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NATIONAL ADVISOI?f COi'i FOR 

RESEARCH MEMORAIWJM 

PERFORMANCE OF COMPRESSOR BLADE CASCADES

AT HIGH MACH ZUMBEPS 

By Seymour M. Bogd.onoff 

SUMMARY. 

Three 10—percent--thick and. two 6—percent—thick bLower blades 
were investigated. In a high Mach number two .-dimerisional cascade. 
tunnel Inseveral configurations for a range of Mach number. 
Pressure d.istributlons, schileren photographs, turning angles, and 
pressure rises were obtained. to evaluate the effects of Mach number 
on the basic cascade and compressor design parameters. 

The turning angles and deBign angles of attack found from 
low—speed cascade studies may be used directly in high—speed designs 
since no significant changes were found to occur at high Mach 
numbers. 

The Mach numi era for critical speed are to . 5 percent greater 
than that predicted by the von Kthmn—Tsien extrapolation applied 
to the low—speed pressure distribution. The Mach numbers for 
force break are 16 peräent higher than the predicted, critical 
Mach number for a solidity of 1.5 and. 13 percent higher for a 
solidity of 1,0. 

• The. extrapolation of low—speed rotor tests to a compressor stage 
operating below the'Mach.n'u.mber for force brCak wIth an.efficiency f 
90 percent indicatee that preedure ratios of the order of . 1)+ per 
Btage should be obtainable. 

Significant increases in compressor performance can be made by 
the use of 6—percent—thick tip sections since their limiting Mach 
number is 3 to percent greater than that of the 10-percent—thick 
blades.

INTRODUCTION 

In an effort to Increase the pressure rise and. efficiency which 
can be obtained with axial—flow compressors, the National Advisory 
Committee for Aeronautics is conducting an Investigation to develop
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high—performance compressor blades... The first phase of this investi-
gation, which was conducted at the. Langley Memorial Aeronautical 
Laboratory, is a study of blade sections in a low—speed two—
dimensional cascade tunnel and is given in reference3 1 and 2. This 
work was extended to.low-speed. tests of rotating blades with very high 
loadings which were also conducted at the Langley .Ldboratory (refer-
ence 3) . The results have shown that.thecascad.e tiata can ba used to 
desii highly 1oad.d. rotating blâdesiith very high efficiencies. 

The present paper extends the low—speed cascade studies to the 
high Mach numbers at which modern axial—flow compressors need to 
operate. It also presents the limiting Mach numbers at vhióh large 
losses make compressor operation impracticable. The effects of 
compressibility are evaluated for the basic design parameters of 
references 1 to 3; namely, turning angle, shape of the pressure 
distribution, and. design angle: of attack.. The investigation was made 
in a high Mach number two—dimensional cascade tunnel at the Lngley 
Laboratory.	 .	 ...	 .	 . ..	 .•	 •. .	 S 

SYMBOL$ 

a	 velocity of sound, ±eet per second 

specific heat of air at constant pressure, foot—pounds 
per alug per 0F..:	 ........ . . S.. 

M 14ach number entering he cascade (W1/aj) 

P	 rossu	 coefficient: .(1 T	 . .	 . . . 

cr preseure coefficient for sonic.velocity. at given entering 
Mach number	 . 

p	 static pressure, pounds per square foot 

q. dynamic pressure, pounds per:square foo.t 

T	 tèmperàture, °F absolute	 :	 . 

U	 rotational speed of rotor element, feet per second 

W	 velocity relative to rotor and to cascade simulating rotor, 
feet per second 

angle. of :attack, degrees (angle between enteiingairar4 
chord. line of,.blad) 	 .	 ..	 ...	 .	 ..	 S..
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p ...stagger angle, 'degrees '(angle between perpendicular to 
• cascade and. entering air) 	

: 

'	 ratio of specific heats of air 

• solidity (chord of blade divIded by gap beteen blades; 
see fig. 3)

	

• 	 . 	 0'• 

6	 angle through which air is turned by blad.e3, degrees 

Subscripts:	 .,	 . 0 

1	 ahead of cascade or rotor: 	 .	 , :	
• 0 	

:	 '	 ', 

2 behind cascade or rotor 

d.	 design cond.itlbriá 	 ,	 '	
•'	 : 

1	 local	 .....,.	 ..•	 .	 '• '•' .	 ..

APPAPATUS 

High Mach Number Cascade Tunnel 

The two-dimensional cascade tunnel used in the present investi-
gation is :shown°schematicafly 'In.fl'gure, 1.. The.tunnel. is s.imilar.to: 
that used ifl references 1 zd 2 except that, because of the large powers 
required, no control of the wail boundary layer ahead of the cascade 
was attempted'.. In addition; the width of. the test section was only. 
4 inches. :The tunnel' was' drièn' by cornpre8sed air from. •a large 
tank at pressures from 60 to 300 pounds per square Inch, The air 
flowed past a motorized, control valve to the settling chamber, througx 
three.se.ts'. of 1t0-mesh"screene,' the qoergIng.entrance section, aM 
the test cascade, and to the atlnospher3. Static-pressure orifices 
were installed' in the "settling chamber and. along •a ljne 1/3' chord' 
ahead of the cascade. From 1/2 chord ahead of the blades to .approxi-
mately 1/11 chord behiridthe blades the top.,and.bottwa1ls consisted 
of. adjustable flexible plates. ' The an1e .of,.attack of the ..blades 
could :be varl'ed,'-but "changes in' stagger and solidity necessitated 
a complete change -of tunnel walls Walls were provided for .the 
following test conditions: 13 ,	 a' = 1.5; 13 = 60°, a = 1.5; 
and. p =60°, ci=l.0.	 ',	 '
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Description of Blades 

The 'blades tested àonsisted. of three 10—percent—thick blades, 
the same as those of references 1 and 2, and. two 6-percent-thick blades 
derived from NACA 65,2-006 airfoils with the trailing edge thickened 
as in reference 1. The thick sections were cambered. for free—air 
lift coefficients of 0.8, 1.2, and. 1.8; the thin section, for lift 

coefficients of 0.8. arid. 1.2. For the pressure—distribution tests, 
the test cascade consisted. of four solid blades and. a master blade 
provided. with pressure orifices. For the schileren studies, the 
master blade was replaced by a fifth solid. blade. The blades have 
a n—Inch spanand. a5.ino .h:chord. Ordinates , for these blade sections 

are given In tables 1 to 5 and. cross sections are shown In figure 2. 

Sohlieren Setup 

The 'schileren system used to photograph the high—speed flow 
through the cascade consisted of a high--Intensity spark, two 16—inch 
parabolic mirrors of 90—Inch focal length, and associated equipment. 
The knife edge of the schlieren system was set parallel to the 
stagger line for all tests. Two or three of, the set of five blades 

were mounted between . —inch glass plates (measuring approximately 

5 by 7 inches) which replaced. sections of the tunnel walls. The 
blades were held. In place by short pins fitted into holes drilled in 
the glass.

TESTING }THODS 

The blades were ine'tlIed. In the cascade tunnel at the desired. 
conditions of stagger, solid.Ity,and.'angle of attack with the pressure 
blade in the center of the cascade (fIg. 1) At a 'Mach number' of 
'approximately .O2, 'the flexible wails were adjusted. until the static 

• 'pressure 'ahead of the cascade was unifoim. The.speed. was then raised 

until further Increases- showed no increase in the static—pressure 
rise 'across the cascade. At intervals during 'this process, photo-
graphs 'of a meroury marxomete'r were taken to record the settling-

'chamber pressure, static pressures ahead of the blades, pressures on 
the :blade surface, and atmospheric pressure. 'ThIs'procedure was 
repeatd for the five blade sections at the various conditions of 
stagger, solidity, and.angle of attack. Schileren photographs were 
•then'te.ken atepeeds from below"the critical 'speed. to above the speed. 
for maximum pressure 'rise' for the various test conditions. Photographs 
of the mercury manometer were taken simultaneously with the sch1ieren 
photographs- to record tbe chamber pressure, static pressure ahead. of 
the blad.es,' and. atmos:pheric pressure.	 ' ' '	 '
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The riatioh of turning, angle with Mach number was first
obtained, by makin aw surveys behind the .airfoil with a claw-type 
yawtube., Photographs of ,a tuft in the, air :streazn behind the blade 

• and the use, of a ven1er ,protracto±' to measure 'the angles were found 
• to gtve ,resul,ts which agreed with results obtained. with. the yaw tube 
• to within i°,., All other yaw surveys were then made by use of a' 

t'.).ft becauée of th.e ease in mak .in& these nieasuremente. 

PPESENtTON OF DATA AND DISCUSSION 

The data presented. herein are' based on entrance' conditions 
• instead of meazi conditions as in references 1 and 2. This base was 
chosen prImarily :,to sini.plify the use of the data and to permit direct 

• application to..high'-speed-cotnpressor desi for which the blade 
entrance conditions are usually known Or fixed'. The tests, cover 
a range of Mach number'frotn approximately 0.30 to 0.95 and corre-
epond.ing Reynolds numbers, based. on the blade chord.,, f .700 ,000 
'to'l,800,000. 

• The entrance Mach number was calculated. from the pressures 
measured by, the static-presure orifices in the"atUin chamber and 
ahad : of the cascade.' Staiation temperature was assumed to be room 
tempeiatur (5200 F absolute) since the deviations from this value 
'wre 'not siiif1cant. ''The inflection in the pressure-ratio 'curve 
i.s desiiatéd force break and correspondsto blade stall. 

PS the Mach number entering the cascade increased, the pressure 
ratio acrOss the c3sca&e, and therefore the density ratio,. ale 
increasea From the continuity relations, the exiting axial velocity 
component would be expectea to be smaller than entering axial velocity 
since th axial-flow area is constant.' FOr this particular test 
setup, hOwever, the: bouhd,ary layers'on the walls were found. to' modify 
the exit area' so that,the axial velOcity entering 'and leaving thö 
cascade'was' the same for aU.tests;(fig.'3). The results presented 
are,:, therefore, directly applicable.'oaly to the, case' of biad.ing with 
con8tant axial velocity' and. not to. 'biading with constant axial-flow 
area.,'	 '	 ',	 . . ' 

Pressure -Distribution Measurements ' ' ' ' 

In figt.res 1 to 30, 'the, pressure distributions over , the central 
airfoil of the cascade are'presented for a range of Mach number. 
The presures are plotted. in the form of pressure coefficients P 
and the critical pressure coefficient (pressure coefficient at which 
sonic velocity is reached. at that stream Mach number) is noted. on
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each plot. The low-speed pressure distributions are very similar to 
those of reference 1, and in figure 5 the pressure dist1bution from 
reference .1' Is- inQiuded for comparison. The blower blades show 
characteri.stics. very similar to those of the isolated airfoil as the 
Mach number varies.1 Ary pressure peaka on the 'top or bottom surfaces 
increase rapid.ly . ae'the Mach'nuniber increases. Shortly after the 
critical, pressure cäefficient is exceeded on the airfoil.a break in 
the pressure-coefficient curve at that point is noticeable as the 
supersonic velocities et'urn to subscn1 velocities through, a 
shock wave.	 -	 ' '-

For angles below the design angle (the angle at which the 
pressure distribution is essentially uniform or without peaks, 
reference 1), the pressure peak on the lower surface, usually Is the 
first part çf the blade to reach critical speed, but no stalling is 
noticeable. (See figs.7, 10,11, and 23.) This angle would seern to 
bê a good operating condition, but-data presented In the section of 
the present .paper ' entitled "Schileren Photographs t' show that large 
losses occur shortly after the' critical speed 15 reached.. These 
losses' are caused by the strong shock waves which extend completely 
across the'blade'passage. , .	 .	 . -	 . 

Blade stall Is defined as the condition at' which no pressure Is 
recovered over the rear part of the airfoil upper surface and. which 
indicates separation. This stalling is indicated by a flat-region 

'on-the pressure-cuistrfbution curves and. a point of inflection on the 
pressure-ratio ourve discussed in the section 'entitled "Pressure 
Ratio across. the Cascade." For high angles of attack, at which a 
pressure peak occurs on the upper surface, the blade stall may be 
divided into two categories: blades which are loaded very highly 
sthl'ibecause of the increase in Mach nuniber'even.befor.ecrtical 
speed is , reached (figs. '9, 17, 18, 19, 22, 28, 29, and 30)', and 
blades loaded. more moderately, stall at Or slightly above, the critical 
speed. -From these pressure distributions, it is obvious that the 
least losses at very high Mach.numbers 'will 'be obtaIied wi.th a 
uniform-load, pressure distribution; that is, one with no velocity 
peaks on either thè'upper-or . lower surface'. This conclusion is 
verified by a study of' the pressure distribution at or near the 
'design angle of attack (table' 6) at. which there appears to be no 
stalling until Mach numbers. f' rota 0 .05 'to 0.10 above the critical 
speed have been'reached.' 

It is interesting to note that the occurrence of a shock on the 
lower surface where the boundary layer is very thin Is noticeable on 
the pressure distribution as a sharp break. On the top surface, 
however, where the boundary layers are thick, the pressure rise 
across the shock is' distributed over a noticeable length of the 
blade surface.
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Schileren Photographs 

In figures 31 to 50, schlieren photographs of the flow through. 
the cascade are shown, A complete study was made for a stagger of 
1450 and. 'a solidity of 1.5, arid, a few photographs were taken. at the 
other conditions to ehow any changes which might exist. The black 
dots near the rear of the blades are the holes driliedin the glass. 
to provide a means of changing the angle of attack. The thick blade 
boundary layer whIch is noticed. in the first photographs actually. 
occurs only at the blade—wall Intersection. A'stu&y of the pressure. 
distributions shows no stalling at these Mach numbers. An increase 
in speed. above the critical speed. is iedlately. noticeable because 
very small shoOks appear on the airfoil. As the Mach number is 
further increased., the shock waves grow much stronger until finally 
the flow behind these waves separates from the airfoil. As the blade 
angle of attack is varied., noticeable changes in these shock patterns 
are seen. 

In figure 31, in which the angle'of attack is much less than the 
design angle, small shock waves are first noticeable Just behind. the 
50—percent_chord station on the top surf.ce. As soon ' as the Mach. 
number Is Increased. to the point at"whihthe waves extend entirely 
across the passage between the'blades, eeparation'is noticeable and. 
any ad.cuitlonal increase in chanber'pressure 'causes' increased. shock'. 
strength' and separation. Once sonic. ve1oities extend. entirely across 
the passage, an increase in Mach number is not possib1e. A few 
sohlioren tests show an apparent increase in Mach number above this 
point, probably due to flow around the ends of the cascade which are 
not yet choked. Photographs which show. such,a phenomenon are there- - 
fore noted with a question 'mark. At an angle of attack close to the 
design angle (fIg. 32), the shock waves appear farther forward. on the 
airfoil and. separation is not apparent until a Mach number of approxi—' 
mately' 0.03 above the previous case Is reached. (table 6). If the 
angle of attack is increased. further, , the peak pressures move closer 
to the nose and. the separation caused by the shock waves (fig. 33) 
starts at approximately the same Mach'number as in the first case. 
At still higher angles of attack (fig. 314) separation occurs at a 
much lower Mach number .. In this case, the shockwaves never are' 
confined, by the blades but extend. out into the stream, the wave from 
one airfoil becoming the bow—wave of the neighboring airfoil. These 
phenomena are repeated in the schlieren 'photographs for the other 
configurations with only slight variations' in the shock—wave structure.. 

Turning Angle 

For the 6-percent_thick sections, turnIng angles obtained from 
the tuft surveys at low Mach numbers : have been Included in table 6,
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since no such data were available from previous low–speed cascade 
investigations. The variation, of turning angle with Mach number is 
shown for two cases in figure 51. The firèt curve (NACA 65–(12)06 
blower blade, f3'= 15O, and' a = 1.5) shows a typióal variation; the 
second curve (NACA 65–(12)10 blower blade, 	 60°, and a = 1.0) 
shows the maximum variation which was obtained (1°).. These results 
were obtained by photographing a tuft placed. in the air.leaviiig the 
cascade. For both con±'iguratiois, a slight increase in the turning 
angle with Mach number occurs up to the force break, above which there 
is an abrupt drop. Turning angles were obtained for all the,other 
blade section and configurations for the range of Mach number 
investig ted. In all cases,from. Mach numbers of 0.0 tO force 
break, the increase in turning angle was less than 1 • The turning 
angles predicted from the.low–epeed. casáad.e, studies of' references 1 and-2 
are, therefoe, eufficientlyaccurate. for 'the desigu of high–speed 
blades.'

Pressure Patio across the, Cascad.e 

In reference 1, it was shown tát the Incompressible theoretical 
static–pressure rise across 'the cascade could be expressed as, a' 
function of the turning and stagger angles of the cascade. The 
corresponding static–pressure–rise expression for high Mach numbers 
can be derived. From Bernoulli's ecivation of óompressible flows 
(see' vector diagram, fig. 3)	 , 

Wi2	 w22 
-r + epTi = -r + CpT2 

or

T2 W12–W22 
-=	 +1 
T1	 2cT1 

Since the velocity of sound of the entering flow is 

a1 = JG l)cT1 

and the entering Mach number is

Wl 
M=-



1 a
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the temperature ratio across the cascade is 

= 7 - 1 MI1 (\2] + i 

Ti	 2	 L \WiJJ 
The velocity ratio W2/w1 can be expressed. as 

	

wo	 cos 

COB (3 - e) 

if it is assuraéd that. the axial velocity is constant through the 
cascade. If it is further assumed that no losses occur, the 
isentropic relationship of temperature and pressures may be used to 
obtain the following relation for the theoretical Btatic-pressure 
rise across the cascade: 

.1M2{l	

+) 

In figures 52 to 62, curves of the variation of measured static-
pressureratlb with Mach number are presented for the angle of attack 
closest tothe design point of the blade for each test condition. 
Included on each figure is the theoretical curve obtained from 
equatión (1) with the use of the turning angles predicted from 
references 1 and. 2 for the 10-percent-thick sections aM angles 
measured at Jow Mach numbers for the 6-pèrcent-thickiections. 
Measured; values of pressure ratio should not be used in the calcula-
tion of cmressorb1ade.. performance since these values include the 
losso due to the boundary layer on the walls aM are very susceptIble 
to settings of the flexible floors. The curves, however, give a 
good. indication of whore the blade losses start to increase sharply 
(areversal in curve direction). An examination of these curves 
shows that no significant change in blade losses occurs until the 
critical speed has been exceeded by approximately 12 percent to 
16 percent. Once force break occurs, further increases in Mach 
number yield little or no increases in pressure rise, the added 
power bein€ dissipated In shock-wave losses and. severe separation. 

Critical Speed and Force Break 

The Mach numbers for critical speed and force break are 
summarized in table 6. For the blades which were tested at more



10
	

NACA PM Ito. L7D11a 

than three angles of attack, the variation of Mach nuniber for 
critical speed and force break with angle of attack are shown in 
figures 63 to 69 . These cürvesahow that the design point chosen 
from the low-speed cascade tests of referencesi and 2 correspond 
very closely to the high-speed design point. The design points 
fall very close to the maximum Mach number for critical speed and 
force break. From the pressure distributions and.pressure-ratio 
curves, it appears that critical speed, in itself, is not an 
important parameter since no change in performance 13 noticeable 
until force break occurs. 

3everal theories exist which.pred.ict the critical speed of 
isolated airfoils from the low-speed pressure distributions, but 
no such theory is yet available for blades in cascade. In the 
absence of any theory, :the experimental result,s were compared with' 
those which woula be obtained If the vOn K&man-Tsien extrapolation 
were applied to the low-speed pressure distribution of the blade 
in cascade based on entrance velocity. The critical Mach number 
predicted bythi method was consistently 4 to 5 percent below the 
measured value fpr all the 1O-percent-thlck blades tested. Since 
no low-speed tests of the 6-percent-thick blower blades are yet 
available, the d.ta on these blades are simplypresentedand no 
attempt at analysis is made. It appears, however, that the decrease 
in airfoil thicimess from 10 percent to 6 percent allows an increase 
in Mach number 'of about 3 to 4 percent for both critical speed and. 
force. break.	 '"	 '	 ' 

Tne Mach numbers for force break are approximately 16 percent 
higher' than the critical' Mach number predictedby von Kérmn and. 
Tsien for the tests at a solidity of 1 5 an approximately 13 per-
cent higher for tests at a solidity of 1 0 These empirical relatiais 
were applied to the pressure distributions of reference 1 to obtain 
tl'e Mach number fo critical speed aria force break for all the 
sectiols testea The results are presented with the design uriung 
angle of the blade section in 1gire 70 For ny d.eired turning 
angle, stàger, and 8olidity,. the blade section and angle of attack 
can be '.obtine from. the design charts of references 1.. and. 2, Fig-
ure 70 then may be used to predict both tne Mach number for critical 
sped , and, force break..These results are 'dlirectly applicable pnly th 
N"CP 6-serIes b1er blodeo in the Reynolds number range tested 
Extensive Germaii tests (reerenc 4) have shomthatchangQs in 
Reynolds number greater than 150,000 have sthaU' effect on the 
efficiencies and pressure rise. It seems likely, therefore, that 
the results presen.ted' herein are applicable to blades in the whole 
Reynolds nuer range above 150,000 'The extrapolation of the low-
•s:oee& rOtor tests of reference 3 to a compressor stage operating 
below the Mach nthnber.for force break with an efficiency of 90 percent 
indicates that pressure ratios of the order of 1.4 perstage should 
be obtainable
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It is recommended. that further research be carried out to 
cover the range of Reynolds number below 150,000 and. to check the 
values of Mach number for force break in high-speed rotor tests 

CONCLUSIONS 

From the Investigation of NACA 65-series blower blades in a 
high Mach number two-dimensional cascade tunnel, the following 
conclusions have been reached: 

1. The turning angles and. design angles of attack found. from 
low-speed cascade studies may b 'used directly in high-speed designs 
since no significant changes wore found. at high Mach numbers. 

2. The Mach numbers for critical speed are i to 5 percent, 
greater than that predicted by the von Kärn-TsIen extrapolation 
applied to the low-speed pressure distribution. The Mach numbers 
for force break are 16 percent higher than the predicted critical 
Mach number for a solidity of 1.5 and 13 percent higher for a 
solidity of 1.0. 

3. The extrapolation of low-speed, rotor tests to a compressor 
stage operating below the Mach number for force break with an 
efficiency of 90 percent indicates that pressure ratios of the 
order of l.1 per stage should. be obtainable. 

1.. Significant Increases In compressor performance can be 
made by the use of 6-percent-thick tip sections since their 
allowable operating Mach number is 3 to Ii. percent greater than the 
10-percent-thick blades. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for .eronautics 

Langley Field, Va.
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TABLE I. - OPDINMES FOB NACA 6 5-810 BLOWER BLADE 

Upper surface Lower surface 

x y x y 
(percent chord) (percent chord) (percent chord) (percent chord) 

0	 0 0 0 
.260	 .913 .7140 -.513 
.186	 1.130 1.0114 -.570 
.9149	 1.510 1.551 -.6514 

2.1143	 2.2714 2.857 -.786 
14.591	 3.14148	 ... 5.409 
7.072	 14.371 7.928 -.979 
9.569	 5.1149 10.1431 -1.013 

114.589	 6.li.15 15.1411 -1.031 
19.629	 7.386 20.371 -1.018 
211. .68].	 8.139 25.319' - .979 
29.7140	 8.705 30.260 -.929 
314.8014	 9.098 35.196 -.858 
39.870	 9.339 140.130 -.771 
1414.936	 9.1409 145.0614 -.6149 
50.000	 9.282 50.000 
55,058	 8.9 514.9142 -.190 
60.107	 8.1431i. 59.893 .1314 
65.1143	 7.71414 614.857 1496 
70.1614	 6.922 69.836 .851i. 
75.171	 6.025 714.829 1.135 
80.162	 5.0214 79.838 L3i4 85.137	 3.935 814.863 1.14149 
90.1014	 2.310 
95.067	 1.612

89.896 
914.935

1.326 
.916 

• --0.0--.---*_ L_:__ 
L.E. radIus:	 0.666 percent chord



.J. 
2.718 
5,211.3 
7.753 

10.255 
15.211.11. 
20.221 
25.191 
30.156 
35.118 
110.079 
5.039 

50.000 
5)4 . 9611. 
59. 933 
6)4.908 
69.890 
714. . 83. 
79.881 
811. .891 
89.911 
9)4.938 
99 .952

- . 
-. 191 
- .031 

116 
.21(( 
• 1485 
.682 
.852 
995 

1.117 
1.227 
1.329 
1.11.37 
1.556. 
1. 6(7 
1.778 
1.851 
1.877 
.1.836 
1.705 
1.11.29 

.932 
- . 1142 
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TPBLE II. - OPDINATES DR NACA 65-806 BLOW BlADE 

Upper surface	 -	 Lower surface 

y	 x	 y 

(percent chord) . (percent chord)	 (percent chord) 

•	 0	 .	 b	 t	 0' 

	

.652	 .652	 .	 -.252 
•	 .829	 .921	 -.269 

	

1.121	 1 )th 

1.679 
2.559 
3.276 
3.889 
1.,390 
5.686 
6.308 
6.781 
7.123 
7.3111 
7.14.31 
7.387 
7.2011. 
6.891 
6.14.62 
5.925 
5.283 
11.532 
3.679 
2.707 
1.596 

111.2

x

(percent chord.) 

0
.3118 
• 579 

1.057 
2.282 
11. . 757 
7.211.7 
9• 711.5 

lii. . 756 
19.779 
211. . 809 
29.6111. 
31 .882 

39.921 
1a4. 961 
50.000 
55.036 
60.067 
65 .092 
70.110 
75.119 
.80.119 
85.109 
90.089 
95 .062 

100.0118

L.E. rad.ius: 0.256 percent chord



0 

1. 
1.683 
3.019 
5.601 
8.132 

1o.69 
15.612 
20553 
25.1477 
30.389 
35 .2914 
140.196 
145 .096 
50 .000 
514.913 
59.839 
614.786 
69.755 
714.744 
79.758 
814.796 
89.8146 
914.9014 
99.932

7 
(percent chord.) 

0 
- .371 
- . 387 
- . 395 
-.367 
- .2143 
- .090 

.057 

.3142 

.5914

.825
1.0214 
1.207 
1.373 
1.542 
1.7148 
2.001 
2.278 
2.559 
2.8014 
2.932 

2.369 
1.555 
-.1314 

x 
(percent chord.) 

NACI RM No. L7DUa	 15 

TABLE III.- 0RDINAIZES FOR NACA 65(12)10 BLOWER BLADE 

Upper Gurface
	 Lover surface 

(percent chord.) (percent chard) 

o 0 
.161 .971 
. 3714 1.227 
.817 1.6y9 

1.981 2.599 
14.399 14.035 

•	 6.868 5.178 
9.361 6.1147 

.114.388 7.7314 
19. 1477 8.958 
214.523 9.915 
29.611 10.6140 
314.706 11.153 
39.8014. 11.1479 
414.9014 11.598 
50.000 11.1488 
55.087 11.139 
60.161 10.5714. 
65.2114 9.801 
70.2145 8.860 
75.256 ''.8o8 
80.242 6.607 
85.2014 5.272 
90.1514 3.835 
95 .096 2.237 

100.068 .1314

L.E. ra&iu: 0.666 percent chord. 
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TABLE IV. - ORDINATES FOB NACA 65.- (12)06 BLO'vER BLADE 

Upper surface	
[

Lower surface	 - 

I y x y 

(percent chord.) (percent chord) (percent chord.) ercent chord) 

0 0 0 0 
.285 .726 .715 - .126 
.507 .911.1 .993 -.101 

.973 1.306 1.527 
2.817

-.022 
.210 2.183 2.022 

11. .511.3 3.165 5.357 .627 
7.127 LiOO 7.873 .988 
9.622 14.902 10.378 1.302 

llt.637 6.228 15.363 1.811.8 
19.670 7.266 20.330	 I 2.286 
2)4.715 8.090 25.85 2.650 
29.766 8.720 30.2311. 2.914)4 
3)4.823 9.180 35.177 1	 3.180 
39.882 9.11.82 11.0.118 3.370 

9.620 li.5.058 3.520 
50 .000 9.593 50.000 3.6)43 
55.0511. 9.3)43 5)4.911.6 3.711.7 
6c.iol 9.032 59.899 3.820 
65.138 8.520 6)4.862 3.8140 
70.165 7.865 69.835 3.799 
75.178 7.058 7)4.822 3.672 
80 . 178 6.117 79.822 3.11.35 

85.162 5.018 814..838 3.058 
90.132 3.733 89.868 2.li.71 
95.091 2.221 9)4.909 1.571 

100.068 .1314. 99.932 -.13)4 

L.E. rad.lua:	 0.256 percent chord
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TLE V. - ORDINATES FO NACA 65-. (18)10 BLOEP BLADE 

Upper surface

I_______	 Lower surface 
(percent chord) (percent chord) (percent chord) (percent chord) 

0 0 0 0 
.o46 1.049 .9514. - .149 
.240 1.359 1.260 ...099 
.6514. 1.916 1.846 .010 

1 .770 3.065 3.230 .283 
4.137 4.891 5.863 .797 
6.583 6.365 8.417 1.267 
9.066 7.620 10.934 1.686 

14.097 9.692 15.903 2.422 
19.179 11.301 20.821 3.027 
24.289 12.569 25,711 3.541 29.419 13.537 30.581 3.959 34.560 14.233 35.440 4.307 
39,707 14.688 40.293 4.590 

•	 14.882 45.144 4.828 
50.000 14.797 50.000 5.057 
55.131 14.423 54.869 5.287 
60.241 13.783 59.759 5.495 
65.320 12.883 64.680 5.657 
70.366 11.764 69.634 5.732 
75.381 10.476 74.619 5.634 
80.360 8.976 79.640 5.352 85.302 7.271 84.698 4.843 
90.225 5.367 89.775 3.939 
95.138 3.170 94.862 2.518 

100.091 .120 99.09 -.120 

L.E. radius:	 0.666 percent chord
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TABI VI. - SUMMARY OF HIGH MACH MJ!ER TESTS OF

NA.CA 65-sIEs BLOWER BLADES 

Fi8ure 

Pressure	 [ueren 
d.1stro_PhotoraPha 

_______	 _______
NAA 65-810 blower blade 

150 ;'	 a = 1.5;	 12.90;	 0 

10.. 6	 .76.	 1 .81 -- 31 --
11.6	 .75 ' .82 -- 52 
12.5	 .76 .811. -- 32 --
15.6	 .72 .82 -- 33 --
20.6	 .69 .77 .	 -- 3	 . --. 

p	 60°	 a	 1,5;	 a	 = 12.00;	 ed. = 15.8° 

10.0	 .76	 .82	 5 .	 -- 53 
16.6	 '	 .611.	 1	 .	 6 --	 .. --

p = 60°;	 a = 1.0;	 a.d	 10.50 ;	 0	 = 12.5° 

•	 6.7 .76 80 '	 7 --	 . --
10.3 .711. .81i .	 8' .	 -_ 511. 
10.5 .72 .	 .83. '	 -- 35 --
12.6 a76 a80 :9	 . -- --

___ ______
-___36______ 

NACA 65-806 blower blade 

p = 1i.5;	 a = 1.5;	 ct	 = 11.5(approx.);	 9d = 18.5(approx.) 

5.3 .63 .71 10	 ' .	 -_ - 
95 •75 11 -- --

11.5 .76 .89 -- 37 --
13.3 .71 .83 12 -- 55 
16.5 .70 .8 --, 38 -_

aBlad.e stalled. befoze critical speed. was reached.. 
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TABlE VI. - STJ11MARY OF HIGH MACE IUMBER TESTS OF 

NACA 65-SEPIES BLOWER BLADES - Continued. 

Figure 

a. Mcr Pressure Schlieren	
/ distribution photographs 

NACA 6-8o6 b1oer blade 

f3	 =, 600;	 = 1.0;	 a	 = 1O.0(approx.);'
9d

= 12.5(approx.) 

I	 .80 .89 13 --	 --
10.0 .77 .88 111. --	 56 
12.5 .67 .8' 15 --	 --

NACA 6 - (12) 10 blorer blade 

13 = 15; 1.5; 16.9°; = 25.7 
d. 

-r_- -m-
12.0 .73 .711. -- 39 
111.5 .73 .81 -- I --11i.. 9 .72 .77 16 --	 '57 
17.0 .73 .79 -- 11.1	 --
18.9 
22.0

a71 
&.69

.76 

.76
17 

--

--	 --
--

13 = 600: 1 = 1.5;	 a. = 16.2°; ed = 22.7° 

- - 1L2 .7 .82 18 
15.2 .70 .80 -- 11.3 

.73 191 ___ __ 

13 = 60°; = 1.0;	
d.
= 111.00;

0d = 18.5° 

9.0 .73 .82 20 -- --
11.5 .75 .82 21 -- --

a75 .80 22 -- 59

aBlade stalled. before critical speed was reached.. 
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TABLE VI. - SO!MPIBY OF HIGH MACH ISIUMBEE STS OF 

NCA 65-SERtES BLOWEP BIDES - Concluded 

- 1

Figure
-___ 

•	
M0

______ 

M	 r	 Pressure

______________ 

Schileren
/ 2i I	 distribution photographs	

I -____________

NACA 65- (12)06 blower blade -_____ 

= 14.5°;	 c= 1.5; 15.3°(approx.);	 0d =
25.0°(approx.) 

10.0 .71. .77 23	 • -- --
12.5 .78 .8' -- 11 --
15.0 .76 .83 211. 14.5 60 
17.5 .76 .82 -- li.6 
22.5	 .66 .78 -- 14.7 --

= = 1.0;	 a 13.5°(approx.);	 ed = 19.O°(approx.) 

• 9.0 .76 .82 25 -- 1 --11.5 .711 .82 26 --
lihO .73 .80 27 -- 61 
16.5 a69 28 . --

NACA 65-(18)10blower blade 

= 15; 1.5;	 •92;O.	 = 3)4.30 

__
-	 .70	 I	 .

I - 

20.8 .69 .77 - -. li.9 - - 
21.5 .	 .69 .77 29 -- --
23.3 •	 .76 --	 . o 62

B1ado stalled be±'ore critical speed wasreached. 
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Figure 2.- NACA 65-series blower blades tested at high 
Mach numbers.
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Fig. 3 

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS 

Figure 3.- Typical vector diagram of flow 
through a compressor rotor0
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Figure t .- SectIon proszure distribution for a 
range of Mach rnbers. Cascade of NACA 65-810 
blower bladec; a	 11.6°;	 15; c = 1.5. 
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Fig. 5 
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Figure 5.- Section pressure distribitions for a 
range of Mach numbers. Cascade of NACA 65-810

	

blower blades; a = 10.0°;	 = 600;	 = 1.5.
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Figure 6.- Section pressure distributions for a range 
of Máchnumbers. Cascade of NACA 65-810 blower blades;

	

a = 16.6°;	 p	 60°; a- = 1.5.
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Figure 7.- Section pressure distributions for.a range-of 
Maoh numbers. Cascade of NACA 65-810 blower blades; 
a = 6.7°j	 = 60°; o- 1.0.
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Figure 9.. Section pressure distributions for a range of
Mach numbers. Cascade of NACA 65-810 blower blades; 

= 12.6°; 3 = 60°; 0= 1.0.
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Figure 10.- Section pressure distributions for a 
range of Mach numbers. Cascade of NACA 65-806 
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Fig. 11 
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figure 11.- Section pressure distributions for a-
- range of Mach numbers. - ascade of MACA 65-806

	

blower blades; a = 9•50; p = ii5°; o	 1.5. 
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Figure 12.- Section pressure distribstions for a 
range of Mach numbers. Cascade of NACA 65-806 
blower blades; a = 15.39;	 = L5°; a- = 1.5. 
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Fig; 13 
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Figure 13.- Section pressure distritutions for a 
range of Mach numbers. Cascade of NACA 65-806 
blower blades;	 = 7.5°; 3 = 60°; o = 1.0. 
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range of Mach numbers. Cascade of NACA 65-806 
blower blades; a = 10°;	 60°;	 a 1.0. 
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of Mach numbers. Cascade of NACA 65-806 blower blades; 
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Figure 16.- Section pressure distributions for a range 
of Mach numbers. Cascade of NACA 65-(12)10 blower 
blades; a = ]4.9°;	 = L5°; o = 1.5.
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Figure 31.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-810 
blower blades: a	 10.6° /3 = 450; a	 1.5. 
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Figure 32.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-810 
blower blades; a	 12.5°; /3 = 45°; a- = 1.5. 
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Figure 33.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-810 
blower blades; a	 15.6°; $	 450; -	 1.5. 
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Figure 34.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-810 
blower blades; a = 20.6°; /3	 450; o = 1.5. 
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Figure 35.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-810 
blower blades; a	 10.50; /3 = 60°; o = 1.0. 
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Figure 36.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-810 
blower blades; a = 15.5°: /3 = 60 0 ; o	 1.0. 
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Figure 37.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-806 
blower blades; a = 11.5 0 ; /3	 45°; o	 1.5. 
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Figure 38.- Schlieren photographs for a range 
of' Mach number. Cascade of NACA 65-806 
blower blades; a = 16.5°;	 = 45°; a = 1.5. 
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Figure 39.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(lg)l0 
blower blades; a	 12.00; /3 = 450; a = 1.5. 
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Fig. 40 

Figure 40.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(12)10 
blower blades; a	 14.5°; /3 = 45°; -	 15 
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Figure 41.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(12)1C 
blower blades: a 	 17.0°; /3 = 450; cy-	 1.5. 
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Figure 42.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(12)l0 
blower blades; a = 22.0 0 ; /3	 45°; o = 1.5. 
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Figure 43.- Schlieren photographs for a range 
of mach number. Cascade of NACA 65-(12)10 
blower blades; a = 15.2°; /3	 60°; a- = 1.5. 
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Figure 44.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(12)06 
blower blades; a = 12.5°; /3 = 450; y. = 1.5. 
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Figure 45.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-112)06 
blower blades; a	 15.0°; /3	 45°; a-	 1.5. 
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F'igure 46.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(12)06 
blower blades; a = 17.5°; /3	 450; o	 1.5. 
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Figure 47.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(12)06 
blower blades; a. = 22.5°; /3 = 450; o 	 1.5. 
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1'igure 48.- Schlieren photographs for a range 
of Mach number. Cascade0 of NACA 65-(18)10 
blower blades; a = 18.3	 /3	 450; o- = 1.5. 
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Figure 49.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(18)10 
blower blades;	 = 20.8°; / = 450; a	 1.5. 
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Figure 50.- Schlieren photographs for a range 
of Mach number. Cascade of NACA 65-(18)10 
blower blades; a = 23.3°; /3 = 450; o	 1.5. 
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