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EFFECT OF FUEL ON PERFORMANCE OF A SINGLE COMBUSTORVOF AN {
I-16 TURBOJET ENGINE AT SIMULATED ALTITUDE CONDITIONS

By Eugene V. Zettle, Ray E. Bolz, and R. T. Dittrich

SUMMARY

As part of a study of the effects of fuel composition an inves-
atility on the combustor performance of a turbojet engine, and inves
tigation was made in a single I-16 combustor with the standard I-16
injection nozzle, supplied by the engine manufacturer, at simulated
altitude conditions.

The 10 fuels investigated included hydrocarbons of the paraffin
olefin, naphthene, and aromatic classes having a boiling range from
113° to 655° F. They were hot-acid octane, diisobutylene, methyl-
cyclohexane, benzene, Xxylene, 62-octane gasoline, kerosene, solvent
golvent 2, and Diesel fuel oil. The fuels were tested at combustor
conditions simulating I-16 turbojet operation at an altitude of
45,000 feet and at a rotor speed of 12,200 rpm. At these conditions,
the combustor-inlet air temperature, static pressure, and velocity
were 60° F, 12.3 inches of mercury absolute, and 112 feet per second,
regspectively, and were held approximately constant for the investi-
gation., The reproducibility of the data is shown by check runs taker
each day during the investigation. The combustion in the exhaust
elbow was visually observed for each fuel investigated.

When no attempt was made to adjust the fuel-spray-tip design to
compensate for differences in the properties of the fuels, the com-
bustion efficiency of the combustor decreased with an increase in
fuel boiling point, particularly in the range of low heat inputs.
The efficiency was relatively unaffected by differences in the
hydrocarbon type for the fuels investigated except for aromatic
fuelg, which exhibited somewhat lower efficiencies than the other
classes,
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INTRODUCTION

A program to invegtigate the efifects of fuel volatility and
hydrocarbon type on turbojet-engine performance and to obtain data
that may be useful for establishing effective turbojet-fuel spec-
ifications has heen instituted at the NACA Cleveland laboratory.
In the first part of this program (reference 1), 14 fuels were
investigated in a full-scale I-16 turbojet engine at static sea-
level conditions, The results Indicated that neither the hydro-
carbon type nor the volatility of the fuels had any appreciable
effects on the combustion efficiency of the combustors or on the
thrust of the engine at static sea-level operation,

The data of the present report show the effect of hydrocarbon
type and fuel volatility on the combustion efficiency of a single
combustor st simulated high-altitude conditions (45,000 ft and an
engine speed of 12,200 rpm) preselected to subject the combustor
to a severe test. Performance characteristics investigated were
combustion efficiency and pressure loss. The 10 fuels investigated
included fuels representing parafiin, olefin, naphthene, and aro-
matic classes of hydrocarbons, as well as a wide range of boiling
points, in order that the effect of both hydrocarbon type and vol-
atility could be evaluated,  This investigation is preliminary in
an over-all fuel program for turbojet engines and serves to indi-
cate the direction that future research should take. Character-
istics such as carbon deposition and smoke density were not inves-
tigated. No attempt was made tc accommodate the fuel-spray-tip
design to either the various fuels or the wide range of fuel-air

1 ratios encountered, )

FUELS

Data on the physical properties of the 10 fuels investigated
are given in table I. Hot-acid octane, diisobutylene, methylcyclo-
hexane, and benzene are representative of the four general classes
(paraffin, olefin, naphthene, and aromatic) of hydrocarbons in the
gasoline boiling range. Benzene and xylene represent two pure aro-
matic fuels having different boiling points (170° — 278° F). Kero-
gene, 62-octane gasoline, solvent 1, solvent 2, and Diesel fuel oil
are five mixed hydrocarbon fuels presenting a wide range of boiling
points (113° — 655° F). Solvent 2 is a heavy kerosene cut with
essentially all the aromatics removed, Solvent 1 is a light kero-
sene cut with the aromatics removed.
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EQUIPMENT

A general view of the setup is presented as figure 1. The com-
bustor was connected to the laboratory services as diagrammatically
shown in figure 2. The air supply was measured by a square-edged
orifice located upstream of the inlet regulating valves, The inlet
air was heated, when nocessary, to the desired temperature by passin
part of the air through an air preheater. The heated and unheated
air was mixed by two butterfly valves operated with an automatic
regulator. Conditions at the combustor inlet were controlled by
menually adjusting the appropriate valves in the inlet and outlet
ducts. Fuel flow was measured with a rotameter, which was calibrate
for each fuel investigated. A standard hollow-cone fuel-spray tip
with a capacity of 21.5 gallons per hour was used in the combugtor
throughout the investigation.

The combustor, the inlet and outlet ducting, and the method of
instrumentation are shown in figure 3. The details of the Instru-
mentation are shown in figure 4.

Iron-constantan thermocouples were used to measure orifice and
combustor-inlet temperatures. The exhaust-gas temperatures were
determined by averaging the temperatures indicated by eight chromel-
alumel thermocouples located in an equal-area traverse, The thermo-
couples were shislded from radiation by concentric metal cylinders,
as shown in figure 3 (section B-B). The temperature survey was made

12% pipe dismeters downstream of the combustor-outlet elbow in a

region where a uniform gas-flow profile existed. At this location,
a fairly accurate measurement of the average outlet temperature in
the duct could be obtained, The ocutlet duct between the elbow and
the temperature survey was insulated against radiation losses.

Although there was visual evidence of only slight afterburning
between the turbine-nozzle section and the thermocouple station, a
strict interpretation requires that the data herein be considered
to apply to the performance of an I-16 combustor equipped with a
g-foot exit duct. The trends obtained for the effects of the fuel
characteristics on the combustion efficiency at the end of this exit
duct are believed, however, to be indicative of the effects on the
combustion efficiency at the exit of the I-16 combustor propers

PROCEDURE

The combustor-inlet air condltions for various altitudes and
engine sveeds for an I-16 turbojet engine, determined from an
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unreported investigation of this engine in the Cleveland altitude
wind tunnel, are shown in figure S, This figure was used in setting
the combustor conditions for the simulated altitude and engine speed
of the investigation,

The standard test for each of the 10 fuels consisted in holding
the inlet-air variables of temperature, pressure, and velocity con-
gtant at a test condition simvlating an altitude of 45,000 feet and
a rotor speed of 12,200 rpm (inlet temperature, 60° F; inlet pressure,
12.3 in, Hg absolute; inlet velocity, 112 ft/sec) and varying the
heat input over as wide a range as possible. A check run on sol-
vent 1 was made each day to indicate the reproducibility of the data.

The temperature rise across the combustor was determined by
obtaining the difference in the average temperature at stations A
and B (fig. 3). The combustion efficiency as used herein is defined
as the ratio of the temperature rise through the combustor to the
theoretical temperature rise available from the fuel-air mixture
under investigation. The theoretical temperature rise was obtained
from reference 2. In order tc place the performance of the various
fuels having differences in heating value on a comparable basis, the
combustion efficiency is plotted against heat input, where heat input
is computed as the product of the fuel-air ratio and the lower heat-
ing value of the fuel, The lower heating value of the fuel must be
used hecause all the water formed by combustion is in vapor form and
therefore the heat of vaporization of the water cannot be included
in the heat supplied. The theoretical curves for combustion effi-
ciencies of 60, 80, and 100 percent were calculated for the refer-
ence fuel, solvent 1, using variable specific heats (reference 2) for
the exhaust-gas productes and are drawvn on the performance curves for
reference,

RESULTS

Combustion efficiency. - In the first experiment, the hydro-
carbon type was held constant and the boiling-point range was varied
by choosing two commercially pure aromatic fuels with different
boiling-point ranges. The results of this experiment are shown in
figure 6 where mean temperature. rise is plotted against heat input.
Figure 6 indicates that the combustion efficiency of the combustor
decreases with an increase in fuel boiling point for fuels of the
same hydrocarbon type, particularly at low heat inputs.

In the second experiment, the fuel boiling range was held approx-
imately constant and the hydrocarbon type was varied by choosing four
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fuels in the gasoline boiling range representing paraffin; olefin,
naphthene, and aromatic classes of hydrocarbons. The combustion
efficiency of the combustor was relatively unaffected by difference:
in fuel hydrocarbon type except for the aromatic fuel; benzene,
which shows an efficiency about 20 percent (meximum) lower then the
other fuels (fig. 7). Aromatic fuels have a low hydrogen-carbon
ratio and it was this type of fuel that exhibited heavy smoking
tendencies in the tests of reference 1.

In order to extend the investigation to a wider range of fuels
in the third test, fuels were included that differed both in hydro-
carbon type and volatility. These data (fig. 8) serve to substan-
tiate the evidence presented in figures 6 end 7 that the difference
in fuel volatility have a much greater effect on the combustion
efficiency of the combustor than have differences in the hydrocarbo:
type of the fuel,

The date of figures 6 to 8 are replotted in figure 9 to 1llus-
trate how the combustion efficiency decreases with an increase in
the mean fuel boiling point (fig. 9). It is emphasized that these
results relate to a single combustor and nozzle, A large part of
the difference in performence of fuels shown in figure 9 might pos-
sibly be eliminated by adJjusting both the combustor and the fuel-
spray-tip design to compensate for the differences in fuel propertie

Combustor pressure loss. - The total-pressure loss AP across
the test section is plotted as a function of the density ratio acrot
the combustor pl/pz in figure 10. The coordinates are expressed
in dimensionless units. The total-pressure loss is shown as a
fraction of an impact pressure defined by sz/Zg where

o density calculated at combustor inlet, (1b/cu ft)

v inlet velocity that would exist for inlet area equal to maximw
cross-sectional area in combustor, (ft/sec)

o acceleration of gravity, 32.2 (ft/sec?)

The results follow an approximately straight line as indicated by
the theoretical analysis of a constant-cross-section duct given in
reference 3. Noeither hydrocarbon type nor fuel volatility influ-
ences this type of correlation; therefore, the data for all the
fuels can be plotted on the same correlation curve.

Reproducibility. - A check run with solvent 1 fuel was made
each day to indicate the day-to-day reproducibility of the data.
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The results of these reference tests are shown in figure 11 and indi-
cate a maximum deviation in temperature-rise data of 8 percent, The
thermocouples measured a temperature somewhat lower than the stagna-
tion temperature because of their inability to convert all of the
kinetic energy into heat, The velocities were sufficiently small
that the error in using the indicated temperature as a stagnation
temperature is less than 1 percent.

Visual observation. - Traces of flame. were noticeable at the
exhaust elbow at temperatures of about 1000° to 1200° F for all fuels
in the gasoline boiling range, as well as solvent 1. Flame was
noticeable at a temperature of 9000 F for kerosene (boiling range,
3020 - 486° F) and long flashes were visible for all fuels of higher
boiling points at this temperature. Solvent 2 (boiling range, 3700 -
485° F) burned erraticelly; combustion became unstable at fuel-air
ratios below 0,020. Solvent 1 (boiling range, 307° - 382° F) burned
smoothly., Diesel fuel oil (boiling range, 350° - 655° F) would not
ignite except at extremely low air flows; combustion was unstable and
intermittent, and stable combustion was impossible at fuel-air ratios
below 0.027.

SUMMARY OF RESULTS

Ten fuels were investigated in a single combustor of an I-16
engine at a simulated altitude of 45,000 feet and a simulated rotor
gpeed of 12,200 rpm. They were hot-acid octane, diisobutylene,
methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene,
solvent 1, solvent 2, and Diesel fuel oil. No attempt was made to
adJust the fuel-spray-tip design to compensate for differences in
properties of fuels. The results indicated that the combustion effi-
ciency of the combustor (a) decreased with an increase in fuel
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boiling point, and (b) was relatively unaffected by difference in
the hydrocarbon type for the fuels investigated except for aromatic
fuels, which exhibited somewhat lower efficiencies than the other
classes.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio.
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TABLE I

NACA RM No. ETA24

PHYSTICAL DATA AND APPROXIMATE COMPOSITION OF 10 FUELS INVESTIGATED

Boiling |Specif'ic {Hydro- |Lower Approximate
range gravity |[gen- heating cowposition
Fuel (°F) |at 80°/ |carbon|value (percent by
60° F ratio |(Btu/ volume)
ib) Par- |[Naph- |Aro- le-
affin {thene |matic|fin
Hot-acid |174-257| 0.715 ]0,188 19,200 100 0 0 0
octane
Diisobu- 210-216 (26 «367 & | 195,000 0 0 0 o OO0
tylene
Methyl- 207-212 v L TD +170 18,500 @t - 200 0 0
cyclo-
hexane
Benzene 170-175 .883 .084 |17,400 0 Q100 0
Xylene 273-278 .867 .106 (17,600 0 0 | 100 0
62-octane [113-233 « 699 «182 119,000 76 e 81 | Low
gasoline
Kerosene |[302-486| .809 .164 {18,500 45 25 | 814 | Low
Solvent 1 |307-382| .769 .174 |18,800 62 26 2 Low
Solvent 2 |[370-485| .792 .174 118,700 62 33 |%Low |-=--
Diesel 350-655 «829 .161 |18,400 | ~~===|~==== w19 2
fvel oil

aAnalysis by emergency method of test: A.S.T.M. designation, ES-45a.

National Advisory Committee
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