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INTRODUCTION

Ever since A, Robertson (ref. 1), E. E. Lundquist (ref. 2), and

L. H. Donnell (ref. 3), showed that the experimental buckling load of a
circular cylindrical shell under axial compression is much smaller than
the theoretical value much effort has been devoted tq this problem.
Among the more recent theories, the nonlinear finite deformation theory
given by Th, von Kdrmdn and Hsue-Shen Tsien (ref. 4) and T. Kono (ref. 5)
explains convinecingly the discrepancy between the experimental and theo-
retical buckling load hitherto computed by the classical theory, and the
large and abrupt displacement and the decrease of load in buckling.

The stress-strain relationship obtained by Von Kérmén, etc., certainly
indicates an important feature of the buckling of a circular cylindrical
shell. However, the idea that the minimumm value of the load given by_the
load-deflection curves may be realized is not considered appropriate.

The state which may be actually realized after buckling must be deter-
mined by minimizing the energy, not only with respect to the magnitude of
deflection, but also to the aspect ratio and the circumferential number

of buckling waves. The actual buckling load will be given by a comparison
of energy levels before and after buckling and the energy barrier to be
Jumped over In buckling.3 Based on such a concept, the general buckling
and the local buckling of a cylindrical shell are considered to be quite
different phenomena from the energy viewpoint, though they are equivalent
with respect to the load.

After this investigation was performed, the author became aware of
Professor H. S. Tsien's paper "A Theory for the Buckling of Thin Shells",
Journ. Aero. Sci. 9, 1942, 373-384, which had remained unknown to us
due to the war.

2
Associate Professor of University of Tokyo.

3No‘be by reviewer: The energy level concept was also clarified by
Von Karmén and Tsien in the paper quoted above.
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The reason why the cylindrical shell reveals such a particular
behavior for buckling will be attributed to the geometrical features of
its deformation, that is, to the fact that a developable surface quite
different from the original cylindrical surface can exist. On the basis
of these fundamental concepts concerning deformation and energy, the mech-
anism of the buckling can be understood more completely.

LIST OF SYMBOLS

a radius of cylinder
e axial shortening per unit axial length
e, e¥

[ see figure 7
®17 Ser

)
11’ %12

> components of membrane strain
®22 )
et ____el/Ja'
fij = Bj/a = coefficients of Fourier series, equation (lO)

) 8, defined by equation (2k)
h see figure 3
k aspect ratio of buckles = 1 /Z
y/ x

Iy length of buckle in axial direction
Zy length of buckle in circumferential direction
ZX' see figure 3
n number of clrcumferential waves
P see flgure 3
q dimensionless critical loading = —2Z

E Va
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thickness of cylinder wall

components of
face of the

coordinate in

coordinate in

coefficients,

coefficients,

coefficients,

displacement of a point on the middle sur-
shell

axial dlrection

circumferential direction

see equations (35), (36)
see equations (37), (38)

see equations (60), (61)

Young's modulus

elastic constant of loading spring

coefficients of the first fundamental form of the deflec-
tlon surface

coefficients of the second fundamental form of the deflec-
tion surface

Gaussian curvature

length of cylinder

radil of curvature of deflection surface

see figure 7

menbrane stress components
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total extensional and bending strain energy, respectively

see equation (56)

42
12(1 - v9)al

= a-~-h
=p—a

axial shortening of cylinder per unit length

2na
21X

i

= n

]

82/gl, see equation (43)

Poisson's ratio

axlal compressive stress
ngﬁi

dimensionless strain energy, see equation (32)

dlmensionless strain energy, see equation (57)

stress function for the membrane stress
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EXPERTMENTAL RESULTS ON ELASTIC BUCKLING

As for the buckling load of a cylindrical shell, the existing
results appear sufficient for the present. But 1t will be useful from
theoretical considerations to obtailn experimental data concerning the
difference between the so-called buckling load and the load afiter buck-
ling, the characteristics of the buckling deformation, and the effect of
the rigidlity of the loading equipment etc.

To clarify the post-buckling behavior, experiments were carried out
with cellulold cylinders. The results are shown in figure 1 for three
kinds of rigldities of loading springs. It will be needless to say that
the value of q at buckling is much smaller than the value q =2 of
the classical theory. For cylinders whose dimensions are shown in the
figure, the post-buckling load is about one third of the buckling load.
The circumferential number of lobes ranges from the value 5 to 7, and
their aspect ratio from 0.65 to 1.0. From the comparison of the three
experiments, we can deduce that, with the increase of the rigidity of the
spring, (1) both the buckling and the post-buckling load Increase,

(2) the value of k decreases, that is, the buckling wave form becomes
more slender in the axial direction, and (3) the circumferential number

of waves n increases. When the axial shortening is reversed, the load
is kept nearly constant, and the value of k decreases, i.e., the wave
length of the buckling lobe becomes longer, under the constant value of

n. Such a change of the wave form will be proved theoretically reasonable
later.

CHARACTERISTICS OF BUCKLING DEFORMATION

As for the buckling deformation of a cylindrical shell, there are
two remarkable characteristics, other than those of the wave number and
the aspect ratio of the lobes. The first is that the cylinder practi-
cally always buckles locally, at least in comparatively long cylinders as
used in our experiments., The longitudinal range over which such buckling
occurs extends over 1.5 times the axial wave length of the lobe; while
clrcumferentially, it extends over the whole cylinder only under the con-
dition of complete rotational symmetry of both the cylinder and the
loading equipment. As will be considered later, the local buckling is
attributed to the energy condition.

The second characteristic is that the buckled surface, which is
greatly displaced from the initial cylindrical surface, is nearly devel-
opable. That is, the buckled surface is a regular repetition of the
polygon ABCD (fig. 2), the ridges AB, BC, CD and DA and the trough
BD being all nearly straight, and the surface ABD and BCD nearly
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plane. Accordingly, the buckled surface is approximately a concave
polyhedron constructed by connecting nearly plane triangles such as ABD.
Consequently, the Gauss curvature

1
K = —=— (1)
R1Ro

is vanishingly small throughout the deformed surface, where Rl and

R2 denote the principal radii of curvature. Denoting the fundamental

metrics of the first and the second kinds of the deformed middle surface
by E, F, G and L, M, N, respectively, the compatibility condition
is given by Gauss' characteristic equation

2 2 .2
> 2
29F _O0E _9Gl_N.-M =xi

Jx06 592 Bxg - B

1
2
(2)

2 2

H =EG - F

under the neglection of the second order terms regarding the derivatives
of E, F, G. The left hand side of equation (2) is considered to be
small, and as equation (2) is satisfied by the undeformed initial surface,
on which the Gauss curvature vanishes completely, the expression of the
left-hand side of equation (2) vanishes also for the initial surface.
Consequently, when the deformed surface of the circular cylinder is nearly
developable as in the case of buckling under axial compression, the defor-
mation can be said to be almost inextensional. The deviation of the buck-
led middle surface from the complete developable surface will depend on
the thickness of the shell. For ' a limiting case where the thickness tends
to zero, i.e,, for an ideal membrane, the buckled surface is supposed to
become 2 complete concave polyhedron.

In case a completely developable surface is realized, the cross sec-
tion through the point A in figure 2 will form a regular polygon as is
shown in figure 3(a). Assuming the polygon to be n-sided, then the length
of each side is Ena/n, because the deformation is completely inexten-
sional. Hence, from the figure

h=X2 ot L2 a1l - T
n n - 2
3n

and the displacement at the trough is given by

no

2
3n




NACA TM 1390 T

Since

8'=p-a=a£2§ ()_;_)
én

Putting the aspect ratio k of a buckling lobe which has the wave
lengths 21y and 21 in the circumferentlal (y) and axial (x)

directions by

A
k = _ZZ (5)
x
we have
by zy = nta/n. As we have

Ix' = [zxg - (5 + 5t )2

From figure B(b), which shows the axial section of the deformed cylinder
through A in figure 2, the axial shortening e of the cylinder per
unit axial length is given by

e - lx - Uy ;;(5"5')2
1 ‘2 1.2
X X
and hence, from equations (3), (4) and (6),
2 .2
€=“__L (7)
8 2
n

From equation (7), it is seen that the axial shortening of the cylindri-
cal membrane, due to the geometrical deformation, increases as the lobe
becomes flatter in the axial direction and the circumferential wave num-
ber decreases. Although the compressive load required for such a buck-
ling into a completely developed surface vanishes, it does not vanish for
an actual shell owing to deviation of the actual deformation surface from
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being completely developable because of its bending rigidity. The fact
that a relation similar to equation (7) holds also for the shell, as will
be shown later, is considered to be an evidence for the buckled surface
to be approximately developable,

The experimental fact above-mentioned, that the buckled surface of
the cylindrical shell 1s approximately developable, is verified from the
following theoretical consideration. If the higher order terms are
neglected in the expression of L, M, N, with respect to derivatives of
displacement components, it follows that

L = % L. M = Wy N =a (? + wyi) (8)

where we write w, x, y instead of w/a, x/a, y/a, respectively.
If, in the following calculation, one likewise puts wu, v in place of
u/a, v/a, to make all quantities dimensionless, then by equation (2)

= jE [yxx (1 + Wyy ) - wag] (9)

To express the almost developable surface as shown in figure 2 by the
displacement w, 1t is necessary to take a comparatively large number
of terms of the Fourier series

W =‘Z:fij cos iAx cos Juy (10)
where
6ij
£,. = —
15 = (11)
aij denoting the deflection of each component of deformation, and
A = 2___]18‘ = ___2‘1‘(8. =1n 12
21y " 21y (12)

n being the circumferential wave number,

As é simple case of equation (lO), 1f we assume

w = f, + f] cos Ax cos wy + % f2 (cos 2\x + cos 2uy) (13)
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which is nothing but a wave pattern
cos AX CcOS Wy

which has the nodal lines parallel to the x- and y-axes, superimposed
by a wave pattern

cos (Ax + wy) cos (Ax - wuy)

which has the nodal lines parallel to a line having an angle
¥ arc tan & with the x-axls, then we have

2 2
a K=} <2flf2u - fl) €os Ax cos py +
271 2 2 1 2,22
A (E.fl (TR 2f2> cos 2MX + 5 fl A cos 2uy +
2.2 2
kfg A cos 2A\x cos 2uy +

22 .
£ N 1 (cos Ax cos 3y + cos 3Ax cos uy) (1)

Only the first and second terms in equation (14%) can be made vanishing,
and, if we choose the values of fl and f2 50 as to make these terms

zero, 1t follows that

£ = i% £, = _LE (15)
n a2n
It is noteworthy that equation (15) has a form quite similar to

equation (3). It is assumed in the above derivation that the series (13)
has only three terms, and a choice of fl and f2 is made which makes

K as small as possible. If we apply the infinite series (10) generally,
there exist the values

Hy
|
T:NIHUQ
Cw

= const. (16)

13 = €13
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which make K equal to O completely. Therefore, the number of terms
of the series must be increased, as the thickness of the shell decreases,
and, for the limiting case of the 1ldeal membrane, it will be necessary to
take an infinite series.

For a flat plate, the Gauss curvature K of the deflection surface
cannot vanish unless all the coefficients £, vanish, by reason of non-

iJ
existence of the term wkx in the right-hand side of equation (9). This

shows that no developable surface exists in flat plates other than the
initial plane, contrary to the case of the circular cylindrical shell.
Consequently, when a flat plate performs finite displacement, severe
bending must be accompanied with large extension of the middle surface.
This is the reason why a flat plate and a cylindrical shell exhibit sub-
stanially different behaviors during buckling.

GENERAL BUCKLING

Actual buckling is local in all cases, as was described in the last
paragraph, except when a cylinder has a particular length. However, in
order to treat the local buckling, it is first necessary to investigate
the phenomenon of general buckling.

Before proceeding to the subject, it is necessary to prove the exis-
tence of the stress functlon even in the state of large deformation after
buckling, because it has hitherto been proven only for small deformations
The existence of the stress function has usually been considered to mean
that the third and fourth terms can be neglected as compared with the
first and second terms in the first and second equations of the equilib-
rium equations (ref. 6)

aTll 12 M
—_—— 4+ —== - T L -T ==0
Ox oy 13 23 a

T oT
12, 22 g M_nqg

N _ > 1
ox oy 13 a 25 2 0 (D)

?Eli ??22 M N
+ + T L + 2T =24 T _—
9% dy 11 12 a 22 82

Physically this concept means that bending can be neglected against exten-
sion, and that the equations are satisfied for the usual extensional defor-
mation. For the almost inextensional finite deformation, however, the
exlstence of the stress function cannot be readily concluded in a similar

manner, because Tll’ T12 and T22 are small, and L, M, and N
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large after buckling. Nevertheless, it can be derived by some other rea-~
soning when the deformed surface remains developable.

Solving the first and second equations in (17) with respect to T15

and T23, we have -

o LN - M? - - M(?TlE + aT22 + jL(éTll + or
3 2 a\ ox dy /| g2\ ox dy
& , (18)
oT oT
T23 LN é Ll—X2 4, 22} _ % ( 11 . lé)
a ox oy / ox oy / |
and therefore
ox dy ox oy

For 1IN - M2 vanishes on the developable surface. Consequently we can
conclude the approximate existence of the stress function for the buckled
state of the circular cylindrical shells.

In consequence, we can put

Typ = Bt¥yy T, = By T, = Bty (20)
using the stress function X. The compatibility equation can be written
as L 2

VX=-<LN-M> (21)

neglecting higher order infinitesimals. The deflection w must be chosen
g0 as to minimize the right-hand side of equation (21). If we take equa-
tion (13) which could nearly, though not completely, satisfy this condi-
tion we have, according to equation (21),

2 2
_ A 2 ) 1 [1m 2
X = - ( > AV QEp flf2 - fl COS A\X cos Uy - Z <§ —E»fl -
AN+ A
2 2 Nulr, £
2 ¢\ cos onx - = A 1 COS uy - E 2172 cos AX cos SUy -
22 32 (2 2)2
AN +5n
22 22
A £, f 2
: L2 5 cos 3AX cos WMy - = 2x L 5 £, cos 2\x cos 2uy - % % ve
(9% + u ) (K + | )

(22)
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where o 1s positive in compression. Obtaining Tll’ Tl2’ T22, from
equation (20), and then the strain of the middle surface ell’ 812’ e22,
we have .
2 2
o= -S_ N B _ N2
X E 81 y, 2
> (23)
2 2 2 2
=v8 - K ) S
vV = - £ - f + £
y=VET § 1 4 T2 o |
according to the relatlons
e =ux+lw2 e =v-w+l-w2
11 2 x 22 y 2 Y
and neglecting the periodic terms. If we put
g
_a _ &
£, =5 £, = =5 (2h)
n n

by means of equation (3) or (5), g, e&nd g, may be considered to be

approximately constant for the post-buckling surface. The concrete idea
for the mechanism of buckling deformation will be obtalnable later by
introducing these parameters. By equation (5)

k=A_A
k=g=2 (25)

and therefore the axlal shortening of the cylinder per unit axial length
is obtained from equation (23) as

2
_ k (L,2,L,2 26
e—q+ﬂ<8gl +)+g2> (26)
where
-9 =G = n° 2
q = WA e = 5 1 = n%fa (27)
2
a L (28)
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And from the condition vy =0, we obtain

2 1 2
Ffom oy 84 (L + = 2
o Vg n2(8 g *ti& ‘( 9)
Equation (26) shows that the total axial shortening of the cylinder
consists of two parts, one of which is the elastic compressive strain

e = q (30)

caused by the mean compressive stress ¢, when the shell is assumed not
buckled, and the other is the shortening from the change of the geometri-
cal shape of the surface

2
¥“ (L,2.1 2)
=5 (£ + = 1
2= (Bgl T &, (31)
when the shell 1is assumed not to be subjected to the compressive stress.

Similarly, equation (29) shows that the same circumstances are also sabls-
fied for the mean radial displacement f£,. The fact that equation (51)

has the same form as equation (7) will be considered to be the consequence
that the buckled surface is similar to the concave polyhedron mentioned
previously (fig. 3(a)). The discrepancy in the value of the coefficient

8

2 from that of IIg/ will be a measure of the deviation of

1 2
&

1
=g + =
8 1 Ly
the surface from the completely developable surface.

Denoting the total elastic energy, the extensional, and bending

energy by W, We and Wb, respectively, and putting

W = 2xal. % Eta IT
1
W, = 2ral 5 EtaIT, (32)
= 1
W = 2nal & EtalTy J

L being the length of the cylinder, E +the Young's modulus, we have

IT = IT_ + IT, (33)
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where, by the use of equations (13) and (22),

H:—Qd—+<—°—>2=i'-Q,+q2
2
Efa/ 1

nl"a.
(34)
II = Gg12 + Hg22
and
4 2 2 4 2 2 2
Q=Ag "+ Bg ey +Cg - Dg g, +Ce + Fa, (35)
), |
~k +1
A= 128
4 1 1 1
B =k + +
(k2 + 1)2 u<9k2 r1)? 4(13 +9)2
(36)
- 2 2 T2 2 16
’+Ek + 15 (k + 1
2 2
F=21 G:—.k';;l H=2<k4+1>

The extensional energy IIe consists of the elastic energy q? due

to the mean stress g and the energy ;% Q@ due to the deviation from the

1
mean. The bending energy IIb does not depend on the circumferential

wave number n, The cylindrical shell is distinguished from the flat
plate by the fact that the negative term -Dglgg2 exists in the expres-

slen Q, and in consequence of this, @Q can diminish to any extent by
increasing the number of terms, provided that the value of gij is chosen

approprlately. Contrary to IIe’ the bending energy IIb increases with

the number of terms of the series representing w. Consequently, even for
the finite deformation after buckling, the extensional and the bending
energy have the same order of magnitude, and this also proves that the
deformation is almost inextensional from the energy viewpoint.
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Since the buckling load of circular cylindrical shells is to be
determined from the energy level before and after buckling, the loading
condition must be prescribed. We can consider constant end displacement,
constant end load.such as by dead weight, or other intermediate states.
Among these conditions, the fundamental case of constant end dlsplacement
will be treated first. In this case, the axial shortening e must be con-
sidered as the independent variable. Therefore, from equation (26), the
first equation of (34) becomes

2
=Ll gt _pekfL 2,1 2)
T, =5 Q' +e 2e11<8gl t T e, (37)
|
where
Q = A'glh + B'g12g22 + C'g2br - Dg12g2 + Cgl2 + Fg22 (38)
Y
A':A'l'-—k'—
an
N
B* =B+ L (39)
an
N
Ct = C + £
&

Since the work of the external force is zero under the condition
e = const., we have the equilibrium condition

dBW =0
or, assuming the dimensions of the shell to be given,
2_11 =0 g_l'l = (41)
& €o

under the condition that e, 1(n) and k are constant, because II is
considered to be

I = T(e, n(n), k&, g, &) (s2)
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From equation (41) we obtain

N 2 )
L [yarg 2 g 252 . le kK
= La & + 2B g P 2Dglp + 2C_ + 2G 5 e ol 0
T] -
L (43)

2
LTzB'gep+uc'g2p3-Dg +2Fp7+2ﬂp-ek_.p=o
ng 1 1 1 | n

8/ = P

Eliminating e from equation (43), we have an equation of the third
order with respect to p, namely,

4 CB‘ - C')glgp5 - J+Dglp2 +

{(SA' - 213')gl2 + 4C - 2F + n2 (g - 2H)] p + Dgl =0 (44)

Substituting the value of p, obtained from equation (44) with parameters
Xk, nm and 81> into the first equation of (h}), we obtain e, and then

g from equation (26). The relationship between q and g, 1is shown in
figure 4 for each case of k = 0.2, 0.6, and 1.0. Though the value of 8
for the post-buckling eguilibrium state is not determined from these
curves, the fact that all curves lie within a definite range of g1 and

show a similar shape, indicates the reasonability of the assumption (24).
The relation between q and e 1s shown in figure 5 with k and
7 as parameters., The minimum value of g, corresponding to the branch

points of the curves exhibiting the post-buckling state, is the critical
load by the classical theory

Q=2
as is well known.
It is important that the curves in figure 5 reveal the condition

II = min. (only under the restriction k), 7 = const. but do not give
the minimum condition of II (e, n, k, gl) ge) with respect to each

of its independent variables. Therefore, the inference that the smallest
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value of q in figure 5 will be realized after buckling, is erroneous.
In other words, the fact that q 1s negative and has a large absolute
value for small values of k means that the geometrical shortening (31)
1s greater than the total shortening e, and therefore the extensional
energy IIe is increased under such conditions, and TII does not become
minimm,

As was stated above, for the determination of the post-buckling
state, it is necessary to determine the values of e, 17, Kk, 85 and

85 and hence of g, corresponding to the minimum value of the hypersur-

face (é, n, k, gl, g2) with regard to the variables e, 1, Kk,
81 and 8o For this purpose, we need to Inquire into the minimum value,
with respect to 7N and k, of the minimum of II in a section 1,

k = const. Figure 6 shows the value of the total strain energy II cal-
culated from figures 4 and 5, taking k and 7 as parameters. Hence,
this calculation glves the minimum of II for each section. Each curve
in figure 6 has the form as shown in figure 7(a). For e< e¥ in the
figure, buckling 1s impossible, but for e¥*< e< ey it is not impos-

sible if some energy is supplied from the exterior. It 1s for e > e,

that buckling takes place in general, but for this a certain amount of

energy barrier must be Jjumped over. At e = e > ey for example, the

energy barrier corresponding to CC' must be Jumped over in order that
the equilibrium position shifts from C +to C" by buckling. This pro-
cess can be illustrated as in figures T(b) and (c) with g or q as

the independent variable. As the buckling load corresponding to e

increases, the energy barrier to be Jumped over decreases, and the energy
difference before and after buckling increases.,

From figure 6, it 1s shown that the value of 8 and g, corre-

sponding to e, 1s almost constant, independent of k and 7; this is

worth noting as indicating that the starting assumption (24) is reason-
able.

Denoting the minima of e, wlth respect to n for each value of
k in figure 6 by e m’ and the values of IL at S and S!' and that

e by II II-
o,m v o,m’ o,m’

and L respectively, we can obtain the manner in which these quantities

J
of 1 at S (refer to fig. T) corresponding to

change against k (fig. 8). The value of IIO o Seems to show a mini-
>
mun IT near k = 0.2, and the corresponding value of e is
o,m,m o,m

about 1.5 and that of nm 0.02. Therefore the buckling load in this
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case 1s gq = 1.3, while the load after buckling is estimated roughly as
q = 0.9. The energy barrier to be jumped over is approximately
IIb = 0.14, which is equal to about one tenth of the energy Just before

buckling. Generally, buckling occurs for q > 1.3, since the value

q = 1.3 corresponding to IIO,m,m is the minimum buckling load. The
greater the buckling load, the smaller the energy barrier, i.e., the more
likely buckling will occur, while the greater the energy difference before
and after buckling, i.e., the greater the sound or vibration 1ls generated
with buckling. The problem, at what load over the minimum buckling load
the actual buckling will occur, is to be decided by the initial deforma-
tion of the shell and the conditions of the experiments. With a constant
value of e greater than 1.5, the value of k and consequently of 1,
corresponding to the minimum of the energy is somewhat greater than that
for the case e = 1.3. Therefore, as the actual buckling load increases
over the minimum buckling load, the lobes have a tendency to become short
and thick in the axial direction, and the circumferential wave number
increases. The energy curve for any constant e 1is very flat in the
nelghborhood of 1ts minimum, hence the post-buckling state cannot be deter-
mined sharply, but will be scattered over a certain range. At any rate,
the lobes 1n the case of the general buckling are found to be very slender
in the axial direction.

Though the general buckling was not realized In experiments with
comparatively long cylinders, it will be realized if a cylinder of a par-
ticular length, corresponding to 1.5 times of the wave length, is used.

LOCAL BUCKLING

According to the experimental results, actual buckling 1s local,
consequently there exist two parts, one of which is buckled and the other
unbuckled. The occurrence of local buckling is explained qualitatively
from the following energy consideratlon. If local buckling were assumed
to take place at the minimum buckling load of general buckling, the load
supported by the buckled part would decrease abruptly; and In consequence
of the fall of the load, the elastic energy of the unbuckled part will
decrease more than the energy increase of the buckled part. Hence the
total elastic energy would become smaller after buckling under fixed end
displacement. This means that the minimum buckling load in the case of
local buckling will be found below the general buckling load, The occur-
rence of local buckling, on the other hand, is inferred from the genetic
viewpoint that the stress-strain relation after buckling (fig. 5) is such
that the velocity of propagation of the buckling deformation is nearly
ZEero.
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In this paragraph we shall consider this problem from the energy
standpoint on the basis of the results on general buckling. Dividing the
entire cylinder into the buckled and the unbuckled parts and writing

Buckled Unbuckled Entire
part part cylinder
Length Ll L2 L
Mean compressive stress oy o5 o
t t 4
Compression el e2 €
Elastic energy Wi' W2' W
we have
L=1Iy + Ly (45)
— — — 1
4 = 4, = @ = Eey (16)
T 1 1
W= W+, (47)
Iet =L e '+ Le ! 48
11 22 (46)
where
t € ]
et =_§_'_ e ' = el e ' = 2
1 - 2 -
fa o Vo
- (49)

g
Bl U ER 2 T ER

Eliminating e,' and e_.' from equations (46), (26), and (48), we obtain

L 2
- 2k (L,2,1.2 0
¢ =4atg T](Bgl +ug2> (50)

Equation (50) shows that the total axial shortening depends on the
length L2 of the buckled part. As we can put

L, = 1.5(21) (51)
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from the experimental results, we have

3nta
L2 = D-T{— (52)

from equations (5) and (12). Therefore equation (50) is written as

et =g+ 22 kﬂ( g2+t 22> (53)

The second term of the right-hand side of equation (53) represents the
geometrical shortening due to local buckling.

The total elastic energy is the sum of the elastic energy of the
unbuckled part.

2
" = 2naly ZY aq” (54)

Wit = 2natly _é. Ee,

and that of the buckled part

L
2w (55)

Wol = 2
2 L

where W 1is glven by equations (32) and (34). Hence, putting

W' = 2xal % EtaIT
W' = 2nal % EtaIT' (56)
Wp' = 2nal L EtaIL,'
it follows
IIl' = EL q?
L

(57)
H':Iﬁ _l_Q+q2+<G2+Hg2)
2 L |2 & 2

or by means of equation (52)

]

I = I+ I, = f.f—; [Le Q" + (Gg12 + ng)] +a° (58)
y
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Considering e' to be the independent variable, equation (58) is written
as

l_?_“_a_]___n ( 2 2)
T —Lnk[n2Q +\Ge, +Hg, )|+t

2
2 Sna K 1 2 1 2
et - 2et == + =
Lnle(8gl ug2> (59)
by equation (53), where
N 2 2 b 2
Q" = A"gl + B"g 8, + C"g2 - Dg,"g, + Cg12 + Fg22 (60)
L‘-\
A":A'F—BﬂaL
Lnk 64
sma Kt
B" = B + :I'(a___? (61)
Lnk 64
n
C":C'l‘-BltE-k—
Ink 6uJ
The minimum condition for W', or omT' _ 0 ana OIL' _ O under the con-
Bgl ng

dition e', M, k = const. is glven by

¥ o 2 2 ' e ]
L uamg = + 2B" - 2Dg p+2C [+ 20~ K o0
2L & & °F &1° 2
- (62)
- 23 2
L {2B"g.Zp + ko" -Dg. +2Fp|+2Hp - et £ p =0
| g,“p g P g, p p-e'-p
Eliminating e' from equation (62), we have

L(B" - C")glep3 - h—Dglp2 +

[(8A"-2B")g12+l+0-2F+n2 (hG-EH)]erDgl:o (63)
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which is equivalent to equation (4k4), as the relation

B" - C' =B'-C' =B -C
(64)
8A" - 2B" = 8A' - 2B' = 8A - 2B

is satisfied by means of equations (61) and (39). Consequently, we can
use the same results regarding 815 P and Tn as were calculated in the

case of general buckling. Comparing e', obtained from the first equa-
tion of (62) by means of calculated results, with e derived from the
first equation of (43), we have

- .51%‘:_>£2_(L 2,1 2)
e-e+<nk (L +te, (65)

This equation reduces to equation (53) by virtue of equation (26), so
that the value of q 1in the case of local buckling is the same as that
of q in the case of general buckling. Hence, we need not carry out the
calculation for the local buckling under the condition e' = const. all
over again, but only calculate e!' and II', which satisfy the minimum
condition of energy with respect to 8 and & s by equations (53) and

(58), respectively, using the results calculated for the case of general
buckling. Local buckling differs from the case of general buckling in
that it depends on the dimensions a, L, t and the Poisson's ratio v
of the circular cylinder, and therefore on the value of n.

Using the values a = 111 mm, L = 460 mm, t = 0.4 mm, and v = 0.4
for the shells used in the experiments, the e' ~ g and the ef ~ IIf
relations are calculated as shown in figure 9§ and figure 10, respectively.
As in the case of general buckling, we can define for local buckling e,?,
I, IIz' and e'o,m’ II’o,m’ II'E,m’ N, corresponding to the mini-
mum of IIO' with fixed k. The manner in which these quantities change

against k 1s shown in figure 1ll. The minimum e’ or IT! of

o,m,m o,m,m
et or IT! exists near k = 0.7, and e! = 1.0k, and the

o,m o,m o,m,m
corresponding value of 17 1is approximately 0.10 (or n = 9.40). The
post-buckling load for e'! = e'O — 1.0k, k =0.7 and 7 = 0.10 is
270
obtained as about q = 0.7, and the energy barrier II'~ - IT!
o,m,m o,m,m

about 0.07. The post-buckling state when buckling occurs at any load

above the minimum buckling load q=e' = 1,04, will be determined
%
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by the minimm energy condition at e' corresponding to the buckling
load q. This state, however, does not differ greatly from that of mini-
mum energy represented in figure 11.

Comparing figure 11 with figure 8, it is seen that the minimum

energy = IT! - for the local buckling is much smaller than the mini-
o,m,m

mum energy IT for the general buckling, and this means that the
o,m,m ’

local buckling is more llable to occur. As the II'O m curve shows a
2

sharper minimum than that for IIO m? the post buckling state for local
b
buckling will not be scattered as widely as In general buckling.

The above calculation was carried out under the assumption that the
end shortening is constant before and after buckling. Hence the results
may be compered with experiment 1 (fig. 1) performed with a spring of
large rigidity (teble 1). The agreement of the value of k 1is good, but
that of the buckling load, the load after buckling and the circumferential
wave number, 1s not very good.

LOCAL BUCKLING WITH ELASTIC LOAD EQUIPMENT

Actually, it 1s impossible to realize the condition e or
e! = const. 1in buckling by usual testing machines. The absorption of
energy by the testing machine is inevitable due to the finite rigidity of
the structural material of the testing machine, even when springs or oill
pressure is not used. The absorbed energy increases with the decrease of
the rigidity of the machine, and it is natural that the interchange of
energy between the machine and test specimens have some effect on the
buckling phenomenon. In the present paragraph, a case in which the rigid-
ities of both the loading equipment and the testing machine are replaced
by a spring, will be analyzed and compared with the experimental result.

It 1s assumed that a shell undergoes local buckling as in the pre-
ceding paragraph. Denoting the shortening of the cylinder per unit length
by e'(e' = ¢¥Ja) as before, the length, the unit compression and the
rigldity of the spring by Ls’ es(eS = es/ﬁi) and Eg, respectively,

and the length and the unit compression of the total system containing
both the cylinder and the spring by L¢ and et(et = €y ﬁi),
respectively, we have

L

. =T+ g (66)

Leey

Le' + L_e_ (67)

E
e, =21 at q E; (68)
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Substituting equations (53) and (68) into equation (67), the shortening of
the total system is given by

Ly Ls onatE

T T T e
swe 12 (1,2, 1,2
m5Gete) (é)

As the elastic energy of the spring is given by

or

S P S
L (70)

IT = _S 2rnatkE q2

s L Eg
the elastic energy of the total system is gilven by
W' = 2xal, 1 BtoII"
2

(71)

2 2 Ls oratE) 2
= 22 L +<G + E )+1+_Sﬁ_
x| 2ot \08 T T _E /¢
1 s
using equations (56) and (58). The energy carried by the spring is pro-
portional to LS/L and %/ES.

The buckling in this case is to be considered with e, asan inde-

pendent variable, which was e' 1in the case of local buckling. Substi-
tuting, therefore, g of equation (69) into equation (71), we obtain

Ina 1 2 2
H" = i'_;l_}z [;]_2. Q!!I + (Ggl + ng > 4

£y
BB
=

(te?+1s?)]

(72)

L [<E§ e )2 -2 Eﬁ e
1+ (L/L)(enatE/Eg [\ L T L b
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L 2 2 L 2 2 2
Tty _ 1t Tttt 11
Q =A'''g, +B'''g,"g,” + C'''g, - Dg g, + Cg " + Fe, (73)
T swa/(Lnk) __ x*
1+ (1L, /L)<27tatE/ES) N
B'!'' = B + ~53“:?3-/(Ll')-k) .lf.lt > ("{ll.)
= r Y
1+ (LS/L)\E:tatE/ES) 6l
cr'Y - ¢+ Bﬂa/(Ln-k) ﬁ
1+ (Lg/L)(2natE/E) 6 |
The equilibrium condition under constant n and k is given by
_g_.I_I.l_’. =0 .a..:_l‘..l =0
&1 %,
or
L, /Lie 2
LE [hA"'glg + QB”'gleo - 2Dg p + ECJ -1 (Be/%) o k +yo26=0 .
- 2 Lg 2natE 1 :
1+ = :
L  Eg !
- (75)
o 7 L, /L)e 2 !
i%-[?B"'gl p + LLC"'glep3 - Dgl + 2Fpl - ( t/ ) & k_ p+ 2Hp = O
T - L 2xratkE T
1+ - i
L E )

S -

from which, eliminating s the same equation of the third order with

respect to p as equations (44) and (63) is derived by means of equa-
tion (T4). Hence, the calculated results of g, 1, Xk, and p in the
case of general buckling may be used also in this case., It is convenient
to use equation (71) instead of equation (72) for the calculation of
energy, and equation (69) in place of equation (75) for the calculation
of e,. Figures 12 and 13 show the relations II" ~(Lt/L) e, eond
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II" ~ e', respectively, for a spring with Lg = 46 mm, E = 3,680 kg

used in experiment 2 and for the same cylindrical shell as in the last
paragraph, while figures 1% and 15 show those for a spring with
L, = 43 mm, E_ = 1,160 kg (experiment 3.) The minimum buckling load

is given by the value of e' or q corresponding to the minimum

. o
et,o,m,m. with respect to k and n of et,o’ which is the value of ey

corresponding to the intersecting point of the post-buckling energy curve
with the parabolic curve in figures 12 and 1k.

As ey is constant before and after buckling in our experiments,

the buckling load and the post-buckling state will be determined by con-
sidering these energy charts under the condition e = const. For any
value of e above e in figures 12 or 14, the corresponding

T t,o0,m,m
value of TI" is obtained on the parabola, hence the value of e' or
the buckling load q 1is obtained from figures 15 or 15. The post-
buckling state is determined by the following process. The values of Kk,

N(n) and II" which give the minimum energy for the given et are

determined from figures 12 or 14, then the corresponding value of e'! 1is
determined from figures 13 or 15, and finally, the post-buckling load ¢
corresponding to these values of k, 1 and e' is determined from

figure 9.

The results calculated by the above procedure for the shell and the
spring in experiments 2 and 3 are shown in table 1. In comparing with
experimental results, the qualitative agreement between the theory and
the experiment seems to be satisfactory. The reason that the observed
minimum buckling loads in experiments 2 and 3 are not so small compared
with those in experiment 1 may be due to the magnitude of the energy
barrier. Practically, the supposition that the buckling in experiments
2 and 3 might occur at greater difference of the energy before dnd after
buckling compared with experiment 1, or at energy barrier closer to
experiment 1, is confirmed by the fact that the sound on buckling was
greater in the former cases than in the latter case. It may be presumed,
consequently, that the occurrence of buckling is governed both by the
magnitude of the minimum buckling load and the energy barrier,

DEFORMATION AND STRESS DISTRIBUTION

In order to clarify at what part of the buckled shell the compres-
sive load i1s supported, we calculated the stress distribution (fig. 17)
for the -deflection W due to equation (13) (fig. 16). According to the
result obtained for the post-buckling state q = 0.7, k = 0.7, and
N =0.10 (n = 9.#), the compressive load applied to the cylinder is found
to be supported by the cross-hatched part.
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CONCLUSIONS

The buckled surface of a circular cylindrical shell under axial
compression is considered to approximate a particular developable surface,
‘'so that the deformation in this case is almost inextensional and finite.
The mechanism of buckling of a circular cylindrical shell can be said, in
effect, to be a phenomenon of a kind of "Durchschlag."

When the cylinder is loaded by a specified end shortening, the state
realized after buckling is determined by the minimum condition of the
hypersurface representing the elastic energy with respect to all variables.
In consequence, there exists the minimum buckling load which is determined
by the equality of the energy before and after buckling and is smaller
than the critical load by the classical theory. Actual buckling takes
place above this minimum buckling load, by Jjumping over a certaln magni-
tude of energy barrier, which decreases with the increase of the buckling
load. The buckling load will be considered to be governed by both the
minimum buckling load and the energy barrier.

From the above viewpoint, local buckling is more likely to occur than
general buckling, the minimum buckling load and the energy barrier for the
former being smaller than those for the latter. In the case of local
buckling, the minimum buckling load decreases as the rigidity of the
loading spring decreases, Similarly, the fact that the minimum buckling
load for the local buckling is smaller than that for the general buckling
is attributable to the spring action of the unbuckled part.

Finally, it will be remarked that scale effects exist for the local
buckling as is seen in equations (73) and (75), i.e., that the buckling
strength is influenced by the absolute value of the length, radius, and
thickness of the cylindrical shell even under the condition of their con-
stant ratios. A paper concerning this effect will be published soon

(ref. 7).

The author wishes to express his appreclation to Professor M. Yoshiki
for discussions. This research was carried out by the financial aid of
the Ministry of Education.

Translated by Y. Yoshimura

Edited by Drs. Y. C. Fung and E. E, Sechler
California Institute of Technology
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TABLE I

Local buckling

Loading with

General .
buckling cgnstant end Loading with spring
displacement
Exp. 1 Exp. 2 Exp. 3
Minimum buckling Calculated 1.3 1.0k 0.8 0.80
load (q) Observed 0.8 0.76 0.72
Energy barrier (II, IT', II") 0.1k 0.07 0.20 0.10
q Calculated 0.9 Q.7 0.55 0.70
Observed Ok 0.2k 0.22
POSt-buCkling Observed 0-6)4‘ ~ 0.68 0-93 0‘95
state
n(n) Calculated 0.02 0.10 (9.4) 0.085 (8.6) 0.085 (8.6)
Observed 6 ~ 7 6 5
et Calculated 1.0 1.25
Observed 3.2 b4
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Figure 1.- Experimental results of the compressive stress o and

Experiment 2.
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Figure 2.- Developed view of the buckled surface,
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Figure 3.~ Cross and longitudinal sections of the buckled surface.
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Figure 7.- The energy level before and after buckling and the energy
barrier to be jumped over with buckling.
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Figure 10.- Relation between the elastic energy II' corresponding
to its minimum condition with constant k and n and unit end
shortening e' for local buckling,
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n and the aspect ratio k of the buckling lobes, for local buckling.
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