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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PERFORMANCE OF COMPRESSOR BLADE CASCADES
AT HIGH MACH NUMBERS

By Seymour M, Bogdonoff
SUMMARY .

Three l0-percent—thick and two 6~percent—thick blower blades
were lnvestigated in a high Mach number two-dimensional cascade.
tunnel in . several configurations for a range of Mach number,
Pressure distributions, schlieren photographs, turning angles, and
pressure rises were obtained to evaluate the effects of Mach number
on the basic cascade and compressor design parameters,

The turning angles and design angles of attack found from
low-speed cascade studies may be used directly in high-speed designs
since no significant changes were found to occur at high Mach
numbers. S

The Mach numbers for critical speed are b to 5 percent greater
than that predicted by the von Kdrmén-Tsien extrapolation applied
to the low-speed pressure distribution. The Mach nimbers for
force braeak are 16 percent higher .than the predicted critical
Mach number for a solidity of 1, 5 and 13 percent higher for &
solidity of 1.0.

. .The .extrapolation of low-speed rotor tests to a compressor stage
operating below the'Mach number for force break with an efficiency of
90 percent indicates that pressure ratios of the order of l A per
stage should be obtalnable

Significant increases in compressor performsnce can be made by
the use of 6~percent~thick tip sections since their limiting Mach
number 1s 3 to U4 percent greater than that of the lo—percent-thick
blad.es . .

" INTRODUCTION

In an effort to increase the pressure rise and efficiency which
can be-obtained with axial-flow compressors, the National Advisory
Committee for Aeronautics is conducting an investigation to develop
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high-performance compressor blades.. The first phase of this investi-
gation, which was conducted at the Langley Memorial Aeronautical
Laboratory, is a study of blade sections in a low-speed two—

dimensional cascade tunnel and is give- in referencesl and 2. This .
work was extended to.low-speed tesis of rotating blades with very high

loadings which were also conducted at the Langley Laboratory (refer-
ence 3). The results have -shown that, the cascade data can be used to
design highly loaded rotating blades with wery high efficiencies.

The present paper extends the low-—speed cascade studies to the
high Mach numbers at which modern axial-flow compressors need to
operate. It also presents the limiting Mach numbers at which large
losses make compressor operation impracticable. The effects of
compressibility are evaluated for the basic design parameters of
references 1 to 3; .- namely, turning angle, shape of the pressure
distribution, -and design angle-of attack, The investigation was made
in a high Mach nuﬂber two—dimensional cascade tunnel at the Langley
Laboratory. e : )

SYMBOLS

&  veldcity of sound, feet per second

. 8pecific heat of air at constant pressure, foot—pounds
per slug per °F -

M _Mach number entering the cascade (Wl/al)

‘ / -
P pressure coefficlent El__;E_
ql.

Pcr~'pressure coefficient for sonic velocity. at given entering
Mach number :

static pressure, ponnds per square footA
’ dynamic pressure, pounds per square foot
"tempereture,: OF absolute |

rotational speed of rotor element, feet per second

velocity relative to rotor and ‘to cascade simuleting rotor,
feet per second

o :'angle of attack degrees (angle between entering air and
~chord line of. blade) - A .
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B ..stagger angle, degrees (angle between perpendicular to
: cascade and entering air)

y - ratio of specific heats of‘air“

o solidity (chord of blade divided by gap betWeen blades,
' see fig. 3) & -

./‘,

5. .9“816\.?@179%8? which ai.r,ié surhed. by blades, degress” -
Subscripts:

1 ahead_of cascade_or»ronor:n

2 cehind~cascadebor ronor o

d desién conditicns A"‘.

1 locai

APPARATUS

High Mach Number Cascade Tunnel

- The two—dimensionsal cascade tunnel used 1n ‘the present inyesti--
.gation is .shown’ schematlcally in. figure 1. The tunnel is similar to-
" that used in rsferences 1 and 2 except that, because of the large powers
required, no control of" the waLl boundary layer ahead. . of :the cascade
was attompted. - In addltion, ‘the width of the test section was only-
4 inches. -The tunnel was'driven by compressed aeir from a large .
tank at. pressures. from- 60 to 300 pounds per square inch, The alr. -
flowed past a motorized control valve to the settling chamber; through
' three .sets. of 4O-mesh’ ocreens, the conVerging entrance section, and -
the test .cascade; and to the atmospherc._ Static—pressure orifices
were installed in ths ' ‘settling chamber and along & 1ine 1/3 chord
ahead of' the cascade," From 1/2 chord ahead of the blades to approxi-
mately 1/4 chord behind the bledes the top and.bottom walls consisted
:of adjustable flexible plates. The .angle of . attack of the blades -
could be -varied, -but changes in stagger and golidity necessitated -
a camplete change of tunnel walls, Walls were provided for the
follcwing test conditions: B = 459, ¢ = 1. 5, B =60° g =1.5;

and B = 60°, o = 1.0,
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Description of Blades

The blades tested consisted of three 10-percent—~thick blades,
the same as those of references 1 and 2 and two 6-percent-thick blades
derived from NACA 65,2-006 airfoils with the tralling edge thickened
as in reference l. The thick sections were cambered for free—alr
1ift coefficients of 0.8, 1.2, and 1.8; the thin section, for 1ift
coefficients of 0.8 and 1,2, For the pressure-distribution tests,

the test cascads consisted of four solid blades and a master blade
provided with pressure orifices. For the schlieren studies, the
mester blade was replaced by a fifth solid blade. The blades have

a b-inch span.and a 5=inch:chord. Ordinates for these blade sections
are given in tebles 1 to 5 and cross sections are shown in figure 2.

Schlieren Setup
The schlieren system used to photograph the high-speed flow
through the cascade consisted of a high-intensity spark, two 16-inch
parabolic mirrors of 90~inch focal length, and ‘associated equipment.
The knife edge of the schlieren system was set parallel to the
stagger line for all tests., Two or three of the set of five blades

were mounted between % —inch glass plates (measuring approximately

Sby 7 inbhes) which replaced sections of the tunnel walls. The
blades were held in place by short pins fitted into holes drilled in
the glass, L '

TESTING METHODS = -

* The blades were installed ‘in the cascade tunnel at the desired
conditions of stagger, -solidity, and angle of attack with the pressure
" blade in the center of the cascade (fig. 1). At a Mach number of ‘
- approximately 0.2, the flexible walls were adjusted until the statlc
. .pressure ahead of the cascade was uniform., The speed was then ralsed
unitil further increases showed no increase in. the static-pressure
“yise dcross the cascade. At intervals during this process, photo—
.: graphs 'of a mercury manometer were taken to record the settling-
. chamber pressure, static pressures ahead of the blades, pressures on
the blade surface, and atmospheric pressure, This procedure was
repeated for the five blade sections at the various conditions of
. stagger; solidity, and angle of attack. Schlieren photographs were
_.then'teken at.speeds from below ‘the critical speed to above the speed
for maximum pressure rise for the various test conditions. Photographs
of tlie mercury manometer were taken simultaneously with the ‘schlieren
photographs.to record ‘the chamber pressure, static pressure ahead of
- the blades, and atmospheric pressure, e
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. The veriation of turnlng angle W1th Mach number was first

. obtained by making yaw surveys behind the airfoils with a claw-type
yaw tube. Photographs of a . tuft in the4air.stream behind the blade
and the use of a vernier protractor to measure the angles wers found
to give results which agreed with results obtained with.the yaw tube
to within *lo All other yaw surveys were then’ made by use of a
tuft becuuse of the ease in making these measurements .

PRESENTATION OF DATA AND DISCUSSION

: 'The depe‘presented herein are based on entranee'eonditions
-instead of mean conditions as in references 1 and 2. This base was

- chosen primarily ‘to simplify the use of the data and to permit direct

. application to-high-speed-compressor design for which the blade
. entrance conditions are usually known or fixed. The tests cover
& range of MAch ‘number from approximately 0.30 to 0.95 and corre-
sponding Reynolds numbers, based on the blade chord, of 700,000

: tol, 800,000 -

The entrance Mach number vas celculdted from the pressures
measured by the static-pressure orifices in the 'settling chamber and

" ahead:of the cascade. Stagnation temperature was assumed to be room
. temperaturs (520° P absolute) since the deviations from this value
. were not significant.  The inflection in the pressure-ratio curve

is. designated force break and correspondsto blade stall

. As the Mach number entering the cascade increased, the pressure
ratio acroes the cascude, and therefore the density ratio, also
‘increaseqd . From the continuity.relations), the exiting axial velocity
'comnonent would be expecteu to be smaller than -entering axial velocity
since the axial—flow area 'is DOHSLaut For this particular test
setup, - however, the bounaary layers ‘on the walls were found to modify
the exit area sq that.the axial velocity entering and leaving the
cascade was the same for all ‘tests (fig. 3). The results presented
are, therefore, directly applicable- only to the case of blading with
conetant axlal velocity and not to ‘blading with -constant axial-flow
area . :

Pressure-Distribution Measurements

A In flgures 4 to 30 “the. pressure dlstributions over the central
- alrfoll of the cascade are presented for a range of Mach number.

The pressures are plotted in the form of pressure coefficients P
and the critical pressure coefficient (pressure coefficient at which
sonic velocity is reached at that stream Mach number) is noted on
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each plot. The low-speed pressure distributions are very similar to
-those of reference 1, and in Tigure 5 the pressure distribution from
reference 1 is- 1ncluded for comparison. The blower blades show ‘
characteristics. very similar to those of the isclated airfoil as the
Mach number varies. Any pressure peaks on the top or bottom surfaces
increaseé rapidly.as. the Mach number increases. Shortly after the
critical pressure coefficient is exceeded on the airfoil a break in
the pressure-coefficient curve at that point is noticesable &s the
supersonic velocities return to subsonic’ veloc1t1es through a

shock wave. :

For angles below the design angle (the angle at which the
pressure distribution is essentially uniform or without peaks,
reference 1), the pressure peak on the lower surface usually is the
first part of the blade to reach critical speed, but no stalling is
noticeable. -(See figs. 7, 10,11, and 23.) Tais angle would seem to
be a good opérating condltlon, but‘data presented in the section of
the present paper entitled "Schlieren Photographs' show that large
losses occur shortly after the critical speed is reached. These
losses are caused by the strong shock waves which extend completely
across the blade’ passage ‘ -

Blade stall is defined as the condition at which no pressure is
recovered over the rear part of the airfoil upper surface and which
indicates separatlon This stelling is indicated by a flat region
“on-the pressure-distribution curves and a point of inflection on the
pressure-ratio curve discussed in the section entitled "Pressure
Ratio across. the Cascade."” For high angles of attack, at which a
pressure peak occurs on the upper surface, the blade stall may be
divided into two categories: blades whicn are loaded very highly
stall ‘because of the increase in Mach number -even before critical
speed is reached (figs.9, 17, 18, 19, 22, 28, 29, and 30), end
blades loaded more moderately stell at or slightly above. the critical
speed. From these pressure distributions, it is obvious that the
least losses at very high Mach numbers will be obtained with a
- uniform-load. pressure distribution; that is, one with no velocity
peaks on either the upper or lower surface. This conclusion is
~verified by a study of the pressure distribution at or near the
‘design angle of attack .(table 6) at which there appears to be no
‘stalling until Mach numbers from 0.05 to 0.10 above the critical
speed have been reached.

It is interesting to note that the occurrence of a shock on the
lower surface where the boundary layer is very thin is noticeable on
the pressure distribution as a sharp break. On the top surface,

:however, where the boundary leyers are thick, the pressure rise

- across the shock is- distributed over a not1ceable length of the
blade surface. ‘
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Schlieren Photographs

In figures 31 to 50, schlieren photographs of the flow through ..
the cascade are shown, A complete study was made for a stagger of
45° and ‘a solidity of 1,5, and a few photographs were taken at the
other conditions to show any changes which might exist. The black
dots near the rear of the blades are the holes drilled in the glass.
to provide a means of chenging the angle of attack, The thick blade
boundary layer which is noticed in the first photographs actually-:
occurs only at the blade-wall intersection. A study of the pressure
distributions shows mno stalling at these Mach numbers. An increase
in speed above the critical speed is immediately noticeable because
very small shocks appear on the airfoil. - As the Mach number is :
further increased, the shock waves grow much stronger until- finally
the flow behind these waves separates from the airfoil.  As the blade
angle of attack is varied, noticeable changes in these shock patterns
are seen,

In figure 31, in whicl the angle of attack is much less than the
design angle, small shock waves are first noticeable Just behind the
50-percent~chord station on the top surface. As soon as the Mach
number is increased to the point at whic¢h the waves extend entirely
across the passage between the ‘blades; separation is noticeable and
any additional increase in chamber pressure causes inéreased shock .
strength and separation., Once sonic: velotities extend entirely across.
the passage, an increase in Mach number is not possible., A few :
schlieren tests show an apparent increase in Mach number above this
point, probably due to flow around the ends of the cascade which are
not yet choked. Photographs which show such.a phenomenon ere there-
fore noted with a question mark, At an angle of attack close to the
design angle (fig. 32), the shock waves appear farther forward on the
airfoll and separation is not apparent until e Mach number of approxi- °
mately 0,03 above the previous case 1s reached (table 6)., If the
angle of attack is increased further, the peak pressures move closer
to the nose and the separation caused by the shock waves (fig. 33)
sterts at approximately the same Mach number &s in the first case.

At st1ll higher angles of attack (fig. 34) separation occurs at a

much lower Mach number. In this case, -the shock wdves never are
confined by the blades but extend out into the stream, the wave from
one airfoll becoming the bow-wave of- the neighboring eirfoil. These
phencmena are repeated in the schlieren photographs for the other
configurations with only slight variations in the shock-wave structure..

'Turning Angle

For the 6-percent—thick sections, turning angles obtained from
the tuft surveys at low Mach numbers have been included in table 6
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since no such data were available from previous low-speed cascade
investigations. The variation of turning angle with Mach number is
shown for two cases in figure 51. The first curve (NACA 65-(12)06.
blower blade, B = 45°, and' o = 1.5) shows a typical variation; the
second curve (NACA 65—(12)10 blower blade, B.= 60°, and ¢ = 1.0)
shows the maximum variation which was obtained (1°), These results
were obtained by photographing a tuft placed in the air. leaving the
cascade. For both conflgurations, a- 8light increase in the turning
angle with Mach number occurs up to the force break, above which there
is an sbrupt drop. Turning angles were obtained for all the other
blade sections and configurations for the range of ‘Mach number
investigated. In all cases, from Mach numbers of 0,30 to force
break, the increase in turning angle was less than 1., The turning
angles predicted from the. low-gpeed cascade studies of references 1 and-2
are, therefore, sufficiently accurate for the design of high-speed
blaedes, .

Pressure Ratio acrosé_thelCaécade

In reference 1, it was shown that the incompressible theoretical
static—pressure rise across the cascade could be expressed as &
function of the turning and stagger angles of the cascade. The =
corresponding static-pressure-rise expression for high Mach numbers
can be derived, From Bernoulli's equation of compressible flows
(see vector dlagram, fig. 3)

Wle W2 |
— CPTl = T + CpTz
or .
: 2 _y2
Top Wi© = Wx®
= ——— ]

Since the velocity ofAsound of the entering flow is

a) = \f (‘)’ - l)GpTl

and the entering Mach number is
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the temperature ratio across the cascade is

N T I - ,1 +1
?l. 2 v wl~'J

The velocity ratio Wp/Wy can be expressed as

Wo sp .
Wy cos ( e)

if it is ‘assumed thau the axial velocity is constant through the
cascade. "If it is further assumed that no losses occur, the
isentropic relatlonshlp cof temperature and pressures may be used to
obtain the following relation for the theoretical ‘static-pressure
rise across the cascade:

I Y I - y
P2 = Z;«—i M,2d1 - j-—=52 B + 1
P e 1 cos (B - @)

In figures 52 to 62, curves of the variation of measured static-
pressure ratido with Mach number are presented for the angle of attack
closest to the design point of the blade for each test condition.
Included on each figure is the theoretical curve obtained from
equation (1) with the use of the turning angles predicted from
references 1 and 2 ‘for the 10-percent-thick sections and angles
-measured at low Mach numbers.for the 6-percent-thick sections.
Measured values of pressure ratio should not be used in the calcula-
tion of compresso -blade performance since-these’ values include the
losses due to the boundary layer on the walls and are very. susceptitls
to settings of the flexible floors. The curves, however, give a
-good indication of where the blade losses start to increase sharply
(& reversal in curve direction). An examination of these curves
shows that no significant change in blade losses occurs until the
critical speed has been exceeded by approximately 12 percent to
16 percent. Once force break occurg, further increases in Mach
number yield little or no increases in pressure rise, the added
power being dissipated in shock-wave losses and severe separation.

Critical Speed and Force Break

The Mach numbers for critical speed and force break are
summarized in teble 6. For the blades which were tested at more



10 ' NACA RM No. L7Dlla

than three angles of atiack, the variation of Mach number for
critical speed and force break with angle of attack are shown in
figures 63 to 69. These curves show that the design point chosen
from the low-speed cascade tests of references -l and 2 correspond
very closely to the high-speed design point. The design points
fall very close to the maximum Mach number for critical speed and
force break. From the pressure distributions and pressure- retio
curves, it appears that critical speed, in itself, is not an
important parameter since no change in performance is noticeable
until force break occurs.

Several theories exist which predict the critical speed of

isolated airfoils from the low-speed pressure distributions, but
no such . theory is yet available for blades in cascade. .In the
absence . of any theory, 'the experlmental resulge were compared with
those which would be obtained if the von Kérman-Tsien extrapolation
were applied to the low-speed pressure distridbution of the blade

in cascade based on entrance velocity. The critical Mach number
predicted by this method was consistently 4 to 5 percent below the
measured value for all the 10-percent-thick blades tested. Since

no low-speed tests of the G-percent-thick blower blades are yet
available, the data on these blades are simply presented -and no
~attempt at analysis is made. It appears, however, that the decrease
. in airfoil thickness from 10 percent to 6 percent allows an increase

in Mach number ‘of aboub 3 to 4 percent for bOuh critical speed and
force break ' ~

Tne Mach numbers for force brea& are approximately 16 percent
hlgher than the critical Mach number predlcted by von Kérmdn and
Tsien for. the tests at-a. solidity of 15 and approximately 13 per-
cent higher for ‘tests at a solidity of l.O ‘These emplrical relatims

- . Were applled to the pressure dlstrlbutions of reéference 1 to. obtain

the Mach mimber for critical epeed and force break for all the _
-.sections tested. -The. results are presented with the design turning
angle. of the blade section in;figure TO . For ‘any desired turning
angle, s+agger, and solidity, the blade section and angle of attack
cen be obtained from the: de81gnecharte of references 1 and 2. Fig-
ure 70 then may ‘be-used to predict, both the Mach number for critical
epeed and force break. . These resultsva“e directly appllcable only to

NACA.. 65 eer*ee blower bludee in the ?eyﬁolds number range tested.
Extensive German tests: (veference 4) have shown that changes in
Reynoléds number greater than 150,000 ‘have small effect on the
efficiencies end pressure rise. It seems likely, therefore, that
the results presented herein are applicable to blades in the whole
Reynolés number range above 190 000 . 'The extrapolation of the low-
.speed rotor tests of reference 3 .to a compressor stage operating
below the Mach mumber for force bresk with an efficiency of 90 percent
indicates that pressure ratios of the order of .1.4 per. stage should
be obtainsble.
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It is recommended that further research be carried out to
cover the range of Reynolds number below 150,000 and to check the
values of Mach number for force break in high-speed rotor tests

CONCLUSIONS

From the investigation of NACA 65-series blower blades in a
high Mach number two-dimensional cascade tunnel, the following
conclusions have been reached:

+ 1. The turning angles and design angles of attack found from
low-speed cascade studies may b¢ used directly in high-speed designs
since no signiiicant changes were found at high Mach numbers.

2. The Mach numbers for critical speed are 4 to 5 percent

- greater than that predicted by the von Kermén-Tsien extrapolation
applied to the low-speed pressure distribution. The Mach numbers
for force break are 16 percent higher than the predicted critical
Mach number for a solidity of 1.5 and 13 percent higher for a
golidity of 1.0.

3. The extrapolation of low-speed rotor tests to a compressor
stage operating below the Mach number for force bresk with an
efficiency of 90 percent indicates that pressure ratios of the
order of 1.4 per stage should be cbtainable.

L. Significant increases in compressor performance can be
made by the use of 6-percent-thick tip sections since their
allowable operating Mach number is 3 to 4 percent greater than the
10-percent-thick blades.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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TABLE I.- ORDINATES FOR NACA 65-810 BLOWER BIADE

13

Upper surface

Lower surface

X

(percent chord)

y

(perqent chord)

X

(percent chord)

J

(percent chord)

o}
.260
486
949

2,143

L, 591

7.072

9.569

14.589
19.629
24,681
20,740
34,804
- 39.870
L 036
50.000
55.058
60.107
65,143
70,164
T5.171
80.162
85,137
90,10k
100.048

0

.913

H WA NN 000 \O\OO DRI AN £ MO~

.120
510
L27h
JLL8
.371
J1ko
415
.336
.139
.705
.098
<339
.Loo
082
L9989
3L
TR
.922
.025
024
.935
810
612

J1k2

0
.Tho
1.01k
1.551
2.857
5.409
7.928

10.431

15.411
20.371

25.319 -

30,260
35.196
40,130
45,064
50,000
54,942
59.893
64,857
$59.836
74,829
79.838
84,863
89,396
94,935
99.952

0
-.513
-.570
-.654
-.786
-.920
-.979

-1.013

-1.021

-1.018
-.979
-.929
-.858
-.771
-.649
-.458
-.190

.134
R TeTS)
.854
1.135
1.344
1.449
1.326
.916
-.142

L.E, radius: 03666 percent chord
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TABLE II.- ORDINATES FOR NACA 65-306 BLOWER BIADE

i
1

§ Upper surface Lower surface
x ‘ y : X i y
(percent chord) | (percent chord) | (percent chord) % (percent chord)
0 - 0 § 0 I 0

248 652 ' 652 o -.252
579 . .829 : .921 ' -.269
1.057 1.121 : 1.443 -.265
2,282 : 1.679 2.718 -.191
L.757 2.559 4 5.2L3 -.031
7.247 . 3.276 7.753 .116
9.745 3.889 10.255 2kt

1k, 756 - 4,800 15.244 185
19.779 5.686 20.221 - .682
24,809 6.308 25,191 .852
29,844 6.781 30.186 | .995
34.882 7.123 35.118 1.1y
39.921 T.341 40.079 1.227
4,961 7.431 i 45.039 ©1.329
50,000 7.387 ; 50.000 1.437
. 55.036 - 7.20h 5k, 964 1.556
60.067 6.801 59,933 1.677
65.092 "6.462° - 64,908 1.778
70.110 5.925 69.8% -1.851
75.119 5.283 74,881 1.877
-~ 80.119 4,532 79.881 - 1.836
- 85.109 3.679 84.891 1.705
90,089 2.707 , 890,911 1.429
95,062 1.596 oL, 938 .032
100.048 J1h2 ' 99,952 S } 1T

L.E, radius: 0,256 percent chord
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TABLE IIX.— ORDINATES FOR NACA 65(12)10 BLOWER BLADE

E, Upper surface Lowver surface
x y x ' v
i (percent chord) | (percent chord) | (percent chord) | (percent chord)
0 0 .0 0

161 , 971 .8729 -.371
.37k 1.227 - 1.126 -.387
. .817 1.679 : 1.683 -.395
1.981 Y 2.599 3,019 -.367
4.399 4.035 " 5.601 -.243
. 6.868 5,178 8.132 -.090
9.361 6.147 10.629 057
14,388 7.734% . 115,612 342
19.477 -8.958 : 20.5%53 .594
- 2hk.523 © 5.915 25 k77 .825
29.611 10.640 30.389 1.024
34,706 11.153 . 35,294 1.207
39,804 11.479 40.196 - 1.373
4 o0k 11.598 45.096 1.542
'50.000 11.488 50.000 1,748
55.087 11.139 54,913 2.001
€0.161 10.574 59.839 2,278
65.214 9.801 64.786 2.559
70.24%5 8.860 €9.755 2.80L
75.256 7.808 Th.Thh 2,932
80.242 6.607 79.758 2.945
85,204 5.272 84,796 2.80L
90.154 3.835 89.846 2.369
95.096 2.237 ok, g0k 1.559
100,068 .13k 99,932 -.13%

L.E. radius: 0.666 percent chord

v et — e < ¢ 04 2 = S
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TABLE IV.- ORDINATES FOR NACA 65-(12)06 BIOWER BIADE

Upper surface

Lower surface

X
(percent chord)

J
(percent chord)

X
(percent chord)

y
{percent chord)

o}
.285
507
973
2.183
4,643
7.127
9,622
14,637
19.670
24,715
29,766
34.823
39.882
L, 942
50.000
55.054
6C.101
65.138
70.165
75.178
80,178
85,162
90.132
95,091
100 .068

018
733
221
.13k

VWU O\I1-3DOVOVOO'O0 OMm-IN
w .
£
W

0
.715
.993

- 1,527

2.817
5.357
7.873

10.378

1%.363

20,330

25,285

30.23%

35,177

40.118

45,058

50.000

54,946

59.899

64,862

69.835

74.822

79.822

84,338

89.868

94,909

99.932

126
.101
022
.210
627
.988
1.302
1.848
2.286
2,650
2.944
3.180
3.370
3.520
3.643
3.747
3.820
3.8L0
3.799
3.672
3.435
3.058
2,471
1.571
-.13k

t + v+ O

L.E. redius: - 0.256 percent chord
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TABLE V.- ORDINATES FOR NACA 65-(18)10 BLOWER BIADE

Urper surface Lower surface
X ¥ X y
(percent chord) | (percent chord) | (percent chord) | (percent chord)
0 0 0 0

046 1.049 .954 -.149
.240 1.359 1.260 -.099
654 1.916" . 1.846 .010
1.770 3.065 3.230 .283
4,137 4,891 5.863 7197
6.583 6.365 8.417 1.267
9.066 : 7.620 - 10.93% 1.686
14,097 . 9.692 15.903 2,422
19.179 11.301 20,8021 2.027
24,289 |- 12.569 $ 25,711 3.541
. 29,419 13.537 30.581 3.959
34,560 14,233 35.440 L.307
39.707 14.638 40.293 4,590
4y 856 : 14,882 45,14h 4,828
50,000 14,797 50,000 5.057
55.131 : 1,423 - 54,869 5.287
60.241 13,783 59.759 : 5.495
65.320 12.883 64,680 5.657
706.366 - 11,764 69.634 5.732
75.381 10.476 74,619 5.624
80.360 8.976 79.640 5.352
85.302 7.271 84,698 L ,843
90,225 5.367 89.775 3.939
95.138 3.170 9L .862 2.518
- 100.091 - .120 ‘ 99,909 -.120

L.E. radiug: 0.666 percent chord
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TABIE VI.- SUMMARY OF HIGH MACH NUMBER TESTS OF

NACA 65-SERIES BLOWER BIADES

| . ' Figure

@ Mer Me, Pressure  Schlieren f
, distribution photographs | F2/P1

NACA 65-810 blower blade ,
. O, - - . - (o2 - (o]
B:* 459 0 = L.5; a4 = 12.9_, 9, = 18.0

0.6 | .76 | .81 .- 3 .
11.6 .75 .82 L - 52 -

- 12.5 .76 - O 32 -

15.6 12 .82 -- 33 ] -

20.6 - | : .69 7 | -- ; , CL I -

. = ) o - . - O =
B B =60 o0=1.5; a5 =12.0% 6, =15.8°

0.0 | .6 | .82 5 - - 53

6.6 | .6k 5 6 I

B =600 g=1.0; gy =10.5°; 6= 125" |

6.7 76 | .8 | T - -

10-3 -72" ) v .81“ . 8 - e 51“

1.710.5 g2 1o .83 | - 35 --

12.6 a.76 |.2.80 | 9 - -

15.5 263 | %.13 - 36 -

~ NACA 65-806 blower blade - |
B =1u5% g-= 1.5; ag = AA).i.'j(approAx.); Qd = 18.5(approx.)

5.3 | .63 SRR 4 TR IR (¢ - C . -

9.5 l .75 .82 11 — » -

11,5 | .76 .89 - ©37 -

133 | m .83 12 - 55

16.5 l .70 .85 - 28 2

8B1ade stalled before oritical speed was reached.
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TABLE VI.- SUMMARY OF HIGH MACH NUMBER TESTS OF

NACA 65-SERIES BLOWER BLADES - Continued

19

Figure
@ Moy NEb Presgure Schlisren /
: . distribution { photegraphs Po/Py
KACA 65-806 blower blade
B = 60° o =1.0; da = lo.Q(approx.);' Gd = 12.5(epprox.)
T ] »

7.5 | .80 .89 | 13 - - -
0.0 | 17 .88 | b - 56
12.5 | .67 .8y | 15 . - o,

i ! -
NACA 65-(12)10 blower blade

B =145 ¢ =1.5; 'aa = 16.9°% o = 25.7°
12.0 073 0714‘ -~ 39 -
14.5 .73 81 - ) -
14.9 .72 R 16 - 57
17.0 W73 .79 -- L1 -
1809 a'71 076 . 17 - hadad
22.0 a,69 .76 - Lo -

B = 600; ¢ =1.5; o, = 16.2°; 8, = 22,70
2 |7k .82 18 - 58
15 -2 ‘ 070 .80 - h3 -
9.2 1 &6k K 1 — -

B = A0°; ¢ = 1.0; ay = 1409 @, = 18.5°

9.0 .73 .82 20 _— -
11.5 NG .82 21 - -
14.0 &.75 .80 22 - 59

! ,

@Blade stalled before critical speed was reached.
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TABLE VI.- SUMMARY OF HIGH MACH NUMBER TESTS OF

NACA 65-SERTES BLOWER BIADES - Concluded

Figure .
a . Mer Mf'b di};i'i?gﬁ::on Schliersn Py /p
ibut photographs 1
NACA 65-(12)06 blower blade
B =U45% c=1,5; @ = 15.3%approx.) ; ed = 25,0°(approx.)
10.0 1 l T 23 e -
12.5 .78 Noin - L4l -
5.0 | 76 ! .83 ol s 60
17.5 .76 82 - 46 --
22.5 66 ! .78 R W7 -
‘ | _
B =60° o =1.0; @y = 13.5%(approx.) ; 64 = 19.0°(approx.)
| 9.0 | .16 | .| 25 - -
| 11.5 ST ! 82 | 26 : ' -~ -
| 1k.0 130 .80 S 27 -— 61
j 1605 3’69 ‘ .T? i 28 - . ) D -
NACA 65-(18)10 blover blade
B =15% ¢ =1.5; o, = 22,59, 8, = 3k,3°
18.3 .70 75 - T -
120,8 69 ot LTY - h9 -
21-5 . -69 077 29 - - -
23.3 a71 ! 76! - .. 50 62
26.5 & 62 72 30 - -

®Blade stalled before critical speed was reached.
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Fig. 2 ' : NACA RM No. L7Dlla

Chord line
NACA 65-810 blower blade

/i_-_\\

Chord line

NACA 65-806 blower blade

NACA 65=-(12)10 blower blade ord Tine

[_‘ — =

- Crord 11
NACA 65-(12)06 blower blade — oro —0°

NACA 65-(18)10 blower blade Chord line
NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS -

Figure 2.=- NACA 65-series blower blades tested at high
Mach numbers. -




NACA RM No. L7D1l1la Fig. 3

I.Q___ G&p——’,
NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

Figure 3,- Typical vector diagram of flow
through a compressor rotor.
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NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
Figure h +«= Section pressure distribution for a
range of Mach rumbers. Cascade of NACA 65-810
blower blades; a = 11,69 B = }459; o = 1.5,
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1.0

1.0 -
0 50 100
Percent chord
M = 0.66
«1,0

Jg/{kg T Per

o

P 0 5
M\DﬂJ\D\( 0
©
Q
. o, 3
2
0
1.0
[o] 0 100
Percent chord
M = 0,83

-1.0
P O
1.0 ¢
0 50 100
Percent chord
M = 0.50

© Upper surface
O Lower surface

" =1.0
P O
O
Q
G
C
1,0
o] 50 100
Percent chord
M = 0.74
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Figure 5.- Section pressure distributions for a
range of Mach numbers. Cascade of NACA 65-810
blower blades; a = 10.0°% g = 60°; o = 1.5.
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COMMITTEE FOR AERONAUTICS

0 50 100
Percent chord

M = 0.79

Figure ‘6..= Section pressure distributions for a -range
of méc’h»gumbers. oCascade of NACA 65-810 blower blades;
a = 16.6%; B = 60°; o = 1.5,
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Figure T.= Section pressure distributions for.a range .of
Mach numbers. Cascade of NACA 65-810 blower blades;
a = 647%°3 B = 60°; o= 1,0.

Fig. 7
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Figure S.= Section pressure distributions for a range of
Mach numbers. Cascade of NACA 65-810 blower blades;

@ = 10,3%; B = 60°; o = 1.0s
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Figure 9, Section pressure distributions for a range of
Mach numbers. Cascade of NACA 65-810 blower blades;
6 = 12.6% B = 60°; o = 1.0.
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Figure 10,- Section pressure distributions for a
range of Mach numbers.

Cascade of NACA 65-806
K _bloweb. blades; @ = 5.3%; p = 459; o = 1.5.
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Figure 1l.- Sectlon pressure distributions for a.
- range of Mach numbers. .(ascade of NACA 65-806
blower blades; a = 9.5% p = L5% o = 1.5
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Figure 12.- Sectlion pressure distributions for a
range of Mach rumbers. Cascade of NACA 65-806
blower blades; a = 13.3%; p = 45%; o = 1.5.
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Figure 13.- Section pressure distributions for a
range of Mach numbers. Cascade of NACA 65-806
blower blades; q = 7.5°; p = 60°; o = 1.0.
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Fiénre- lh.- Section px;essur_e distributions for a
range of Mach numbers, Cascade Of NACA 65-806
blower blades; a = 10°; p = 60°; o = 1.0,
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Figure 15,- Section pressure distributions for a range
of Mach numbers, Cascade of NACA 65-806 blower blades;
a =12.5% p = 609 o = 1.0.
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Figure 16.- Section pressure distributions for a range
Cascade of NACA 65-(12)10 blower
blades; a = 14.9%; 8 = 45%; o = 1l.5.

of Mach numbers.
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Fig. 17
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Figure -17.- Sectlon pressure distributions for a range
of Mach numbers. Cascade of NACA 65-(12)10 blower
blades; a = 18.9% p = 5% o = 1.5
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Figure 18.- Section pressure distributions for a range of
Mach numbers. Cascade of NACA 65-{12)10 blower blades;

a = 14.2% p = 60% o = 1.5. NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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Fig. 21
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Pigure 21.- Section pressure diatributions for a range of
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Fig. 22 .
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Figure 22.= Ssction pressure distributions for a range of
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Figure 256« Section pressure distributions for a range of
Mach numbers. Cascade of NACA 65-(12)06 blower blades;
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Figure 26e.~ Sectlion preasure distributions for a range of
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a = 11,5% B = 609; @ = 1,00
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M = 0.81 M = 0.83

M = 0.85 (?)

Figure 31.- Schlieren photographs for a range
of Mach number. Cascadeo of NACA 65-810
blower blades: a =°10.6: B = 45°; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY WEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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M= 0.89

Figure 32.- Schlieren photographs for a range

of Mach number. Cascade of NACA 65-810
blower blades; a = 12.5°9; B = 459; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY MEMORIAL AERONAUTICAL LABORATORY - LANGLRY FIELD, VA.
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M = 0.90

Figure 33.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-810
blower blades; a = 15.6°; B8 = 45°9; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY WENORIAL AERONAUTICAL LABORATORY - LANOLEY FIELD, VA.
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M = 0.88 M= 0.91

Figure 34.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-810
blower blades; a = 20.6°; B = 45°; o = 1.5.

NATIONAL ADVISORY COMNITTEE FOR ABRONAUTICS
LANGLRY WEWORIAL ARRONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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Figure 35.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-810
blower blades; a« = 10.5° B8 = 60°; o = 1.0.

NATIONAL ADVIBORY COMNITTEE FOR ARRONAUTICS
LANGLEY WEWORIAL ARRONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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Figure 36.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-810
blower blades; a = 15.5%; B = 60°%; o = 1.0.

- NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY MEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA
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! M = 0096

Figure 37.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-806
blower blades; a = 11.5°; B = 45%; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERRONAUTICS
LANGLEY WEWORIAL ARRONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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Figure 38.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-806
blower blades; a = 16.5%9; B = 459; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR ARRONAUTICS
LANGLEY WEMORIAL AERONAUTICAL LABGRATORY - LANGLEY FIELD, VA.
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M‘Oo?? M:0079 (?)

Figure 3%9.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-1210
blower blades; a = 12.0°9; B = 45°9; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY WEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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Figure 40.- Schlieren photographs for a range
of Mach number. Cascade of NACA' 65-(12)10
blower blaedes; a = 14.59; B = 459; o = 1.5.

NATIONAL ADVISORY COWMITTEE FOR ARRONAUTICS
LANGLRY MEWORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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MiE=S0096

Figure 41.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(12)10
blower blades: a = 17.0°9; B = 459; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY MEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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Figure 42.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(12)10
blower blades; a = 22.0°; B = 45%9; o = 1.5.

NATIONAL ADVISORY Nlll"‘ll FOR ABRONAUTICS
LANGLEY WEMORI AL ARRONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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Figure 43.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(12)10
blower blades; a = 15.2°; B = 609; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR ARRONAUTICS
LANGLEY MEWORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA.



NACA RM No. L7Dlla Fig. 44

M = 0.91

Figure 44.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(12)06
blower blades; a = 12.5°9; B = 45°; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY WEMORIAL ABRONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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M = 0.76

M = 0.94

Figure 45.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(12)06
blower blades; a = 15.0°; B = 489; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY WEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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M= 0.82 M = 0.89

M= 0.93 M = 0.95

Figure 46.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(12)06
blower blades; a = 17.5%9; B8 = 45°; o = 1.5.

- NATIONAL ADVISORY COMMITTEE FOR ARRONAUTICS
LANGLEY MEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA
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Figure 47.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(12)06

blower blades; a = 22.5%9; B = 459; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY WEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA.
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Figure 48.- Schlieren photographs for a range
of Mach number. Cascade, of NACA 65-(18)10
blower blades: a = 18.3; B = 45%2; o = 1.5.

NATIONAL ADVISORY COMMITTEE FOR ARRONAUTICS
LANGLEY WEMORIAL AERONAUTICAL LABORATORY - LANGLRY FIELD, VA.
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Figure 49.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(18)10
blower blades; a = 20.89; B = 459; o = 1.5.

. NATIONAL ADVISORY COMWITTEE FOR AERONAUTICS
LANGLEY MEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA
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M = 0.84

Figure 50.- Schlieren photographs for a range
of Mach number. Cascade of NACA 65-(18)10
blower blades; a = 23.39; B = 45%; o = 1.5.

- NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY MEMORIAL AERONAUTICAL LABORATORY - LANGLEY FIELD, VA
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