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NATIONAL ADVISORY COMMITTEE FOR AFERONAUTICS

TECHNICAL MEMORANDUM 1383

FINITE SPAN WINGS IN COMPRESSIBLE FLOW¥

By E. A. Krasilshchikova

This work is devoted to the study of the perturbations of an airstream

by the motion of a slender wing at supersonic speeds.

A survey of the work related to the theory of the compressible flow
around slender bodies was given in reference 14 by F. I. Frankl and
E. A. Karpovich.

The first works in this direction were those of L. Prandtl (ref. L)
and J. Ackeret (ref. 23) in which the simple problem of the steady motion
of an infinite span wing was studied. Borbely (ref. 25) considered the
two-dimensional problem of the harmonically-oscillating nondeformable
wing in supersonic flow by using integrals of special types for solutions.

Schlichting (ref. 24) considered the particular problem of the flow
over two-dimensional rectangular and trapezoidal wings. To solve this
problem, he applied Prandtl's method of the acceleration potential which
he looked for in the form of a potential of a double layer. However, as
shown later, Schlichting made an error and arrived at an incorrect result.

In 1943, Busemann (ref. 26) proposed the method of solving the prob-
lem of the conical flow over a body by starting from the homogeneous
solution of the wave equation. This method was modified by M. I. Gurevich
who, in references 11 and 12, solved a series of problems for arrow-shaped
and triangular wings when the flow, perturbed by the wing motion, is
conical. The work of E. A. Karpovich and F. I. Frankl (ref. 13) was
devoted entirely to the problem of the suction forces of arrow-shaped
wings.

In 1942, at a hydrodynamics seminar in Moscow University, Prof. L. I.
Sedov proposed the problem of the supersonic flow over slender wings of
finite span of arbitrary plan form.

In response to this proposal of L. I. Sedov, there appeared in
1946-47 a series of works by Soviet authors on the question of the super-
sonic flow over wings of finite span.

The first work in this direction was our candidate's dissertation
(ref. 5), in which we found the effective solution for a limited class

*Scientific Records of the Moscow State University, Vol. 154,
Mechanics No. 4, 1951, pp. 181-239.

The appendix represents a condensation made by the translator from a
document '"Modern Problems of Mechanics," Govt. Pub. House of Tech. Theor.
Literature, (Moscow, Leningrad) 1952, pp. 94-112.




= NACA T 1383

of harmonically-oscillating wings. In reference 6 we solved the problem
for wing influences by "tip effect.” Later works (refs. 15, 16, and 17)
were devoted to the same problem.

In reference 6, using an idea of L. I. Sedov as a basis, we reduced
the problem of the influence of the tip effect on harmonically-oscillating
wings to an integral equation.

The question of the flow over wings of finite span remained open for
some time.

At the start of 1947, there appeared works in which different methods
were proposed for solving the tip effect problem which would be applicable
to any particular wing plan forms. In reference 18, M. D. Khaskind and
S. V. Falkovich solved the problem, in the form of a series of special
functions, for a harmonically oscillating triangular wing. Later,

M. I. Gurevich generalized this method (ref. 19). 1In reference 20,

L. A. Galin reduced the problem of determining the velocity potential of
an oscillating wing to the problem of finding the steady-motion velocity
potential and gave a solution, in series, for the velocity potential of

a rectangular, oscillating wing cambered in the direction of the oncoming
stream.

The methods, proposed by different authors, for solving the problem
of the flow over wings of finite span do not permit the solution of the
problem for any finite-span wing and may only be applied to a limited
class of wings.

Parallel developments in this direction were made by the foreign
authors Puckett (ref. 21) and Von Karmin (ref. 22) who solved the problem
of the steady flow over finite-span, symmetricaﬂ wings at zero angle of
attack. As is known, such wings produce no "tip effect" and the study
of the perturbation of the airstream by their motion presents no mathe-
matical difficulties.

In references 6, 7, and 8 we proposed a method of solving the finite-
span wing problem by constructing and solving an integral equation which
considered the wing plan form in both steady motion and oscillating
harmonically. In reference 9 we generalized the problem to more general
forms of unsteady wing motion by the method of retarded source potentials.

Introducing characteristic coordinates we solved the integral equa-
tion for wings of arbitrary plan form and represented the solution for
steady wing-motion in quadratures and for the harmonically-oscillating
wing in a power series of the parameter defining the oscillation frequency.

The present work is a detailed explanation and further development
of our papers (refs. 6 to 9) which were published in the Doklady, Akad.
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Nauk, USSR. In this work we propose an effective method of solving
aerodynamic problems of slender wings in supersonic flow.

All the results and problems explained in this paper were reported
by the author in 1947-48 to the USSR Mechanics Institute, V. A. Steklov
Mathematics Institute, Moscow University, ete.

In the first part of the work we find a class of solutions of the
wave equation, starting from which we obtain the solution to the problem
of determining the velocity potential of some wing plan form in unsteady
deforming motion. The obtained solution contains the solution of the
two-dimensional problem as a special case. In the same part of the work,
we solve in quadratures the problem of steady supersonic flow over a
wing of arbitrary surface and plan form. The effective solution for
wings of small span is similarly given. We obtain formulas determining
the pressure on the wing surface in the form of contour integrals and
integrals over the wing surface.

The author thanks L. I. Sedov for reading the manuscript.
PART 11
1. SETTING UP THE PROBLEM

1. Let us consider the motion of a thin slightly cambered wing at
a small angle of attack.

We will consider the basic motion of the wing to consist of an
advancing, rectilinear motion at the constant supersonic speed u. Let
be superposed on the basic motion, a small additional unsteady motion in
which the wing surface may be deformed.

Let us take the system of rectangular rectilinear coordinates Oxyz
moving forward with the fundamental wing velocity u. The Ox-axis is
directed opposite to the wing motion and we take the x,y-plane such that
the 2z coordinates of points on the wing shall be small (figs. 1 and 2).

We will consider the normal velocity component on both sides of the
wing surface to be given by

vy = Ag + A E[t + o] (1)

lResults of Part I, sections 6 and 7 were found by the author in
May, 1947 at the Mathematics Institute, Akad. Nauk, USSR.
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The first component defines the wing surface
Apg = -uBp (1-2)

where B 1is the angle of attack of a wing element. The second compo-
nent defines the additional unsteady motion of the wing. The functions
Ap and A} and a are considered given at each point of the wing

surface.

We will assume that the fluid motion is irrotational and that there
are no external forces.

The velocity potential of the perturbed stream o(x,y,z,t) is
represented in the form

Q’(X;Y;Z;t) = CPO(XJY:Z) + q)l(x:Y:z)t) (3.3)

where the potential ¢@g corresponds to the basic steady motion of the
wing and the potential P corresponds to the additional unsteady motion.

Thus the projections of the velocity v of the fluid particles on
the moving Oxyz coordinates are determined by

dpy O dpp O dpp 3
oy L e o Bt vy = ol BT

V- = e— —g—— A
* 7 ox ox 4 dy dy 27 3 oz
The functions @, and ¢; and their derivatives will be considered

first-order quantities and second-order quantities will be neglected.
With these assumptions it is known that the potential P satisfies the

wave equation which in the moving axes is

ox dy2 dz2 dt2 otox

32 52 2 62 52
(ae_uz)_;'z’l_+a2_i’;+a2§_ﬁ Lz SN F TR

and the potential @, satisfies

32 32 32
(a2 - u2) i ——gg + a2 ——gg = 0 (1.5)
dx2 dy oz

where a 1is the speed of sound in the undisturbed stream.

A vortex surface, called the vortex sheet, trails from the side of
the wing surface opposite to its motion. Just as on the wing surface .
the velocity potential undergoes a jump discontinuity on this sheet.
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We represent the projection of the vortex sheet on the x,y-plane as the
semi-infinite strip X; (fig. 1) extending along the x-axis to infinity

from the trailing edge of the wing.

Let us establish the boundary conditions which the functions P
and @ satisfy.

Let us transfer the boundary conditions on the wing surface parallel
tc the z-axis onto the projection X of the wing on the x,y-plane,
which is equivalent to neglecting second-order quantities in comparison
with first-order ones. Therefore on the basis of equation (1.1) we obtain
the streamline condition

o) o
SEQ-= Ao(x,y), 5§L = Al(x,y)f[} + a(x,yﬂ (1.6)

which must be fulfilled on both the upper and lower sides of Z.

The kinematic condition, which expresses the continuity of the normal
velocity components of the fluid particles, must be fulfilled on the dis-
continuous surface of the velocity potential and on the vortex sheet.

We transfer the condition on the vortex sheet parallel to the z-axis
onto its projection X on the x,y-plane which is again neglecting second-

order quantities. Therefore we have the conditions

999 _ 9% 9Py el
s R i e k) R el e ( 1k 7)
0z |z=40 0z |z=-0 0z |z=40 o0 lant

to be fulfilled on Zl.

Furthermore, the dynamic condition which the potentials %o and
@, satisfy must be fulfilled on the vortex sheet.

Since the pressure remains continuous on crossing from one side of
the vortex sheet to the other, then from the Lagrange integral

2 2 2
P=- 91 u C " <99> + 959 + <§§> +I(t), |P = dp
ot &% 2 \ox dy. 0z P
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Keeping equation (1.3) in mind and neglecting second-order quantities,
we obtain

9% _ |°% Bpn . o0 S dbelL | PR

ax z2=+0 . éx Z=—O’ at S;— 7=+0 SE_ aX

4 2==0
which must also be fulfilled on X;.

After boundary conditions (1.6) and (1.7) are established, we
correctly consider that, to the same degree of approximation, the surface
of discontinuity of the velocity potential - the vortex surface - lies
entirely within the x,y-plane. Therefore, the functions P and @

are odd functions in =z

q)O(X)y,v‘z) = ‘@O(X,Y;Z); ¢l(x;Y:'Z;t) = ’@l(xJYJZ)t) (1.9)

Combining equations (1.8) and (1.9) we conclude that the functions
% and Py satisfy the respective conditions

9P 99, opy
—_— ) —_— —_— =0 % 1510
ox : ot o ox i ( {

Since the motion of the wing is supersonic, the medium is disturbed
only in the region bounded by the respective disturbance waves represent-
able by a surface enveloping the characteristic cones with vertices at
points of the wing contour. Ahead of this surface - in front of the wing -
the medium is at rest, therefore, the velocity potential is a constant
which we assume to be zero. Hence we have the condition on the disturb-
ance wave

¢b(X)Y;Z) =0, @l(x:Y:Z;t) =0 (2.12)

The potentials P and @ are continuous functions everywhere
outside the two dimensional region < + $; and, as was established, are
odd in 2z, therefore, in the whole x,y-plane outside of the region L4+
where the medium is perturbed, the following conditions are satisfied:

@O(X)YJO) = 0, @l(x:YJo;t) =0 (1-12)
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The region where equation (1.12) is satisfied is denoted in figure 1
by o and 22',

Thus the considered hydrodynamic problem is reduced to the following
two boundary problems:

I. To find the function @l(x,y,z,t) which satisfies equation (1.k4)
and boundary conditiomns (1.6), (1.10), (1.11), and (1.12).

II. To find the function Qo(x,y,z) which satisfies equation (1.5)
and boundary conditions (1.6), (1.10), (1.11), and (1.12).

Since the functions P and ¢, are antisymmetric functions rela-

tive to the 2z = O plane, it is sufficient to solve the problem for the
upper half plane. From the solution of boundary problem I it is possible

to obtain the solution of II 1if the function f in the first be considered
a constant equal to unity, and Ay replaces Aj.

2. VELOCITY POTENTTAL OF A MOVING SOURCE WITH VARIABLE INTENSITY

1. Let us construct a solution of equation (1.4) as the retarded
potential of a source moving in a straight line with the constant velocity
u and having an intensity which varies with time according to fl(t).

Let us consider the infinite line along which, at each point from left
to right, sources with velocity u start to function one after the other
with the variable intensity q = fg(t - t1)f1(t). The law of variation

of the function fo is the same for all the sources if the initial
momentgof each source is considered to be the moment when it came into
being.

The function f; has the same value for all the sources at each

instant. Let a source at an arbitrary point of the O'x'-axis be acting
at time t;p (fig. 3). The retarded potential of the velocity at the

point M as a result of such a system of sources is represented in the

fixed coordinates by
: 1y \I T
tl ! fo[t ot tl - -a—]fl t - EJ

O ¥ x' 1" ,2" 1) =A/q' dt,
tl r
r = ka' +ut)? + y'2 4 212 (2.1}

2Prandtl (ref. 3) considered an analogous problem with o = fo(t -~ tl).
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where A 1is a constant with the dimensions of a velocity. The limits
of integration t1' and t;" take into account those sources which
affect M at time t. The origin of the fixed coordinates O' 1is
placed at thé point at which the source started at t = O.

Introducing the new variable of integration T = a(t - tl) - r and
transforming to the coordinate system X = %' & ut, (y=y', Z=2'
which is moving forward in a straight line with the velocity u, we
transform equation (2.1) into

A le fO[i]fl% ; u[xu5 Eua/;)a Y E ia \/@ s T>2 ) <:_2 3 ><y2 p zz)}c“ (2.2)
2 Jo \/(?_§>2_<:_2_>(y2+22)

If it is assumed that u > a then the velocity potential at M(x,y,z)
is the sum of the expressions (2.2), with the minus sign in front of the
radical taking into account the effect of the sources in the strip AC
on M and with the plus sign taking into account the sources on CB. The
smaller root of the radicand is taken as the upper limit of integration
T)- It is easy to see that in this case both roots are real, positive

quantities (fig. 3).

o*(x,y,2,t) =

On the basis of expression (2.2) we now construct a velocity potential
at M from the sources moving with speed u > a which have an intensity
which varies with time as fl(t). The derivation remains valid if the
additive constant «p 1s added to the argument t of the function fj.

Putting the sources at the origin, we find the velocity potential from
equation (2.2) by considering the interval of integration from O to ?l

to be vanishingly small. Then, neglecting the term (§>T and putting

T
ij’
% Jf fo<§>dr - C where C 1is a constant, we obtain the desired solu-

tion for equation (1.4) in the general form
2
M= 2 2
(2 )(y 2 is8)

£ 4t + @y -~ . S, 2 %2
i L™ w2 - a2 2 -g2 J a

V[xe- (ﬂg - i>(y2 E
al -

ux a
£15% - + x2
1 s g Rl B

\/;2 - (fé 3 1) (y2 + z2)

+

Q*(X;Y;Z)t) =C

+
N
N

|

ot
Rol o
1
LI
—
St
AV}
+
N
.

C
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Let us note that each component of the arbitrary function f, as
well as the constant C and a7 1in equation (2.3) is separately also

a solution of equation (1.L4).

In equation (2.3) putting a; = 0 and the velocity of motion of the
source u = 0, we arrive at the well-known solution for a spherical wave.

If the velocity of motion of the source is u < a then to obtain
the retarded potential of a moving source the right side of equation (2.3)
must be limited to the first component.

Considering the function f; in equation (2.5) to be constant, we

arrive at the Prandtl (ref. 3) solution for the retarded potential of a
moving source of constant intensity

ol !
\/xz k <:_§ ; 1>(y2 + 22)

2. It is possible to obtain, by the same method, the velocity
potential of a source with the variable intensity fl(t) moving
arbitrarily.

For example, in the case of rectilinear motion of the source when
aF, (t)
dt

that is, the motion of the source is supersonic, the velocity potential
of the source at the origin of a coordinate system moving with the source

513

ey,

the motion is given by X = Fl(t), Y=0, Z=0 and when

Cfl(tl)

cp**(x,y,z,t) =

+
V/T; + Fy(t) - Fl(tlﬂ S4y2 4 2. [% + Filt) - Fl(tﬂ Egiézil

ool (2.4)

£q%
R T

where the parameters t, = t1(x,y,z,t) and t1* = t1*(x,y,z,t) are
real roots of

alt - t3) = V[x + F1(t) - Fl(tl):l Sy 2 +22 =0 (2.5)
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in Pfj(t)/dé] < a, i.e., the source velocity is subsonic, then to obtain

the velocity potential one must be limited to the one component in equa-
tion (2.4) which corresponds to the smaller of the values of the parameters
t; and t1*.

The function expressed by equation (2.4) satisfies the linear equa.-
tion with variable coefficients

: 2] N2 2 2 2 2 2
J L T N T W\ i T
L at A 32 32 32 dt oxdt g2 | Ox
(2.6)
: . bt
If the source moves with constant acceleration as Fl(t) = -ut - —5—

(where b 1is a constant) then equation (2.5) is an algebraic equation
of the fourth degree in tq with two real roots.

Formula (2.4) contains the Lienard-Weigert (ref. 27) formula as a
special case when the source intensity is constant.
3. DERIVATION OF THE BASIC VELOCITY POTENTTAL FORMULA
1. We apply a solution of the form (2.3) of the wave equation (1.4)
to the above-mentioned boundary problem I.

At each point of the x,y-plane let us place sources with the poten-
tial ¢@*. Hence, we will consider C and a; in equation (2.3) functions

of points of the x,y-plane and we will replace a7 by o and f; by f.

As a consequence of the linearity of equation (1.4), its solution
is a function @3 expressed by

(x - &) a 20 2ol
f{t+or.(§,n)-‘l = \/(x-g) - kS(y - 0)° - k%2
P (x,¥,2,t) = f f c(e,n) x e o o JL andt +
8(x,y,2) v(x R Ll o ot
t{ovaten - R e 0 G - 02 -
c(e,n) x & -8 i - dnde (3.1)

5(x,¥,2) v(x dane . e S ie s

2
where k =M & < 1,
al
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The region of integration S(x,y,z) is that part of the x,y-plane
which lies within the characteristic fore-cone of equation (1.4) from
the point with coordinates x,y,z (fig. 4).

The solution of equation (3.1) will give the velocity potential
arising from the additional motion of the wing if C(x,y) is determined
from the boundary conditions of the problem on the x,y-plane.

Let us introduce the new variable of integration 6 into equa-
tion (3.1) in place of 1

M=y - % sz- £)2 - k%z°cos © (3.3)

Then equation (3.1) becomes

@l(x,y,z,t) = Jf‘/P { Y - = VE;A; §)2 - k222 cos 6} X

X:Y:

f<t + a[;,y - % V(x - §)2 - k222 COS~§] -

u(x - &) _ 8 5 V(x - £)2 - k%2 sin 0 Ldede +

u2—a2 u2-a

4

JF J[‘ { Al ka - £)2 - k°22 cos 6} *

S(XJY)

G T a[%,y - % VZX— 5)2 - k222 cos é} =

oo 2l . o . ‘/(:_g)e-kgze sin 0 »dede (3.4)
- a

u2—a2 u
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Let us note that for any point M(x,y,z) of space it is possible
to isolate from the region S(x,y,z) a region S' in which the vari-
able of integration has the limits

e km B o, 0

HA
@D
1A
A

(0]

-q2=y-%\/(x-§)2-k2z2 §n§y+%\ﬂx—§)2-k2z2=nl

where C' is a constant satisfying the inequality C' <« x - kz. In the
remaining region S - S' the limits of integration either do not depend
on z or depend on 2z only in the combination kz2.

Differentiating equation (3.4) with respect to 2z we find the rela-

tion between C(x,y) and a(x,y) and the normal derivative of the
velocity potential aml/az at any point of the x,y-plane

e
ke gl = - —2]; {f[t s u(x,yﬂ} l[ail] (3.5)
2 1z=0

Comparing equation (3.5) with equation (1.6) we conclude that on
the wing

c(x,y) = - % A1 (x,y) (3.6)

i.e., the function C(x,y) is given.

Therefore, the velocity potential 9, may be computed from equa-

tion (3.1) by taking equation (3.6) into account for those points M(x,y,z)
of space for which the region of integration S(x,y,z) does not extend
beyond the limits of the wing.

If the leading and trailing edges of the wing are given by x = v(y)
and x = Xl(y)’ respectively, and if, therefore, ¥ and X; satisfy
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Q%LXL < cot a* §5.T)
% =
ax
1) < cot o¥ (3.8)
dy &

(where a* is the semi-vertex angle of the characteristic come) on the
leading and trailing edges of the wing, respectively, then in particular,
equation (3.1) yields the effective solution of the problem of finding
the velocity potential P everywhere on the wing surface because in
this case the region of integration S does not extend beyond the wing
for any point M(x,y,0) on it (fig. 5).

Also, in particular, equation (3.1) gives a solution of the plane
problem if ¢ and o are considered as functions of one variable -
C =C(x) and a = a(x) - and the variables of integration in the region
S are considered to vary between

O <8 < x~ks

712=Y-%{-\/(:—§)2-k222 < §y+%\ﬁx—§)2'k222=nl

(3.9)

where and n, are as defined previously.

3

Considering f in equation (3.1) a constant and taking into account
equation (3.5), we obtain the fundamental formula for the velocity poten-
tial Po specified by the basic steady motion of the wing

3
B 3 %o dndg
q)O (x’y’Z) 8 ; f f [az}
2=0 \/(x . b2 1252

S(xJY;Z) - kg(y = 71)2 =

(3.10)

Formula (3.10) contains, as special cases, the results of Prandtl
(ref. 3), Ackeret (ref. 23), Schlichting (ref. 4) when the wing surface
is a plane and when the leading edge is a straight line perpendicular to
the free stream.
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L., HARMONIC OSCILLATIONS OF A WING

1. Let us turn to the case when the additional motions of the wing
are harmonic oscillations, i.e., on the wing equation (1.6) is given as

o9 _ ki Al(x,y)ei[mt + a(x,yi]

= R.P. Az(x,y)emt (4.1)
oz

where A2(x,y) defines the amplitude and initial phase of the oscillations.

Using the obvious relation el 4 e-16 - 2 cos  and equation (5.5), the
basic formula for the velocity potential (3.1) is represented as

3 -BE o el Bp. T aEnaamp
cpl(x,y,z,t) ) % ePx f f L_Zi} e co ’;\ \/(x ¢) k“(y n) k~z ] and (h.2)

s(x,y,z) 2=0 VQX S 02 sy < mP - naE
where
an
A =
02 - Bl
and
p = -
e Sepe

Keeping the second inequality of equation (3.9) in mind, let us
compute the inner integral after which we obtain a solution of the prob-
lem for a wing of infinite span

X-Kz |3
cpl(x)z}t) = - L eBx f _?.l._ e_BgIO[?\ V&x - §)2 - k2Z2jl dg
k 0 Jz =

(4.3)

where IO is the Bessel function of zero order.

By means of equation (4.3) the velocity potential may be computed at
those points of the x,z-plane for which the interval of integration on
the Ox-axis does not extend beyond the wing, i.e., at those points of the
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X,z-plane not affected by the vortices trailing from the wing because

e}
the function ?EL is given only on the wing. In order to compute the

oz
velocity potential at any point of the x,z-plane by equation (4.3) it is
9
necessary to determine —=, using equation (1.8), everywhere on the
z

Ox-axis outside the wing.

Let us express, by equation (4.3), the velocity potential 51 for
any points lying on the Ox-axis outside the wing, which, according to

equation (1.8), equals on the Ox-axis everywhere out51de the wing

- vix-1

¢ (x,t) = R.P. ¢ (2)e o (k.4)
where

V= -

1w
u

and 1 1is the abscissa of the trailing edge. Then we obtain the integral
equation

%13 ok t]a 4
f i e“BEIO{)\(x . §)}d§ = -xp e P* —f s L Bglo{%(x - é)} dg
1 Bz z=0 0 Bz

(%.5)
3@1

which —= satisfies on the Ox-axis outside the wing. In reference 5,
2

we solved such an integral equation. The inversion of equation (4.5) is

Opy -px _ dF*(x) { } dg
{y}hoe 5 =i ?\f F*(£)I; A(x - ) i (4.6)

where F* denotes the right side of equation (h.ﬁ), the known function,
and where Ij is the Bessel function of first order.

Therefore, keeping equation (4.6) in mind, we can calculate the
velocity potential at any point of the x,z-plane by equation (4.3).
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The problem considered in this section was solved and explained
in reference 5 from another point of view.

5. INFLUENCE OF THE TIP EFFECT

1. To calculate the velocity potential according to equation (3.1)
and also through equation (3.10) or (4.2) for those points M(x,y,z) of
space for which the region of integration S extends outside the limits
of the wing surface, it is necessary to determine the normal velocity

o
component SEL everywhere in the region of integration 8. Eromithe
Z

boundary conditions of the problem on the =z = OF  plane.

Let us consider the case when the region of integration S inter-
sects the wing surface and the region 25 lying outside the wing and

outside the region of the vortex system from the wing. Region 25
(fig. 6) is part of the region I, defined above. That is, let us con-

sider the case when the wing tips - the arcs ED and E'D' of the wing
contour - act on the point M(x,y,z) or so to speak, the influence of
the "tip effect" and not the influence of the vortex sheet trailing from
the wing surface.

The point E on the leading edge is defined so that condition (5.7)
is fulfilled to its left and violated to its right. The point E' is
similarly defined. The points D and D' are, respectively, the right-
most and leftmost points on the wing contour as shown in figure 6.

op
Let us construct the integral equation for C(x,y), connected to 2

Z
by relation (3.5), in 2z.

Let us select the velocity potential ¢ at any point N(x,y,O)
lying in 23 by means of equation (3.1), equal to zero everywhere in 2

according to equation (1.12). The region of integration s(x,y,0) is
divided into two parts, as shown in figure T; the region s(x,y) is
that part of the wing falling in the Mach fore-cone from N(x,y,0), and
the region c(x,y) is that part of 235 lying in the same fore-cone.

According to equation (3.6) C(x,y) is given in s. In o, c{x,y) 1is
unknown. We therefore arrive at the integral equation which C(x,y)
satisfies in 23.
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f/ c(e,nK(g,n3x,y;t)dnde = F(x,y,t) (5.5

a(x,y)

where the kernel is

_ux-¢) _ __ =& L Ve R )2.1
f{c+a(§,n) . A 112_32\/(x £) (y |

V&x - g)R . uilpd e

+

K = (&,m5%x,5,t) =

f{% + ale,n) - ﬁézjzgél ¢ i_aa VQ;‘Z £)2 - x%(y - n)e} o

(% = )2 k2 (y - n)®

and the known function

F(x,y;t) =él; (_/:/; Ay (&, n)K(E,n;x,y;t)dnde (5.3
S\X,Y¥y

If the characteristic coordinates are introduced

X) =X - %X -~ k(y - y0), ¥y, = x - x5+ k(y - y0), z) = kz

(5.4)
(where xy and yy may be any numbers) then integral equation (5.1) is
simplified and in some cases this integral equation is easily inverted
as will be shown below.

6. SOLUTION OF THE INTEGRAL EQUATION FOR A HARMONICALLY OSCILLATING WING

1. If the additional motions of the wing are harmonic oscillations,
i.e., the condition on the wing is given in the form of (h.l), then
equation (5.1) becomes

j] o(&,n) COSB‘ Vox - )% - Gy - ”)2] dnde = F(x,y) (6.1)
a(x,y) \/(x BRIV
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ol
where the function 6(x,y) ={§;l}z=oe'ﬁx in ¢ and where the known
function is
2 2 2
F(x,y) = - ff A(g,n) coshy Vx - £)° - PGy ;—l)—; an at (6.2)

I(x - 5)2 - X (y - m)
8ix,y)

where A(x,y)

Il

aq)l Bx
o z—Oe in s. In order to solve this integral

equation we introduce the characteristic coordinates X, Y5 2q with
origin at "O" Dby means of the formula

Xx] =x-ky, ¥y =x+ky, 2z} =kz (6.3)

In the new coordinates the Variables of integration in o will vary
between the limits

A

< =
=8 3x, ¥(3)In sy (6.%)

where y; = V¥(x1) is the equation of the wing tip - the arc ED of
the wing contour - in the transformed coordinates, and Xg is the

sbscissa of E defined in section 5 in these same coordinates (fig. 8).
Equation (6.1) is transformed to

X1 Py cos[%vﬁ&l - &)y - )] = F (x
/XE u/:p(gl)el@l’ ) /@l TRy an a8, = F (x5 ¥,)

(6.5)
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- where the function
B (x1#y1)
- acp =
el(xl,yl) = —l-} e 2
le
Zl=0
and where the known function is
Cos| A f(xq - &)y - M
Fy(x1,5) = - /f Ay(&1,m) [ /( 3 I8 l)J dny dg;
s(x1,¥1) (= - 1)1 - m)
f B (x1+y71)
Al= —QJ"- e 2
azl
3 21=0 (6.6)
8@1

is related to Op [z by

B LSl
Bz le

everywhere from now on.

power series

o0

2

o(x,750) =) Opp(x,y) A
n=0

Into both sides of equation (6.5) let us introduce

. cosl}V(x - EXly - ﬂ?} oA if: (-2)F (x - )25 - P \2n
n=0

(en)t

Let us note that the normal velocity of the perturbed flow

azl

For brevity, the index "1" will be left off the independent variable

2. Let us look for a solution of equation (6.5) in the form of the

(6.7)

(6.8)
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Keeping the absolute convergence of equations (6.7) and (6.8) in
mind, we multiply them term by term with the result

o(t,n)cos [N (x - &) v - 1) ]
o oS = (c)pk i

Substituting equations (6.7), (6.8) and (6.9) into equation (6.5)
the latter becomes

X 7 1ein 1t
i i?? B e e
xg ¥(E) P oot L R q

l

- ] s zi—ﬁ—~ o e - 8) G - )]

(6.10)
( Jy)

Taking into account the uniform convergence of the series in both
sides of equation (6.10) with respect to the variables £ and 71 we
integrate term by term

) k=n S - n—k_l
Z——-:O ZH% [(n-k)]' ff 0y (8,0 [(x - &) (v - )] %an a
xp ¥(E)
"
i )\2n (—l)n+l n_§
- (2n)! _[/ A(E,n) [(x - £)(y - n)] " an at (6.11)

S(X)y)
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In equation (6.11) equating coefficients in identical powers of A
we obtain the integral equation which the functions 62n(x,Y) satisfy

L . - 6.12
where
F (x,y) = £ (x,¥) + §-1'fi(x,Y) (6.13)
k=0

where, in its turn,

ix,y) = A(e, n)[Kx - &)(y - nﬂ -2dn % (6.14)
s(x,y)
and
kx ( ln k+1 x Ny Tid ; nlbg
e e fﬂ()gk(g Nlx- 66 -1] % a
15

from which the functions fﬁ are defined for kS0 and n > 0. Let
us note that the right side F (x,y) of equation (6.12) depends, for
0o, on the coefficlents 65, but only for k = 0,1,2,...,n-1. There-
fore, if we find 8g, 6, O),..., 6p(n_7), then F (x,y) 1is a knom
function in the equation which the coefficient 62n in the general term

of series equation (6.7) satisfies. For n=0 the right side in equa-
tion (6.12)

Fo (x,5) = £ (x,5) = - ff A(E,n) dn 4t (6.16)

fx - ) - n)
S(X;y)
is a known function of x and Y.

Let us solve equation (6.12) for 82n(x,y).
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The two dimensional integral equation (6.12) is equivalent to the
two homogeneous integral equations

X 9* s
_f?(ﬁl) dt = Fy(x,y) (6.17)

5

and

1l

y
Oon(£,1)
fv(@) -&;ﬁ—:dﬂ

each of which reduces to an Abel equation.

0% (£,7) (6.18)

Using the inversion formula of the Abel integral equation and
observing that for any n functions Fn(XE,y) = 0 hence the solution of

equation (6.17) for the function 63 (x,y) is

I (18
O, (x,y) = f ng( d dt (6.19)

% fro €

Let us turn to equation (6 18). We denote the parameter £ by X,
and again using the inversion formula for the Abel equatlon and keeping
in mind that according to equation (6.19) the right side Gzn[ ,w(xﬁ of

equation (6.18) for y = ¥(x) 1is different from zero, the solution of
equation (6.18) for 65, 1is .

Sen[x W(X)] l y e*gnn(x;ﬂ)
x L R R suis. Sl ek 6.
oy (557) f b an (6.20)

Ty - YM /iy -1

Substituting in equation (6.20) in place of GZH(X,Y) its value from
equation (6.19) we obtain the solution of equation (6.12) in the following

form: ;
F
O2n %,7) =—L_L—f Mdg 5
x2 /ﬁ—i"wrgj X /E_:—E

1 5¢ Yy an‘q(gyn) d
= 3 (6.21)
%2 fxE _/q:(x) W= - &)@y - n)
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Thus, according to equation (6.21), we can evaluate successively,
the coefficients 6p, 65, 6y,..., 0O, etc.

Formula (6.21) shows that all the coefficients (n=0,1,2,...) for

v = ¥(x), i.e., on the wing tip ED, become infinite as R'l/2 where R
is the distance of the point (x,y) from ED. Therefore, the veloeity
of the perturbed stream becomes infinite as the specified order on the
wing tips, approaching from outside the wing.

It is possible to represent the inversion (6.21) of (6.12) as

2 X F (E,Tl)
85, (x,¥) e = - L] dn at¢  (6.22)
T ey fxE /;(’x) M- 0@ -1

which can be confirmed without difficulty by direct differentiation with
respect to the parameter.

Therefore, the solutions of integral equation (6.5) are constructed
in the form of the absolutely convergent series (6.7) for any value of
the parameter .

The coefficients Gén(x,y) are expanded in the series

0' (730 = Y 63 (x,y) 3 (6.23)
n=0
(x+y)
; 1 a(pl .. 2 '
We find the function 6'(x,y) =4— e in. &
92 |0 5

(fig. 6) lying off the wing to the left, from equations (6.21) or (6.22)
by replacing in the latter the function V¥(x) by V¥,(x) (where

¥ = ¥o(x) 1is the equation of the arc E'D' of the wing contour -
the left wing tip) and interchange the role of the coordinates.
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3. Let us consider a wing of small span. Let the characteristic
cones from E; and El' intersect the wing as shown in figure 9. The

points E, and E1' are defined just as are E and E; in section 5.

Let us divide the x,y-plane where the medium is perturbed into the
regions 8Sg, B3, 52, - « +» Sp»

The region Sp 1is the M-shaped region lying within the character-
istic aft-cones from En and E,' (or within one of them) and outside

the characteristic aft-cones from Ep,; and E,,.;'. In its turn, we
divide the part of the x,y-plane lying to the right and left of the wing
ERIOIE s 0y M5, « - .y Opy oo - 8 oy, O3°, 0 . o,

o,'; - - ., respectively. The strip o, lies within the characteristic

aft-cone from Ep. Therefore, o and on' are the parts of S, Ilying

respectively to the right and to the left of the wing.

Let us return to the fundamental formula for the velocity potential,
equation (4.2), which is in the characteristic coordinates

¢ (x,¥,2,t) =
(xcby) _ Be+n)
o o uema
¥ gl v.2) 2 )20 JZX -E8)(y - 1) - z2

(6.24)

In order to compute the velocity potential by means of this formula
in those parts of the space (or, in particular, on the wing surface) for
which the region of integration S(x,y,z) intersects the region S, of

3 _BKEin

the x,y-plane, we must first determine E;l e 2 outside the
Z
wing in the strips 015 O « ¢ 5 Op, and °1ll o, Wl vy ey,

respectively.
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-B<X+y)
Let us denote g—i 2 - in the Oi5 Ops « « «» Op,
VA

strips by 8, o(2), o3), . e(0), | | amain o', o, ..

.«

B o, e0l2) o, ., gt(n)

Let us construct the integral equation for 9(2).

Let us express the velocity potential at the point N(x,y,O) in oo
by formula (6.24) which is equal to zero everywhere in the strips 01,

Op, . . . Oy (correspondingly in CONPRE g.")

Let us divide the region of integration into the three parts
S=s+ 0+ 0)'* as shown in figure 10.

(x+y)
aﬁP]_ -B
The function —— e 2 = Al(x,y) is given in s(x,y) on the
% _B(X+y)
wing. In o)'¥(x,y) of op', the function _;l e @lla etly) 18

determined by the solution of equation (6.23).

o ()

In o(x,y) we denote 1. 2

dz

by 6(2)(x,y). Then we arrive at

the integral equation satisfied by 9(2)

ff o(@) (g, ny cosMx - 0 - D) ] o) 4 = WD n,y) (6.25)

a(x,y) {x'« Iy - %)
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where the limits of integration are bounded by xg = 13 : x and
¥(t) S1Sy and the known function F(2) 1s defined as

WY o ff ace,ny oM - G - w1 g,

b fx - £)(y - n)
[ ertem cosx - )G - Moy o (6.26)
b f(x - &)y - n)

We look for the solution of integral equation (6.25) in the form of
the power series

0@ (x,3) = 3= 0(B)(x,y) 22 (6.27)

Bl =5

Moreover, by reasoning similarly to the preceding section we arrive

2)

n in the general term

at an integral equation for the coefficient eé
of series (6.27)

Y
(2) an de o -
/x:fﬂr(é)e?n (g’“)/(x i T Fon (x,¥) (6.28)
where
Fr(‘g)(x’y) = Fu(x,y) + }kf_—r.l fr(xz)k (x,¥) (6.29)
k=0

where, in its turn,

. n-k+1 il
fI(la)k(X,y) = %ﬁj—' /f N (é,n)[(x - Ko ﬂ)]n'k"E an a
O-l'*

(6.30)
Equation (6.28) differs from equation (6.12) only in the form of the

Fgg) function on the right side. Taking into account the condition on
the boundary Fg?)(xE,Y) =80 "Pervany m=0 "1 82 ... the solution of

(6.28) for Ggi) is obtained by using the solution (6.21) or (6.22) of

(6.12) as a final formula if F,(2) replaces Fp in the latter. The
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function Fn(e)(x,y) depends on the coefficient egk(Q) where k=0,
1, 2, « + +, n-1. Therefore, just as in the previous section, if the
62k(2) for k=0,1,2, . . ., n-1 are already found, then F_(2) din the
right side of (6.28) is a known quantity. Therefore, the functions
60(2), 92(2), S < o) 62n(2)’ e« « « may be found successively.

(2)

Let us note that Fn(2), and therefore the coefficient 6op .

depends only on the first n + 1 coefficients 65, 62', . . ., 62n'
of the series expansion of

(x+y)
) -B
e'(X;Y) = ﬂ e 2
oz
in 01‘.

Reasoning in the same manner, we may find the values of 6(3),
9(4), s, G(N). 5O ab Oz, Oh, o o o5 Oy o = o (correspondingly
e'(B), 9'()4-), e o o, e'(N), e o in Oll, 02', e e e O'N')o

Therefore, the veloclty potential can be computed by equation (6.2&)
at every point M(x,y,z) of the space for which the region S(x,y,z)
intersects any number of strips oy or UN'.

A1l the results hold for the case when the wing tips are not given
by one equation y = W(x) but consist of curves given by the equations
Yili= Wk(x) k=12, . «. .,m . The same observation applies to the

leading edges E'E (or ElEl') of the wing. Therefore, in our problem

the wing contour may be piecewise smooth.

If the frequency of oscillation w of the wing be put equal to zero
then the coefficients 6, 90(2), 515 og eo(N). . « coincide with the

values of the derivatives Opg/dz in the strips o3, 0o - - -, O
respectively, for the steady motion of a wing when the streamline condi-

tion (1.6) on the wing is given in the form

o

— A )
= 1(X y)
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7. INFLUENCE OF THE VORTEX SYSTEM FROM THE WING FOR A HARMONICALLY

OSCILLATING WING

1. Let us consider the case when the region of integration S(x,y,z)
in formula (4.2) for the velocity potential intersects the vortex sheet
5, as shown in figure 26(a) (see also fig. 11). That is, let us consider

the case when the trailing edge of the wing - the arc DI' of the wing
contour - or, so to speak, the vortex sheet, acts on the point M(x,y,2)
of space.

Using condition (1.10) we determine awl/az in the region Q of-
the x,y-plane and shown in figure 11.

The region O is off the wing within the characteristic aft-cone
from D and outside the characteristic cones from T. Therefore, Q
is affected by the vortices trailing from the edge DI' of the wing but
not from D'T'. The region O partially intersects the vortex sheet

Z]-

Let us return to the characteristic coordinates x, yl,' z7 which
we introduced earlier by formula (6.3).

As before, for brevity we omit the subscript 1 from the independent
variables.

Condition (1.10) fulfilled on Zl in the characteristic coordinates

is

O R/ (N (7.1)
ot ox oy

From equation (7.1) it follows that the function

1© Xy
P = @l(x,y,O,t)e u_ 2

remains constant everywhere on the vortex sheet along lines parallel to
the direction of the incoming stream, i.e., along vortex lines from the

wing.
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Since the velocity potential ¢ = O everywhere in the x,y-plane

of f the wing surface and the vortex sheet, then it may be verified that
¢, Possesses the specified property everywhere in .

Let us construct the equation for the function

e
'B(XJY) = 7 e &
z=0

Ine Qe

Let us express @, at the arbitrary point N(x,y,0) lying in Q

by using the basic formuls for the velocity potential (6.24). We divide
the region of integration S 1into three parts, as shown in figure 12,
into s(x,y), o,¥(x,y) and o(x,y). The regions s and ¥ are

parts of the wing surface and 23, defined above, respectively, which

fall within the characteristic fore-cone from N(x,y,0). The region ¢ is
the part of @ . in the same cone. The variables of integration in o
vary between xp< E< x and X(g) Sn<y where xp is the abscissa

of D and y = X(x) is the equation of the arc DT of the wing contour.
The expression obtained for ¢, is differentiated in a direction parallel

to the wvelocity vector of the impinging stream.

Therefore we arrive at the integro-differential equation which 9
satisfies in Q

_a__ % Y 13(&,71) COS[)\/(;— §)(y - Tl)] dan ag +
Bx/;bdg(é) fx - €)(y - n)

B (%Y 3(&,m) cosD\/(x - &)(y - Tl)] an ae +
aylbﬁ(g) fx - &)y - 1)

p.7\2 V[%XL/W 8(e,m) cos A (x - &)(y - n)J dn dt¢ = o(x,y) (7.2)
x(¢) f(x - &)@y - n)
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2
where p = -1 Lt and the known function is
uw
o(x,y) = % ff A(E, 1)Ky (E,n;5%,557) dn d€ -
S(X;Y)
ﬂ G(E,T\)Kl(é,n;x,y;%) dn dgl-
Ul(x)y)

un° j] A(E,n)K; (E,n;%,y;57) an @k -
s(x,y)

WAL ﬁ 8(g,m)K (&,15%,y;2) dn ak (7.3)
O'l(X,Y)

A) = cos[A /(X - 8)(y - m)] and the operator
Kx - &)y - n)

where K (&,1; x,¥;

© -2 4+ 2 . The function 6 is determined from equation (6.7) of the

preceding section.

2. We will look for a solution of equation (7.2) in the form of the
power series

0

'S(XJY37\) = Z: "Sgn(xy.')’) )\2]1 (7-"")
n=0

Keeping in mind the absolute convergence of equation (7.4) and using
the expansion (6.8) for the cosine we obtain

a(g,n;Mcos[xwX -6y - )] =
e (l)n -k

)\En: [2(n . k]

d(E,M[(x - B - W]2"E  (1.5)
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Substituting equation (7.5), (6.8), and (6.9) into equation (7.2),
the latter becomes

kn

n-k- L
ffZ »20 [25 -1~ = RROR M [CETCRE
k=D LoV~

—n n-k ik
( l) i i Nn-k- 'é'
s ﬂ e _[E(n 2 ] o (E,7) [( £)(y T])] an at +

k=n =
/ff_ Bl L il e 8o (M [(x - O - 1] 2 ay ae

g ©n=0. k=0 [E(n o ]

n+l %
/IE A2 a(g,m)[(x - e - M) 2 an at +

(2n)'

© k=n n-k+1 n-k- 1

o) f 2n (-l) 2
o A 9, (E,M)|(x - E)(y - n) 2 an dt
L aflf*g kgo [2(n - ¥)]! 2K [ ] ¥
m f i (1™ AL ) ACE, ) [(x - &)y - n)]n—% an dg +

s n-—0 (2n).'

£ k=n n-k+1 k- L

n _[/E }\2(n+l) Z -—(——ll————'- ng(g,'f‘l)[(x - &)(y - Tl)]n : 2 dn dg

LT o [2(r - W]

1
(7.6)

Taking into account the uniform convergence of the series with
respect to & and 7 in both sides of equation (7.6), we integrate it
term by term. Then, keeping in mind, the uniform convergence of the
obtained series with respect to x and y which is also maintained after
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differentiation, we differentiate the specified series term by term with

respees to. X and Sy

After these operations on both sides of the

obtained equation we equate coefficients in identical powers of A. There-
fore we arrive at the integro-differential equation which the coefficients
of equation (7.4) satisfy

g yﬁ(én) g +
5Xf f(g)zn G- & - n)

where

@ (2,7)

XD ¥

Vi

D

&

(-1)

[ggnli k)]‘ _/;[A(E,

Wx - &)@y - n)

g e a2
: s

+
Wz - )y - m)

f don (£,1) " = on(x,y)
x(€)

N[ - &) - Tlﬂ d'q at +

L oG ff s, [ - ) - ] E

k=n-1

(- 1)
g) [2(n &

k=n-1 n—k+l

[: [g(n i k)] oL

fj oo (&,) [(x - £)(y - )]

ff 35, (€,1) [(x & 81y~ )l

i
-k2

N-kK- 3

(7.7)

n dg +

dn d&¢ +

dT] dg

(7.9)
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in which the last sum and also the terms in u are defined for n>0.

Let us note that the right side, ¢,, of equation (T.F) for op
contains terms with coefficients d5, but only for k=0,1, 2, . . .,
n-1l.

Let us transform equation (7.7). We integrate by parts with respect
to & +the first integral on the left side of equation (7. 7), the second

by parts with respect to 1, afterward we differentiate with respect to
the parameters x and Yy, respectively. Equation (7 T7) becomes

foy 132ng(§,n) i 132nn(§;71) an dt 0} *( ) (7 9)
— M = Pty B
X(g) \/(X - g)(y - )

where
6&1(}{1)) 1) L

V= - 2 x(xp) ¥y -1
[ \/ 82n[§ X(E):I {d;éi) & 1} dt + o, (x,y)
(

x - g) y - x(@)} (7.10)

Let us note that the first term in equation (7.10) of the right side
of equation (7.9) becomes infinite for x = xpe.

56
®n (x,y) =

Let us return to expression (7.8) for ¢, and separate out of it

the terms corresponding to the value k =n in the first sum - the compo-
nent

,(&,m)

3.9
& /|/(X— e)(y -

dﬂ dt =

We integrate this integral by parts with respect to g keeping in
mind that the limits of integration in 0¥ are XE 2L s xp and

v(e) = n y and that 92n(xE,y) = 0. Then we differentiate with respect

tol x
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y Y 8pp(E,M)
. i 92n(XD;T]) an + il _a_ 41 anfdat
/;.—gfw(xl)) s fxD AL hs ey _

(7-21)

Let us subject the desired function ¥ in equation (7.2) to a sup-
plementary condition.

Let us assume that at the trailing edges - the arc DI (or D'T',
respectively) of the wing contour - and on the straight line DD¥
(figs. 11 and 12) - the intersection of the characteristic aft-cone from D
with the 2z=0 plane (correspondingly the line D'Dy*) - the velocity of
the perturbed flow, and therefore the function 3, is a continuous func-
tion, then the conditions are fulfilled

3[x,x(x)] = Afx,x(x)] (7.12)

8[xp,5] = 6 [xp,v] (7.13) T
These conditions are analogous to the Joukowsky condition for flow around

a wing by an incompressible fluid. From equation (7.13) follows

aile. Y 2n(XD,Tl) "Sgn(x]);n)

1 y
e A =
Vg xp Y x(xp) [}y - Vx - xp fW(XD) fy -1

dn  (7.14)

since x(xp) = ¥(xp).

Substituting equations (7.11) and (7.14) in equation (7.10), the
latter becomes

% X (7.15)
o o *(x,¥) =d[‘ ﬂ2ﬂi§’\(gﬂ aX(e) _ q1lae 4+
X /(x 5 E)[y - X(E,ﬂ g

$ < y 9, (&,n)
f ' SN f B T oy (x,7)

) Jx - & 98 | Jy(g) Jy o
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where

o' =0, - R (7.16)

For n = 0, the right side in equation (7.9) is a known function of
X and,

- AR {dx(g) ‘
o il - 1lpdt +
; /:): fx - &)y - x(&)] L & j

fx s {fw(g) [y -

5 dn de d i i
i o A(E,n) - = 6o(E5M)
oL f/; -6y -n) % 014 7 f(x - €)(y - 1)

(TeiT)

Let us solve equation (7.9) for dpopy + 92ny -

The two-dimensional integral equation (7.9) is equivalent to two
homogeneous equations

X §. %
f ﬁn_(_gﬂ dE = on*(x,y) (7.18)
XD (x - E)
and
¥ A (g,m) + 9 (&,m)
f 2nf 2nn A= 'Sen*(é,}’) (7‘19)

x(&) [y -1

each of which reduces to an Abel equation. Using the Abel inversion
formula we find the solutions of equations (7.18) and (7.19) as




36 NACA T™M 1383

don *(=x,¥) = L (xD’Y) +:Lr 3 (€,y) a
i~ *D D {x-¢
(7.20)
and
€y X(g) y ) *(g’n)
62n§(§;}’) + Oeny(g,y) 2;;[__)((_5‘] 3—;— J;(g) —293—_-n_ %
(7.21)

Substituting equation (7.20) into equation (7.21), first replacing
in the latter by x, we obtain the solution of equation (7.9) as

L el

‘eznx(x)y) ar 'a2ny(x)y) = ,?é : +
Mx - xp|ly - x(x)

a2 “y - Xx) “¥p yx - E

3 fx <I>ng*l—_§,x(x)] a +

*(XD)T]

I L‘ . A
e fi -xp X (x) fy -

it Stena)
L Sagn = dn at
1(2 ];D /;(X) '/(x - ;

e)(y - )

dn +

(7.22)

Integrating equation (7.22) along the straight line parallel to the
free-stream between the limits of N(x,y,O) and N(x,y,O) we find the
formula determining 6211 in the general form of equation i L)
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[ e )
Bon(x,5) = 9,5,(%,7) + _lé_ _x [X'D ﬁ]
n° Jxg \[xl-xD'l/X—l+y —x-x(xl)

dxy +

+

L [t

2

a

0 *(xp,n) dn axy

i fx fxl+y—x i
2 Jx Jx

i * (x1) \/;l'XD o S Al

*(g,m)

dn de dxl

i f X Xy pXpHY-X ®ngn

2 .
e X<X1) \/¥1 - £ Vxl +y-x -1 :
(7.23)

If in equation (7.23) the coordinates X and y are taken as solu-
tions of F-X+xXx -y =0 and y - X(X) = 0 and the value of don(X,Y)
is determined from condition (7.12) on the trailing edge, then we find
dop, on the vortex sheet.

If in the same formula, the coordinates X and y are set equal to |
X=xp and ¥=Y - x + xp and the value of 3, (X,¥) 1is determined |

from equation (7.13) on the line x = xp, then we find dp, outside the

vortex sheet in the region it affects.

Thus, through equation (7.25), we can compute successively the coef-
fiCien’tS '80, '82, . O E '8211, e o . .

Therefore, the solution of equation (7.2) is gonstructed as the
absolutely convergent series (7.4) for any value of A.

The coefficients d,,' are expanded in the series

3" (x,¥3N) = Z o (2,7 N2 (7.24)
n=0
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X4y
The function o' = 0y e-B & : i
= in Q' (fig. 11) may be computed through
Z

equation (7.23) if the function )(E(X) replaces X(x) in it (where
¥y = Xo(x) 1is the equation of D'T' of the wing contour) and we inter-
change the role of the coordinates.

5. Let us consider the general case of the flow over an oscillating
wing by a supersonic stream. Let the characteristic aft-cones from Eq
and Eq' and D; and D;' intersect the wing as ‘shown in figure 13.
Then E, (correspondingly El'), as shown above, are defined so that to

the left on the leading edge equation (3.7) is satisfied and to the right
it is not. The points Dy and Dl' are, respectively, the most right

and left points on the wing plan form.

The space of the considered wing plan form as transformed by equa-
tion (5.4) is illustrated in figure 1k4.

Let us divide the x,y-plane where the medium is perturbed into a
series of regions: the regions considered in the preceding section,
So» S1s + + +5 Spy - - -, Sy and the regions 2oy, OBHp, - . .,

L&y, « + - . The region Sy is the M-shaped region bounded downstream
by the intersection of the characteristic cones from D and D' with
the 2z = 0 plane. In the 2z = 0 plane, these lines are the upper

bounds of the region of influence of the trailing vortex sheet.

The region /A, 1is M-shaped lying between the characteristic cones
from  Buge D', Dn4as Dn+1" We divide, in its turn, the part of the

X,y-plane lying to the right and left of the wing, respectively, into

the strips o7, o2, . - . Oy, - . ., Oy defined above and into 3&;,
Bgy + 3ty Bgy <« » |and IWbo o', o', . . ., & s s e
defined above and &', ®2', . . ., ®,', . . . corréespondingly. The

strip ®p is that part of 4, to the right and 8n' is the corresponding
part of 4, to the left of the wing. It is easy to see that the region Q

defined at the beginning of this section is in ©;.

In order to solve completely the problem of the flow over the wing
shown in figures 13 and 14, the derivative Bml/az must be determined




NACA TM 1383 39

in 81, 52, I Eay 811} SR s nalel i) 81', 52', At o ey 61’1 y
pl=y)
Let us denote the function L e 2 by 8(2), 6(3), et e
z
bt Lo T S A PR R
Sy ¢+ -« 8sod &1', B2', . . .y Bp', o« . hrips, Beipectluely.

Applying equation (6.24) for the velocity potential we construct @,
for any point N(x,y,0) in do.

We divide the region of integration S which depends on the form of
L R
the function ——e 2 into the following: S = s + o¥ + dl*' + S* + o,
7

as shown in figure 15. This function is given in s. It was determined
in o¥ and o'¥ in the preceding section by the solutions of equa~-
tions (6.7), (6.23), (6.27), etc. In s* it is determined by the solu-

X+
-B—‘X

tion of equation (7.24). We denote S—E e 2 in o Uy 3(2)
z

Using the boundary conditions (1.10) and (1.12) we arrive at the integro-

differential equation which 8(2) satisfies and which differs from equa-
tion (7.2) only in the form of the right side. On the one hand the right

62 TG TR G R

side depends on the solutions 6, s

G'(N) and on the other hand on the solutions ®'. We construct 6(2) in
the form of a power series in the parameter A.

Requiring the fulfillment of equations (7.12) and (¥.17) for 6(2)

2
we obtain for the coefficients GO( ), 62(2), S égn(g),

an expansion in series of 6(2) of equations of the form (7.9) which
differ from each other in the form of the right side.

The right side in the equation for the coefficient 02n(2) in the
general term of the series for ﬁ(g) depends on the first n+l coef-

ficients of the expansion of e(i) and 8'(i) where i takes all values

(2)

less than or equal to N, and on the first n coefficients dg 5

62(2), Sl 62k(2) (k=0, 1, 2, . . ., n-1) of the series expansion of
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the desired function 6(2). Therefore, it is possible to find succes-

sively the coefficients (2), 82 ., . (2) using the solu-
2 b

vlon: (T.22) of (7 9) as a final formula if there is put in the latter.
instead of @n , right sides in the equations of the form of (7. 9) for

the respective coefficients of the expansion of 62n(2)'

By the same reasoning, values may be found of 8(3), ﬁ(u), S NeT
R R 8 ., B

Therefore the velocity potential may be computed by equation (6.24)
at any point of the space perturbed by the motion of the wing shown in
figures 13 and 14%. In particular, the velocity potential may be eval-
uated at any point of the wing surface.

All the results are valid when the contour of the wing is piecewise
smooth.

If the frequency of the oscillations of the wing, w, be put equal

to zero, then the coefficients 9, 80(2), ol e tey 6o(k), o o o coin-
cide, respectively, with the values of B@b/az in 87, Bp, « . .,

Bk, « » «» for steady motion when the streamline condition (1.6) is given
on the wing as dgy/dz = Ay (x,y).

We apply the proposed method of determining Bml/az for the oscil-

lating motion of a wing by constructing an integral equation, to wings
of completely arbitrary plan form. For example, the wing contour may not
be cambered but may have the shape shown in figures 18, 24, etc.

In all cases, the part of the x,y-plane where 6¢l/az must be deter-

mined should be divided into the corresponding characteristic regions.
Then successively passing downstream from one region to another, construct
the integral and integro-differential equations using the boundary condi-
tions on the x,y-plane. The solution of these equations for Bml/az or

for functions related to Bwl/az is obtained as a series in even powers

of the parameter A, which defines the frequency of oscillation. The

whole problem of determining the coefficients of the expansion reduces to

a double integral equation in each characteristic region. FEach of the
equations after transformation appears to be an equation of the same type
which is solved by means of a double application of the inversion formula
for the Abel integral equation. The form of the wing contour is the limits
of integration. The influence on the considered region, of determining




NACA ™ 1383 g |

the desired function in the preceding upstream characteristic region, is
reflected in the form of the function in the right side of the integral

equations.

8. FLOW AROUND AN OSCILLATING WING OF NON-ZERO THICKNESS

1. Let us consider the motion of a thin wing at a small angle of
attack (fig. 15a).

Let the wing be moving forward in a straight line with the constant
supersonic velocity wu. Let an additional small oscillating motion be
superposed on the basic motion of the wing so that the wing surface may

be deformed.

The normal veloclty component on the upper surface of the wing will
be considered given by

Shy = Aou(x,y) + R.P. A2u(x’Y)eiam (8.1)

and on the lower surface by

1last
_an = Aol(x)y) =y R.P. Azu(x)y)e (8.2)

where AOu and AOZ define the wing surfaces and
Ay, = Alu(x,y)eiau(xiy) and Ay = All(X,y)ei“l(X:Y) define the ampli-

tude and initial phases of the adlitional oscillating motion of the wing.
We consider the functions Ag,, Ajy and oy given at each point of the

upper surface and Ag;, Ay;, and «; given on the lower surface. The
X,y,2z coordinates were defined in section 1.

The velocity potential P, is

q)p(x;Y:z)t) = (P(XJY:Z,t) + CPS(X;Y:Z:t) (893)
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The potential ¢ 1is specified by the motion of an oscillating wing
of zero thickness, which creates at each moment an antisymmetric flow with
respect to the x,y-plane (fig. 15b). The potential ¢g is specified by

the motion of a thin oscillating wing with a profile symmetric relative
to the x,y-plane. Therefore the motion proceeds in such a manner that at
each moment the wing surface will be symmetric relative to a designated
plane (fig. 15c). Such a wing creates a symmetric flow and ¢@g satisfies

q)s(x,y,—Z,t) = q;)s(x)sz)t) (8')4')

Each of the potentials ¢ and ¢g 1s represented, in its turn, by

P =9y + P (8.5)

®s = Pos + P15 (8-6)

where @y and Qpg correspond to the steady motion of the wing and ¢
and Qg4 correspond to the additional motion of the wing.

Let us set up the streamline condition using the representation (8.3)
for the velocity potential.

We transfer the boundary conditions on the wing surface parallel to
the Oz axis onto the projection y of the wing on the x,y-plane

(Tde. 1)

Therefore, we obtain the streamline conditions based on equa-
tions (8.1) and (8.2)
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o L0 .
— = Hoy (x,7) + BOEL Hpy ()i (8.7)
oz
z=+0
and
o9
ke = Aol(x,y) + R.P. Agl(x,y)eium (8.8)
oz
z=-0
which must be satisfied on the upper and lower sides of 3, Trespece-—
tively.

Using equations (8.5) and (8.6) we establish boundary conditions
for the desired potentials @qg, @1, Pos» and QPis-

Keeping in mind that on the 2z=0 plane the normal derivatives of
the potentials ¢pg and ¢4 are specified by the symmetry of the flow

over the wing satisfying the condition

qus " qus ans v A (8.9)

oz oz Y oz
z=+0 z=-0 z=+0 z=-0 ‘

We find the boundary conditions for @pg and Qg which must be satis-
fied on the upper surface 3y to be
a(PILS

= Ib(X:Y); aZ
7=+0 z=+0

aq)Os
oz

= 'R.P. Do(x,y)ei®® (8.10)

where the functions [} and F2 are related to quantities given on the
wing surface through
Aoy (%,¥) - A, (%)

2

AOU(X’Y) i AOZ(X)Y)
2

FO(X;y) = FQ(XyY) =
(8.11)

The conditions to be satisfied by @y and @4 on the lower surface of

y  are .
P o st
{ a:s e - rgfxie), lsl- = - RePu Pola e (8.12)

Jz=-0 oz Jz:—O
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Since the normal derivative of the potentials %o and @ specified
by the antisymmetric flow over the wing, on the 2z=0 plane, satisfy

> 3
a_wg} {m} , ﬂ} . (6.13)
92 |,_+0 9z |, 0 [ 9% )z=t0 9z {,__0

the boundary conditions which must be satisfied simultaneously on the
upper and lower surfaces of X are

aq>o

dz

0P, .
= Ay (x,y) <= = R-P. Ap(x,y)elat (8.1%4)

where AO and A2 are related o quantities given on the wing through

Y AOU.; AOl i & A2u ; AEZ (8.15)

The boundary problems for @l(x,y,z,t) and @O(X,y,z) were set up

in section 1 where in the case of a harmonically oscillating wing, equa-
tion (8.14) rather than equation (1.6) should be taken on the wing. The
solution of these boundary problems is contained in the present work.

Let us formulate the boundary problems for @5 and Post

I. Find @;4(x,y,2,t) satisfying equation (1.4), condition (1.11) on
the disturbance wave, condition (8.10) on the plane region Y and

\ 8@18

=0 .16
» (8.16)

everywhere in the X,y-plane off X where the medium is perturbed.

II. Find the function @ug(x,y,2z) satisfying equation (1.5), condi-
tion (1.11) on the disturbance wave, condition (8.10) in the plane
region %, and

acpOs

« 0 8.1
S, (8.17)

everywhere off >~ in the x,y-plane where the medium is perturbed.
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Since the potentials @4 and @yg are functions which are symmetric

relative to the x,y-plane, it is sufficient to solve the problem for the
upper half-space.

The solution.of boundary problem I is given by equation (4.2). By
means of this formula it is possible to compute the velocity poten-
tial @4 everywhere since in the case of symmetric flow over a wing the

derivative B¢1S//Bz is a glven quantity for any point M(x,y,z) of the

space in the region of integration S(x,y,z). To compute @4 at M
according to equation (4.2) the function

o .
J als = R.P. Pg(x,y)elam
[ 2 J 2240

o

must be substituted for«{—fl and integration is over that part of

Z
z=0

the wing within the characteristic cone from M.

The solution of boundary problem II as is known (refs. 21 and 22), is

o
given by formula (3.10) if the function .{Egg} is replaced by
z
z=0

BZOS = fb(x,y) and integration is also over the region defined imme-
Z | z=40

diately above.
If the wing is vibrating as a rigid body then the functions Ap,; and

Ay, coincide and therefore, to solve the flow problem in this case, it is

sufficient in antisymmetric streams excited by the motion of an oscillating
wing with profile of zero thickness to superpose steady symmetric streams.
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PART IID

To apply the integral equations method explained in Part I of the
present work, let us consider the problem of the flow over thin wings of
finite span in steady supersonic flow.

The velocity potential ¢, specified by the steady motion of the
wing may be computed through equation (3.10) at those points M(x3,y1,2])
of the space for which the region of integration S(xl,yl,zl), already
known from Part I, does not extend outside the limits of the wing where

s
—~ is given.
le
If 3pofdz; appears to be unknown at any part of S, then, to use

equation (3.10) in these cases, where it has in the characteristic
coordinates (6.3) the form

3
| Po (x]_)Yl:Zl) AT E]:;t_ I[ Sg%

‘ S(x]_)ylyz]_)

dn, d&;

Zl=o V (Xl = gl) (yl - Tll) = 2'12

(a1 .1)

’ and to obtain the effective solution of the problem, it is necessary, first
| of all, to find dp,/dz) everywhere in S by constructing and solving

| an integral equation.
1. INFLUENCE OF THE TIP EFFECT FOR STEADY WING MOTION

1. The integral equation (5.1) in the coordinates (6.3) is, for the
steady wing motion

déf\ 61 (x1,y7) T F(x1,¥1) (21.2)
; /(X]_ - &)y - M)

U(Xl}yl)

3The results of Part II, sectioms 1, 2, and 3 were completed in
April, 1948 at the Math. Inst. of the Acad. of Science, USSR.
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where 6 1is the value of Jdy/dz; on 5z, (fig. 6) and where the

known function is

3

dffy 9
F x]_)Y]_ = A(gl)nl) (21-3)
: S(;éz;l fGer =€) (1 - m)

The function A given on the wing is

3% ubp(x,y) %[Xl Talradnt Xl} (21.4)

A " A x
(*¥1,91) dzp K R

o
It is easy to see that the velocity of the perturbed flow —ED
2

normal to the x,y-plane is related to B¢b/6zl through

i R
0z le

The regions of integration in o are x1p <& < x; and
w(gl) <Ny <y where, as before, y1 = W(xl) is the equation of the
wing tip ED in the transformed coordinates and x;p 1s the abscissa
of E 1in the same coordinates. The regions of integration for §&; in
s are the same limits x5 < 67 <x; and V(&) S < V(&1) where
Y1 = Wl(xl) is the equation of the leading edge E'E of the wing contour.

Let us note that equation (21.2) may also be obtained from equa-
tion (6.5) if the frequency w of the wing oscillation is set equal to
zero in it.

Let us delete the index "1" from the independent variables.

We solve the double integral equation (21.2) with respect to 6, by

means of a repeated application of the inversion formula for Abel's inte-
gral equation.
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We write equation (21.2) as

V(&)
fx 5 /y 61(5:71) ke f A(E,n) anrde = 0
Xg Ix - & |J¥(E) fy - \le(g) by -0

(21.5)

} This is an Abel equation with right side identically zero, therefore,
| the brace equals zero for £ = x. Hence, equation (21.5) is equivalent to

¥y 6. (x,n) ¥ (x)
J[\ il an = - u/\ A(x,1) gy (21.6)
¥(x) fy - ¥(x) 5

which is also an Abel equation. Noting that the right side of equa-
tion (21.6) is, generally speaking, different from zero for y = ¥(x)
we find the solution using the well-known inversion formula for the
Abel equation

¥(x)
Gl(x,y) g — C— JQ A(x,n) an

Jy - V(x) £ l(X) fy =8

y=v(x) "

A

| 3 W(x) 1
| 1 MO A s AGLTY) gntlan  (21.7)
x fw(x) T o fwl(x> il

Let us note that the solution (21.7) for the steady motion of a wing may
be obtained from the solution (6.22) of equation (6.12) for the vibrating
wing if the index n and the frequency of oscillation w are both set
equal to zero.

Carrying out the operations specified on the right side of equa-
tion (21.7) we find the solution of equation (21.2) to Dbe

61(x,¥) = - = A(x,n) an  (21.8)

b f“x) ) -0
Ty o v(x) Yep(x) y -1
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3%,
In a similar manner, we find the value — = gyt xane) - 4 25,
Z
(fig. 6)
) () - ¢
6" (x,¥) = - l——l——f_ 2V L 8 L M
T - Wé(y) V1 () Vx - €

The functions x = Wi(y) and x = $é(y) are, respectively, the equa-
tions of the arcs ED and E'D' of the wing contour solved for x. The

solutions (21.8) and (21.9) show that the velocity of the perturbed stream,
when the arcs ED and E'D' are approached from off the wing, goes to

-+
infinity as R 2 where R is the distance of N(x,y,0) from the points
ED or E'D' (see fig. 7).

2. Let us find the velocity potential according to equation (21.1) at
the point M(x,y,z) of space for which the region of integration S
intersects the wing surface £ and the region g, o 25'.

The region of integration S 1in equation (21.1) is divided into three
parts: S = s; + S, + S;, as shown in figure 16

Po(x,¥,2) = - Jé-—,( U A(E,n) 7 dn 4t i

5g+6n x - &)y - )
1 Jff dn d¢
ex JJ G- D0 - S
it
The limits of region s are xp <& <x, and V¥ (&) -2 z2§
L

where xp 1s the coordinate of the point A which is the intersection
of the characteristic forecone from M with the side edge ED of the
wing. herequation 1 = ¥y - 22/x ~- £ 1is the equation of the hyperbola

in which the aforementigged cone intersects the 2z=0 plane. The limits
of reglon s, are xp =¢§ & Xp and wl(g) s | S v(E).
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Using equation (21.8), let us evaluate the integral over sy 1in
equation (21.10)

= 9]_(5;'1) dipat
/ Wx - &)y - n)

%fx,yy-—{/;#(é) ACe,n") \Ju(E) - ' [ dn dg

pw(e) P -y IR fo-g)(y_n)z
(21.11)
we interchange the order of integration of n',n
\
*A *(g) y-__
Timte o Jf (e,0") [:KEZ:EE: an' de (21.12)
x fxE oN fe-t /;(e) \/m,,_n)\/y___‘ et
The result of the inner integration is
2
T
* - fy x-£ an
v(E) , 2
.\’n - y(&)(n - n )\/y -2 - q
% =k
= 3 (21.13)

ﬁ(é) -1 |F—

Putting the value of equation (21.13) into equation (21.12) we obtain

=

% - E

1 U”A(g,n') 4y at (21.14)
: ey o)




NACA ™ 1383 53

Equating (21.14) and (21.11) we obtain

ffel(g 1) dn ot ’ —ffA(&,n) .2

fx- O - -2 5 fox - Gy - m) - 22

(21.15)

Therefore, to find the velocity potential, on the basis of equa-
tion (21.1), at a point M(x,y,z) projected onto M'(x,y,0) in the
X,y-plane as shown in figure 16, it is sufficient to integrate over S0

dn dg

9o(%,¥,2) = - = /VFA(E n) (21.16)

e Ax - &)@ - 1) - 22

The limits of region sg are wl(g) § n p-! y - z?/x-g and
XA § E 5 Xp where X5 1s the abscissa of the point of intersection of
the Mach forecone from M with the leading edge E'E.

The velocity potential on the wing surface can be calculated from
equation (21.16) by setti é z=0 in it and considering the region of
integration to be XA x and V¥q (¢) S n Sy because the lines of

intersection of the characteristic forecone from M with the x,y-plane,
in this case, are the lines & =x and 1 =y.

In order to compute the velocity potential at points of space,lior’ in
particular, on the surface of the wing for which the region of inte-
gration S intersects simultaneously 23 and 23'; that is, at points

of space where there is felt the effect of both side edges ED and E'D!,
it is suff101ent to integrate equation (21.1) over the region
8 =29 @ 6’ the cross-hatched region in figure 17. Hence the integral

over S o in equation (21.1) must be taken with the opposite sign, i.e.,
the plus sign.
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3, Let us consider the wing of more general form shown in figure 18,
Let the forward part of the wing have the break, the arc EGG'E;', in the

wing contour which affects the flow just as do the side edges.

Let us show how to compute the velocity potential at all points
M(x,y,z) of the space disturbed by the motion of the wing, which is not
affected by the trailing vortex sheet, in particular, on all points of the
wing surface.

We divide the wing surface into the characteristic regions shown in
figure 18.

If the region of integration S in equation (21.1) intersects
regions 2, 2', 3 and does not intersect 4  then the velocity potential
may be evaluated by using equation (21. 165 (see figs. 16 and 17).

The simple result which is expressible by equation (21.16) does not
hold in the general case.

If S intersects 4 on the wing, in the curvilinear triangle K'0¢K,
then according to equation (21.1) qu/Bz must first of all be found in
the triangle.

Let us express, by equation (21.1), the velocity potential at any
point of K'OlK as equal to zero everywhere outside the wing and the

vortex sheet from the wing, hence in K'O;K. Therefore, we arrive at an

integral equation of the form of (21.2) for the function
6, *(x,y) = 99p/dz 1in K'0O;K but with a more complicated known function.

Applying the Abel inversion formula twice, we arrive at the solution
in the following final form:

1 1 [’W(X) AGoM) V¥(x) -

- ¥ J ) -

¥o(¥) AlE,y)\/Voly) - & %

™ x - \ngy fl(y) X - & (21.17)

e]_*(X:Y) =i

l

where y = y(x) is the equation of EG, y = y7(x) is the equation of E'E;
x = Vply) of Ep'G' and x = yy,(y) of E'E
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Substituting equations (21.17), (21.8), and (21.9) into equa-
tion (21.1) we obtain the formula for the velocity potential at M which
has the projection M' shown on figure 18, and for which the region S
intersects 4 on the wing and, therefore, the region K'OjK outside the

wing, as

9o (x,¥,2) = - = A(E,n) g +
i S*(x/:z,z) f(x - &)y - m) - z2
L ACt,n) woc? [ - ¥l - G -m) = B]
P gx fx- Oy - ) - 22 [ve) = n]{x - o)y - w(e)] - 22
_:.E /” A(E,n) sl [Tf*(n) B Wg(n)][(x - &)y - n) - Ze] at dn
iox Mx- O - n) - 2 [otm - tlfev - i - P]- 2
(21.18)

where y = V*(x) and x = ¥*(y) are the equations of GG' of the wing
contour in terms of x and Yy, respectively.

The region S* is the part of the wing shown cross-hatched in fig-
ure 18. The regions S7* and S,*¥ are part of S* and are marked in

the same figure by horizontal stripes. The regions Sl* and 82* are

bounded downstream by lines parallel to the coordinate axes passing
through G and G!'. The points G and G' are respectively the points
with the largest x and y coordinate on the arc EGG'El'.

By combining the results of equations (21.1) and (21.18) there is
found in the form of integrals taken over the wing surface, an effective
expression for the velocity potential at points of space for which S in
equation (21.1) intersects 5 or 6 on the wing and therefore A K'O;K

and 35 and 25' off the wing.
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2. FLOW OVER WINGS OF SMALL SPAN

1. Let us assume that the characteristic cones from E; and El'
intersect the wing as shown in figure 19. This occurs, for example,
for small span wings.

Let us divide the x,y-plane where the medium is disturbed into the

regions Sg, Bga vilriive Sy

The region Sp is an M-shaped region lying between the character-
istic cones from Ep and E,' (or in one of them) and Ep4]
and Ep41'. In its turn, we divide the part of the x,y-plane to the
right and left of the wing into the strips oy, o0p, - . .5, Ony

and o', o5's « -« On', . . ., respectively. The gbrip,. 6, Jlies
between the after cones from E, and Ep,;. Therefore, o is that

part of S, 1lying to the right of the wing. The coordinates of E

and E' with their indices are shown in figure 19. The strip cn' is

similarly defined.

Let the leading edge El'El be given as in part I, section 6, by
the equation y = y7(x) and the side edges EjE;.; and EllEn+l' by
vy = ¥(x) and y = yo(x), respectively, or as x = v(y) and x = vyo(y)
correspondingly.

To compute the velocity potential at M according to equation (21.1)

in that part of space (or, in particular, on the wing surface) the region
of which intersects S, of the x,y-plane but not Sp41, we must first

of all determine dpy/dz off the wing in oy, 0Op, Oz, - - -5 Op

and also in oy', o', 65', SN A
We construct the integral equation for apo/az in the arbitrary
strip Oy.

Let us express a velocity potential which is equal to zero every-
where off the wing and outside the region of influence of the vortex
system from the wing, at N of the o) strip (fig. 20) according to

the fundamental formula (21.1)
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ﬂ {az }z—O /(x - = i G

5(x,7,0) g)ly, =)

The 1imits of integration in S are x < £ <x and o <V

For convenience in later writing, we make S a recta.ngle which is - posS-
Sible since the medium ahead of the wing 1s not disturbed and oy laz

is zero. The region S 1is shown in figure 20 bounded by the lines LN,
NL;, L,0 and 0. T..

il gl
Let us denote acpo/az by 61, 63, « ¢ o5 Oy o wl. aBdl 6%,

82", « « ., Bx', . . . in the respective regions 0y, O©

o S gt
and oq' 4 ) i , r
S 9D o s ey O

In conformance with this new notation we write equation (22.1) as
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Applying the Abel inversion formula twice to equation (22.2) we find
By Bor k= 2

dan +

¥(x)
o B 1 AGGN)YV(x) - 1
Bk(X;Y) o ‘/y o \l{(x> /;’2(x) Y=

i=ﬁ£ YL 04t (M) H(x) - - fwx) 81" (M H(x) - 7 o

i=1 “ Y3 R s, y-

(22.3)

Correspondingly, for 6y' we obtain

Yo(y) ¥ i
8" (2,7) = - L ke /_ o) e,y V) - & L
[;X - Voly) |Y¥(y) it

A

1=

v

-2 pxg+l 03 (E,¥)f¥o(y) - & s fi’(y) B (EAN.r) - & !

x - &

]

ladts [ ple
gy k-1

e

(22.4)
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where the terms in equations (22.3) and (22.4) containing the summations
are defined only for k 2 3.

. If 6, 6y, « « o, 6,7 and therefore, 6;', 63", + « &+, 6.1’
are already defined in oy', odx', « . ., 0Ox_ 7' then we can compute
0k in ox for any k by means of equation (22.3).

The value of 3qy/dz in o7 and o0y7' is determined by solving
equations (21.8) and (21.9).

The value of 0@y/dz in o, is found from equation (22.3) by
putting k = 2:

¥ (x) o 2
6x(x,y) = - —m f A(x,n) W( ) 1 an +
1 " f¢2<x) /:WQ(H) aitts ﬁ(x < N \l\lrz(n) a1 Py
y 72 fy - ¥(x) Jyg ¥, (n) (v - M (x - &)fx - ¥p(n)
(22.5)
We find Oqy/dz in o,' in the same way
00 (x,y) = - & —2—— JPWQ(Y) A(E,y) —————ﬁe(y)—g ag +
el T x -G YNy) : x - £
Bl LG \/ve(y) - E\W(E) - L
w2 & - ¥(y) Jxg vl(g) (x - 8)(y - MYy - ¥ (E)
(22.6)

é Thus, step by step we compute J¢y/0z in oy.
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Using the solution of equation (223) , We now prove. the relation

2
x5% y-2 /X-§ {ach] dn dg

Q = f f —_— =0
T

9% [2=0 f(x - &)(y - 1) - 22

(22.7)

* * * <
where x;* and x,¥ are any numbers satisfylng x; < x,¥ = x) (xA is
the coordinate of the point A shown in fig. 21) sy X1 § xl* < Xpe

For the proof, we write Q in the equivalent form

72

x,* /y—}ri 0y (€,n) dn a&
¥WE)  fx- ) -n) - 22

+

fXQ* fW(E) A(g,n) dan dt +

x* 8y ey - ) - 22

Va1 | 85"(En) dn df i
Z -/xl* ‘/;/'1 m{-ﬁ)(Y-ﬂ)-Zz Ll* ”/;'k.-l y/(;—g)(y-n)—z2

ai=il

(22.8)
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where ek in the first of the integrals is replaced by its value
according to equation’ (22.5):

- Then, we obtain

= f /‘”g) ACE,n )N(g) R i

Vo (E) e g

li=k-2 Xo* [ yi41 6851 (E,nt)f¥(E) - n?

L f j I* dn' dt -
L a=l Xl* yi yX - 4

T fx f /_x_._g oo
/xe* B o ais i agmaiins b

x* (8 fx - e)(y - m) - 22
i=k-2 f"z* Y141 e;'(&,n) an at

B8 VL fx- o) — e

fxe* v2(8) g 11(e,m) an ac

(22.9)

oo B TN ST [

where I* denotes the integral (21.13) evaluated before. It is easy to
see that all the terms in the right side of equation (22.9) cancel in

pairs. Hence, equation (22.7) is proved.

It is also clear that the following holds

e X'_ {aq’o] at an i
f f aZJ’z=O Ax - €)(y - n) - 22
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where y,* and y,* are any numbers satisfying ¥y s y1* < yp and
vy <¥,* Syy (yy 1s the coordinate of B shown in fig. 21).

Using equations (22.3) and (22.4) it is possible to prove equa-
tions (22.11) and (22.12) correspondingly

b

XE*

" o) o
(6) [32),0 fx - &)y - n) - 22

Uxg*

[9%]
l aZJz:O

XQ*

f /Ilf(é)

2 dg dn
7T

*

e ﬁx -8 - ) - [y - we)]
[x - )@ - 3 - 22|[ ¥(¢) - n]

0* UV fx - &)y - ) - 2P
(22.11)
< z2
where y* may depend on & and satisfies ﬂf(xl*) <Yt = y-;z-
f”E* e {aio], an a
xR Pl GG o w - 2
L [o% =
, [¥2* a(n) 5o o [Gx - )0y - m) - 22][xx - Yy(m) ] o
S an n
T nx dn el B)ly - m) ~la2 [-x(-1) - 22][¥p(n) - Ly
(22.12)
where x* may depend on 1 and satisfies ?2(yl*) < x* S x-ie.
y=1

The relations (22.10) and (22.12)
from equations (22.7) and (22.11) if t
changed in the latter.

may be obtained, respectively,
he role of the coordinates is inter-
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Let us note that the result of a single application of 'the
Abel inversion formula to equation (22.2) or directly to equation (o2 .1)

yields
N 193
f {%} s (22.13)
L (92)z0 ¥ - 1

Interchanging the role of the coordinates in equation (22.13) we obtain
"
fw 0 L A (22.14)
Lt oz z=0 He k

Tt is possible to consider egquations (22,13) and (22.14) as rela-
tions fulfilled along the characteristic lines LN and’ [I"N? inithe
X,y-plane where y and x are, respectively, the coordinates of N or
N! 1lying off the wing and off the region of influence of the trailing
vortex system (fig. 20). The points N and N' lie to the right and
left of the wing, respectively. These relations can be useful for compu-
tations.

5. Let us turn to the fundamental formula (21.1). Using equations (22.7)
(22.10), (22.11), and (22.12) we obtain, by calculation, the formula
for the velocity potential ¢y at M(x,y,z) for which S intersects

Sp, for any n >0

r M Al 2 N A(E,)9,
Gy -2 [ LT e T Wy . ) - I T SR ey anae- L ] i

L LS jaetae & 1Al —_—
A J |J
B e -0 - -2 = 5{9 fx-nG-v-2 © Sjl", Ix - &)@y - n) - 22 =2 % fx - &) - ) - 22

dn dE -

1205 sxe p¥a(x) 8, (5,m)9 "Xy Lk 23 1 ¥a(¥s) o (&,1)0

g _ R bt
P Vxg HE) Mx - -n) - 2 2y SR ong-ow -2

dn aé-

'

o f—v[va(x,‘ﬂ fvz(xA) o, (&0, i [V[G(yg)] fv(yn) 0, 25,0,

2 — 2 - —————————di i (22.15)
= X Ve = - B - n) - 2R * “In-2 2 fx-n - -~
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where the functions Ql and 92 are defined as

0 = tan™" [G- 06 - ) - 22][yg - w(8)]
; [(x - )y - vg) - z2][¢(g) s “:l
O = tan ™ [ - 06 - - Zla- B

) (y - ) - 22|[¥a(n) - ]

G
and where the regions Se and S@ are regions of the wing marked on
figure 21. The region Sl* is the vertically-striped region on the wing
surface. The region 82* is the horizontally-striped region of the wing

surface. It is clear that S;* and S,* intersect each other and Se
on the wing.

The region 57 1lies off the wing and is vertically-striped in

figure 21. This region is the sum of the regions over which are taken the
integrals containing @' for k=1, 2, . . ., n-2 in equation (22.15).

The region Sy 1lies off the wing and is horizontally-striped in
the figure. All the integrals are evaluated over it which together con-
tain 6 for k=1, 2, . . ., n-2.

If M 1is such that S in the basic formula intersects S, falling

in the characteristic cone from Ep and lying outside the cone from Ep',
then n must be replaced by n-l1 in the second sum and in the last term
of equation (22.15). If S falls inside the cone from E.' and lies
outside the cone from E, then n-1 must be substituted for n in the
first sum and the penultimate term of equation (22.15).

Let us note that the sums in equation (22.15) are defined for n > 3
and the last two terms in equation (22.15) for n > 3.




NACA T™ 1383 63

If n=1, then the formula for the velocity potential in equa-
i tion (22.15) is limited to the first two terms. This result was already
obtained before.

If n=2, the formula in equation (22.15) is limited to the first
four terms, the region of integration is shown in figure 22.

Thus, to evaluate the velocity potential, by equation (22.15), at
a point M(x,y, ) which has the projection M' (x,y,0) shown in fig-
ure 215 tiis necessgary, first of all, to compute ek tom N1l 2 diEs,

A ., n-2 by equation (22.3) for k22 and by equation (21.8) for
k=1 (6y' correspondingly).

As an example we present the expression for the potential for n=3
in the expanded form

P (x,7,2) = - = ff A(E,n)dn de

. f(x -~ e)(y -

e A(E,n)dn dt
1) i~ 2= eﬂs/;[/(x - &)(y - ) - 22

ff A(E,n)0y vy ;lsz / A(E,m)a, dn a ;

(x - &)y - n) - 22 (x - £)(y - 1) - 22

A(E,Tl')‘/\lf(é) - T]'Q2

ik

- :l'f3

Yolxp) ~¥(n) ¥(e)
i 2VA
i

Io

dn'd¢ dn +
1 '4’1(5) ‘Tl - (&) (Tl - T]')'/(X - E)(y - Ny - 72

fwyB) Yo () ¥x(n) A(E*,m) \fg: (n) - €' @

detdn de
i o i f; =M (& - e\ x - 6 - ) - 22

(22.16)
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The region of integration in the last two integrals over £ and 7
are, respectively, the regions S and S, 1lying off the wing and shown

striped in figure 23.

Formula (22.15) for the velocity potential contains an n-iterated
integral with the integrand an arbitrary given function on the wing:

Xpo/dz = A(x,y)-

In the general case, it is not possible to reduce the number of
iterations in the computation of equation (22.15) for arbitrary wing-
tip shapes since the arbitrary functions V¥, Vp, and A all contain

the variables of integration. If the functions ¢ and YV, are fixed

then the wing to be considered has completely determined tips and it

is easy to see that all the integrals in equation (22.15) are reduced

to double integrals taken over the wing surface with integrands containing
the arbitrary given function A(x,y) which defines the form of the wing
surface.

Let us turn to the wing of small span which has a break in its
leading edge as shown, for example, in figure 2k.

The derivative dpg/dz may be evaluated in o, and 0y by equa-

tions (21.8) and (22.3). It is impossible to evaluate dpg/dz in 03

using equation (22.3) and, therefore, a surface-integral equation must
again be constructed which will also reduce to two Abel equations but
with more complex right sides than occurred for 03 in figure 19.

Hence, we note that it is impossible to construct one formula which
would determine Jpg/dz for all cases, but a single method of solution.

may be shown to depend on the wing plan form.

The formation of the surface-integral equation for Jdpg/dz is

explained above, for each characteristic region. Each of these equa-
tions is of the same type, reducing to two Abel equations with different
right sides in different cases. In particular, the right side of one

of the Abel equations, in some cases, may be identically zero.
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3, INFLUENCE OF THE VORTEX SYSTEM FROM THE WING FOR STEADY WING MOTION

1. To study the influence on the air flow of the trailing vortex

system in steady motion, it is convenient to operate with the acceleration

potential &5 which, in linearized theory, is related to the velocity
potential derivatives in the characteristic coordinates through

¥ = u{qJOX + q’Oy} (23.1)

Let us turn to the wing shown in figure 25. Let us take a point
M(x,y,0) on the wing surface, which lies between the characteristic
cones from D and D!'. Therefore the trailing edge DT affects M.

Using equation (21.15) the velocity potential at M according to
equation %21.1) is

(x,5,0) = - & Alg,n) nds 1 [f_e(e,m) an at
i ) s=2q:-so fx- &)y -n) = ;gd@- E)(y - )

(23.2)

where the regions s = s] + sy and s, are shown in figures 250 iEhe
region sp belongs to @, considered in section 7 of part I and shown
in figure 11. We denoted the derivative B@O/Bz in Q Sby '3 lwhere

this derivative is an unknown.

We subject dpp/dz to an additional condition, analogous to the

Kutta-Joukowsky incompressible-flow condition. We assume that the
perturbation velocity potential at the trailing edge - the arcs DT
and D'T' of the wing contour (figs. 11 or 25) - and therefore, the
specified derivative, is a continuous function. Then the respective
conditions are fulfilled:
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‘9[x) X(X)]

Il

Alx, X(x)] (23.3)

3[x, % (x)] = A%, %,(x)] (23.4)

where, as above, the function y = x(x) is the equation of DT and
y = xé(x) is the equation of D'T' of the wing contour.

In order to obtain the acceleration potential ® at M on the

wing surface, we must take the derivative of equation (23.2) in a direc-

tion parallel to the oncoming stream. Before differentiating the double

integral with respect to x and y we integrate by parts - in the first
case with respect to £, in the second with respect to Ne.

During these operations, we use equation (25.3) and the relation
(22.13) which is fulfilled along characteristic lines, and which on the
line DD* (fig. 25) is

fy 61(*p>") y fX(XD) A(xp,n)

__._..d'r]=
X(XD) fy - 0 Wl(XD) /5_:—5

dan {25.5)

We keep in mind, moreover, that the limits of integration of sp are

B SoE Sy and "X(E) S q < ¥1(€) where xp is the abscissa of D and
B = xA(y) is the abscissa of A, the limits of Bg “are -y SIE K 'x

and wl(g) <1 <y and finally the limits of Es  HTE  Xp § €< xp and
X(€) <n <.

After the specified operations, the results of differentiation are

A, (&,n) + Aq(E,n)
Pox(%,¥) + @oylx,y) = - 2 £ an at -
: . 21:51.[[0 f(x - €)(y - n)

ﬂg(é;ﬂ) Y (E:)T])
%/] e B 5 (5.6
se 'I(?" &)(y = T\)

Lf Ale,¥a(e)] !1 Cayy(s)
% \/(x - E)[y - wl(g)] [ =
(23.6)

dg
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where the arc 7 = RP 1is shown in figure 25. In order to evaluate the
acceleration potential ¢; at M according to equation (23.6) it is

first of all necessary to determine 4 + ﬁy in s5.

2. Let us construct the integral equation for 9, + ﬂy. Let us

express the accleration potential through equation (21.1) at an arbitrary
point N(x,y,o) outside the wing in Q affected by the vortex sheet
trailing from the wing

R - i
cPO(X,YJO) S -2—; ﬁ A(-E'Zn) - dT] d§-

21_ﬂ /]‘ 3(&,n) et

d
o(e,y) 1 - OG-

(25.7)
for which the limits of integration in ¢ are xp < & Sx and

SNy, and an B, & varfes Bebwedh the same limits but 7
between ¥7(&) < n < x(¢) (ig. 26).

Let us differentiate this expression in the free-stream direction.
Since, according to the condition((l.lo) of part I) the velocity poten-
tial @@ off the wing in the X,y-plane remains constant along lines in

the specified direction, then the left side of equation (23.7) goes to
zero as a result of differentiation and therefore we obtain

S x x(&) A(E,n)
S dn d¢ +
= - 06—

X J
3 3(E,n) an ag
d /; j;(g) f(x - &)y - n)

D

xp Y¥1(8) f(x - €)@y - 1)

"

o

|o/

Q/

£ L 3(€,n)
dn d¢ = O (23.8)
o fXD fx(g) Mx - £)(y - ) s
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We integrate the first two integrals in equation (23.8) by parts
with respect to £, after which we differentiate with respect GOl o b The

result is

X(€) x
f f A(E,n) Sl 2 f A(xp,n) s
l(g) /(i - &)y - n) VX = XD Wl(X) =

x ~X(E) "
f i a% M‘-dn} de (23.9)
Xp Ix - & ¥1(8) {y -

o A o(&,n) 1 g ()
B dn 4at = ; dn +
e “/;D “/;(5) {(x - £)(y - n) jx - %p ‘/;(XD) fy -1

fo Lot el OF B n)| an bae
XD '/;‘--—-g 9 ‘j\((g) Vy =

(23.10)

Keeping equation (23.5) in mind, which is fulfilled on the characteristic
DD¥ we substitute equations (25 10) and (23.9) into equation (23.8)
obtaining

[_@. fy ws(ézﬂ) an i+ a X(g) A(&,T]) an +
X /x . La X&) fy - n ¥ (&) fy -

. fy o(E,M) . fx(é) A(E,n) dq}dg 35
oy IYx(e) fy - n J¥ (&) fy - | (23.11)
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This equatipn is equivalent to

+

xlze) {y -1 ox V(%) fy - n

dan +

d fy 6(x;ﬂ)d 9 Px(x) A(x,n)

(x)
i ) N W G 1T IR
3y ng;) (v - 3y JQ;(X) {y -1 '

according to the inversion of the Abel integral equation.
We integrate the last two integrals in equation (23.12) by parts

with respect to 1N after which, as above, we differentiate with respect
to the parameter. Using equation (23.3) we arrive at

fy 6X(X:n) & ﬁn(xﬂl) L /“X(X) AX(X,TI) i AT{(X:W) il
x(x) [y - ¥y () y -
A x,vl(xﬂ L dy; (x) i)

jy = ¥y (x) i

Let us apply once again Abel's inversion formula, keeping in mind
that the right side of equation (23. 13), generally speaklng, is different
from zero for y = X(x) we obtain the solution for o ¥ 6 as

x(x)

m fwl(x)

Iy (x,y) + B (x,y) = -

ﬂle(x,n) +

A (x, n)]@ an - F N e A[X,’lfl(x)] 5 diq X) [X(X) A Il)'l(x
J | “,y_X(X) dx y_wl(x)

(23.14)
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Using equation (23.14) we prove

3, (&,n) + 9 _(&,n) A (g,m) + A_(&,n)
ff : s an at = ff : . an at
55 V(x - £)(y - 1) s i(x - )y - n)

= A[E,W(E)] s d\‘!l(g) ae

1 fx - Oy - v(e)] -

(25.d15)

where 19 = RQ. The regions s, and s are shown in figure 25.

Substituting equation (23.15) into equation (23.6) we obtain the
formula for the acceleration potential

(DO(X,:Y) B e L L\/] Ag(é;ﬂ) i AT](E.;TI) el .
i W W - 0

2 ) R L R
55/ fx - o) e
1, X = = Ilfl(g)]

(23.16)

where L = QP, the direction of the integration is shown by the arrows in
iigure 25,

Thus to evaluate the acceleration potential at M on a wing sur-
face two integrals, the surface integral over sy and the contour inte-

gral over L of the leading edge are to be computed.

Let us turn to equation (23.12) and write it in the form

B K/“Y {a¢0¥ an_ . 3 4 {Bwo}_ i -l
ox Jyq (x) oz J, 0 Iy -1 oy ¥ (%) 9z}, 0 ¥y - 0

(23.07)
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Interchanging the role of the coordinates in equation (23.17) we
obtain

> x {a@o} e b {?&} 2
1) 192 )20 fx - "oy V0% J0 fx - &
(23.18)

where X = wl(y) is the equation of E'E of the wing leading edge solved
for x 1in terms of Y.

Tt 1s possible to consider equations (23.17) and (23.18) as rela-
tions which hold along characteristic lines in the x,y-plane where the vor-
tex sheet has effect.,

Relation (23.17) is fulfilled along characteristic lines parallel
to the Oy-axis (the line NQ on figure 26); the y-parameter is the
ordinate of a point lying off the wing to the right, in the effective
range of the vortex sheet (point N in fig. 26). Relation (23.18) is
fulfilled along lines parallel to the Ox-axis; the x parameter is the
abscissa of a point lying off the wing to the left.

If the point N is thus located to the right of the vortex line DH
or to the left of D'H', then along characteristic lines the respective
relations (22.13) and (22. 14) also hold.

If N is located to the left of DH or to the right of DR,
respectively, then relations (23.17) and (23.18) hold along characteristic
lines. In this case, equations (22.13) and (22 14) are not fulfilled.

In this section, we wrote down the transformation and obtained
the formula for the accleration potential in the simplest case of the vor-
tex sheet affecting the flow.

For any other case, the potential ®o 1s found in an analogous way.
In each case an integral equation 1s constructed for 4, + 0y. All the

integral equations are of the same type but with different right sides in
the different cases, and they are inverted by means of a double application
of the Abel integral equation inversion formula.

In the following paragraph we present results defining the accelera-
tion potential ¢og at any point of a wing surface.
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3, Let us find the velocity potential oo(x,y,z) at a point M
lying within the characteristic aft-cone from D and outside the charac-
teristic aft-cone from D'. The region of integration S in the funda-

mental formula (21.1) intersects the plane region @ (fig. 11) in this
case.

The projection M' of M on the x,y-plane is shown in figure 26a.

Starting from condition (1.12) (of part I) we express the derivative
d0z for any point where the velocit potential equals zero and where,
0 N q

simultaneously, the effect of the vortex sheet is felt through the same
derivative at points located upstream on the same characteristic line
with the point studied. To do this we reason just as we did to obtain
formula (21.8). We then obtain the desired representation for the
derivative

a$0 . g fo+yD’XD qu(x,n,z) [i R y
o & el R 46 n
oz Ty - x - yp + xpYyp(x) oz e yo=n
(23.19)
Using equation (23.19) it is easy to prove
y-—z-?g
* z
v B
x* hpplerf, o iz - )G - 1) - 22
; fxg* f§+yD-xD ‘{a%} an at
n* [Yip(g) 0z J,0 fix - E)(y - n) - 22
(23.20)

by the same methods used in proving equation (21.15).
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The limits of integration in equation (23.20), xl* and xg*, are

* = * S

any numbers satisfying xy = xX1* = xp and Xy = Xp Xp Where xp 1is

the coordinate of the point F shown in figure 26a. The point F is the
intersection of the vortex line DH, which has the equation
Yy = X + yp - xp, with the characteristic cone from the point with the

coordinates (x,y,z).

In particular, there holds

| - awo} an at Ly .{éfg} dn at
Sf!{azko f(x - Sflf )20 flx _ e)(y - ) - 22

-8y -n) -z

(25.21)

where the regions S; and S, are shown in figure 26a. The region S1
is marked with horizontal and the region Sp» with vertical crosslines.

Keeping in mind equation (23.21) we obtain an expression for the
velocity potential at the point M defined above

(€,n)dn at B 9(&,n)dan dt
fo(x,¥,2) = - L AL, S L :

(25.22)

where Sy and S' are shown on figure 26a.

Therefore, the region of integration S in equation (23.22) inter-
sects the wing surface only in that part of @ which lies to the left of
the vortex line DH.

Before evaluating the velocity potential by equation (23.22) it is
necessary to determine BwQ/Bz = 4§  in the region 'S' ol Q]

We find § from the solution (23.14) if the_latter is integrated
in a free stream direction between N(x,y) and N(x,y). Hence in order
that the obtained expression correspond to the value of the deriva-
tive 8@0/52 = N g to the left of DHjStheScoordinabesixiiiands
on the vortex sheet should be taken as the solution of the equa-
tions ¥ - R - yp+ xp =0 and ¥ = X(X) and the value of 9(%,y) is

determined from equation (23.3) at the trailing edge.
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If the ¥ and § coordinates are set equal to X = xp and
¥ = y-x+xp and the value of 3(X,y) 1s determined on DH from the

solution of equation (21.8) then the obtained expression will correspond
to the value of qu/az in © +to the right of DH off the vortex sheet .

but in its sphere of influence.
4, PRESSURE DISTRIBUTION ON A WING SURFACE

1. Let us consider a wing of arbitrary plan form. Let the wing
contour in the characteristic coordinates be given by the following equa-
tions: The leading edge E'E by y= ¥(x) or x = V¥7(y), the side

edges ED and E'D' by y = ¥(x) and y = ¥5(x) or x =V¥(y) and
ﬁe(y), the trailing edges DI' and D'T' by y = X(x) and
Xo(x) or x = X(y) and x = X%(y).

X
y

Il

Il

Let us find the pressure of the flow on the wing surface.

According to the Bernoulli integral, the pressure difference of the
flow above and below the wing is related to the acceleration potential &g
by

p(x,y) = py(x,¥) - pu(x,¥) = 2000(x,¥) (2k.1)

where p is the density of the undisturbed flow.

We divide the wing surface into the ten characteristic regions shown
in figures 27 and 28.

Let us express the stream pressure on the wing surface in each
characteristic region by the function A(x,y) which is given on the wing,
defining the shape of the surface.

We denote by M and M with a subscript the ends of line segments
parallel to the coordinate axes and lying in the x,y-plane. It is clear
that these segments are parts of the lines of intersection of the charac-
teristic cones, with vertices in the x,y-plane, and the x,y-plane itself.

Region I is the region where the tip effect is not felt. This part 4
of the wing lies ahead of the characteristic aft-cones with vertices at

E' and E.
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Region II is where the tip effect is felt but not the influence of
the trailing vortex sheet. This region lies between the characteristic
aft-cones from E' and E and D and D'. At M of region II, for
which the lines M1M3 and MoM), intersect on the wing as shown on

figure ’27, the pressure difference is

u,
p(x,y) = - ?p /]D(é,n;x,y)dn ag + — ffD(é n3x,y)dn 4t +
51

u s avq (&) u v - i
;-fB]_";,\ixl(é)}X,Y]{l - -—;—} - ?p {l - d‘gy&}f Bl¥(¥),n;x,y]dn -
L

Ly

upf d‘lfe() fB[g,wl(x);x,y'ldE - (2k.2)
L2

vhere Sq is the region of the wing bounded by the lines MM;, MM,
[\11145 and MMy, S, is the region bounded by MMz, MEMM and the

arec = MMM3 and where

D(&,n5x,y) = i) = 8y B(E,n;%,y) = A(E,n)
G- - ) fx - &)y - n)
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If the lines M’lM5 and MEMH do not intersect on the wing, as shown
in figure 28, then the pressure difference is

ayq (&)
P(X;Y) f[D(ﬁ UERS :Y)dn ag - f [ﬁ Wl(g): ;YJ{J— = ac } £ -

%B{l d\giy) }»LfB[‘If(y),ﬂ;x,Y]dn -
1
av,,(
%?-{l 2+ }b/\B[é,Wg(x);x,y]dﬁ (24.3)
L2

where S; 1s bounded by the lines MM;, MMz, MMy, Myl and

= MH

Arrows in the figures show the direction of integration in the con-
tour integral and the integrals taken over the lines 14 = M5Ml and

= MMy,

In region III, which lies between the characteristic cones from E
and the characteristic cones from E', D and D', the pressure differ-
enicevits

:
p(x,y) = - ‘—j{iffb(é,n;x,y)dn ag - f [,92.(8)5%,7] {1 5 l_: }dc-, -
81

%‘3{1 - dg’yﬂ} f B[¥(y),n;%,y)dn (24.1)

Lo

The pressure difference in region III' is expressed in the same way.
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p(X,Y) == BI[EJC/ D(ﬁ;’\;X,Y)dﬂ ag -
S1
dyq (€
I:r—p- B[é,wl(é);x,y]{l - 1t )} dé -
L
%ﬁn{l P dWiiX)} d/\B[g,Wg(x);x,y]dé (2k.5)
Lo

Region IV lies in the characteristic cones from E and E* and D
and outside the characteristic cone from D'. Region IV' is defined cor-
respondingly. At M(X,y) of region IV, when M1M3 and MoMy, intersect

on the wing, the pressure difference is

p(x,y) = - 1%ef/D(é,TI;X,y)dn at + 1?ffD(:E,n;X,y)dn at +
S1 Sp

‘-;P-fB[g,wl(é);x,y] {1 - dwiég)}dg -
L

3‘3{1 : d\lfi((x) }/B [g,\lrg(x)#’y]dg (2k.6)

s
e
For the M, for which MjMz and MpM, do not intersect on the wing,

the pressure difference is expressed by equation (2lkeB) Similarly, the
pressure difference for region IV'! is

p(x,y) = - fgffb(g,n;x,y)dn ag + E;lffn(g,n;x,y)dn ag +
S1 So

dyq (£) |
%? B[E,Wl(é);x,y]<{l e ié )j_dg .
3
% 1- ‘{gyﬂ f BETf(y),n;x,y]dn (24.7)

Ly
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dif M1M5 and MpM, intersect on the wing. If these lines do not inter-

sect on the wing the pressure difference can be expressed by equa-
tion (24.4).

In region V, which lies within the characteristic cones from E, E',
D and D' where the influence of the trailing vortex sheet is felt, the
pressure difference is

P(X)Y) = i—ﬁij(éyﬂ5X,Y)dn 0 ER %ﬂ D(é,’l;X,Y)dTl dge +
¥ (8)
up il
< B[t, ¥y (&) 5x ,y]{l g T} as (24.8)

if MMz and MplMy intersect on the wing, and

p(x,y) = - u—jf[fD(&,n;X,y)dn dt - f RACT X,y]{ h(é)}
S1

(24.9)
if they do not intersect.

In region VI, lying in the characteristic cones from E and D
and outside the characteristic cones from E!' and D' (also in
region VI') the pressure difference is expressed by equation (24.9). The
pressure difference for region I has the same form.

Thus, if M, at which the pressure is desired, is in one of the
regions II Iv (IV' correspondingly), or V, as shown in the figures, then
to set up the regions and contours of 1ntegratlon in the pressure formulas
it is necessary to proceed as follows: Draw two lines MMy and MM,

upstream from M +to intersect with the side (or trailing) edges of the
wing. From these points of intersection M; and Mp again draw lines

Mﬂﬂ5 and MpM, upstream to intersect the leading edge E'E at M5 and
M.

If M is in region IIT or VI (III' or VI' correspondingly) then from
M draw the lines MMh and MM; upstream; the line MM, immediately

intersects the leading edge E'E at My; MMl intersects the side edge
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ED 1n the case of region III or the trailing edge DT' in the case of
region VI. From the point of intersection M; again draw the line M1M3

to intersect the leading edge E'E,
Let us consider particular cases.

(I) Let the side edges of the wing ED and E'D' be straight
lines parallel to the free stream. In this case

L B
oy ox

and, therefore, formulas (24.2) and (24.3) are simplified substantially,
because the last two terms in them become zero.

A particular wing of this class is the rectangular wing.

(II) Let the wing surface be such that

D(Q:T];XJY) =10

This holds, firstly, when the wing surface is a plane, i.e., the

function A = _uBO/k is given on the wing, where pp is the angle of
attack, as a constant.

Secondly, this holds when the wing surface is linear, generally
speaking, uncambered, with generators lying in planes parallel to the
¥ = x-plane (X,z-plane in the original coordinates), then the derivative
of the function A(x,y) given on the wing satisfies the rela-
tion Ay = - Ay. In particular this is a wing with a cylindrical surface

formed in the manner described.

In these cases, only the contour integrals and the integrals over the
line segments Ij and Lp remain in the formulas for the pressure.

(III) The pressure formulas take an especially simple form when
the wing surface is such that the function D(g,n;x,y) =0 on the wing,
at the same time as the side edges 'ED and E!'D' are straight lines
parallel to the stream (combination of cases I and II). In this case, the
pressure difference above and below the wing in any region can be repre-
sented by

avy (&)
p(x,y) = % ‘;_po B[&,¥7 (&) 5%,v] { - ;—g} df | (akyze)
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where the plus sign is taken if the lines M1M5 and MpMy intersect on
the wing and the minus sign if these lines do not intersect on the wing.

Hence, the pressure on the wing surface is expressed by the curvi-
linear integral taken over the arc L of the wing leading edge.

(IV) Let the wing plan form be such that the points D and E
and E! and D' colneide. In this case, calculation of the pressure
on the wing surface is also simplified because there are no regions II,
IIT and III' on the wing. In particular, the trapezoidal wing belongs
torthisreases

2. The pressure formulas show that there can exist a geometrical
locus F¥(x,y) = O where the pressure on the wing p(x,y) = 0. Down-
stream of this geometrical locus, the pressure difference p = Py - Py

is negative.

For example, if D(&,n;x,y) = O on the wing then the geometrical
locus F¥ = 0 is found in the region of the wing lying inside the char-
acteristic cones with vertices E and E' and passing through either
regions II and IV or through IV and V or or lying entirely in V.
The first case occurs only when K, the intersection of the lines 07K

and OpK parallel to the coordinate axes, appears to be outside the
region of influence of the vortex sheet, as shown in figure 27, for
example, In all these cases, the points T and T' are on the geo-
metrical locus of F¥ = O, The curve F¥ = 0 may also be shaped convex
downstream and not as shown on the figures.

Let us write the equation for the geometrical locus F% = O.

iinsrecion’ 1t

dWl(E)l at

) M- )y - (o]

F*(XJY) =

{ m][ Wl r avp(x) | [x - ]
Ve - (@) o [\ - e

(24.11)
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In region IV:

) = L - : -
W @ G- aOp - wE)]
o anp(x) | [ x - v¥px)]
gJLl B }/ T =0 (24.12)

In region V:

1l
(@)

F¥(x,y) = ﬁi[xe(x)] - %(¥) (24.13)

If the side edges of the wing are lines parallel to the free stream
direction or the wing is such that E and D (E' and D' correspond-
ingly) coincide, then F¥* = O takes a simple form. In region V it is
not changed, but in regions II and IV, we have, respectively, in place
of equations (24.11) and (2k.12)

F* = ¥y [lp(x)] - ¥(y) =0 (24.1%)
and
F* = ¥ [, (x)] - X(y) =0 (2k.15)

Tn all cases when the pressure difference on the wing, according to
equations (24.2) to (24.9), is expressed only by means of curvilinear
integrals taken over L of the wing contour, it 1s easy to construct the
zero-pressure curve graphically, keeping in mind that the zero-pressure
curve in these cases is the geometrical locus of such points M on the
wing surface for which the points M3 and M, on the wing contour coin-

cide., That is, the arc on the leading edge over which the curvilinear
integral is taken shrinks to a point.

We construct the zero-pressure curve as follows: From each point
Ny on the leading edge we draw the lines Ngl; and NgN> parallel to

the coordinate axes intersecting the side edges ED and E'D' as shown
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in figures 29 and 30, or the trailing edges as shown in figures 31 and 32,
From the points of intersection Ny and Ny within the wing again we

draw lines N{N*¥ and NoN* parallel to the coordinate axes. The geo-

metrical locus of N¥, where these lines intersect, is the desired zero-
pressure line.

For example, for a symmetric wing, if the side edges ED and E'D!
are parallel to the stream, the zero-pressure curve passes through G
and G' and is the line equidistant from the leading edge (fig. 36 ) s
The points G and G' are shown on figures 29 to 32. If E and D3
Btoemd "D, correspondingly, coincide and the trailing edges are straight
lines then F* = O passes through G and G' and is the curve obtained
by inverting the leading edge E'E relative to the center of inver-
sion O*. The center O0* 1is the point of intersection of the trailing
edges (fig. 31).

If the wing is asymmmetric and if the side edges ED and E'D' are
parallel to the free stream then the zero-pressure curve is the reflection
of the curve equidistant to the leading edge and passing through G and
G', relative to the line equidistant from the side edges (fig. 29). If
the points E and D, and also E' and D', coincide and the trailing
edges are straight lines making identical angles with the stream then the
geometrical locus F¥* = O 1is the reflection of the curve obtained by an
inversion, with center 0%, of the leading edge and passing through the

points G and G' relative to the line equidistant from the side edges
(fig. 32).

3. All the obtained results are generalized to the case when the
leading edge E'E is given not by one equation Y = wl(x) but consists of
segments of smooth curves given by y = Wlk(x), e e ke =R O i et

with n any integer. In such cases the surface and contour integrals in
the formulas for the pressure should be divided into component parts for
the actual evaluations.

The side, ED and E'D', and trailing, DT' and D'T, edges may
also be piecewise smooth.

The same generalization holds for the previous three sections.

4. All the results are generalized in the case of the asymmetric .
flow over a wing which occurs, for example, in the motion of a yawed wing.

Let us consider a wing of arbitrary plan form with an angle O
yaw 7 as shown in figure 33.
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The pressure on the wing can be computed by the same formulas if
the equation of the arc Ep'Ep, in the coordinates transformed to the

origin 0, is taken as the function y = yp(x).

The equation of EgDgp (correspondingly Eu'Dy') is vy = v(x). In
this case EpDy acts as the wing tip.

Finally, for the trailing edge, DOTO, we have the equation y = X(x)
(correspondingly for Dg'To').

5. As is known, knowing the acceleration potential or the velocity
potential on the wing surface, we can easily compute the aerodynamic
forces on the wing.

In order, we represent the aerodynamic-force formulas using the ori-
ginal coordinate system shown in figures 1 and 2.

The 1ift P on the wing is

P=2p ff oo (x,y) dx dy (24.16)
E

where the region of integration in x is defined by Vo(y) £ x S X (y)

and yp' Sy < yp where x = Vo(y) is the equation of D'E'ED and
x = X1 (y) 1is the equation of the trailing edge D'TT'D (figs. 27 and 28).
The limits yDl and yp are respectively the coordinates of D' and D
of the wing.

Since according to linearized theory @O(x,y) =u B@q/ax then

integrating (24.16) over x and keeping in mind that the velocity poten-
tial is zero on D'E'ED from conditions (1.11) and (L.12) of part I,
the 1ift is

P = 2pu fyD CPO[X]_(Y),Y]dY
yDl

If the tralling edge is piecewlse smooth, then in actual computa-
tions the contour integral must be divided into its component parts.
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The expression for the moment Mby due to 1lift relative to the

Oy-axis is

Moy = 2p k[/@()(X;Y)X dx dy (2k.17)
bH

The moments relative to the other axes have the same form.

6. The explained theory can be generalized to the case of the flow
over a tail or over a biplane in tandem.

We proceed as follows to obtain formulas to compute the pressure on
the tail taking into account the influence of the wing.

Express qox + gy at M(x,y) on the tail using the basic formula
(21.1). In the expression for u, + Poy under the integral sign insert
g+ 9y on the vortex sheet. The function Iy + ﬁy
Abel integral equation which is constructed by the method of section 3.

is found from the

In the case of flow over the tail the different characteristic
regions on the tail must be separated just as was done in figures 27 and
28 for the uniform motion over a wing.

Only in this case, to divide the tail surface into regions, there
must be taken into account, on the one hand, the wing effect and on the
other hand, the tip effect and also the effect of the vortex sheet of
the tail itself,
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APPENDTX
EXAMPLES

The following examples, solved by N. S. Burrow and M. M. Priluk,
will serve to illustrate the methods explained before.

A. Arrow-Shaped (or Swallowtail) Wing

Let us consider the arrow-shaped (or swallowtail) wing plan form
where the leading edges are formed by the segments AD and AD' and
the trailing edges by the segments DB and D'B as shown in figure 34,
Let the following geometric parameters be given: ©&; the angle between
the leading edge and the free-stream direction; &, the angle between
the trailing edge and the free-stream direction and 1 +the wing semispan.

The equations of the wing leading edges in the x,y characteristic
coordinates with origin at O are

line AD
ik
Vet = 1l -~ cot a* tan &7)x7 + 21 cot o*
L7 1+ cot o* tan 51 ( 1)1
line AD'
¥y 1 (1L + cot a* tan 8;)x; - 21 cot o¥

o cot a* tan 81

and the trailing edge equations are

Tine DB
L |
V. = 1 - cot o* tan d,)x7; + 21 cot a¥
17 1+ cot a* tan 5, ( 2)%1 J
line D'B
¥y = 1 (l + cot a* tan Sg)xl - 21 cot a%
1l -~ cot a* tan &p

where the angle a* 1s the semispex angle of the characteristic cone.

Let us consider the wing for which &; > a* and & > o*; that is,
a wing surface not affected by the trailing vortex sheet,
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We will assume that the wing surface is a plane inclined by an

op
angle By to the free-stream direction. Therefore, the derivative L
Z

will be a constant everywhere on both sides of the wing surface and will
be given in the form

o0,
SEQ = - uBy tan o¥ (A1)

In conformance with the method we divide the wing surface into the
three characteristic regions Ia, Ib, and Ic, with each region having its
own analytic characteristic solution and taking into account the angular
point A of the leading edge (fig. 34), Let us compute the stream
pressure on the wing surface in each region.

Using the formula (5.9), we find the pressure in the regions Ia and Ib,
lying outside the characteristic cone from A, to be

2
2u=p
P = __—-Eg— = QuQDBO tan o* (A2)

’E; ia
al
This formula shows that the pressure in regions Ia and Ib is a constant.

In region Ic, lying inside the characteristic cone from A, we find,
by using the same formula, the pressure to be

2ul tan & ) 1|1 - cot a* tan 8] 1 cot B; - x
p(x,y) = PPo 1L 2 gard ! L - L,
JEBtE a* tan2 & - 1 x Vl + cot a¥* tan 8 y; - 1 cot &
1 + cot a* tan 8 1 cot & - x
2 ta_n-l[ L Lk (a3)

Vl - cot o* tan 8y y3 - 1 cot By
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Tn the original coordinate system shown in figures 34 and 35, (A3)
becomes
2u2pBo tan &7

p(x,y) = X
Jeot2 a* tan? & - 1

o 1 [1 - cot o¥ tan &) 1 cot &) - x + y cot a¥
1l - & tan +
s 1 + cot o* tan d7 y cobt a* + x - 1 cot &

1l + cot a* & 1. cOG By =X & t a¥
2 tan’l cot a¥* tan &1 1 =X+ ycota (Ak)
x 1 - cobt a* tan 8 y cot a¥ + x - 1 cot &

These formulas show that the pressure is constant along each ray from A
in region Ic.

Shown in figures 36 and 37, respectively, are the pressures along a
section Aq1B parallel to the y-axis and along the section ApB, par-

allel to the x-axise.

The 1lift P of the considered wing is

P =

2u2p[307,2(ta.n 81 - tan 82) o 2 Py \/co‘b a¥* tan 8, - 1 g
T

ta-n 82Jgot2 @* 'tan2 51 - cot (Ia* tan 51 + L

2 tan 8 - tan &, tan=l ’cot a¥* tan 57 + 1 H
T tan 81+'b8.'ﬂ 62 cot o* tan 51—1
tand & cot a¥ tan &, - 1
% : tan—l\/cot * % 52 + 1 (A5)
tan &7 (tan® &1 - tan? &p) o B i

The 1ift coefficient C, 1is

LR~ tan & .1 Jcot a¥* tan &
C, = Bo L 1l - % tan 1 TN 51 i +
Jcotg a¥* tan? 5 - 1 M i

1
—

-

A

d7 - tan cot o* tan &7 + 1
i tan O3 [o)e) tan-1 J it
T tan d; + tan &5 cot o¥ tan 81 - 1

1. [cot a¥ tan & - 1
cot o¥ tan 5o + 1

16BO ta.n2 82

tan

n(tan 57 + tan 82)Jéot2 a* tan® &, - 1
(46)
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As is well known, the wave drag coefficient Cx is related to the 1lift
coefficient through Cy = BpC,.

Let us consider particular cases of (A6). In the limit as 81~e~%,

we obtain for the triangular wing
C, = 4By tan a* (a7)

the well known resultn for the 1ift coefficient of a triangle.

Comparing (A6) and (A7) we conclude that for identical wing speeds
and identical angles of attack the 1ift coefficient of the arrow-shaped
wing exceeds the 1lift coefficient of the triangular wing.

In the particular case when ©&p = 81, we obtain the infinite span
arrow-shaped wing. In the limit as 8,—>®; (A6) yields

CZ=

VéotE a¥* tan? &7 - 1

This result shows that the lift coefficient of an infinite span arrow-
shaped wing equals the lift coefficient of an infinite span slipping
wing with slip angle 8j.

Formula (A6) shows that with increasing 51 and &5, the angles

between the leading and trailing edges and the free stream, respectively,
the wing 1ift coefficient decreases. The dependence of C, for an

arrow-shaped wing on ®; and %, is shown in figures 38 and 39.

B, Semielliptic Wing

Let us consider the wing plan form which is half an ellipse as shown
in figure 40. Let the semiaxis a; and b; of the ellipse be given.
Let us assume that the wing moves, as shown in the figure, in the direc-
tion of the axis of symmetry.

hSee the work of M. I. Gurevich: On the Lift of an Arrow-Shaped -
Wing in Supersonic Flow., Prik. Mate. Nekh., Vol. X, No. 4, 1946,
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The equation of the leading edge, the line D'D, in characteristic
coordinates with origin at O is

T

and the trailing edge equation in these same coordinates is

§§l2 . bl2 cot? a*)xl t 2a1b; cot a*JélQ + b2 cot2 a* - x12

il
a12 + b2 cotl o*

In the original X,y coordinates the trailing edge equation is

2 - x2
R e - (B1)
il

The plus sign relates to the arc CD of the ellipse and the minus sign
to the arc CD'.

Let us assume that the wing surface is a plane inclined at an angle

o0

Bop to the free-stream direction, therefore the normal derivative a0
wl

as given by (Al).

Let us consider the flow around the semiellipse when the character-
istic cones from D and D' intersect on the wing surface. In con-
formance with the method we divide the wing surface into the four
regions I, VI, VI', and V. Region I is outside the characteristic cones
from D and D', hence the vortex sheet trailing from the wing exerts
no effect here. Region VI is within the characteristic cone from D
but outside the cone from D', Conversely, VI' is within the cone
from D' and outside the cone from D. Region V, however, falls within
both the characteristic cones from D and D'.

Using the formulas, we compute the pressure in each region on the
wing surface. The pressure in I is constant everywhere and expressed
by (A2). In VI the pressure distribution in the x,y coordinates is

given by

D = ungo tan a¥* x

* * 2
- AP cot a Bly + B2fl + 2albl cot o WBl fl ()

7 =
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where

a12 + bl2 cot? a*, £y =X +y cobig®

L

1l

By = 832 o ;% cot? o¥

Similarly for region VI'. The pressure distribution in V is

2u2030 tan o

ok, y) = e x

: 2
el tia* ' + Bofq + 22,b7 cot a¥By - f
{—sin‘l By ofy 101 yB1 L]

xBy

2
Siph cot ao¥ Bly + Bof, - 2aiby cot a*}Bl - o

= (B3) :

where f5 =x - y cot a* and By, By, and f; are as defined in (B2).
Graphs of the pressure distributions along the respective sections AjBqg
and A5B, parallel to the y-axis are given in figures 41 and 42 and
along the corresponding segments A5B3 and A4B4 parallel to the

x-axis are shown in figures 43 and 44. Spanwise section lines A;Bg
and A B, are shown in figure 45; whereas chordwise section lines A_B

22 S
and A)B) are shown in figure LO.

If the semiaxis of the ellipse are given in a special way; namely,
if there exists between the semiaxes the relation aj = by cot o¥*, then

formula (B2) for the pressure distribution in region VI simplifies,
becoming

cot o®* ¥ + /éal2 - (x + cot cx,*y)2

p(X7Y) = uzpﬁotan ¥l - % sin-l =

(B4)

This corresponds to the case where the characteristic cones with apexes

at D and D' intersect the wing tralling edge on the axis of symmetry <
of the wing at the point C; consequently the region V on the wing now

vanishes.
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In the general case for the flow around a semielliptical wing, it
may be shown that on the surface of the wing in region V, there exists
a certain curve along which the pressure difference between the upper
and lower surfaces of the wing reduces to zero. Downstream from this
curve on the surface of the wing the pressure difference becomes nega-
tive. We find the equation for this line of zero pressure by equating
the right side of (B3) to zero.

2 cot? a*)z )-l-ale‘b 2

i
(alZ + bl2 cot?2 a*)h + (a12 - by 1 cot® afjxg +

[(?12 = bl2 cot? a*>2 Mal2b12 cot¥ a* + 16a,ll*bl2 cot6 a;]y2

= Malebl2 cot2 a* (al2 - bl2 cot? a*>2 <a12 + bl2 cotgaf>
After obvious transformations, we represent the desired geometric locus

in the following final form

2 2
N Y, (B5)
TR 2

by

where

Ealb:L cot a* a12 = bl2 cot?2 o*

a2=
) 2
/312 + by cot? o* cot a*/gl + b12 cot?2 o*

(B6)
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These results show that the zero-pressure line is the arc of an ellipse
with semiaxes ap and bp related through (B6) to the semiaxes a1

and by of the arc of the ellipse which is the wing trailing edge. The
directions of the semiaxes ap and bp coincide with those of the semi-

axes &5 and bl. In order that the zero-pressure line should not pass

through the wing surface, the elliptical arc forming the trailing edge

of the wing should not have a real point of intersection with (B5), which
determines the zero-pressure line. Comparing (B1) and (B5) we obtain the
following result. In order that the zero-pressure line, of a plane wing
of semielliptic plan form moving at the supersonic speed u, should not
pass through the wing surface, it is necessary and sufficient that the
geometric parameters of the wing satisfy the condition

a < /3 by cot a¥ (BT)

Constructed in figure 46 is an isometric view of the pressure on a
semielliptic wing in the general case when (B7) is not fulfilled and
there exist the regions I, VI, VI', V on the wing.

C. Hexagonal Wing

Let us consider the wing of hexagonal plan form shown in figure L7,
Let the leading edges be the lines OEl, and OEl', the side edges ElD

and E;'D' parallel to the free stream, and the trailing edges DB and

D'B. In characteristic-coordinate space, the wing has plan form as shown
in figure 48.

Let'us assign the following geometric parameters: o — the angle
the leading edge makes with the free stream; 9 — the angle the trailing
edge makes with the free stream; 1 — semispan and h chord,

Let us consider that wing for which o > o¥*, y > a*. The first
?nequality means that the wing surface extends outside of the character-
istic cone from O. The second inequality means that the wing surface
is outside the sphere of influence of the trailing vortex sheet.
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The equations of the lines forming the wing contours are: the
line OEl

Y = X ban¥a

or in characteristic coordinates

BIH

where

1 - cota* tdn o
1l + ctg a* tg o

here m< O, since ® > a*; the line OE;’
y=-xtan o and Yy, = mx,
the line E;D
y=1 and yj = x + 2 cot a¥l
the line E;'D'
y=-1 and y; =X - 2 cot a¥l

the line DB

V== x van 7+ h tan 'y and iyq = L x +n
17 m il it




ok

and finally D'B

y = x BHan y - h tan ¥y

where

_ 1 + cot g* tan ¥
1 —lcot o* tan ¥

2h cot o* tan Yy
N —Seot o i e tant

I12=

NACA T 1383

and Y1 = mXy ch no

_ 2h cot o* tan 7y
1 + cot o* tan y

2L

In conformance with the method we divide the wing surface into the

13 characteristic regions shown in

Assuming that the surface of the wing is a plane, we give the stream-

figure 48.

line condition in the form (Al) and we compute the pressure in each

characteristic region. We produce

below the results of computing the

pressure on the wing surface as formulas already transformed back to the

original coordinate system.

The pressure in Ia and Ib
In Ic the pressure is

2
2u PRy

p(x,y) =

'\ - m cot a*{ o

is constant and expressed by (A2).

5 *
L 4+ tan-1 L /x SeaTa Y

/ =rm X coia ity

(c1)

cot a* y}

- tan~1 - m /;;

Hence it follows that the pressure
Rromt IO e T ¢ ks,

cot @ ¥

is constant along each ray starting

2608, (1 - m)

2 cot a¥* (1 «3)

p(X)Y) =
it - m cot a¥*

an-l
(m - 1)(x + cot o* y) + 21 cot a*

(c2)
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T IHEED
ou T
plo) « 20D [y o Ty
g V= T cotl oF I(““_mx+ cot a* y
2 cot.ok(ETi=
tan-1 ( y) =
(1 - m)(x + cot a* y) + 21 cot o*
X - cot a* y
tan-l /= m (6
an o y} (c3)
in L TEEe
21120[3 (L - m)
e 25 & 0 tan-1 2m cot a*(y - 1)
g % f- m cot a* (L - m)(x + cot a* y) + 2ml cot o
(ck)
I e
2‘12930(1 - m) 5 i s 2m cot a*(y - 1)

p(x,y) = tail !
Tl m oot o (1 - m)(x + cot a* y) + 2ml cot o*
brnTL (1 - m)(x - cot a*y) - 27 cot a*]r (c5)

2 cot a*(1 + y)
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In IIb
ouPpBo(1 - m)
BfoL e I 4] ok e~ cob a¥ ¥
Pl 7} = tan L
/- m cot a® [- ml/ X+ cota™y
* k.
il 2 cot o*(1 - ¥y) N
(L - m)(x + cota* y) - 21 cot a*
ol /(l - m)(x + cot o¥ y) - 21 cot a*
2 cot a*x(1 + )
=qk X = cota® ¥
% l/- m c6
an /; + cot a* y} ee)
ngililic
21)'2‘0[30(m - 1) (L - m)(x - cot a* y) + 2ml cot a*
P(X,Y) = tan - - £

b J— m cot a* J -m 2 cot a*(1 + y)

i X =L ok o x - cob a* y
tan + tan V" m =
/- mix + cot a* y X + cota* y

* -
tan~1 [~ m 2 cot o*(1 - ¥) (c7)
(L - m)(x + cot a* y) + 2ml cot a*

Formulas for the pressure distribution on the wing surface in
regions IIIa', IIIb', IIIc', and ITa' may be obtained from (C2), (C3), (C4),
and (C5), respectively, if coordinates appropriate to the specific
regions are chosen,

The formulas for the pressure show that there is a zero-pressure
line on the wing surface, downstream of which the pressure difference
below and above the wing becomes negative. This line is formed of the
two segments KN and KN' the equations of which are
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Yy =X tan & - 21 tan o¥ tan o Yy =-x tan 8 + 21 tan o* tan o (C8)

and which are parallel to the leading edges E10 and E;'O.

The zero-pressure line may easily be constructed graphically.

Graphical representations of the respective pressure distributions
in the sections A1B;, ApBp, AzBz, AyB), and AsBs parallel to the
y-axis are given in figures 49, 50, 51, 52, and 53.

An isometric pressure surface is shown in figure 54 for the
hexagonal plane wing.

Translated by Morris D. Friedman
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Figure 5.
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Figure 9.
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Figure 14.
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Figure 29.
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Figure 30.

Figure 31.
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