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NATIONAL ADVISORY COMTTEE FOR AERONAUTICS

RESEARCH !€MORANDUM 

STABILITY AND CONTROL CHARACTERISTICS OF AN AIRPLANE MODEL 

HAVING A 45-1P SWEPT-BACK WING WITH ASPECT RATIO 2.50 

AND TAPER RATIO 0. . 12 AND A 14.2.80 SWEPT-BACK 

HORIZONTAL TAIL WITH ASPECT RATIO 3.87 

AND TAPER RATIO 0.14.9 

By Marvin Schulden.frei, Paul Comi.sarow, 
and Kenneth V. Goodson 

SUMMARY 

Tests were made of an airplane model having a 45.10 swept-back 
wing with aspect ratio 2.50 and taper ratio 0. 1 2 and a 42.80 swept-
back horizontal tail with aspect ratio 3.87 and. taper ratio 0.49 to 
determine Its low-speed stability and control characteristics. The 

test Reynolds number was 2.87 x 106 based on a; mean aerodynamic 
chord of 2.47 feet except for some of the aileron tests which were 
made at a Reynolds number of 2.05 x 106. 

With the horizontal tail located near the fuselage juncture on 
the vertical tall, model results indicated static longitudinal insta-
bility above a lift coefficient that was 0.15 below the lift eoeffl-
cient at which stall occurred. Static longitudinal stability, how-
ever, was manifested throughout the lift range with the horizontal 
tail located near the top of the vertical tail. The use of 10 0 nega-
tive dihedral on the wing had. little effect, on the static longitudinal 
stability characteristics..	 . 

Preliminary tests of the complete model revealed an undesirable 
flat spot in the yawing-moment curves at low angles of attack, the 
directional stability being neutral for yaw anlea of -:t20 . This 
undesirable characteristic was improved, by replacing the thick 
original vertical tail with a •thin verticaltail and. by flattening 
the top of the dorsal fairing. 

The effective dihedral was reduced. and the directional stability 
was increased either by incorporating negative geometric dihedral in 
the wing or by adding end plates under the wing tips.
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The ailerons exhibited a very large increase in up-floating 
tendency for angles of attack greater than 140 . With flaps down, 
the ailerons could not trim the model in roll for sideslip angles 
greater than about i°.

INTRODUCTION 

The present paper contains theresults of a stability and 
control investigation on an unpowered airplane model having a 
45.10 swept-back wing with aspect ratio 2.50, and taper ratio 0.42 
and a 42.80 swept-back horizontal tail with aspect ratio 3.87 and 
taper ratio 0.49. The investigation was undertaken primarily to 
obtain stability and control data on a basic design configuration. 
The test program was curtailed when the model was revised for use 
In another project. The results are believed to be of Interest, 
however, inasmuch as they reflect the typical low-speed stability 
problems encountered with contemporary high-speed airplane designs. 

For the evaluation of longitudinal stability characteristics, 
the investigation included stabilizer and tail-off tests with dif-
ferent wing dihedral angles (r = 0. and r = -10°) over an angle-
of-attack range for the cruising and landing configurations and 
tests with a high horizontal tail location (1'	 -10°) for the 
cruising configuration. Tests were also made of the wing alone 
and to determine the effect-of-wing end plates in pitch. All 
tail-on tests were made with the elevator at 00. 

An Investigation was also made with a 2 -inch flat-plate 

vertical tail and with several dorsal modifications to determine 
the best configuration for directional stability. Lateral stability 
characteristics were determined for the airplane with different 
geometric wing dihedrals and with end plates. Tests were made with 
ailerons and spoilers to determine control characteristics. 

COEFFICIENTS AND SYMBOLS 

The results of the tests arepresented as standard NCA coef-
ficients of forces and moments. Pitching-moment, rolling-moment, 
and yawing-moment coefficients are referred to the test center of 
gravity shown in figure 1 (35.9 percent mean aerodynamic chord). 
The date-are referred to the stability axes, which are a system of 
axes having their origin at the center of gravity and in which the 
Z-axis is in the plane of syvmotry and perpendicular to the relative
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wind, the X-axis is in the plane of symmetry and. perpendicular to 
the Z-axis, and the Y-axis is perpendicular to the plane of symmetry. 
The positive directions of the stability axes, of angular displace-
ments of the airplane and control surface, and of hinge moments are 
shown in figure 2. 

The coeff.ciente and symbols are defined as follows: 

CL	 lift coefficient (Lift 

CX	

\qS 

longitudinal-force coefficient (-) 
cis 

Cm	 pitching-momt doefficient (M) 

C	 side-force coefficient (IS) 
rolling-moment coefficient (!- 

\qSb 

Cn	 yawing-moment coefficient (-it-
qSb 

Ch	 hinge-moment coefficient ( u 
\qb2 

Lift = -z 

Dreg = -X (only at 4' = O) 

X, Y, and Z forces along axes, pounds 

L, M, and N moments about axes, foot-pounds 

H	 hinge moment of control surface, foot-pounds 
0. 

q.	 free-stream dynamic pressure ) pounds per square 

foot (i2) 

qt	 effective dynamic pressure at tall, ,ounds per square 
foot 

0
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S .	 wing area, square feet (13.64) 

cl	 wing mean aerodynamic chord (M.A .C.), feet (2.47) 

root-mean-square chord of aileron control. surface back of 
hinge line, feet (0.35) 

b	 wing span, feet (5.83) 

single aileron control-surface span along hinge line, feet 
(1.58) 

V	 air velocity, feet per second 

V5 	 sinking speed, feet per minute 

P	 mass density of air., slugs per cubic foot 

a.	 angle of attack of wing chord line, degrees 

4r	 angle of yaw, degrees 

angle of downwash, degrees 

angle of stabilizer with respect to wing chord line; positive 
when trailing edge is dOwn 

B	 control-surface deflection, degrees 

I'	 geometric dihedral angle, degrees 

np	 neutral-point location, percent M.A.0 (center-of-gravity 
location for neutral . stability in trimmed fligat) 

A	 aspect ratio (b2/s	 s	
. 

A	 angle of sweepback measured to leadingedge, degrees 

fTlp chord X	 taper ratio 

Co

	

	

\Root chord

blocking correction factor 

compressibility factor ( l̂ __MO2
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Mo	 're8tream Mach nuniber In tunnel 

7	 glide-path angle, degrees 

Subscripts:	 . 

aileron (R . and 8L right and left aileron, respec-

tively)	 . . 

f	 flap  

w	 wing	 . .. . 

M	 measured	 . 

cor	 corrected values 

c.g.	 center of gravity	 . 

. and	 partial derivatives of a coefficient with respect to angle 
cl 

of attack or angle of yaw
.
 (example,  C	 - 

DESIGNATION 

It Is convenient to specify a method of designating wing and 
tail plenforms. For the present paper, a numerical designation 
18 adopted to Indicate Inorder . the sweepback, aspect ratio, and 
taper ratio of the wing and tail surfaces. For example, in a wing 
designation of the form

- 2.50 - 

the number preceding the first dash (45.1) 'gives the sveepback A 
in degrees measured with respect to the leading edge, the number 
following the first dash (2.50) "gives the aspect ratio A, and the 
number following the second d.ash (.42) gIvosthe taper ratio X. 

• .	 MODEL AND APPARATUS 

The model : i.n shown mountedfo± "testing in the Langley 300 MPH 
7- by la-foot tunnel In figure 3,.. and a three-view drawing of the 
model ax tested is presented as figure 14.

5 
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The elevator, rudder, ailerons, and wing flap were 20-percent 
plain flaps and were flat aided from the hinge line to the trailing 
edge, except for the wing flap which was a continuation of the 
airfoil section. The regular and. high locatir'..of the horizontal 
tail as tested. are given in figure 5. 

Several modification were made on the dorsal fairing and. on 
the vertical tail (figs. 6to8). The vertical tail was replaced 

by a --inch steel plate of the same plan form as the original tail. 
16 

A ventral fin with the dimensions shown for configuration P of 
figure 7 was also added below the vertical tail (under the fuselage). 

A special wing (of all-wood construction and having no control 
surfaces) with the same airfoil sections and plan form as the 
original wing was constructed for the purpose of obtaining data 
on a geometric dihedral angle of _16 0 . The geometric dihedral was 

changed as illustrated In figures 6 and 9.. 

A strain gage for measuring aileron hinge moments was installed 
in the model.

TESTS AND RESULTS 

Test Conditions 

Tests were made ate dynamic pressure of 0.0 pounds per square 
foot (M0 . 0.16) for all configurations, except for several aileron 

tests for which the dynamic pressure was reduced to 20.1 pounds per 
square foot	 = 0.12) in order to obtain hinge moments. The corre-

sponding Reynolds nber (based on the M.A.C. of	 ft) is 2,870,000 

and 2,050,000, respectively. The Reynolds numbers were computed using 
a turbulence factor of unity. The degree of turbulence of the tunnel 
is not biown quantitatively but is believed to be small because of 
the high contraction ratio (141). 

Corrections 

All data have been corrected for tares caused by the model 
support struts. Jet-boundary corrections, which are approcImate 
for a swept-back wing, were computed as follows (reference 1):
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7 

=	 + l.15C 

CX = 
CMx - o.oi8c2 

	

Cm = C + 0.015C	 (for tail on) 

All force and moment coefficients were corrected for blocking 
by the following equation obtained from reference 2. This correction 
was small and an average value was used for 811 computations. 

0cor CM[l - E(2 - M2)l 

where

=c	 +C 

	

0	 O	 0	 0 
V	 fuselage	 wake 

0.00131 
EQ 

E	
= 0.00917 

°fuselage 

E	
0.00029

Ovake 

! Iicrement In longitudinal-force coefficient of 0.00148 has 
ben a1Ied to take into account the horizontal buoyancy effected 
by the longitudinal static-pressure gradient in the tunnel for all 
tests.
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Presentation of Results 

The following table outlines the figures in which the results 
of the present tests are given:

Figure 

Longitudinal stability 

Wing-alone	 tests ...................... .10 
Stabilizer tests (e.g. at 35.9 percent M.A.C.) 

For	 fl	 =	 00	 ........•	 6	 •	 •	 •	 •	 •	 •	 .	 .	 . 11 to 12 
For	 r=	 :100	 ...................... 13 to 15 

Stabilizer tests (e.g. at 23.0 percent M.A.C.) 
For	 r	 =	 O	 ................. •	 ....	 16 
For	 =	 :100	 ................... •	 •	 •	 .	 17 

Sinking epeed. and glide-path angle	 ............ .	 .	 18 
Neutral points	 ...............	 .	 .	 . .	 .	 .	 19 
Donwash and dynamic-pressure ratio at tail 	 ...... .	 . 20 
End-plateteets	 ....................,..21 
Contribution of various components to longitudinal 

stability;	 r = oO	 ...	 ... ,	 •	 22

Lateral stability and. control 

Dorsal and vertical-tail modifications ............23 
Lateral-stability derIvatives against lift 

coefficient; I' = 00 .................... 21i. 

Aerodynamic characteristics against angle of 
yaw; r = 00	 ................25 

Wine-alone tests; r = O	 . . 26
Lateral-stability derivatives against lift 

coefficient; F-10° ...................27 
Aerodynamic characteristics with angle of yaw; F = -i0	 . . . 28 
End-plate tests; r = 00	 ....................29.
Aileron tests 

In pitch; r = 0°	 ..................... . 	 • 30 
In yaw.; P = O	 .. 6 6 • . 31 

DISCUSSION

Longitudinal Stability 

The data In the present paper are 'believed. to reflect the aero-
dynamic characteristics of the airplane at low Mach numbers. 
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Lift characteristics.- The lift characteristics are presented 
in figures 10 to 17. For the complete model the lift character-
istics are summarized, as follows:	 S 

r=o° r=-loo 

(original wings plain (dihedral wing, split 
flap)	 flap) 

= 00 1 5f = 500 1 5f = 00 • f §f= 50 

Ci	 (trimmed; c.g. at 
fl8X	 .0.91k	 1.020.93	 1.02 
3.0 percent M.A.C.) 

t L (due to flaps.)  

At	
Lmax 

'(trimmed)	 -- --'	 .08	 ----,	 .09 

At untrimmed a. = 00	 .24  

For the wing alone (r 00) with flaps undflected, the 
slope CL	 0.0147 (fig. 10). 

If the wing had been unawept, it would have had an estimated 
value of CL of 0.065, which 'when multiplied by cosine A would 

have given a value of CL of 0.050 for the swept-back wing as 

compared with a test value of 0.0 14.7. The calculated induced 

CL2 
drag - is plotted in figure 10 along with the test data. The 

AA 
curve is fairly similar at low lift coefficients and diverges at. a 
value of CL above 0,5. 

Sinking speed. - The low values of lift-drag ratio at landing 
lift coefficients for swept wings with low aspect ratio are asso-
ciated with high sinking speeds and limit the, pilot 'a ability to 
make a successful landing flare and to make contact at a deeired. 
point. The effect of landing-aid devices on sinking speed was 
therefore estimated for a full-scale airplane model with v/s 
assumed to be 30.5 at sea level. The effect of flap deflection
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on the estimated sinking speed of a full-scale model is pi'èsented. 
in figure 18.' With flaps retracted (±' 00), the sinking speed 

is appreciably lower than with flaps deflected ( = 500). The 

flaps increase the glide-path angle y and. 
CLMax 

only slightly 

and thus appear to be quite ineffective as landing-aid devices. 
The effect of full-scale Reynolds number on sinking-speed char-
acteristics is not 1movn The sinking speeds shown in figure 18 
indicate either that the airplane cannot be flown into ground 
contact but will have to be 'flared to reduce the. landing-gear 
loads at contact or that power will be requiredto land. For a 
more heavily loaded airplane, the sinking speed and the velocities 
shown in figure 18 increase as the square root of the weight ratio, 
and landing without power will be almost precluded. 

Static longitudinal stability.- The stick-fixed neutral points 
for both the high-speed and the landing configurations were computed 
from the data of figures 16 and 17 (C-g . at 23.0 percent M.A.C.) 
using a method described in reference 3 and are presented in 
figure 19. The average static margins at values of CL below 0.8 
are presented. In the following table:

Static margin 

	

r -	 (percent M.A.C..) -

	

(deg)	 0	

00	 Bf 500 

0	 9	 10 

-10.	 . 10	 :11 

-10 (with high 

	

horizontal tail)	 16 

On the basis of :bovspeed. wind-tunnel ,teste, the, static longi-
tudinal etability.appeare inadequ.ate 'above a lift coefficient which 
is' 0.15 below that at which sta'll'occura except with the high 
horizontal-tail locati6n.	 . .	 .	 '. ..	 . 

Dovnwah and dynamic-pressure ratio at tail ..- The average 
downwash angles and dynamic-pressure ratios at the horizontal tail 
have been determined from the stabilizer tests (figs.' 16 and 17 - 
c.g. at 23.0 percent M.A.C.) andare presented in figure 20 for 
flap deflections of 00 and 500 . The values of the elope E/U 
in the linear range are summarized in the following table:
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(dog)	 - = 00 

o	 0.I7	 .	 0.66. 

-10	 .8.	 .	 .63 

-10 (wing with high	 .	 .	 ---------- 
horizontal tail) 	 .	 .. 

Brief tuft studies indicated that the initial stall occurred 
slightly Inboard of the wing tips at CL 0.7 and spread rapidly 
to envelop the tip and toward the center section. . The increased 
relative loading on the unetalled inboard section of thewiri& Is 
thought to account for the large increase in downwash . observed at 
the tail beyond CL = 0 -7 . with flaps up. Also at high lfft:coef-
ficients the tail is close'to the wake and -the profile-drag óóeff I-
dent for the wing Is high, which results in a further increase In 
the d.ownwash at the tail. 

Changing the dihedral angle to _lOo hada slight stabilizing 
effect on the downwaah angles for both flap configurations, which 
is as expected because of the lowering of the wing-tip vortices. 
with respect to the horizontal tail. Changing the horizontal tail 
to the high location shown in figure 5 had, a marked stabilizing 
effect on the downwash angles .for the flaps-retracted configuration, 
especially at high lift coefficients (fig. 20(b)). The very large 
reduction in downwash at the high tail location causes the model 
with the high tail to be stable at the stall, whereas .tho original 
model was unstable at the stall (fig- 17).	 . 

Wing end plates.- The effect of end plates on the wing is 
presented in figure 21 (e.g. at 35.9 percent M.A.C.). for the landing 
configuration. The pitching moment indicates a slight Increase in 
stability for the model with end plates on. With the additio n of 
end plates, the slope CLa shows an Increase to 0.060-as compared 
with a value of 0.050 without end. plates (r = 00). 

Contribution of various components to longitudinal stability.-
The contribution of the, various components to. longitudinal stability 
is presented in figure 22 (e.g. at'.23.0 percent M.A.C). ' These 
pitchin-moment slopes were obtained from the data for the complete 
model Zi. t = -3 0) the fuselage-wing cômbinátion, and the wing..
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The difference between the pitching-moment slopes for the complete 
model and for the wing-fueiage corbination is the contribution of 
the tail, and the fuselage pitching-tnoinent elope was obtained from 
the difference of the fuselage-wing combination and the wing. The 
curve for the complete model shows that the model has a stable 
pitching-moment slope which ra pidly becies unstable at lift coef-
ficient. above 0.7. • The most importapb contribution to the insta- 
bility of the complete model at the high values of lift coefficient 
Is due to the tail which is In a region of high dowuwash at large 
values of CL . A higher location of the horizontal tall tends to 
alleviate this condition. 

The fuselage has an unstable pitching-moment variation, which 
shifts the neutral point forward 1 percent at low angles of attack 
and increases with higher angles of attack. As a check, the 
pitchi

ng moment of the fuselage 1488 also computed (reference Ii.) 
and was found to. account for a 6-percent change In neutral point. 

Lateral Stability and Control 

Initial tests of the original complete-model revealed an 
undesirable flat spot in the yawing-moment curves at low angles 
of attack, the stability being almost neutral for about 12° yaw. 
Since this condition could lead. to a constant and annoying Dutch 
roll type of oscillation In flight, a fairly extensive investiga-
tion of the cause of the reduction in stability was made. The 
Investigation indicated that the cause of the low directional sta-
bility at small angles of yaw was separation of the air flow at 
the rear part of the fuselage. This ceparation was caused by the 
combination of a large boundary layer built up along the fuselage 
and an adverse pressure gradient at the tail end of the fuselage 
because of the expansion between the fuselage and the horizontal 
tail on the vertical tail. Tuft observation con±'irnied a tendency 
toward separ'ation on both the tail end of the fuselage and. on the 
vertical tail below the horizontal tall for small yaw angles. 

A number of modifications as shown in figure 7 were made In 
an attempt to correct the flat spot in the yawing-moment curve. 
The aerodynamic data for these configurations are.given in figure 23. 
Removal of anyof the dorsal fairing arrangements shown (fig. 7) 
results in an increase in the directional stability C 

about -o .COQ1 . to -0-000 9 and he' s the further effect of maintaining 
the restoring force at large angles of yaw. (Compare configura-
tions E and F and configurations H and I of fig. 7 . ) This 
action of the dorsal fairings is opposite to that of dorsal fine 
on conventional airplanes probably because so much of the dorsal
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area is ahead of the design center of gravity for this type of 
model. It is desirable then to keep the dorsal fairing area ahead 
of the center of gravity to a minimum. As shown by the modifica-
tion data, it is also desirable to keep the top of the dorsal 
fairing (ahead of the center of gravity) rounded rather than ridged 
as for the original dorsal. Configuration I was selected as the 
optimum configuration from these modifications because it improved 
the stability through the sn'all yaw-angle range to a point at which 
it was considered satisfactory and also because it provided space 
in the dorsal fairing for the necessary pressure tubes and control 
leads. The optimum configuration (f ig. 7, configuration I) consists 

of a -inch sheet-steel vertical tail of the original plan form, 

with a rounded nose and. sharpened trailing edge, and. a modified 
dorsal having a flat top Instead, of the original ridged, top. The 
rest of the testswere made with the configuration described 
(configuration I). 

General etability characteristics.- Stability parameters C, 

C 1 , and Cy are given in figures 24 and: 27 for the revised model 

configuration previously described with the original wing replaced 
by the similar wing of all-wood construction. This wing had. pro-
visions for changing the dihedral angle. The stability parameters 
were computed from tests made through the angleof-attack range 
at ±5° of yaw. Flap-down tests were made using s plit flaps of the 
same chord and span (0.20 chord, 1/2 semispan per: flap) as the 
original plain flaps. 

The wing-fuselage combination tends to become more stable 
directionally with increasing values of CL up to o.8; this effect 
is associated with the stability of the wing:itself rather than 
with any wing-fuselage interference since the'wing-alone values 
taken from figure 26 show the same tendency. Th& ffect is probably 
the result of Increasing drag difference at higher values of CL 
between the two wing panels for a given change in angle of yaw. 
When the tips stall, the effect is reversed, and increasing CL 
decreases the directional stability. The dihedral effect C1

'V 
drops sharply when the tips stall. The data of figure 24 in 
directional Instability at the stall for both the flap$-neutral 
and the flaps-deflectedconfiguratjons. The tail-on directional 
stability (for r= o°) as determined, from tests (fig.- 21i.) at 
small angles of yaw . (±5) usually is about -0.0008 larger than 
values determined from corresponding yaw tests (fig. 25). 
This discrepancy in values is a result of the degree of accuracy 
of the two methods used to determine the slopes. The values of
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the parameters C7	 and Cv(figs. 2k and. 25) obtained by the 
.Iv 

two test methods compare favorably. 

The contribution of the vertical tail to the directional 

stability (ch/') has a fairly constant value of -0.0035 with 

undefiectèd flaps, which is found to be somewhat greater (about 
30 percent) than elementary considerations' of effective vertical-
tail area, lift-curve slope, and tail length would ind.icate Several 
investigations (for example,, see references '5 and 6) indicate that 
the side-wash angle produced at the vertical tail for niidwing 
arrangements is in the stabilizing direction and may contribute 
increases in the vertical-tail effectivness of the order. found... 
It may also be noted that with flaps deflected the directional 
stability is greeter than with flaps neutral, which is attributed 
to favorable wing-fuselage interference effect with flaps deflected 
on the stability contribution of the vertical tail as is shown in 
reference 6. 

The increments in C, ' C j , and Cy, caused by the addi-

tion of the vertical tail Indicate that the center of pressure of 
the vertical-tail load is somewhat lower and farther forward than 
might be expected. The vertical tail appearsto alter the pressure 
distribution over the fuselage in such a way as to decrease the 
instability of the fuselage. The mutual effect is mentioned in 
reference 6.b-at no data are available. Tests of an isolated 
vertical tail in the presance of the fuselage would be required 
to obtain such data. 

Effect of geometric dihedral.- The data of figure 24 indicate 
that the effeetive dihedral was excessive. The geometric dihedral 
angle of the wing was therefore changed from 0 0 to -P100 in an 
effort to decrease the effective dihedral. The change in geometric 
dihedral extended from the wing tip to the fuselage intersection. 

The lateral-stability paraioters (for F = -100) of figvre 28 
compare favorably with the parameters obtained in tests made at 
±5° yaw (fig. 27); however, alteration of the dihedral angle to -100 
(fig. 27) increased the.tail-on directional stability C	 slightly 

at a given value of CL and decreased the effective dihedral 

by about 0.0,010, or about 0.0001 per degree dihedral change. 
Directional inctability, however, still occurred at the stall for 
the flaps-neutral configuration (fig. 27(a)). The values of C 

for _100 dihedral were considered to be satisfactory insofar as 
their effect on the lateral flying qualities was concerned.
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The data for the configurations with 00 and *100 dihedral 
presented in figures 21+ and 27 aio given, about the teat center of 
gravity. The design center of gravity of the model is higher. 
(vertically) than that used in the presentation of the data. The 
vertical tiansfer of the data from the test center of gravity to 
the design center of gravity would decrease C 1 byabout 

which amounts to a correction X j of about -0.0001+ for the 

00 dihedral wing and -0.0005 for the dropped wing (-100 dihedral). 
It should also be noted that forward movement, of the center of 
gravity from the test location (0.36 M.A.C.) to the design location 
(0.23 M.A..C.) increases the directional stability by about -0.01+5C 

or by about the same numerical magnitude as the effective dihedral 
was increased by the vertical transfer of the center of gravity. 

Effect of end plates.- Two sizes of rectangular wing-tip end 
plates (tip fins) having total areas (for both wing panels) of 
10 percent and 20 percent of the wing area wore tested. The con-
figurations and data are given in figure 29. The following table 
gives the values of slopes measured from figure 29: 

Fins	 C1

C 

•	 '50;	 0f = 0
0 ;	 CL = o.?6 

Off 0.0021+ -o.00i8 0.010 
Sn'.all .0016	 --0023 .Oili. 
Large .0002	 0035 .018 

= 100 ;	 bf = 500 ;	 CL	 0 .8 

Off 0.001+1 -0.0031 0.012 
Small .00.L6 -.0037 .016 
Large .0019 - .001+2

[	
.021

For the high-speed conditions, the effective dihedral is 
reduced to about 01 with large tip fins, end an appreciable 
increase in directional stability occurs. The small tip fins also 
have a large effect. With flaps down a large decrease In effective 
dihedral also occurs with final values of C 1, In the normal range 

for unawept wings (about -0.0010 to -0.0020). 
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Part of the increment in C j., caused by tip fins may be 

attributed to the side fc:ce acting on the end. plates below the 
center of gravity. This effect was checked by approximate calcu-
lation of the-side force on the end plates with the end plates 
considered as row-aspect-ratio wings with the wing itself acting 
as an end plate for the tip fins. The side force on the plates 
also accounts directly for the increased, directional stabiLity,  
caused by the addition of the tip fins. 

Figure 29(b) also shows that the rolling moment remains 
essentially constant for yaw angles between 70 and. 200 with the 
large end plates. 

Aileron characteristics. - Aileron effectiveness was measured 
through the angle-of-attack range with flaps up and. with flaps down 
and the data are presented In figure-30. The effectiveness of the 
aileron 'In yaw is shown in figure 31. Aileron hinge-moment data 
were also obtained as shown in these figures. 

For angles of attack eater than about 1140, the ailerons 
exhibit a very large increase in upfloating tendency (fig. 30) 

coincident with the point at which the lift curve begins to round 
off as the wing tips begin to stall. The stalling was observed In 
tuft studies to occur at angles of attack of about 1140. The aileron 
effectiveness In the, region beyond 114 0 with flaps up, however, 
remains relatively unaffected except at the large aileron angles. 
With flaps down (fig. 30(b)), there Is a marked d.ecrese In aileron 
effectiveness beyond the angle of initial tip stalling (very 
near CT	 ; see fig. 12). 

rnax 

Since most tests were :aade with only the left aileron deflected, 
a single test was made (fig. 31) to determine whether the effects 
of deflecting two ailerons simultaneously are approximately addi-
tive. The curves Indicate that the effects are additive, within 
the experimental accuracy, and that the total rolling moment for 
two ailerons deflected equally and oppositely Is almost constant 
with angle of yaw. 

Based upon untrimuied. data (for a = 11.2 0 ), the ailerons are 
not capable of trimming out sideslip angles greater than about 100, 
with flaps down, because of the large value of the effective 
dihedral

'4,
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CONCLUSIONS 

The fo1lodng d6nolusions are based on tests of an airplane 

model having a 45.10 swept-back wing with aspect ratio 2.50 and 

taper ratio	 and a 42.80 swept-back horizontal tail withaspect 

ratio 3.87 and taper ratio 0.49 to determine its Iowspeed sta 
bility and control characteristics: 

1. The longitudinal stability becomes inadequate above a lift 
coefficient which is 0.15 below the stall for the horizontal tail 
located near the fuselage juncture on the vertical tail. The model 
shows instability at the stall, which is probably promoted by wing-
tip stalling. 

2. Changing the wing dihedral from 00 to -101 or adding end 
plates extending down from the tips had little effect on the longi-
tudinal itability characteristics. 

• 3 . Location of the horizontal tail near the top of the vertical 
tail resulted in. satisfactory longitudinal stability throughout the 
lift range because the tail was in a region of more favorable down-
wash.

ii. . The directional stability at smell yaw angles was improved 
by replacing the original vertical tail with a steel flat plate to 
Improve the tail-fuselage intersection and by flattening the top 
of the dorsal. 

5. Romoval of any of the dorsal fairing arrangements increased 
the directional stability an Increment of about -0.000 14. to -0.0009 
and had the effect of maintaining the restoring force at high yaw 
angles. The dorsal action was opposite to that of conventional 
airplane's probably because of the large area forward. of the center 
of gravity. 

6. The wing-fuselage combination tends to become more stable 
directionally with Increasing values of lift coefficient up to 0.8, 
which was a result of the wing itself rather than fuselage inter-
ference since the wIn3-alone values show the same teiidency. 

• 7 . The directional stability was greater with flaps deflected 
than with flaps neutral. 

8. The tail-on directional stability was increased and the 
effective dihedral was decreased (by about 0.0001 per degree 
dihedral change) when the geometric dihedral angle was changed 
from 00 to _100.
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9. End plates greatly reduced the effective dihedral and 
increased the directional stability for the high-speed condition. 

10. The ailerons show a very large increase in upfloating 
tendency for angles of attack greater than 140 . The aileron effec-
tiveness was relatively unaffected. where the stall occurred (110) 
with flaps neutral; however,, with flaps deflected there was a 
decrease in aileron effectiveness. The ailerons (for a, = 11.20) 
for the untrinime(i coiidition cannot hold a sideslip angle greater 
than about 10 0 for the flaps-don configuration. 

Langley Memorial Aeronautical Laboratory 
National Advisory Coniittee for Aeronautics 

Langley Field., Va.
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Figure 1.- Location of test center of gravity and the airplane center of 
gravity of a. model with a 45.1 - 2.50 - .42 wing. All dimensions are 
in inches.	 -
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Figure 2.- System of axes and control-surface hinge moments and 
deflections. Positive values of forces, moments, and angles are 
indicated by arrows. Positive values of tab hinge moments and 
deflections are in the same directions as the positive values for 
the control surfaces to which the tabs are attached.
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- Fig. 5	 NACA RM No. L7B25 
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Figure 5.- Horizontal tail locations of model with a 45.1 - 2.50 - .42 wing.
All dimensions are in inches.



1. loo 

Cd 04 
cd 

co 0 

II 

to 

c. 

bOG) 

-1 

c"1 

•0 

Do 
LCi-

cd

1) 

bD o 

ho 

1i

a) 

0 

'H 

ci) 

a) 
ci) 

E-

Cd

NACA RM No. L7B25
	

Fig. 6a 



1) 

Ci 

Mt 

U) 

.r-1

C) 

(D 
.43 

w 
()

NACA RM No. L7B25
	

Fig. 6b 



NACA RM No. L7B25 

I3tof,ø 

-i. 
,Vjse A 

AJ —

 

' 

Origina/ com,o/e/e mode I, da5hed line h7dhv/es dorsal i 
into fte/age 4' lu/I-off ccin'igvrthoo 

fred irn'o fise/age 

A f/al- dorsal fa/red  1hto verl,ca/ loll 

Nose 9	
5' 

D 

E

Clean ,noaW steel-p/ite ..erfia/ to,/ and ventral tn	 H ///-'I 

F

Fig. 7 

Cn, 
5mri/i o/es  
(Lr=52)  

Cor 

O00020 ,900182 
(capt (wupiWe) 

£20180 .00/80 
(loll-oft) (tail-Oft) 

-.00100 -.00220 

.00055 -.00190 

-.00050 -.00180 

-.00222 -.00270 

-.00120 -.00270

Mfi

iinimvm valve i 'r small 
yaw cu79/es of O'^o5 

0r,q,na/ dorsal [cited info jfee/-Plate frePfiCd/ hii/	 NATIONAL ADVISORY 

CGIKITTEE FOR AERONAUTICS 

Figure 7. - Effect of dorsal and vertical-tail modifications on the 
directional stability of a model with a 45.1 - 2.50 - .42 wing.
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Figure 10.- Wing-alone characteristics in pitch of a model with a 
• 45.1 - 2.50 - .42 wing. 

o
 f = 00 ; r = 00 ; test e.g. at 35.9 percent 

M.A.C. 
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Figure 11.- Effect of stabilizer on the aerodynamic characteristics in 
pitch of a model with a 45.1 - 2.50 - .42 wing. o = 0 0 ; v, = 00; 

F = 0 0 ; test e.g. at 35.9 percent M.A.C.
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Figure 12.- Effect of stabilizer on the aerodynamic characteristics in 
pitch of a model with a 45.1 - 2.50 - .42 wing. o = 500; * = 0°; 
r = 0 0 ; test c.g. at 35.9 percent M.A.C.
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Figure 13.- Effect of stabilizer on the aerodynamic characteristics in 
pitch of a model with a 45.1 - 2.50 - .42 wing. 
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r = - 10 0 ; test c.g. at 35.9 percent M.A.C.
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Figure 15. - Effect of stabilizer on the aerodynamic characteristics in 

	

pitch of a model with a 45.1 - 2.50 - .42 wing. o = 00;	 = 

= - 100 ; test c.g. at 35.9 percent M.A.C. 
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Figure 16.- Effect of stabilizer on the aerodynamic characteristics in 
pitch of a model with a 45.1 - 2.50 -.42 wing. i = 00 ; F = 00; 
center of gravity transferred to 23.0 percent M.A.C. 
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Fig. 17 

Figure 17.- Effect of stabilizer on the aerodynamic characteristics in 
pitch of a model with a 45.1 - 2.50 - .42 wing. * = 0 0 ; r = - 100; 
center of gravity transferred to 23.0 percent M.A.C. 
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Figure 19.- Neutral points for a model with a 45.1 - 2.50 - .42 wing. 
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Figure 20.- The effect of flap deflection on the downwash angles and 
the dynamic-pressure ratios at the horizontal tail for a model with 
a 45.1 - 2.50 - .42 wing. 
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Figure 20.- Concluded. 
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Fig. 21 
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Figure 21.- Effect of end plates on the aerodynamic characteristics in 
pitch of a model with a 45.1 - 2.50 - .42 wing. o = 50 0 ; * = 
test c.g. at 35.9 percentM.A.C.-
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Figure 22.- Contribution of the various components to longitudinal 
stability of a model with a 45.1 - 2.50 - .42 wing. o = 00; 

r =00; c.g.	 23 Percent M.A.C. 
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Fig. 23a conc.	 NACA RM No. L7B25 

WIMM 
MEMMMMMMM M 
iiuiuu 
MMEMEMMMMM 

MMMMMM 0'A'mMM•u 
No MEMO 
EMEMEMEMME.6 
MEMEMME ill 
MENNESEAMEMEM 
MMPA'El ME 
MEMEMEMEMMOM 
MEMEMEM M-SaIMME 
mmm^WEM`Mmmmm 
MEEMEMEMEME ONEEMEMEMEa

.04

0

04 

MI

.04 

K 0 

j .Q4

3W 

IZ 

-04 

O4 

-40	 -30	 -20	 -/0	 0	 /0	 20 

An9fe of yaw,	 c/es

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS 

(a) Concluded.

Figure 23.- Continued.



NACA RM No. L7B25
	

Fig. 23b 

C 

Qj

I) A 
(JLt 

Io 4
	

Qj 

o4

-D4 

O4 

IN 

TO4 
O4I 

AN 

.01 

(.)

-40	 -30	 -20	 -/0	 0	 /0	 20	 30	 40 
NATIONAL ADVISORY A nçi/e of yow, 3b', deg	 CONJIITTEI FOR AERONAUTICS 

(b) cx = 54' yatii iig-rnomen-/- ce{1,cien7Ls. 

Figure 23.- Continued.



Fig. 23b conc.	 NACA RM No. L7B25 

Con f/go rc/o 

.04 

j -D4 

to 

104

NATIONAL ADVISORY 
4NITT(E FOR AERONAUTI 

-4-0.	 -30	 -20	 -10	 0	 /0	 20 

	

Angle of yaw,	 o'eg 

(b) Concluded.

Figure 23.- Continued.

,o4 

in

Q} 

OL



NACA RMNo. L7B25
	

Fig. 23c 

(J) 

$4 

c)

u'!uuuuuu'j 

I
NATIONAL ADVISORY

I 	 t

CONHITTE FOR AERONAUTICS - 

I I 	 I	 I	 I

4Q) 

Qj 
-4

(.r 

.8 

ii 

-40	 -30	 20	 /0	 0	 /0
	

20	 30	 40 

Atq/e of yaw, '?" deq 
(C) c>/- = 547; 5/1e-f0PCe c'effk/et1t5. 

Figure 23.- Continued.



Fig. 23c cone.	 NACA RM No. L7B25 

j

4 

0 c4 
U)

0

Corniurizf/ot, 

G 
-

- 

- - - -
	 - 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

I	 I	 I	 I

4QJ 
Li 
LT 

0° 
Q) 

(n 

(j 

Q) 

(c 

-0	 -30	 -20	 -10	 0	 /0
	

IN 
An9k of yaw, 111, de 

(C) Conc/vdsd.

Figure 23.- Continued.



.04

0

04 

.04 

O4

-ci 

QJ 

I 

NACA RM No. L7B25
	

Fig. 23d 

	

-4-0	 -30	 -20	 I0	 0	 10	 20 

Angle of yaw, 3U, cleg 

	

(	 i30; ro//rnq-moment coeffic 1t7ts. 

Figure 23.- Continued.



Fig. 23e
	 NACA RM No. L7B25 

1') 

-qi 
"-I 

ci

IC) 

O4
	 + 

V
	

Rl 

O8
Sc) 

4L 

4 

in

.o4 

0

I 

04	 I	 NATIONAL 

I COMMITTEE FOR 

	

I	 I	 I 

-40	 -30	 -20	 -10 - 0	 /0	 20 

Anq/e of yaw, a/I, deg 

(e) o< /..5'.o yawinq-m 7e/71 ceff,c/ents. 

Figure 23.- Continued.

S



ci I 
L 

NACA RM No. L7B25
	

Fig. 23f 

4) 
(Si 

U) 

ci 

Sc,

0 
qj 

(r)
-.8

-40	 -30	 -20	 -/0	 0	 /0 
At'/e of yaw, 7/7, cIeg

20 

(f) o 13.0 s/we- force cdeff/,ntj. 

Figure 23.- Concluded.



Fig. 24a
	

NACA RM No L7B25 

.02 

ç0 

-02 

002 

-D02 

(?flA

0 - - - -	
/1 off	

- - 

- - - -
	 - - - - 

------y---

---- - __j_ - 

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS 

I	 I	 I

0	
C-11 

-.002 

.(JJ T

-.4	 0	 .8	 1.2	 14 

Lifi coeff/c/ernL, C1 

() 6c-L2°. 

Figure 24.- Variation of lateral-stability derivatives with lift 
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dorsal; steel vertical tail; r = 00.
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Fig. 28c cone. 
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Fig. 29b cone. 
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Figure 30. - Effect of aileron deflection on the aerodynamic 
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