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NATIONAL ADVISORY COMMIT'I'EE FOR AERONAUTICS 

RrnEARCH MEMORANDUM 

APPLICATION OF TBEOLORSEN 's THEORY 

TO PROPELLER DESIGN 

By J ohn L . Crigl e r 

/{2.;, _ 
J A theoret ical analysis is presented f or obtaining by use of 

Theodorsen's propeller theory the load di stribution along a propeller 
radius , to give t pe optimum propeller effi ciency for any design condition. 
The efficiencies realized by designi ng f or the optimum load distribution 
·are given in graphs, and the optimum effic i ency for any design condition 
~y be read di rectly from the graph without any l aborious calculations. 
Examples are i ncluded to illustrate t he method of obtaining the optimum 
load distributions for both single-rotating and dual-rotating propellers. 

INTRODUCTION 

Recent contributions to t he theory of propel lers have been made by 
Theodorsen in a series of reports (references 1 to 4). In the first 
report of the s eries (reference 1) a method based on electrical analogy 
was devised for obtaini ng t he idea~ c i rculation functions for single
rotating propeller s . These c i rculat i on func tions were shown to be in 
good agreement with the theoretical calculations made by Goldstein in 
reference 5 for t wo- and f our-blade s i ngl e -rotating propellers and with 
the extrapolations to other numbers of blades made by Lock and Yeatman 
in reference 6. The el ectri ca l-ana l ogy method of measuring these 
functions was a lso applied to more d i ff i cu l t cases for which no theo
retical calcul ati ons had previ ous ly been made ; in particular, to the case 
of dual-rotating propellers. 

Theodorsen in reference 1 i ntroduced the concept of the mass 
coefficient ~, which i s an integrated value of the circulation functions. 
The mass coeffic ient r epres ent s t he ef fe ctive cross section of the column 
of the medium pushed by the propeller divided by the projected-propeller
wake area. 

This mass coef fi c ient i s made use of in the development of 
Theodorsen's theory. In r ef er enc e 4, expr essions are given for computing 
the thrust, the ener gy l oss , and t he eff iciency of any propeller with 
ideal circulation di stri bution based on the conditions in the final wake 

.in terms of the mass coef fi c ient . It is of interest to mention that the 
mass coefficient or mass of air oper ated on by the dual-rotating propeller 
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is much greater than that affected by the single -rotating propell,er for 
the same set of operating conditions. This large difference in the mass 
coefficients for the two cases indicates ' that calculations for dual
rotating propellers based on the ideal circulation functions for single
rotating propellers are inadequate. 

Theodoraen's theory, as previously mentioned, is based on the 
conditions in the final wake. The present analysis attempts to inter
relate the conditions in the final wake to the propeller and to give the 
information necessary to ' design a propeller for any desired operating 
condition. For single-rotating propellers, the method yields the same 
results as the conventional vortex theory with the Goldstein tip correc
tions applied. By the conventional vortex theory, however, it is 
necessary to determine the optimum blade-load distribution and then to 
make element strip-theory calculations in order to obtain the optimum 
efficiency for a given design condition. This procedure has been followed 
in reference 7 for a wide range of operating conditions. By Theodorsen's 
theory the optimum efficiency ~ can be obtained directly for any, design 
condition from its relationship to the mass coefficient without laborious 
calculations. Thus, in the selection of a propeller for any design 
condition, a close estimate of the efficiency can be obtained before the 
design is made. 

The circulation functions and mass coefficients for the dual-rotating 
propeller were obtained in reference 1 for the ideal case and refer to 
conditions in the ultimate wake. Both propellers were assumed to operate 
in the same plane. Obviously, this condition is unattainable in the 
design of an actual propeller. The degree to which the ideal case can be 
realized in practice, or the applicability of the ideal functions to a 
given case, require further consideration and confirmation. 

B 

b 

SYMBOLS 

number of propeller blades 

chord of propeller-blade element 

section drag coefficient 

section lift coefficient 

ideal power coefficient (cs + e) 

total-power coefficient (Pc + t r ) 

thrust coefficient , ( T ) 
! pV2F ' 
2 
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e 

F 

K(x) 

7. 

n 

P 

R 

r 

v 

net th~st coefficient (cs - t a ) 

diameter of propeller 

drag of propeller sect i on 

di ameter of wake heli x surface 

i deal energy 10s8 in wake . (pF"W
2 

( ~ w + ~ V ) ) 

ener gy loss due to blade drag 

induced energy loss coefficient (~ p~3F) 
proj ected area of helix (at infinity ) 

circulat i on function 

l i ft of propeller section 

pr opeller rotational speed, revolutions per second 

i nput power to propeller 

tip r adius 

radi us to any blade element 

thrust of pr opeller 

.. 

power loss due to drag (nondimens ional) 

axial power l os s due to drag 

rotational power loss due to drag 

forward axi al velocity of propeller 

axial i nterference velocity (at pr opeller) 

aver age axial i nterfer ence vel oc ity (at propeller) 

resul t ant int erference veloc i ty (at propeller) 

rotational i nter fe r ence ve l oc ity· (at propeller) 

3 
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average rotational interference velocity ("behind e,ach 
propeller) 

resultant velocity on the propeller at radius r 

local self-interference velocity 

rearward displacement velocity of helical vortex surface 

ratio of displacement velocity to forward velocity (wjv) 

radial location of blade element (r/R) 

angle of attack, degrees 

induced angle of attack, degrees 

blade angle, degrees 
, 

advance ratio (l y + w) 
n rillo 

geometric advance ratio (Y /nnJJ) 

mass coefficient (2,[lKCX)X dx ) 

axial energy loss factor 

propeller effici~ncy (;: ~ ~:) 

iaeal propeller efficiency (cs/Pc) 

mass density of ai r 

propeller element solidity (Bb/2nr) 

propeller element load coefficient 

(r(x) -_ 2n(V
u

: w)w K(X)) circulation at r adius x DW 

angle of r e:3ultant velocity W at plane of rotation 

angular ve l ocity 
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Subscripts: 

F f r ont 

R r ear 

0'7R at 0 ·7 r adius 

OPTIMUM PROPELLER DESIGN 

Single-Rotating Propellers 

Velocity diagram.- The velocity diagram for the single-rotating 
propeller is shown in figure 1. This figure is a r eproduction of 

5 

figure 13, reference 2, with some additional des ignations. The relation
ship between the axial i nterference velocity at the radius r, as given 
by the vortex theory, t o the displacement velocity w of the vortex sheet 
is calculated i n reference 2 and is shown in figure 1. The forward axial 
velocity of the propeller is V and the tangential velocity with respect 
to the air at rest is rur. The vector bd is the resultant interference 
velocity Vi of the air with respect to the air at rest. ThUS, the 

resultant velocity W of a point on the propeller at the radius r is 
given by the vector, cd. The lift force 1 is perpendicular to this 
vector and the drag force d is exactly opposite in direction to W as 
indicated. Fr om this figure a comparison of the method of analysis 
presented here in may be made with the conventional vortex-theory method. 

, It is required to f i nd the point d in order to locate the end of the 
~ velocity vector W and the angle ~ that the vector W makes with 

the direction of rotation. By the conventional vortex theory, the 
point d is located by starting with point b obtained from the V/nD 
of the undisturbed flow, proceeding in the V di rection the distance Va' 
and then taking the perpendicula r to this di rect ion a distance Vr · 

(See reference 8.) 

and W == V + Va 
sin ~ 

The angle is given by 
V + Va 

I 

In the calculation of i nterference velocities 

and Vr the l ocal tip correct ion or Goldstein factor must be used to 
obtain the correct location of the point d . 

With the method developed in references 1 to 4, only the value 

of ~w, which r emains constant with r adiUS, need be used. With this 

concept it is poss ible to use the integrated values of the mass coef
ficient as determin~d by the e l ectrical analogy of refe'rence 1 to obtain 
the deta iled information needed at any r adius. By this method the 

point d can be located by proceeding from point b a distance ! w in 
2 

t he V direction to the point e and then dovID the di r ection of the 
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ve l oci ty vector W a d,istance de, where de is obtained f r om the 

geometry of the figure as lw s i n ~ and 
2 

The r esultant velocity is 

W 

== 

tan <p 

V +!w 
2 

sin <p 

V +!w 
2 

mr 

1 - - w sin <p 
2 

The interfer ence ve l oc ities may be obtained from the geometr y of the 
figure by 

and 

1 2" w cos ~ 

1 2 2" w cos <p 

== 1 w sin <p cos <p 
2 

(1) 

(2) 

optimum blade-load distribution.- The design Fr oblem of an oFtimum 
FroFeller consists essentially i n ob taining the val ue of the element 
l oad coefficient bC I at each r adius of the FroFeller blade. With the 
di r ection and magnitude of the r e l a t ive ve l ocity given at· each station 
ther e r emain s only the choice of a section to give effic iently such a 
l i ft at the aFFr oFr iate angl e of attack . The value of c I should be 

at or near the ideal lift coefficient for the sect i on in order to give 
minimum drag coefficient. 

The method develoFed in r efer ences 1 t o 4 t r eats the ve l ocity w 
as an i ndeFendent Fararneter upon which all the other ~uantities deFend . 
This r ever sal of Fr ocedure i s 'convenient since a ll ~uantities ar e 
a c t ua lly functions of w. The vel oc ity w is r e l ated t o the Fower 
coeff i c ient Pc of t he Fr oFelle r and a l so to the el ement l oad coef -
f i cient aCI . The r e l a t ion of w t o aCI is devel oFed herein and the 
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relation of w to pc," which must be obtained in order to use it for 

design, is given subsequently in the section '~ROCEDURE FOR PROPELLER 
DESIGN . " 

The required ideal circulation r(x) is given in reference 1 by 

r(x) = 2rr(V + w)w K(x) 
Bill 

(V + w)w K(x) 
Bn 

In order to determine the element load coefficient bcZ the relation " 

for the equality of the force on a vortex element and on an element of 
a lifting surface is given as 

pI'W 
1 2 

= 2" pW cZb 

vhere b is the chord of the element. Hence, 

7 

r (4) 

vhere W is given in equation (2), and thus 

... 

Using equations (3) and (5) for r gives at once the identity 

= (V + w)w K(x) 2 sin ~ 
Bn V + ! w cos2~ 

2 

Introducing the nondimensional velocity w = ~, the " V 
V+!w 

solidity a = Bb and tan ~ = 2 (equation (1)) gi ves the non-
2rrr' 2rrrn 

dimensional relation 

J 
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ac1. = 1 S in2cp ____ -.:;=--:,.+_w.::...-____ 2WK (x) 

( 1)( 1 2 ) cos cp 1 + 2" w 1 + 2" w cos cp 

(6) 

The selection of a propeller for a given airPlane installation may 
be based on ,a method of evaluating a series of propellers for various 
operating conditions in order to determine the most suitable propeller . 
It is probable that several propellers, var ying in diameter, blade 
number , propeller operational speed, and direction of r otation ar e 
equally as effic ient for the design condition so that other considerations 
may enter into the propeller selection. However, the optimum efficiency 
for the propeller sel ected maY ,be obtained from the char ts, and therefore 
the l oad distr i bution a l ong the radius that will give this optimum 
efficiency remains to be determined. 

The value of ac1. ' may be calculated for any radius from the 

relation 

ac1. = 

where 

1 + w- 2WK(x) 

~ w )( 1 + ~ w c os2cp) 

. 2 
Sln cp 

Dual-Rotating Propellers 

cos cp 

l+!w 
2 

x 

In the design of dual -rotating pr opeller s, it has been customary to 
se l ect two propellers designed for single r otation and to use them as a 
dual-rotating propeller . . The fact that the cir culation functions and the 
mass' coefficients obtained by the electr ical -analogy method (reference i) 
are very much larger for the dual-rotating propeller than the sum of the 
values for the two singl e -rotating propellers indicates that the functions 
as used heretofore a r e not proper. The electrical-analogy method 
represents the case of~an ideal ized dual-rotating pr opeller in which the I two components are in the same plane with the same l oad distribution on l each component and with equal power absorption . Since actual pr opellers 
cannot conform to this ideal case, the applicability of the i deal 
functions r equir es further confirmation. Nevertheless, the optimum 
distribution for the dual -rotating propeller is essentially different 
from the single -rotating pr opeller, and in this analysis the loading 
functions and the mass coefficients as determined by the e l ectrical
analogy method are assumed to apply to the opt i mum dual -r otating 
propeller . 

I 

J 
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Interference velocities for dual-rotating propellers.- The average 
axial interfer ence velocity far behind the propeller obtained from the 
momentum considerations is 

where ~ is the mass coefficient and w is the axial displacement 

9 

velocity. This mean value is equally due to each of the two. oppositely .4 

rotating propellers. The average axial interference velocity due to 
each is therefore exactly 

1 = - KW 
2 

The average inter fer ence velocity at the propeller plane is one-half the 
value in the final wake and, therefore, 

where 1 -
-Va 2 

.. 

1 -
- Va 
2 

1 
= - KW 

4 

r epr eseni s t he average axial interference velocity at the 

propeller plane due to each component of the dual-rotating propeller. 
With the .two propeller s separated by a small axial distance, this 
velocity refers to a plane between the two propellers. The interference 
velocity at the front propeller is smaller and at the rear propeller is 
larger than at the plane between the propellers. In the following 
treatment, the propellers are considered to be very close together so 
that the axial i nterference velocity is the same on both propellers. 

In the final wake, the mean value of the rotational interference 
velocity for the i deal case is given by 

2Vr = 0 

For an infinite number of right and left blades equally loaded, rota
tional components would cancel exactly. However, the average rotational 
interference velocity immediately behind each propeller may be considered 
as 

1 
= 2" KW tan <p 
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In summary, the mean interfer ence veloc ities acting on the front 
propeller f r om the r ear propeller are : 

Axial : 

Rotational: 

1 -- v 2 a 
= !. ~w 

4 

~he mean interference ve l ocities a cting on the r ear propeller from the 
f r ont propeller are: 

Axial: 

Rotational : 

1 -
- Va 
2 

!. ~w 
4 

1 
== 2" ItW tan ~ 

It is useful to r ecognize that the mean self -interference of each 
pr opeller in its own plane is 

Axial : 

Rotational: 

1 
K:W 

4 

!. ~w tan <V 
4 

V_e_l-=o_c_i_t .... Y~d...;;.i~a""gr~am=-...;;;f...;;;o...;;;r-:--'t:..;;;h~e;......;;d~u;:;:a;:;:l=--..:r...;;;o:...:t:;.;:a:;.;t:;.;:i;;;;;ng~ ... p:.;;r...;;;o;.lOp;..;:e:;.;:l::;;l;:.;:e:;.;:r:...;;.s . - The veloc i ty 
diagram fo r the dual .-rotating pr opell er s is shown in figure 2. As in 
the case for the single-rotating propeller, the axial displacement 

ve l ocity at the propelle r is equal to !. w. In figure 2 the vector AB 
2 

gives the mean axial interference velocity !. ~w of each propeller 
4 

acting on the other propeller. The vector BC gives the mean r otational 

interfer ence velocity ~ KW tan <V of the front propeller acting on the 

rear p r opeller. The total i nter ference velocity acting o~the front 
pr opell e r f r om the r ear propeller is ther efor e given by AB , and the 
totEd interference vel ocity acting on the r ear propeller from the front 
p r opell e r is equal to the vector AG . The l ocal self - interfer ence 
velocity of the front pr opeller is given by WS

F
, and the corresponding 

helix angl e is given by <V . 
F 

The l ocal self-interference velocity of the 

: 
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rear propeller is given by WSR' and the corresponding helix angle is 

gi ven by ~. The angle <l>F is slightly larger than the ideal helix 

angle ~ given by the displacement ve l ocity !w and ~ is slightly 
2 

smaller than ~ . The design condition of most interest is the one for 
which r F for each blade of the front propeller is equal to r R for each 

blade of the rear propeller. The number of blades on the front and rear 
propeller are considered equal and the rotational speeds the same. This ~ 
condition gives the self-interference velocity on the front propeller 
equal to the self-interference veloc ity on the rear propeller and means 
that D and E must be at the same horizontal level~ 

As ~ and ~ are needed in the design of the propeller, it is 
seen from figure 2 that the associated displacement velocity on the front 
and rear propellers has been increased and decreased, respectively, by 
the amount 

The displacement velocity is therefore 

Front: 

Rear: 

From figure 2, the ve l ocity WF is shown to be given by the 

relationship 

v +! ~w sin ~o 
sin ~ . 4 

o 

__ v __ (1 + !4 KW sin 2~o) 
sin ~ 

o 

and the angle ~F is given by 

(8) 
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== ~ ~ [1 + ! W (1 + ! K tan2<p)\l 
nJ) nX 2 2 ~ 

wher e <P is given by the relationship 

Similarly, 

and 

tan <P == 
V + !. w 

2 

== ..Y... 1.. (1 + ! w) 
nJ) nX 2 

V 1 1 WE == + - Kw sin <Po + - IW tan <Po cos <Po 
sin <Po 4 2 

== 

tan cp . 
R 

V + ~ w (1 - ~ K tan
2<p ) 

mr 

Optimum blade-load distr i bution.- The optimum distr ibution of 
blade l oading is obtained from the determination of the element l oad 
coefficient bC L at each radius from the fundamental r elation 

(10 ) 

(11) 
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. where r has been given in equation (3) by 

r 

Eliminating r gives 

_(V_ + _w_)w_ K (x) 
En 

(v + w)w K(x) 
n 

but ! Bb = (j 
2 2rer 

is the solidity of each component of the dual-rotating 

propeller, if the number of blades in each component are assumed to be 
equal. Therefore, 

~(l + W)WV K(x) 
renDx 

For the front propeller, this equation may be solved by usa of 
equation (8) and . 

13 

V 1 (1 + w) W sin qJ 
= _ ._ 0 K(x) 

nD rex 1 + !. KW sin2qJ 
(12) 

4 0 

and for the rear propeller by use of equation (10) 

V 1 (1 + w)w sin qJ 
_ _ 0 K(x) 
nD rex ~ - 2 1 + .L KW sin qJ 

4 0 

(13) 

Use of Design Formulas 

In order to use the relation for (jc~, note that it contains not 

only the independent variable W but also the function K(x) and the 

angle The parameter K(x) should be expr essed as a function of v+w 
nD' o 

which is based on the wake helix diameter. As was shown in reference 3, 
however, Do differs only slightly from the propeller diameter D and in 
the present design procedure D is used instead of Do . The funct i on K(x) 
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for single-rotating propellers is plotted against V+w 
nD 

in figures 3 

to 7. Similar plots for dual-rotating propellers were taken from 
reference 1 and are presented in f i gures 8 to 10. 

EQUATIONS FOR PERFORMANCE CALCULATIONS 

Single-Rotating Propellers 

In reference 4 the thrust has ' been given by 

and the ideal energy loss in the wake has been given by 

2(€ 1) E = pF~w it W + 2" V 

With the introduc, tion of the nondimensiona1 nuantity w - w the thrust 
'i. - V' 

coefficient in nondimensiona1 form is 

(14) 

and the induced loss coefficient is 

e E 
'=: 

1 3 2" pv. F 

2~2( ~ + € -) = -w 
K 

The power coefficient Pc = Cs + e is given by 
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(16) 

The efficiency is given by 

These formulas are all that are necessary for single-rotating 
propellers. The perfonnance of the dual-rotating propeller is computed 
by th~ same formulas. 

Dual-Rotating Propellers 

The thrust of the f ront propeller is given by 

and with (acZ)F f r om equ ation (12) and WF from equation (8) ' 

2 ) cos <J'l.F 
+ ~ ttw sin CPo K(x) dx 

~ s in cP 
o 

(18) 

Similarly, for the r ear propeller 

2 ) cos ~ 
+ 1. ~W s i n CPo K(x) dx 

4 s in cp o 

The coefficients c
S

' e , and Pc for t he dual -rotating propellers 

are given in the same form as in equations (14), (15), and (16) for single
r otating propellers . The only di ffer enc e i n the coefficients results from 
differences i n t he val ues of It , W, and €/ tt which are substituted in 
the equations . 

__ J 
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Blade-Drag Los ses 

The frictional loss or loss in efficiency due to the profile drag 
of t he blade is 

The drag force per unit length is ~. pACd where W, the resultant 

velocity of the blade element, has been given in equation (2) for single
r otating propellers by 

For the design condition, w is small, and because of the obvious 
uncertainties in the determination of the value of cd, it is not 

12 · necessary to retain the second term 2w cos~. Introducing the 

solidity factor cr = Bb 
2rrr 

or in nondimensional form 

permits the drag loss to be given by 

crcd --- x d.x 

Sin3~ 

t 

xdx 

The component power l osses a r e t hen, t o the s ame degr ee of 
approx i mat i on in nondimensiona l f orm, 

(20 ) 
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Rotational: tr = ~22 f crcd 
x3 dx 

sin cp 
g 0 

(21) 

Axial: ta = 2f crcd 
x dx 

sin cp 
(22) 

For the dual-rotating propeller oper ating at the des ign conditions, the 
terms containing ware small, as is the case w~th the single-rotating 
propeller, and a close approximation to the drag los s is obtained if 
these terms are negl ected- Furthermore , if it is assumed that the 
average of the resultant vel oc ity W for the dual combination is equal 
to W for the single propeller, the equations (20) to (22) may be used 
for the dual-rotating propeller s - Of course, for conditions other than 
the design condition, especially for very heavy loadings, exact drag
loss claculations r equir e that the exact equations be used for either 
single-rotating or dual-rotating propellers-

In summary, the equations for obtaining 
are given by the quantities cs , e , and Pc 
are given by tr and t a -

The net thrust power is 

The power i nput is 

The efficiency is 

where from equation (16) 

the propeller performance 
and the drag-loss factors 

(23) 

(24) 

Pc = 2K:w(1 + w) ( 1 + ~ w) 
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The total power is also given by 

1 3 2 
P = 2" pV rrR P cT (26) 

It should be r emembered that the calculation is based on a given w. 
This procedure may seem unjustifiable since this parameter is not given 
by the sp ecification but is the end result of a calculation based on the 
original data . The induced loss does not depend on the total-power 
coefficient P CT ' but actually depends only on Pc, and the ~uantity W 

cannot be obtained from the total-power coefficient. However, the 
value of PCT in most cases exceeds Pc by not more than 2 percent or 

Since Pc in e~uation (16) 1s based on the ,wand the diameter 
of the final wake , and the value of PCT in e~uatio~ (24) is based on 

the propeller diameter which is slightly larger than the diameter of 
t he f inal wake, a ve ry close approximation to w is usually given by 
e~uation (16). Therefore, 

In some cases it may be necessary to calculate tr to obtain a more 
exact value of Pc, especially if the blade profile drag is large . 

PROCEDURE FOR DESIGN OF PROPELLER 

Figures Used in Propeller Design 

The i nformation necessary to design a propeller for any operating 
condition is given in the figures . Figures 3 to 7 give the circulation 
function K(x) i nterpolated for even fractions for t wo - , thr ee -, four-, 
six - , and eight-blade singl e -rotating prop ellers. The circulation 
function f or the two-blade propeller was taken d i r ectly f r om r efer ence 5 j 
fo r the thr ee -blade propeller, from r e f e r enc e 6; and for the p r opellers 
having a g r eater number of blades was r ecalculated from the Go l dstein 
tip correction factors as given in r ef er ence 7. Figures 8, 9, and 10 
give K(x) for dual -r otating propellers with four, eight , and twelve 
blades , r espec tively . These values for the dual -rotating propellers 
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were taken from reference 1. Figure 11 gives the mass coefficient ~ 

for various numbers of blades for singl e -rotating propellers. Figure 12, 
which was taken from reference 1, gives ~ fo r dual-rotating propellers. 
The ideal efficiency ~i is plotted against w for a range of 

values €/~ in figure 13, agains t cs/~ in figure 14, and against pc/~ 
in figure 15· The data for figures 13 and 14 were taken directly from 
reference 4 and the data for f igure 15 was recalculated by the use of 
e~uation (16) and figure 13. Figures 13 to 15 apply to either single
or dual-rotating propeller s . The propeller efficiency may be calculated 
from either of these figures; however , in this r eport the efficiency has 
been determined from pc/~ as given i n figure 15· 

Figures 16 and 17 give values of 6, K, and ElK for two- and four
blade single -rotating propellers and figures 18 to 20 give values for 
four-, eight-, "and twelve-blade dual-rotating propellers. The values 
of € for a propeller wit h a finite number of blades have not previously 
been published, but the values of E and ElK for an infinite number of 
blades are given in f igure 4 of r efer ence 4. The method for calculating 
ElK and € fs given in the following section . 

Propeller Selection 

In the selection of a propeller for a given airplane installation, 
the engine power, the f orward speed, and the Qesign "altituQe are usually 
specified. The selection cons i sts of the determination of the number of 
b~ades, the propeller s ol i dity, the pr opeller diameter, and the rotative 
speed. The ideal propeller " efficiency~ for any combinations of these 
variables can be r eadily obtained with the use of the charts. The 
procedure for a given blade number, propeller diameter, and rotative 
speed for either single or dua l rotation is as follows: 

First, calculate the total-power · coefficient" 

P 

and then use this value for the idea l coeffic ient 

P c
T 
~ Pc = 2~w(1 + w) ( 1 + ~ w) 

to find w. 
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It was shown in r efer ence 4 that the dependence of the effic"iency 
on El K in the efficiency formul as is ver y small and that it is suffi 
cient to know only the appr oximate value of ElK . An examination of the 
formulas for Cs and Pc shows that their dependence on El K is also 
smal l . It was f urther concl uded in r efer ence 4 that E/~ is only 
s l ight ly gr eater than K and that the pr act ice of using El K instead 
of K is c9nsider ed satisfactor y fo r design purposes . However, ther e 
appears to exist a simple r elation between the axial-loss factor E and 
the total - l oss fac tor K. This r elation takes on the form of a 
differ en tial equation 

where 

E 

K 

1 A. d K 
1 + - --

2 K dA.. 

'I'his r elat ion has been checked and f ound to be e~act for an infin ite 
number of blades , and numeri ca l checks for a t wo -b l a de propeller wer e 
in very close agr eement. It is consider ed accurate f or an empir i ca l 
relation for design purposes fo r pr opeller s of other numbers of b l ades . 

Fir st ob~ain 

1 V 
renD 

as a fir st appr oximat ion to A. fo r use i n t he ca lculations . 

off K and dK/dA. f r om the appropr iate char ts of K against 

Then r ead 

.!..(l + w) 
nD 

for sever a l val ues 

are plotted against 

of w (figs. 11 and 12 ) . 

~(l + w) in f igures 16 
nD 

Curves of E , K, and ElK 
to 20 . Next plot a curve 

f or the right s i de of t he equation for Pc agains t w. Wher e this 

curve inter sects the hor izontal l ine , Pc = is the desir ed point . 

This val ue may be checked f r om the char t by insert ing the values obtained 

f r om the p l ot in the equation. Thus a r e obtained K, W, ~(l + w), 
, nD 

and ElK . Fr om the chart of PC/K (fig . 15) , the optimum efficiency may 
be obtained. 
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The following examples illustrate the method of determining the 
optimum distribution of bc? a long t he r adius for both single-rotating 
and dual-rotating propellers that give the maximum possible efficiency 
(neglecting blade profile drag) that can be obtained with either 
propeller for one specified design condition . 

Illustrative Examples 

Single rotation.- Let the following data specify the propeller 
design conditions: 

Power, horsepower . . . . . . . . . . . . . • . . 
Density, slugs per cubic foot ••••. 
Velocity, miles per hour 

2000 
0.001065 

. • • • . 425 

The propeller sel ection has been made to the extent that the following 
data specify the pr opeller: 

Rotational speed, n, r evolutions 
Propeller diameter, D, feet 
Number of blades , B ••.• 
V frill . . . . . 

per second . • • . 

The total Pc from the given conditions is 
T 

The value of Pc should be based on the wake diameter Do instead 

of on the propeller diameter D and used to calculate w· Both Pc and 
the contraction may be obtained by s uccessive approx1matiol1n but the two 
effects tend to cancel each other and generally Pc based on the propeller 

T 
diameter is sufficiently accurate t o use in the calculation of w. The 
relation between w and Pc is given by equation (16) as 

Pc = 2~w(1 + w) ( 1 + ~ w ) 

-----' 
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where 

If values of w are selected to cover the range and the curve for the 
four-blade propeller in figure 17 is used, the following tabl e is 
obtained for the four-blade single-rotating propeller: 

-w 
€ /'r'i. P 

(assUJJl.ed) 
'r'i. c 

0 0.245 0·340 0 
.1 .215 ·313 .0488 
.2 .191 . 289 .0970 

A plot of Pc against w gives a value of w = 0.155 at ~c = 0.075· 

Then, 

From figure 17, 'r'i. 

~(1 + w) = (2.258 )(1.155 ) = 2.61 
nD 

is read at ~(l + w) = 2.61, and the optimUJJl. 
nD 

propeller efficiency ~i for a four-blade single -rotating propeller 

is read from figure 15. Thus 

'r'i. = 0.201 

and 

1"1 = 0.929 ' Ii 

With w determined, aCl for the single-rotating propeller may 

be found by a di r ect calculation from e~uation (6) 

I 

~~~- ---~~--~~ 
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- 2 
1 + w 2W K(x) sin ~ 

( 1) ( 1 2 ) cos ~ 
1 + 2' w 1 + 2' w cos ~ 

Values of the oirculation function K(x) at each station are obtained 

from figure 4 at ~(l + w) = 2.61 and the angle of the relative velocity 
nD 

at the propeller is given for each station by 

1 1_ 
1 V + 2' w 

tan ~ = - - --....;;;...
n:nD x 

Performing these calculations for w = 0.155 gives the values of GCL 

and bCL in the following table (the blade-width distribution, in feet, 

for a constant c L of 0·5 is also given): 

K(x) GC?, bCL b bcy(bCL) x tan q> (ft) 0'7R 

0.1 7·74 0.033 0.0842 0.079 0.158 0. 167 
.2 .' 3.870 .078 .0967 .182 ·364 ·386 
·3 2·580 .133 .1054 .298 .596 .631 
.4 1.935 .185 .1044 ·393 .~86 ~ 833 
·5 1·548 .225 .0952 '.449 . 98 .952 
.6 1.290 .260 .0855 .483 .966 1.023 
·7 1.106 .271 .0716 .472 ·944 1.000 
.8 ·968 .257 .0554 .417 .834 .880 
·9 .860 .204 .0364 ·309 .618 .655 
·95 .815 .146 .0241 .216 .432 .458 

Dual rotation.- The procedure is repeated for ' a 12-foot-diameter 
four-bJade dual-rotating propeller for the same design conditions as used 
for the singl e -rotating propeller. The following table is obtained for 
the four-blade dual-rotating propeller (values of K and ElK were found 
from figure 18): 

- ElK Pc w K 

0 0 .472 0.589 0 
.1 .432 ·547 .1002 
.2 .398 ·519 .211 

__ -.J 
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I n this case a plot of Pc against w gives a value of w = 0.075 

at Pc = 0 . 075 · Therefore, 

and 

~(1 + w) = 2.426 
nJ) 

11. = 0 ·964 
l 

It is seen that the important parameter, the mass-flow coefficient, 
is 0.442 for the dual-rotating propeller and is only 0.201 for the 
single-rotating propeller. The efficiency (without drag) is 96.4 percent 
for the dual-rotat ing propell er but is only 92.9 percent for the single 
rotating propeller. 

For the dual-rotating propeller the values of GCl may be found 
for the front -- component from equation (12); thus , 

= :L 1:... (1 + w)w sin <Po K(x) 

nD :rrx 1 + !. KW sin2 <p 
4 0 

and for the r ear propeller frum equation (13) 

V 1 (1 + w)w sin <Po 
- - K(x) 
nD :rrx 1 + ~ KW sin2<po 

Equation (9) gives <JJF by 

-------- ~ 

_J 
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and ~R is given in equation (11) by 

tan ~ = ~ L [1 + ~ W (1 - 2~ It tan2~)\·1 
R nD rrx 2 . ~ 

Values of the c i rculation function K(x) are obtained from figure 8 at 

the appropriate value of V + w = ~(l + w). Performing these calculations 
nJ) nD 

for . V = 623, n = 23, D = 12, :;;; = 0.075, and It = 0.442 gives the va:.lues 
of tan ~ and ac?, in the following table: 

-

x K(x} tan ~F tan ~R (ac?, )F ( aC?')R (bC?, )F (bC?, )R 

0.1 0·575 10·768 4.145 0·326 0·321 0.616 0.606 
·3 ·565 2.608 2·363 .0995 .0985 ·564 ·557 
.4 .551 1·916 1.812 .0692 .0683 .522 ·515 
·5 ·539 1·518 1.465 .0501 .0496 .472 .467 
.6 ·530 1.258 1.227 .0370 .0366 .418 .414 
.7" .455 1.075 1.056 .0268 .0267 ·354 .352 
.8 .398 ·939 .926 ~0191 .0190 .288 . 287 
·9 ·307 .833 .824 .0122 .0122 .207 .207 
·95 .233 .789 .781 .0085 .0085 .152 .152 

A comparison of the optimum distribution of bc ?, along the blade 

for the dual-rotating propeller from this table with the optimum distri
bution for the s ingle-rotating propeller as given in the preceding 
section shows that, if approximately constant c?, is absorbed along the 

blade, wide differences in blade plan form will r esult for the two 
propellers designed for the same operating condition. For the operating 
conditions selected, the maximum bc?, for the single-rotating propeller 

occurs near the 0.6 radius and tapers rapidly towards the tip and the 
hub, being only s lightly over 16 percent of its maximum value at the 
0.1 radius. On t he other hand, the minimum value of bc?, for optimum 
distribution ·for the dual-rotating propeller occurs at the propeller tip 
and progressively increases toward the inner radii . The value of bc?, 

at the 0.1 radius is four times its value at the 0 .95 radius. 

Since the design of the dual-rotating propeller calls for high 
loading over the i nner sections, the efficiency of the dual-rotating 
propeller is less susceptible to compressibility losses which normally 
occur near the propeller tip for operation at high tip Mach numbers. 
The compressibility losses may be r educed by reducing the width of these 
sections or by r educing the operating l ift coefficient. 

I 

J 
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Effect of blade drag on efficiency.- The loss in efficiency due to 
the profile drag of the blades can be calculated from e~uations (20) 
to (22) if the blade-width distribution and profile-drag coefficients 
at the operating c7, are known. Inasmuch as structural r equirements may 

det ermine the shape of the blade, especially over the inner radii) only 
one example is given . The e~uations) however, may be applied to any plan 
form . The example selected is for the four-blade single-rotating 
propeller on which the induced efficiency has been previb usly calculated. 
The shank sections of the propeller blade were assumed to be round) 
similar to the Hamilton Standard Propeller No. 3155-6 and the blade plan 
form f rom x = 0.3 to x = 1.0 was made optimum for a c7, of 0·5. The 
profile-drag coefficients for the several radii are the same as given in 
reference 7 for the Hamilton Standard Propeller No. 3155-6 which has 
Clark Y sections and are given in the following table. It is assumed that 
a spinner covers the inner 0.2 of the radius. - The distribution of crc7, 

with x and of sin cp with x have been included in the table: 

x crq cr Cd sin cp 
crcd x 

crcd x 3 
sin cp sin cp 

0.2 0.0967 0.1934 0.400 0·968 0.01600 0.00064 
·3 .1054 .2108 .100 ·932 .00697 .00061 
-.4 .1044 .2088 .020 .889 .00188 .00030 
·5 .0952 .1904 .010 .840 .00113 .00028 
.6 .0855 .1710 .008 ·790 .00104 .00037 
·7 .0716 .1432 .007 -·742 .00095 .00046 
.8 .0554 .1108 .006 .696 .00077 .00049 
·9 .0364 .0728 .006 .652 .00060 .00049 

Performing the integrations and substituting in the formulas gives 
for rotational-drag-loss coefficient 

1
1.0 

2 
' 2 

A.g 0.2 

= 2 6(0.000348) = 0.0014 
0.51 

and for the axial-drag-loss coefficient 

-=-

--- -- ------ --' 



-
~ -

NACA RM No. LBF30 

= 2 (0 .002l3) = 0 .0043 

The induced thrust coeffi c ient has been given by equation (l4) as 

~ 2 (0 . 201)(0 .155) [1 + 0 .155 (~T 0.29)] ~ 0.0700 

and the induced power coeff icient by equation (l6) as 

Pc = 2 ~ (l + w) (l + ~ w ) 

The induced efficiency is 

= 0 .0700 = 0 .929 
0 .0754 

With drag included, t he total thrust is given by 

= 0.0700 - 0.0043 = 0 .0657 
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and 

0 .0754 + 0 .0014 0 .0768 

The efficien~y is 

1') = 0 . 0657 
--'-:-=- = 
0 . 0768 

0 . 855 

Thus it is seen that the blade drag of the ~tude given in the 
. preceding table r educes the propeller ef fi ciency from 92 .9 percent 

to 85 . 5 percent for the pr opeller oper ating conditions given . 

CONCLUDING REMARKS 

A comparison of Theodorsen' s propelle r theory with the conventional 
vortex theor y shows that the optimum load distribution a l ong the blade 
for single -rotating propellers obtained by the two theories is essentially 
identical and as a ~esult the optimum efficiencies · ar~ the same f or ·a 
given operating condition. Theodor sen's theory has the advantage). however) 
that the optimum eff i ciency for any design condition can be obtained 
<luickly and accurate ly by the use of the mass coefficient · K . without any 
laborious calculations and before the final design is made . 

The d i s t r ibution of the circulation function K(x) for the i deal i zed 
dua l -rotating pr opeller is radically differ ent from the existing values 
for the single -rotating propeller that have been previou sly used for the 
dual -rotating propeller . Also) the mas~ coefficient K for the dual
r otating propeller is l a r ger than the sum of the values for t wo s ingl e 
r otating propellers. These <luantities) which are not available f r om 
mathematical computations but a r e obtained from the e l ectr ical -analogy 
method of Theodor sen) a r e used herein for obtaining the optimum l oad 
di str ibution a l ong the blade for the dua l -rotating propeller. 

Langl ey Aer onautical Labor ator y 
National Advisory Committee f or Aer onautics 

Langley Field) Va . 
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Figure 2. - Velocity diagram for dual-rotating propeller. 
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Figure 7 . - Circulation func tion K(x ) for ei ght -blade s ingle 
r ota ting pr opelle r . 
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Figure 9. - Circulation function K(x) for eight -blade dual - r otating 
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Figure 19. - Values of E and It for eight - blade dual
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