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NATIONAL ADVISORY COMMI'n'EE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

ALTITUDE PERFOR4ANCE AND OPERATIONAL CHARACTERISTICS OF 

29-INCH-DIAMETER TAIL-PIPE BURNER WITH SEVERAL FUEL 

sYSTEMS AND FLAME HOLDERS ON 

J35 TURBOJET ENGINE 

By E. William Conrad and William R. Prince 

SUMMARY 

An investigation of turbojet-engine thrust augmentation by 
means of tail-pipe burning has been conducted in the NACA Lewis 
altitude wind tunnel. Several fuel systems and flame holders were 
investigated in a 29-inch-diameter tail-pipe burner to determine 
the effect of fuel distribution and flame-holder design on tail
pipe-burner performance and operational characteristics over a range 
of simulated flight conditions. 

At an altitude of 5000 feet, the type of flame holder used had 
only a slight effect on the combustion efficiency. As the altitude 
was increased, the decrease in peak combustion efficiency became 
more rapid as the blocking area of the flame holder was reduced. At 
all altitudes investigated, an improvement in the uniformity of the 
radial distribution of fuel and air slightly increased the peak 
combustion efficiencies and shifted the peak combustion efficiency 
to higher tail-pipe fuel-air ratios. The use of an internal cooling 
liner extending the full length of the tail-pipe combustion chamber 
provided adequate shell cooling at all flight conditions investigated. 
At an altitude of 25,000 feet and rated engine speed, the ratio of 
augmented thrust to normal thrust increased fram 1.44 at a flight 
Mach number of 0.27 to 1.67 at a flight Mach number of 0.92. The 
average specific fuel consumption increased from 2.48 to 2.55 pounds 
per hour per pound net thrust as the flight Mach number increased 
over this range of flight conditions. Operation was possible with 
most of the configurations up to an altitude of 45,000 feet at a 
flight Mach number of 0.27. 
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INTRODUCTION 

In an extensive research program on thrust augmentation of 
turbojet engines being conducted at the NACA Lewis laboratory, 
utilization of the tail-pipe-burning cycle has been shown to be a 
practical method of increasing the thrust of turbojet engines 
(references 1 to 4). As part of this program, an investigation of 
thrust augmentation by means of tail-pipe burning was conducted with 
several axial-flow types of turbojet engine in the Lewis altitude 
wind tunnel. The work reported in references 1 to 4 was largely 
devoted to obtaining maximum thrust with high combustion efficiency 
and also stable burner operation over a wide range of fuel-air 
ratios and flight conditions. This investigation was conducted to 
study the effect of tail-pipe-burner design variables on burner 
performance and operation over a wide range of simulated flight 
conditions and thereby provide information that could be applied in 
designing tail-pipe burners. In order to obtain such information, 
it is necessary to determine the effect of flame holders, fuel 
systems, and burner dimensions on the burner requirements of maximum 
thrust with high combustion efficiency, stable burner operation over 
a wide range of fuel-air ratios and flight conditions, adequate tail
pipe cooling, dependable starting, and minimum loss in thrust with 
the burner inoperative. 

In the phase of the tail-pipe-burning studies reported herein, 
several fuel systems and flame holders were investigated on a 
29-inch-diameter tail-pipe burner used with an axial-flow turbojet 
engine to determine the effect of fuel distribution and flame
holder design on tail-pipe-burner performance and operating range. 
Tail-pipe-burner ignition systems and cooling liners were also 
investigated. Data were obtained with each configuration over a 
range of simulated flight conditions. 

Comparative performance data are presented to show the effect 
on tail-pipe-burner combustion efficiency and exhaust-gas total 
temperature of (1) radial fuel distribution, (2) direction of fuel 
injection, and (3) type of flame holder. Data are presented in 
graphical and tabular form for the best configuration investigated 
to show the effect of altitude and flight Mach number on performance. 
Altitude blow-out characteristics, tail-pipe shell cooling, and 
tail-pipe fuel ignition are discussed. 
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APPARATUS AND INSTRUMENTATION 

Engine 

Tbe J35 engine used in this investigation has a sea-level 
static thrust of 4000 pounds at an engine speed of 7700 rpm and a 
turbine-outlet temperature of 12500 F (17100 R). At this operating 
condition, the air flow is approximately 75 pounds per second. The 
over-all length of the standard engine and tail pipe is about 
15 feet and the maximum diameter is about 3B inches. The main com
ponents of the standard engine include an ll-stage axial-flow com
pressor, eight cylindrical direct-flow combustors, a single-stage 
impulse turbine, a tail pipe, and an exhaust nozzle. The diameter 

of the standard exhaust nozzle used was l~ inches. 
32 

Throughout the investigation, AN-F-4Bb, grade BO, unleaded 
gasoline with a lower heating value of 19,000 Btu per pound and a 
hydrogen-carbon ratio of 0.lB6 was used in the tail-pipe burner and 
AN-F-32 fuel with a lower heating value of lB,550 Btu per pound 
and a hydrogen-carbon ratio of 0.155 was used in the engine. 

Installation 

The engine was mounted on a wing section that spanned the 
20-foot-diameter test section of the altitude wind tunnel (fig. 1). 
Engine-inlet air pressures corresponding to altitude flight con
ditions were obtained by introducing dry refrigerated air from the 
tunnel make-up air system through a duct to the engine inlet. Air 
was throttled from approximately sea-level pressure to the desired 
pressure at the engine inlet, while the static pr~ssure in the tun
nel test section was maintained to correspond to the desired alti
tude. A slip Joint with a frictionless seal was used in the duct, 
thereby making possible the measurement of thrust and installation 
drag with the tunnel scales. In order to simplify the installation, 
no cowling was installed. 

Tail-Pipe-Burner Assembly 

The standard 5-foot tail pipe was replaced by a tail-pipe
burner assembly B feet, 9 inches long, which was attached to the 
downstream flange of the turbine casing. A cross-sectional view of 
the tail-pipe-burner assembly with a typical flame holder and fuel 
syetem installed is shown in figure 2. The assembly consisted of 
three sectione: (1) a diffuser section 30 inches long, tapering 
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from an annular inlet area having an outBide diamet er of 34 inches 
to an outlet 29 inches in diameter and having an outlet- to inlet
area ratio of 1.75; (2) a cylindrical combustion chamber 29 inches 
in diameter and 48 inches long containing a cooling liner; and 

(3) a conical exhaust nozzle 27 inches long and 2~ inches in 

diameter at the outlet. Because a variable-area nozzle satisfac
tory for tail-pipe burning was unavailable for this part of the 
program, a fixed conical exbaust nozzle was used. The diffuser 
section, the combustion-chamber shell, and the exbaust nozzle were 
constructed of O.063-inch-thick Inconel. The downstream end of the 

1 diffuser inner body was cut off at a diameter of ~ inches and. a 

cone having a depth of 4 inches was installed, thereby providing a 
turbulent region for seating a stabilizing flame in the center of 
the pipe. The cooling liner, which was constructed of O.063-inch
thick Inconel, extended the full length of the combustion chamber. 
Between the liner and the burner shell was a radial space of 
1/2 inch through which flowed a small quantity of the tail-pipe 
gas at approximately turbine-outlet temperature. The dimensions 
of the cooling liner were the same for all the configuratiOns, but 
the method of support varied. 

Fuel systems and. flame holders. _. For all configurations the 
fuel was injected from 12 radial tubes equally spaced circumferen-
tially and. located in a plane si inches upstream of the diffuser 

outlet, which corresponds to a distance of loi inches upstream of 

the flame holder and 7 inches upstream of the pilot cone. Four 
different eets of fuel injectors we~e used. Three sets were the 
impinging-jet type with O.035-inch-diameter holes and were simi
lar to those discussed in reference 3. The radial fuel distribu
tion differed among the three sets, which are designated fuel 
patterns 1, 2, and 3 (fig. 3). The fourth set of fuel injectors 
had O.035-inch-diameter holes drilled on both sides of the spray 
tubes to provide a fuel spray normal to the direction of gas flow. 
The holes were arranged in the same radial location as pattern 3. 
This injector arrangement is therefore designated side-spray
injector fuel pattern 3. 

Three types of flame holder, which are designated as two-v, 
octagonal, and pilot flame holders (figs. 4 and 5), were used in 
the investigation. Three sizes of the two-V flame holder were 
used, which are designated small, medium, and large t1-TO-V flame 
holders, depending on the diameter of the outer ring (fig. 4). 
The octagonal flame holder had a semicircular cross section and 
was designed to approXimate the semi toroidal flame holder used 

(1) 
IJ) ... 
rl 
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in the investigations discussed in references 3 and 4. The center 
pilot cone served as tbe flame bolder for one of tbe configurations 
and also served as a part of tbe flame holder for the otber con-
f igura tions. 

Eight configurations that included tbe aforementioned flame 
holders and fuel injectors were investigated. The flame holder 
and tbe fuel-injection system for each configuration are given in 
the f~llowing table: 

Con- Flame Flow area Fuel-injection system 
fig- holder blocked 
ura- by flame 
tion holder 

(percent) 

A Small two-V 21.5 Impinging-jet injectors, fuel 
pattern 1; fuel injected in 
downstream direction 

B Small two-V 21.5 Impinging-jet injectors, fuel 
pattern 2; fuel injected in 
downstream direction 

C Medium two-V 23.0 Impinging-jet injectors, fuel 
pattern 3; fuel injected in 
downstream direction 

D Medium two-V 23.0 Impinging-jet injectors, fuel 
pattern 3; fuel injected in 
upstream direction 

E Medium two-V 23.0 Side-spray injectors, fuel 
pattern 3 

F Large two-V . 29.2 Side-spray injectors, fuel 
pattern 3 

G Octagonal 18.9 Side-spray injectors, fuel 
pattern 3 

H Pilot 0 Side-spray injectors, fuel 
pattern 3 

The flame-holder blocking area does not include the craBs-sectional 
area of the pilot cone. 

Ignition systems. - Two types of tail-pipe ignition system 
were investigated (fig. 6). For one system the fuel was injected 
through a conical spray fuel nozzle in the center of the pilot cone 
(system A). Two spark plugs were installed, one on either side of 
tbe pilot cone. The other system provided ignition by a momentary 
increase in fuel flow to the fuel nozzle in one of the engine com
bustors (system B). This excess fuel in one combustor caused a 



6 NACA R-1 E9G08 

burst of flame through the turbine, thereby igniting the tail-pipe 
fuel. The tail-pips-burner fuel pump was used as the source of 
high-pressure fuel for this system. 

Instrument at i on 

Pressures and temperatures were measured at several stations 
in the engine and the tail-pipe burner. Engine air f l ow was meas
ured with survey rakes mounted at the engine inlet. A complete 
pressure and temperature survey was obtained at the turbine outlet 
and total and static pressures at t he tail-pipe-burner oulet were 
measured with a water-cooled survey rake. In order to obtain a 
correction to the scale thrust measurements, the drag of the water
cooled rake was determined by means of a hydraulic balance piston 
mechanism. Both engine and tail-pipe-burner fuel flows were meas
ured by calibrated rotameters. 

PROCEDURE 

Data were obtained over a range of tail-pipe fuel flows at the 
following simulated flight conditions: 

Altitude Flight Configuration 
(ft) Mach 

number 

5,000 0.26 A B C D E F G H 
10,000 .26 G 
15,000 .26 D F 
15,000 .52 B 
25,000 .26 A B C D E F G 
25,000 .52 B D F 
25,000 .71 B D E F 
25,000 .91 B C D F G H 
25,000 1.10 B 
30~000 .26 G 
35,000 .26 A B D F G H 
40,000 .26 A B 
45,000 .26 C D E F G H 

Dry refrigerated air was supplied to the engine at standard NACA 
conditions, except that no temperatures below about _200 F were 
obtained. The total pressure at the engine inlet was regulated to 
the value corresponding to the desired flight condition assum ing 
complete free-stream ram-pressure recovery. 
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At each flight condition with the engine operating at rated 
speed of 7700 rpm, the tail-pipe fuel flow was varied from a min
imum determined by imminent blow-out to a maximum determined by 
(1) the limiting turbine-outlet temperature of 12500 F (17100 R), 
(2) a limitation of about 7200 pounds per hour of the fuel-supply 
system, or (3) rich combustion blow-out at high altitude. 

7 

Thrust measurements were obtained from the balance scales and 
from the pressure survey at the exhaust-nozzle outlet. The thrust 
values presented were obtained from the balance-scale measurements. 

The Jet-velocity coefficient may be defined as the ratio of 
actual (scale) Jet thrust to the ideal thrust determined by meas
urements with the exhaust-nozzle survey rake. Variation of the 
jet-velocity coefficient with the nozzle pressure ratio is shown 
by the following curve for the conical exhaust nozzle used: 
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These values agree within the limit of data scatter with the values 
given in reference 5. The actual je~ thrust for any other exhaust
nozzle design may be directly obtained by multiplying the thrust 
values presented by the ratio of the appropriate jet-velocity 
coefficient to the coefficient given by the curve. 

Exhaust-gas temperature and combustion efficiency were based 
on the measurements at the exhaust-nozzle outlet. The probable 
limits of error in the absolute values of jet thrust, jet tempera-

ture, and tail-pipe combustion efficiency are ±ll, ±3, and ±5 per-
2 

cent, respectively. The symbols used in this report and the methods 
used in calculating the results are given in the appendix. 

RESULTS AND DISCUSSION 

Results of a preliminary phase of this investigation, in which 
3 

several flame holders and fuel systems were used in a 254-inch-

diameter tail-pipe burner, were unsatisfactory for operation at 
altitudes above 25,000 feet because of the high combustion-chamber
inlet velocity. Sat~sfactory altitude performance and operational 
characteristics were obtained with the same engine by increasing 
the tail-pipe-burner diameter to 29 inches and thereby reducing the 
burner-inlet velocity approximately 30 percent. 

The practical a~plication of tail-pipe burning as a thrust
augmentation means requires the use of a variable-area exhaust 
nozzle or a two-position exhaust nozzle. Inasmuch as a variable
area nozzle was unavailable, comparative performance data for the 
several modifications investigated were obtained with a fixed 
conical exhaust nozzle. 

Comparison of Burner Modifications 

Tail-pipe combustion efficiency and exhaust-gas total tempera
ture were chosen as the variables to show the effect of radial fuel 
distribution, the direction of fuel injection, and the type of flame 
holder used. These variables are presented as a function of tail
pipe fuel-air ratio, which is defined as the ratio of tail-pipe 
fuel flow to the unburned air flow entering the tail pipe. 

Radial fuel distribution. - The effect of varying the radial 
distribution of tail-pipe fuel is shown in figure 7, in which data 
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for configurations A and B are compared. For configuration A with 
fuel pattern 1, each injector had four pairs of impinging jets; 
whereas, for configuration B with fuel pattern 2, each injector had 
three pairs of impinging -jets. At all altitudes investigated, the 
more uniform radial mixture afforded by fuel pattern 1 gave slightly 
higher peak combustion efficiencies and increased the tail-pipe 
fuel-air ratio at which the peak combustion efficiency occurred. 
Both of these factors contributed to the higher exhaust-gas tempera
tures and the concomitant thrusts obtained with configuration A. 

Direction of fuel injection. - The exposure time of the fuel 
to the hot gases in the tail pipe and the peripheral distribution 
of fuel might have an effect on combustion efficiency. The effect 
of the direction of fuel injection is shown in figure 8, in which 
data for configurations C, D, and E are compared. All three con
figurations had fuel pattern 3, which was a modification of fuel 
pattern 1 designed to give a more homogeneous radial mixture. The 
fuel was injected downstream from impinging-jet injectors for con
figuration C, upstream from impinging-jet injectors for configura
tion D, and sidewise from side-spray injectors for configuration E. 
At altitudes of 25,000 and 45,000 feet the direction of fuel injec
tion had no appreciable effect on the combustion efficiency or the 
exhaust-gas total temperat~e. 

Flame holders. - A comparison of the performance with four 
different flame holders is presented in figure 9, which shows data 
for configurations E, F, G, and H. Configuration E had the medium 
two-V flame holder, configuration F the large two-V flame holder, 
configuration G the octagonal flame holder, and configuration H the 
pilot flame holder. At an altitude of 5000 feet, the variations 
in combustion efficiency and exhaust-gas total temperature with the 
four fl~e holders were small. At this altitude the large and the 
medium two-V flame holders had approximately the same combustion 
efficiency and exhaust-gas total temperature at fuel-air ratios 
above 0.025. Above this fuel-air rat10, the combustion efficiency 
was about 0.05 lower with the octagonal flame holder than with the 
two-V flame holders and from 0.05 to 0.09 lower with the pilot flame 
holder than with the two-V flame holders. At an altitude of 
45,000 feet, the variations in combustion efficiency and exhaust-
gas total temperature with the four configurations were large. The 
maximum combustion efficiencies obtained at this altitude were 0.76 
with the large two-V flame holder, 0.51 with the medium two-V flame 
holder, 0.37 with the octagonal flame holder, and 0.13 with the pilot 
flame holder. The corresponding exhaust-gas total temperatures 
varied in the saroe manner as the combustion efficiency. 



10 NACA EM E9G08 

The variation of the peak combustion efficiency with altitude 
for each configuration is shown in figure 10. These dat a indicate 
that at an altitude of 5000 feet the type of flame holder used had 
only a small effect on the combustion efficiency. In general, as 
the altitude was increased, the differences in combustion efficiency 
obtained with the four configurations became considerably greater. 
At all altitudes, the combustion efficiency decreased as the blocking 
area of the flame holder was reduced. The broken portions of the 
curve for configurations F and G were determined by peak efficiency 
values obtained by slightly extrapolating the curves of tail-pipe 
combustion efficiency as a function of tail-pipe fuel-air ratio. 

Total-pressure-loss ratios across the standard tail pipe and 
the tail-pipe burners under nonburning conditions were measured, 
but the trends were inconclusive. The total-pressure-loss ratio 
is defined as the loss in total pressure between the burner inlet 
and t he exhaust-nozzle outlet, divided by the burner- inl et total 
pressure. At rated. engine speed, the total-pressure-l oss ratio was 
0.011 for the standard tail pipe and varied from 0.025 to 0.035 
for the tail-pipe-burner configurations. 

Performance Characterist ics 

From the data of f i gures 7 to 10 and from additional data 
not shown, the highest tail-pipe combustion effic iency and eXhaust
gas t ot a l temperatures were obtai ned with configuration F. Data 
obtained with configuration F were therefore selected to demon
strate the effect of altitude and flight Mach number on these 
parameters. Data for configurations C, D, E, and. F have been 
shown to illustrate the effect of f light Mach number on tbrust
augmentation ratio, exhaust-gas t otal t emperature, and specific 
fuel consumption. Data obtained with configuration F are presented 
in table I. 

Tail-pipe-burner performance. - The effect of altitude on the 
variation of exhaust-gas total temperature, tail-pipe combustion 
efficiency, and burner- and combustion-cbamber-inlet conditions 
with t ail-pipe fuel-air ratio is shown in figure 11 for a range of 
altitudes at a flight Mach number of 0.27. The combustion effi
ciency at an altitude of 35,000 feet reached a peak value of 0.86 
at tail-pipe fuel-air ratios between about 0.030 and 0.040, which 
correspond to over-all fuel-air ratios from 0.039 to 0.046. 
Increasing the altitude from 5000 to 35,000 feet resulted in 
slightly higher combustion efficiency (fig. ll(b» and eXhaust
gaa total temperature (fig. ll(a». These slight increases, how
ever, may be due to discrepanCies in the data. A further increase 
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in altitude to 45,000 feet resulted in a slight reduction in com
bustion efficiency and exhaust-gas total temperature from those at 
5000 feet. The marked reduction in these parameters as tail-pipe 
fuel-air ratio was reduced below about 0.025 W8S often associated 
with combustion blow-out on one or both rings of the flame holder. 

With the fixed-area exhaust nozzle, the burner-inlet conditions 
varied with fuel-air ratio as shown in figures ll{c) to ll{e). In 
general, the tail-pipe-burner-inlet total temperature and pressure 
increased with tail-pipe fuel-air ratio, whereas the combustion
chamber-inlet velocity remained constant at about 412 reet per 
second. At a given tail-pipe fuel-air ratio, the burner-inlet total 
temperature varied only slightly with changes in altitude except for 
data at 5000 feet for fuel-air ratios below 0.030 . 

The effect of flight Mach number on the variation of exbaust
gas total temperature, tail-pipe combustion efficiency, and burner
and combustion-chamber-inlet conditions with tail-pipe fuel-air 
ratio is shown in figure 12 for a range of flight Mach numbers from 
0.27 to 0.92 at an altitude of 25,000 feet. Variations in flight 
~~ch nluuber had little effect on the combustion efficiency except 
at fuel-air ratios below about 0.025 in the region of partial burner 
blow-out (fig. 12(b)). The maximum tail-pipe combustion efficiency 
of 0.86 occurred at all flight Mach numbers investigated at tail
pipe fuel-air ratios of about 0.030 to 0.040. 

The exhaust-gas total temperature was only slightly affected 
by variations in flight Mach number in the range investigated. With 
configuration F the maximum exhaust-gas total temperature of 32000 R 
was obtained at a tail-pipe fuel-air ratio of about 0.048 (fig. ll{a)), 
which corresponds to an over-all fuel-air ratio of 0.053. The slope 
of the curves indicates that somewhat higher temperatures might be 
obtained at higher fuel-air ratios if the exhaust-nozzle area were 
increased. 

Operation with a variable-area exhaust nozzle would normally 
result in constant burner-inlet conditions at all fuel-air ratios 
instead of the variations shown in figures ll(c) to ll{e) and 
12(c) to 12(e). High burner-inlet temperature and pressure normally 
have a beneficial effect on combustion efficiency. At a given 
flight condition, optimum burner-inlet conditions exist at only one 
tail-pipe fuel-air ratio with a fixed-area exhaust nozzle; whereas 
operation with a variable-area exhaust nozzle would make possible 
optimum burner-inlet (turbine-outlet) conditions over a wide range 
of fuel-air ratios with corresponding improvements in performance. 
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Over-all performance. - Thrust, exhaust-gas total temperature, 
and specif'ic fuel consumption were obtained for configurations C, D, 
E, and F (figs. 13 and 14) by cross-plotting the data for a turbine
outlet temperature of 16500 R, which was the highest temperature at 
which sufficient data were available for cross-plotting with little 
extrapolation. Calculations indicate that slightly higher thrust 
augmentation would be obtained in operation at the limiting turbine
outlet temperature of 17100 R. The performance data presented for 
these configurations are signif'icant only for the size exhaust nozzle 
used. For the best configurations investigated, increasing the 
exhaust-nozzle area would permit operation at higher fuel-air ratios 
with attendant increases in thrust and exhaust-gas total temperature, 
although the specif'ic fuel consumption would also be higher. 

The variation of exhaust-gas total temperature and the ratio 
of augmented to normal net thrust with flight Mach number at an 
altitude of 25,000 feet is shown in figure 13. Augmented thrust 
is defined as the thrust with the tail-pipe burner installed and 
normal thrust is defined as the net thrust obtained at the same 
turbine-outlet conditions with the standard tail pipe. The ratio 
of augmented to normal thrust increased from 1.44 at a flight 
Mach number of 0.27 to 1.67 at a flight Mach number of 0.92. 
Wi th this increase in flight Mach number, the exhaust-gas total 
temperature rose from 31650 to 3295<' R. With the average total
pressure-loss ratio across the tail pipe of 0.030, the thrust 
with the tail-pipe burner inoperative was 0.98 of that obtained 
with the standard tail pipe. 

Variation of the specific fuel consumption based on net thrust 
with flight Mach number with the tail-pipe burner operating and with 
the standard-engine tail pipe is shown in figure 14. With the burner 
operating, the average specific fuel consumption for the four con
figurations varied from 2.48 to 2.55 as the flight Mach number was 
increased from 0.27 to 0.92. The specific fuel consumption with the 
standard-engine tail pipe varied from 1.15 at a flight Mach number 
of 0.27 to 1.32 at a flight Mach number of 0.92. 

Operating Range 

The operable range of tail-pipe fuel-air ratios for configu
rations A to R is shown in figure 15 for altitudes from 15,000 to 
45,000 feet and a flight Mach number of 0.27. At a given altitude, 
operation was possible over a range of tail-pipe fuel-air ratios 
from lean combustion blow-out, or the region of uncertain operation, 
to the tail-pipe fuel-air ratio corresponding to limiting turbine
outlet temperature. The region of uncertain operation represents a 
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range of fuel-air ratios in which blow-out is likely to occur. The 
exact point of blow-out depends largely on the rate of thro.ttle 
retraction. With configuration G, rich combustion blow-out was 
occasionally encountered at high altitudes. At an altitude of 
15,000 feet, the region of uncertain operation occupied a range of 
tail-pipe fuel-air ratios from approximately 0.008 to 0.023. As 
the altitude was increased, lean combustion blow-out occurred at 
higher fuel-air ratios; at an altitude of 45,000 feet, lean blow
out was encountered at tail-pipe fuel-air ratios as high as 0.032. 

Periscope observations downstream of the exhaust nozzle indi
cated that blow-out often occurred in steps with the first blow-out 
at the outer ring of the flame holder and the last blow-out at the 
center pilot. The data presented are for complete blow-out. With 
the variable-area nozzle, the combustion blow-out region ~ight be 
shifted to lower fuel-air ratios because higher burner-inlet tem
perature and pressure would be obtained at all fuel-air ratios. 

Tail-Pipe Fuel Ignition 

Several methods of igniting the tail-pipe fuel were investigated; 
only three methods, however, proved to be reasonably successful. A 
method of igniting the tail-pipe fuel, which consistently provided 
ignition at all flight conditions, was a rapid acceleration of the 
engine that resulted in a burst of flame through the turbine and into 
the tail pipe. This method occasionally caused blow-out in the 
engine combustors at 45,000 feet. Although this method is satisfac
tory for experimental work, it is unsuitable for flight use. 

A second method, system A (fig. 6) utilized the pilot cone at 
the downstream end of the diffuser inner body to provide a sheltered 
region in which to install a fuel nozzle and spark plugs. Fuel was 
supplied to the ignition region by the nozzle in the pilot cone and 
by the main fuel injectors. With this system, starts were possible 
at rated engine speed up to an altitude of 25,000 feet. Occasional 
starts were made between 35,000 and 45,000 feet. Because the spark 
plugs were subject to failure from vibration and high temperature, 
this system was unreliable. 

A third method, system B (fig. 6), which proved to be the most 
aatisfactor,r,wss developed from the practice of accelerating the 
engine to provide a flame in the tail pipe. High-pressure fuel from 
the tail-pipe-burner fuel pump was momentarily injected into one of 
the engine combustors and a resultant burst of flame went through 
the turbine and into the tail pipe. Ignition of the fuel at alti-
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tudes up to 50,000 feet was certain on the first attempt provided 
that a combustible fuel-air mixture was present; all starts were 
accomplished in less than 2 seconds. When starts were attempted 
with tail-pipe fuel-air ratios too lean to ignite, the engine 
speed increased about 100 rpm as a result of the momentary increase 
in fuel flow into the engine. Although the system was satisfac
tory with the burner investigated, it might be inadequate on a 
burner installation having a considerably greater distance between 
the turbine and the fuel injectors. Satisfactory operation of 
this system required that the high-pressure fuel be approximately 
200 pounds per square inch above the large-slot manifold pressure 
at low altitudes. This pressure differential could be reduced 
to about 100 pounds per square inch at 45,000 feet. Subsequent 
experiments have shown no deterioratioa of the turbine diaphragm 
after over 200 starts with this system. 

Tail-Pipe Cooling 

Some of the tail-pipe burners previously investigated (refer
ence 3) that had no cooling liners installed became excessively hot 
and prolonged operation at high fuel-air ratios resulted in damage 
to the burner shell and the exhaust nozzle. Heat-transfer calcu
lations have indicated the feasibility of cooling the burner shell 
by installing a cooling liner inside the burner shell and thereby 
providing a flow of gas at turbine-outlet temperature between the 
burner shell and the liner. The calculations indicated that a 
radial space between the liner and the shell of from 1/2 to 1 inch 
should be provided. Some doubt then eXisted, however, as to whether 
a liner extending the full length of the burner section would not 
fail because of excessive temperature. Several liners subsequently 
investigated extended from 17 to 48 inches ahead of the exhaust 
nozzle and provided a radial space between the liner and the shell 
of from 1/2 to 1 inch. A liner extending the full length of the 
burner section (48 in.) and with a 1/2-inch radial space between 
the liner and the burner shell provided adequate cooling. With 
this arrangement, about 6 percent of the gas leaving the turbine 
passed between the liner and the burner shell, maintaining a shell 
temperature below a maximum of about 16600 R for all flight con
ditions investigated. The liner temperatures were somewhat higher, 
but the liner could withstand such high temperatures because the 
stresses in it were very low. 

The method of supporting the liner offered considerable 
trouble. The static pressure between the liner and the burner shell 
was slightly higher than the static pressure in the burner, which 
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resulted in a ~orce tending to collapse the liner. The liner could 
not be rigidly secured to the burner shell, however, because the 
di~~erential expansion between the two su~aces resulted in severe 
warpage o~ the liner. The most adequate method o~ support found in 
this phase o~ the investigation consisted o~ seam-welding 1- by 
1/2-inch angles, 0.065 inch thick, longitudinally along the outer 
surface o~ the liner, spaced about 4 inches apart around the cir
cumference. The ~lame-holder supports .passed through slots cut in 
the ~orward end o~ the liner, which permitted the liner to expand 
with respect to the burner shell, and longitudinal movement o~ the 
liner was prevented by tack welds at the rear o~ the liner. The 
longitudinal angles welded to the liner provided adequate 8ti~ne8s 
to prevent collapsing o~ the liner by the static-pressure differen
tial across it. Other improvements in methods o~ supporting the 
liner were ~ound in a subsequent phase o~ the investigation. 

SUMMARY OF RESULTS 

The ~ollowing results were obtained ~rom an investigation o~ a 
29-inch-diameter tail-pipe burner on a turbojet engine in the NACA 
Lewis altitude wind tunnel: 

1. At an altitude of 5000 feet, the type o~ flame holder used 
had only a small e~~ect on the combustion e~ficiency. The decrease 
in peak combustion e~ficiency as the altitude was increased became 
more rapid as the blocking area o~ the ~lame holder was reduced. 

2. At all altitudes investigated, an improvement in the uni
~ormity o~ the radial mixture ~~ fuel and air slightly increased the 
peak combustion e~~iciencies and shi~ted the peak combustion e~fi
ciency to higher tail-pipe ~uel-air ratios. 

3. At altitudes o~ 25,000 and 45,000 feet, the direction in 
which the tail-pipe ~uel was injected into the stream had no appar
ent e~fect on the combustion e~~iciency. 

4. The maximum tail-pipe combustion e~ficiency obtained was 
0.86. This e~~iciency was obtained over a range o~ flight Mach 
numbers ~rom 0.27 to 0.92 at an altitude of 25,000 ~eet and at a 
~light Mach number o~ 0.27 at 35,000 ~eet with tail-pipe ~uel-air 
ratios o~ 0.030 to 0.040, which correspond to over-all ~uel-air 
ratios o~ 0.039 to 0.046. 
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5. The use of an internal cooling liner extending the full 
length of the combustion chamber (48 in.) and having a 1/2-inch 
gap between the liner and the burner shell provided adequate shell 
cooling at all flight conditions investigated. 

6. At an altitude of 25,000 feet and a turbine-outlet tem
perature of 16500 R, the ratio of augmented thrust to normal thrust 
increased from 1.44 at a flight Mach number of 0.27 to 1.67 at a 
flight Mach number of 0.92. With this increase in flight Mach 
number, the burner-outlet temperature rose from 31650 to 32950 R 
and the average specific fuel consumption increased from 2.48 to 
2.55 pounds per hour per pound net thrust. 

7. Operation was possible with most of the tail-pipe-burner 
configurations investigated up to an altitude of 45,000 feet at a 
flight Mach number of 0.27. 

8. Momentary injection of high-pressure fuel into one of the 
engine combustors provided satisfactory ignition of the tail-pipe 
fuel at altitudes up to 50,000 feet at maximum engine speed. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio. 
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APPENDIX - METHODS OF CALCULATION 

Symbols 

The following symbols are used in the calculations and on the 
figures. 

A 

B 

D 

fla 

g 

H 

M 

P 

P , 
8 

p 

cross-sectional area, sq ft 

thrust scale reading, Ib 

flow (discharge) coefficient, ratio of effective flow area 
to measured area 

jet-velocity coefficient, ratio of actual jet velocity or 
thrust to ideal velocity or thrust after expansion to free
stream static pressure 

thermal-expansion ratio, ratio of hot-exhaust-nozzle area to 
cold-exhaust-nozzle area 

external drag of installation, lb 

drag of exhaust-nozzle survey rake, lb 

jet thrust, lb 

net thrust, lb 

fuel-air ratio 

2 
acceleration due to gravity, 32.2 ft/sec 

enthalpy) Btu/lb 

lower heating value of fuel, Btu/lb 

Mach number 

total pressure, lb/sq ft absolute 

total pressure at exhaust-nozzle survey station in standard
engine tail pipe, Ib/sq ft absolute 

static pressure, lb/sq ft absolute 
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R 

T 

t 

v 

gaa constant, 53.4 ft-lb/(lb)(~) 

total temperature, ~ 

static temperature, oR 

velocity, ft/aec 

air flow, lb/sec 

bearing cooling air flow, lb/sec 

fuel flow, lb/hr 

NAeA RM E9G08 

specific fuel consumption based on total fuel flow and net 
tlrrust, lb/(hr)(lb thrust) 

gas flow, lb/sec 

ratio of specific heats for gases 

combustion efficiency 

Subscripts: 

a air 

e engine 

f fuel 

i indicated 

m temperature of fuel in manifold 

s scale 

t tail-pipe burner 

x inlet duct at frictionless slip joint 

o free-stream conditions 

1 engine inlet 

6 t~l-pipe burner inlet or turbine outlet 
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7 tail-pipe combuetion-chamber inlet 

8 exhaust nozzle, 1 in. forward of outlet 

9 exhaust-nozzle outlet 

Calculations 

Flight Mach number and airspeed. - Flight Mach number and 
equivalent airspeed were calculated from the ram pressure ratio by 
use of the following equation: 

2 P l' ~ r:l J 
7-1 ~~) - 1 

(2 ) 

The equivalent free-stream total temperature was assumed equal to 
engine-inlet indicated temperature. The use of this assumption 
introduces an error in airspeed of less than 1 percent. 

Air flow. - Air flow through the engine was determined from 
the pressures and the temperatures measured at the engine inlet. 

Static temperature was obtained from the indicated temperature by 
the use of an impact recovery factor of 0.85. A small quantity of 
air approximately equal to the engine fuel flow was bled from the 
compressor for bearing cooling and wae taken into account in cal
culating the combustion efficiency and the tail-pipe fuel-air 
ratio. 
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Tail-pipe gas flow. - The total weight flow through the tail
pipe burner was calculated as 

Wf e + Wf t 
Wg = W +' , 

a 3600 
(4) 

Augmented thrust. - The thrust of the installation was inde- . 
pendently determined from balance-scale measurements and from pres
sures measured near the exhaust-nozzle outlet by means of a water
cooled survey rake. Because of the inefficiency of the exhaust 
nozzle, the scale thrust is less than the rake thrust. 

Jet thrust was determined from the balance-scale measurements 
by use of the following equation: 

(5) 

The last two terms represent momentum and pressure forces on the 
installation at the frictionless slip joint in the make-up air duct. 
The external dra.g of the installa.tion was determined from experiments 
with the engine inoperative and with a blind flange installed to 
prevent air flow through the engine. 

Rake thrust, which is the ideal thrust available, is given by 
the following equation based on the total pressures obtained at 
station 8, 1 inch upstream of the exhaust-nozzle outl~t: 

(6) 

The value of 79 was obtained from an approximate exbaust-nozzle
outlet temperature calculated from scale thrust. Values of CT 
were obtained from reference 6 and measured exhaust-nozzle skin 
temperatures. At the maximum exhaust-gas total temperature of 
33000 R, the value of CT was 1.024. Inasmuch as the static pres
sure P8 was obtained for only part of the data, the following 

equations were also used to determine rake thrust. For supersonic 
Jet velocity, 

CD 
LI) 
rl 
r-i 
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(7) 

where 

P g 
P9 = -----

~ )

l;:l 
19+1 

2 

For subsonic jet velocity, 

- 1 (a) 

where 

P9 = Po 

The change in total pressure between the measuring station and the 
eXhaust-nozzle outlet was assumed to be negligible. 

Net thrust was obtained from jet thrust by the use of the 
equation 

(9) 

The flow coefficient Cd used in equations (7) and (a) was 
obtained as follows: The Jet thrust given by equation (6) was 
plotted as a function of Pa/po for all the data containing a value 

of Pa • The appropriate expression for Jet thrust given by equa

tions (7) and (a) with Cd omitted, was plotted on the same figure. 
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The flow coefficient Cd was then obtained as the ratio of the ordi

nates of the two curves. 

In a similar manner, the crnnbined nozzle coefficient Cn was 

obtained as the ratio of the scale jet thrust (equation (5)) to the 
jet thrust given by equations (7) and (8) with Cd omitted. The 

jet-velocity coefficient is given by 

(10) 

The values of thrust presented were obtained by use of equa
tion (5), which includes nozzle losses. 

Exhaust-gas temperature. - Values of exhaust-gas total-temperature 
at the tail-pipe-burner outlet were determined by use of the equation 

(11) 

Turbine-outlet temperature. - Because the temperature measure
ments at station 6 were unreliable when the tail-pipe burner was in 
operatton, the turbine-outlAt temi?er8tures given in table I were 
calculated by means of the following relation: 

(12) 

The value of T6 was then obtained from li6 and enthalpy charts. 

The engine canbustion efficiency ~ was determined from experl-b,e 
mente without tail-pipe burning to be approximately 98 percent at 
rated engine speed. 

Combustion-chamber-inlet velocity. - The velocity at the 
combustion-chamber inlet was calculated from the continuity equation 
using the static pressure measured immediately upstream of the flame 
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holder and ass~ing constant total pressure and temperature from 
the turbine outlet to the burner inlet as follows: 

23 

(13) 

Combustion efficiency. - Tail-pipe combustion efficiency was 
calculated by the equation 

l1b,t 

(14) 

The engine fuel is assumed to be burned completely in the engine. 
Dissociation has not been considered in the calculation of combustion 
erficiency; however, up to temperatures of 36000 R the effect of 
dissociation is negligible. The method of determining the eI1thalpy 
of fuel is given in reference 7. 

Tail-pipe fuel-air ratio. - The tail-pipe fuel-air ratio is 
defined as the ratio of the tail-pipe fuel flow to the unburned air 
entering the tail-pipe burner. The assumption used in obtaining 
thie equation was that the fuel injected in the engine was completely 
burned. 

rr) Wf,t \a t = -~----\ -Wf 
3600~a-W~ - O.b~7 

(15) 

The value of 0.067 is the stoichiometric fuel-air ratio for the 
fuel used. 

Normal thrust. - In order to account for the possible perform
ance deterioration in the basic engine during the progress of the 
tail-pipe-burning program, the normal net thrust at rated engine 
speed was calculated from measurements of total pressure and tem
perature at the turbine outlet, the gas flow leaving the turbine, 
and the total-pressure-loss ratio across the standard tail pipe. 
The method of calculating this thrust is shown in the following 
equation: 
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(16) 

where PS' is the product of P6 and the total-pressure ratio 

across the standard tail pipe PSIP6 at rated engine speed. A 

value of 0.97 was used for Cj in determining the actual thrust 

of the basic engine. 
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Figure 1. - Installation of engine and tail-pipe burner in altitude wind tunnel. 
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Figure 4. - Schematic diagrams of flame holders. 
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• 
(a) Large two-V flame holder. 

Figure 5. - Photographs of flame holders. 
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(b) octagonal flame holder. 
Figure 5. - Continued. Photographs of flame holders. 
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(c) Diffuser assembly showing pilot flame holder. 
Figure 5. - Concluded. Photographs of flame holders. 
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Figure 6. - Tail-pipe fuel-ignition systems. 
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total temperature and combustion efficiency with tail-pipe fuel-air 
ratio. Flight Mach number, 0. 27 . 
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Figure 11. - Effect of altitude on variation of exhaust-gas total 
temperature, tail-pipe combustion efficiency, and burner- and 
combustion-chamber-inlet conditions with tail-pipe fuel-air 
ratio for configuration F. Flight Mach number, 0.27. 
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