF/dO, respect i velY) were appreciably reduced. 

7. The general effect of increasing the angle of sideslip was to 
decrease the horizontal-fin coefficients of normal force and hinge moment. 

La~gley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., October 6 , 1953 . 
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TABLE I. - TABLE OF RESULTS 

Fin deflections 
Range of angle s 

Configuration Type of data of attack and yaw, 
fiR' °V' deg 
deg deg 

Longitudinal 

Missile 
forces and a. = -16 to 26 None None 
moments and ~ = 0 

. , 
without base pressure 
fins 

Flow surveys at a. = 3 .5, 10, 20 : None None 
model base ~ ;: 0 

a. = -16 to 26 o to -6 
~ = 0 0 

Fin forces 
and moments ~ = - 7 to 4 0 - 0 

a. = 0, 16, 21, 26 

a. = -16 to 26 
~ = 0 -0 'to -6 0 

Missile Longitudinal 
-with forces and 
fins moments 

, . 

~ = -7 to 4 Roll deflect ion 
a. = 0, 16, 21, 26 0 0, t4, t6 

a. = -16 to 26 0 0, ±2, ±4, ±6 
~ = 0 

Lateral forces ~ = -7 to 4 
and moments a. = 0, 16, 21, 27 

0 0, ±4, ±6 

~ = -'7 to -4 0 +6 top 
a. = 16, 21 , 27 -2 bottom 

Figure 
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(a) ~ront view. L-77849 

Figure 3.- Photographs of a model of a wingless fin-controlled missile 
mounted on the sting balance in the Langley low-turbulence pressure 
tunnel. 
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(b) Rear view. 

Figure 3.- Concluded. 
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Figure 21.- Concluded. 
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