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FINITE SPAN WINGS IN COMPRESSIBLE FLOW* 

By E. A. Krasilshchikova 

This work is devoted to the study of the perturbations of an airstream 
by the motion of a slender wing at supersonic speeds. 

A survey of the work related to the theory of the compressible flow 
around slender bodies was given in reference 14 by F. I. Frankl and 
E. A. Karpovich. 

The first works in this direction were those of L. Prandtl (ref. 4) 
and J. Ackeret (ref. 23) in which the simple problem of the steady motion 
of an infinite span wing was studied. Borbely (ref. 25) considered the 
two-dimensional problem of the harmonically-oscillating nondeformable 
wing in supersonic flow by using integrals of special types for solutions. 

Schlichting (ref. 24) considered the particular problem of the flow 
over two-dimensional rectangular and trapezoidal wings. To solve this 
problem, he applied Prandtl's method of the acceleration potential which 
he looked for in the form of a potential of a double- layer. However, as 
shown later, Schlichting made an error and arrived at an incorrect result. 

In 1943, Busemann (ref. 26) proposed the method of solving the prob­
lem of the conical flow over a body by starting from the homogeneous 
solution of the wave e~uation. This method was modified by M. I. Gurevich 
who, in references 11 and 12, solved a series of problems for arrow-shaped 
and triangular wings when the flow, perturbed by the wing motion, is 
conical. The work of E. A. Karpovich and F. I. Frankl (ref. 13) was 
devoted entirely to the problem of the suction forces of arrow-shaped 
wings. 

In 1942, at a hydrodynamics seminar in Moscow University, Prof. L. I. 
Sedov proposed the problem of the supersonic flow over slender wings of 
finite span of arbitrary plan form. 

In response to this proposal of L. I. Sedov, there appeared in 
1946-47 a series of works by Soviet authors on the ~uestion of the super­
sonic flow over wings of finite span. 

The first work in this direction was our candidate's dissertation 
(ref. 5), in which we found the effective solution for a limited class 

*Scientific Records of the Moscow State University, Vol. 154, 
Mechanics No.4, 1951, pp. 181-239 . 

The appendix represents a condensation made by the translator from a 
" f' " document Modern Problems 0 Mechanlcs, Govt. Pub. House of Tech. Theor. 

Literature, (Moscow, Leningr ad) 1952, pp. 94-112. 
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of harmonically-oscillating wings. In reference 6 we solved the problem 
for wing influences by "tip effect." Later works (refs. 15, 16, and 17) 
were devoted to the same problem. 

In reference 6, using an idea of L. I. Sedov as a basis, we reduced 
the problem of the influence of the tip effect on harmonically-oscillating 
wings to an integral equation. 

The question of the flow over wings of finite span remained open for 
some time. 

At the start of 1947, there appeared works in which different methods 
were proposed for solving the tip effect problem which would be applicable 
to any particular wing plan forms. In reference 18, M. D. Khaskind and 
S. V. Falkovich solved the problem, in the form of a series of special 
functions, for a harmonically oscillating triangular wing. Later, 
M. I. Gurevich generalized this method (ref. 19). In reference 20, 
L. A. Galin reduced the problem of determining the velocity potential of 
an oscillating wing to the problem of finding the steady-motion velocity 
potential and gave a solution, in series, for the velocity potential of 
a rectangular, oscillating wing cambered in the direction of the oncoming 
stream. 

The methods, proposed by different authors, for solving the problem 
of the flow over wings of finite span do not permit the solution of the 
problem for any finite-span wing and may only be applied to a limited 
class of wings. 

Parallel developments in this direction were made by the foreign 
authors Puckett (ref. 21) and Von Karman (ref. 22) who solved the problem 
of the steady flow over finite-span, syrnmetrica] wings at zero angle of 
attack. As is known, such wings produce no "tip effect" and the study 
of the pe"rturbation of the airstream by their motion presents no mathe­
matical difficulties. 

In references 6, 7, and 8 we proposed a method of solving the finite­
span wing problem by constructing and solving an integral equation which 
considered the wing plan form in both steady motion and oscillating 
harmonically. In reference 9 we generalized the problem to more general 
forms of unsteady wing motion by the method of retarded source potentials. 

Introducing characteristic coordinates we solved the integral equa­
tion for wings of arbitrary plan form and represented the solution for 
steady wing-motion in quadratures and for the harmonically-oscillating 
wing in a power series of the parameter defining the oscillation frequency. 

The present work is a detailed explanation and further development 
of our papers (refs. 6 to 9) which were published in the Doklady, Akad. 
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Nauk, USSR. In this work we propose an effective method of solving 
aerodynamic problems of slender wings in supersonic flow. 

All the results and problems explained in this paper were reported 
by the author in 1947-48 to the USSR Mechanics Institute, V. A. Steklov 
Mathematics Institute, Moscow University~ etc. 
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In the first part of the work we find a class of solutions of the 
wave equation, starting from which we obtain the solution to the problem 
of determining the velocity potential of some wing plan form in unsteady 
deforming motion. The obtained solution contains the solution of the 
two-dimensional problem as a special case . In the same part of the work, 
we solve in quadratures the problem of steady supersonic flow over a 
wing of arbitrary surface and plan form. The effective solution for 
wings of small span is similarly given. We obtain formulas determining 
the pressure on the wing surface in the form of contour integrals and 
integrals over the wing surface. 

The author thanks L. I. Sedov for reading the manuscript. 

PART 11 

1. SETTING UP THE PROBLEM 

1. Let us consider the motion of a thin slightly cambered wing at 
a small angle of attack. 

We will consider the basic motion of the wing to consist of an 
advancing, rectilinear motion at the constant supersonic speed u. Let 
be superposed on the basic motion, a small additional unsteady motion in 
which the wing surface may be deformed. 

Let us take the system of rectangular rectilinear coordinates Oxyz 
moving forward with the fundamental wing velocity u. The Ox-axis is 
directed opposite to the wing motion and we take the x,y-plane such that 
the z coordinates of points on the wing shall be small (figs. 1 and 2). 

We will consider the normal velocity component on both sides of the 
wing surface to be given by 

(1.1) 

lResults of Part I, sections 6 and 7 were found by the author in 
May, 1947 at the Mathematics Institute, Akad. Nauk, USSR. 
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The first component defines the wing surface 

AO = - ul3o (1.2) 

where 130 is the angle of attack of a wing element . The second compo­
nent defines the additional unst eady motion of the wing. The functions 
AO and Al and ~ are considered given at each point of the wing 

surface. 

We will assume that the fluid motion is irrotational and that there 
are no external forces . 

The velocity potentia l of the perturbed stream cp(x,y,z,t) is 
represented in the form 

cp(x,y,z,t) = CPO(x,y,z) + CPl (X,y,z,t) 

where the potential CPo 
wing and the potential 

corresponds to the basic steady motion of the 
CPl cor responds to the additional unsteady motion. 

Thus the projections of the velocity v of the fluid particles on 
the moving Oxyz coordinates are determined by 

o CPo o~ 
Vx = -- + --, 

Ox Ox 
o CPo oCPl 
-- + - -, 
dy dy 

Ocpo . o~ 
V z == -- + 

oz oz 

The functions CPo and CPl and their der ivatives will be cons i dered 
first - order ~uantities and second- order quantities will be neglected. 
With these assumptions it is known that the potential <Pl satisfies the 
wave equation which in the moving axes is 

(a2 _ u2 ) 
02cp 2 02CPl 

a2 02~ _ 02CPl _ d2~ __ 1 + a --+ 2u -- 0 
ox2 ()y2 oz2 ot2 otox 

(1.4) 

-
and the potential CPo satisf ies 

(a2 _ u 2 ) 
02cp 

a,2 
02cp 2 02cpO __ 0 + __ 0+ a -- = 0 

ox2 oy2 oz2 

where a is the speed of sound in the undisturbed stream. 

A vortex surface, called the vortex sheet, trails from the side of 
the wing surface opposite to its motion. Just as on th~ wing surface 
the velocity potential undergoes a jump discontinuity on this sheet. 
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We represent the projection of the vortex sheet on the x,y-plane as the 
semi-infinite strip ~l (fig. 1) extending along the x-axis to infinity 
from the trailing edge of the wing. 

Let us establish the boundary conditions which the functions ~O 
and ~l satisfy. 

Let us transfer the boundary conditions on the wing surface parallel 
to the z-axis onto the projection ~ of the wing on the x,y-plane, 
which is equivalent to neglecting second-order quantities in comparison 
with first-order ones. Therefore on the basis of equation (1.1) we obtain 
the streamline condition 

(1.6) 

which must be fulfilled on both the upper and lower sides of ~. 

The kinematic condition, which expresses the continuity of the normal 
velocity components of the fluid particles, must be fulfilled on the dis­
continuous surface of the velocity potential and on the vortex sheet. 

We transfer the condition on the vortex sheet parallel to the z-axis 
onto its projection ~l on the x,y-plane which is again neglecting second-

order quantities. Therefore we have the conditions 

to be fulfilled on ~l. 

Furthermore, the dynamic condition which the potentials ~O and 

~l satisfy must be fulfilled on the vortex sheet. 

Since the pressure remains continuous on crossing from one side of 
the vortex sheet to the other, then from the Lagrange integral 
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Keeping equation '(1.3) in mind and neglecting second-order quantities, 
we obtain 

fOCPl + u oCPJ = fO'Pl + u oCPll (1. 8) 

l~t Ox J z=+o ~t Ox J.z=-O 

which must also be fulfilled on Ll. 

After boundary conditions (1. 6) and (1.7) are established, we 
correctly consider that, to the same degree of approximation, the surface 
of discontinuity of the velocity potential - the vortex surface - lies 
entirely within the x,y-plane. Therefore, the functions CPo and 'Pl 
are odd functions in z 

Cj)o(x,y,-z) = -CPO(x,y,z), 

Combining equations (1.8) and (1.9) we conclude that the functions 
CPo and CPl satisfy the respective conditions 

0, 
OCPl oCPl 
-- + u -- = 0 on L 1 
ot ox 

(1.10) 

Since the motion of the wing is supersonic, the medium is disturbed 
only in the region bounded by the respective disturbance waves represent­
able by a surface enveloping the characteristic cones with vertices at 
points of the wing contour. Ahead of this surface - in front of the wing -
the medium is at rest, therefore, the velocity potential is a constant 
which we assume to be zero. Hence we have the condition on the disturb­
ance wave 

0, o (1.11) 

The potentials CPo and 'P1 are continuous functions everywhere 

outside the two dimensional region L + Ll and, as was established, are 

odd in z, therefore, in the whole x,y-plane outside of the region L + Ll 

where the medium is perturbed, the following conditions are satisfied: 

0, o (1.12) 
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The region where equation (1.12) is satisfied is denoted in figure 1 
by 2::2 and 2::2 r • 

Thus the considered hydrodynamic problem is reduced to the following 
two boundary problems : 

I. To find the function ~l(x,y,z,t) which satisfies equation (1.4) 

and boundary conditions (1.6), (1.10), (1. 11), and (1.12). 

II. To find the function ~O(x,y,z) which satisfies equation (1.5) 

and boundary conditions (l.6), (l.lO), (l.ll), and (l.l2). 

Since the functions ~O and ~l are antisymmetric functions rela­

tive to the z = 0 plane, it is sufficient to solve the problem for the 
upper half plane. From the solution of boundary problem I it is possible 
to obtain the solution of II if the function f in the first be considered 
a constant equal to unity, and AO replaces Al' 

2. VELOCITY POTENTIAL OF A MOVING SOURCE WITH VARIABLE INTENSITY 

1. Let us construct a solution of equation (1.4) as the retarded 
potential of a source moving in a straight line with the constant velocity 
u and having an intensity which varies with time according to fl(t). 
Let us consider the infinite line along which, at each point from left 
to right, sources with velocity u start to function one after the other 
with the variable intensity q = fO(t - tl)fl (t). The law of variation 
of the function fO is the same for all the sources if the initial 
moment of each source is considered to be the moment when it came into 
b . 2 elng. 

The function fl has the same value for all the sources at each 
instant. Let a source at an arbitrary point of the O'x'-axis be acting 
at time tl (fig. 3) . The retarded potential of the velocity at the 

point M as a result of such a system of sources is represented in the 
fixed coordinates by 

tl" fO G - tl - iJfl G - iJ 
"A h

1
, ------r------ dtl 

r = V(x' + ut)2 + y,2 + z,2 (2.1) 

2prandtl (ref. 3) considered an analogous problem with q = fO(t - tl)' 
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where A is a constant with the dimensions of a velocity. The limits 
of integration tl' and tl" take into account those sources which 
affect M at time t. The origin of the fixed coordinates 0' is 
placed at the point at which the source started at t = O. 

Introducing the new variable of integration T = a(t - tl) - rand 
transforming to the coordinate system x = x' + ut, y = y', z z' 
which is moving forward in a straight line with the velocity u, we 
transform equation (2.1) into 

<I>*(x,y,z,t) (2.2) 

If it is assumed that u > a then the velocity potential at M(x,y,z) 
is the sum of the expressions (2.2), with the minus sign in front of the 
radical taking into account the effect of the sources in the strip AC 
on M and with the plus sign taking into account the sources on CB. The 
smaller root of the radicand is taken as the upper limit of integration 
Tl. It is easy to see that in this case both roots are real, positive 
quantities (fig. 3). 

On the basis of expression (2.2) we now construct a velocity potential 
at M from the sources moving with speed u > a which have an intensity 
which varies with time as fl(t). The derivation remains valid if the 
additive constant al is added to the argument t of the function fl. 
Putting the sources at the origin, we find the velocity potential from 
equation (2.2) by considering the interval of integration from 0 to Tl 

to be vanishingly small. Then, neglecting the term (~)T and putting 

rTl 
~ J

o 
fO(~)dT = C where C is a constant, we obtain the desired solu-

tion for equa:tion (1.4) in the general form 

fl{t + al -
u2 

cp*(x,y,z,t) = C 

ux a x2 - (~! - 1) (Y2 + Z2)} 
- a2 u2 - a2 

+ 
x2 _ (~ - 1) (y2 + z2) 

a2 I 

ux a 
x2 - (:~ _ 1)(y2 + Z2)} + 

- a2 u2 - a2 
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Let us note that each component of the arbitrary function fl as 
well as the constant C and ~l in equation (2.3) is separately also 
a solution of equation (1.4). 
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In equation (2.3) putting ~l = 0 and the velocity of motion of the 
source u = 0, we arrive at the well-known solution f or a spherical wave. 

If the velocity of motion of the source is u < a then to obtain 
the retarded potential of a moving source the right side of equation (2.3) 
must be limited to the first component. 

Considering the function fl in equation (2.3) to be constant, we 
arrive at the Prandtl (ref. 3) solution for the retarded potential of a 
moving source of constant intensity 

2. It is possible to obtain, by the same method, the velocity 
potential of a source with the variable intensity fl(t) moving 
arbitrarily. 

For example, in the case of rectilinear motion of the source when 

dFl(t) I the motion is given by X = Fl(t), Y = 0, Z = 0 and when > a, 
dt 

that is, the motion of the source is supersonic, the velocity potential 
of the source at the origin of a coordinate system moving with the source 
is 

(2 .4) 

where the parameters tl = tl(X,y,z,t) and tl* = tl*(X,y,z,t) are 
real roots of 

o 
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If ~l(t)/dtJ < a) i.e.) the source velocity is subsonic) then to obtain 

the velocity potential one must be limited to the one component in equa­
tion (2.4) which corresponds to the smaller of the values of the parameters 
tl and tl*· 

The function expressed by equation (2.4) satisfies the linear equa­
tion with variable coefficients 

f 
l 

If the source moves with constant acceleration as 

(where b is a constant) then equation (2.5) is an algebraic equation 
of the fourth degree in tl with two real roots. 

Formula (2.4) contains the Lienard-Weigert (ref. 27) formula as a 
special case when the source intensity is constant. 

3. DERIVATION OF THE BASIC VELOCITY POTENTIAL FORMULA 

1. We apply a solution of the form (2.3) of the wave equation (1.4) 
to the above- mentioned boundary problem I. 

(2.6) 

At each point of the x)y- plane let us place sources with the poten­
tial ~*. Hence) we will consider C and ~l in equation (2.3) functions 
of points of the x)y-plane and we will replace ~l by ~ and fl by f. 

As a consequence of the linearity of equation (1 .4)) its solution 
is a function ~l expressed by 

where k I~ V-;2 - 1. 

(3.1) 
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The region of integration S(x,y,z) is that part of the x,y-plane 
which lies within the characteristic fore-cone of equation (1.4) from 
the point with coordinates x,y,z (fig. 4). 

The solution of equation (3.1) will give the velocity potential 
arising from the additional motion of the wing if C(x,y) is determined 
from the boundary conditions of the problem on the x,y-plane. 

Let us introduce the new variable of integration e into equa­
tion (3.1) in place of ~ 

Then equation (3 .1) becomes 

CI\(x,y,z,t) = J J c{~,y 
S(x,y,z) 

f {t + ct ~ ,y - f V( x cos oaJ -

f{t + ct~,y - ~ V(x - ,)2 - k
2

z
2 

cos aJ -

sin a} dad, 
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Let us note that for any point 
to isolate from the region S(x,y,z) 
able of integration has the limits 

M(x,y,z) of space it is possible 
a region S' in which the vari-

x - kz < ~ < C', 0'£ 8~ 11: 

or 

where C' is a constant satisfying the inequality C' < x - kz. In the 
remaining region S - S' the limits of integration either do not depend 
on z or depend on z only in the combination kz2• 

Differentiating equation (3.4) with respect to z we find the rela­
tion between C(x,y) and ~(x,y) and the normal derivative of the 
velocity potential oCj)ljoz at any point of the x,y-plane 

C(x,y) := _ 1:- ff [t + a.(x,y~ 1 -1 [oCj)ll 
211: ~ I~ oz Jz:=o 

Comparing equation (3.5) with equation (1.6) we conclude that on 
the wing 

i.e., the function C(x,y) is given. 

Therefore, the velocity potential Cj)l may be computed from equa­

tion (3.1) by taking equation (3.6) into account for those points M(x,y,z) 
of space for which the region of integration S(x,y,z) does not extend 
beyond the limits of the wing. 

If the leading and trailing edges of the wing are given by x:= W(y) 
and x:= Xl(y) , respectively, and i~ therefore, Wand Xl satisfy 

- - -------------
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I ~I ~ cot 0,* dy -

dXl (y) I < cot 0,* 

dy 

(where 0,* is the semi-vertex angle of the characteristic cane) on the 
leading and trailing edges of the wing, respectively, then in particular, 
equation (3.1) yields the effective solution of the problem of finding 
the velocity potential ~l everywhere on the wing surface because in 

this case the region of integration S does not extend beyond the wing 
for any point M(x,y,O) on it (fig. 5). 

Also, in particular, equation (3.1) gives a solution of the plane 
problem if G and 0, are considered as functions of one variable -
C = C(x) and 0, = o,(X) - and the variables of integration in the region 
S are considered to vary between 

o < ~ < x - kz 

where and are as defined previously. 

Considering f in equation (3.1) a constant and taking into account 
equation (3.5), we obtain the fundamental formula for the velocity poten­
tial ~O specified by the basic steady motion of the wing 

<Po (x, y, z) = - : S (xl, y f, z) ~:QLo -\-;: 1(======2 ===d 2=Tjd(=~=====2====2==2 
V1X -~) - k Y - Tj) - k z 

Formula (3.10) contains, as special cases, the results of Prandtl 
(ref. 3), Ackeret (ref. 23), Schlichting (ref. 4) when the wing surface 
is a plane and when the leading edge is a straight line perpendicular to 
the free stream. 
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4. HARMONIC OSCILLATIONS OF A WING 

1. Let us turn to the case when the additional motions of the wing 
are harmonic oscillations, i.e., on the wing equation (1.6) is given as 

( ) i[wt + a(x,y ~ 
= R.P. Al x,y e 

where A2(x,y) defines the amplitude and initial 

Using the obvious relation e i8 + e-i8 = 2 cos 8 
basic formula for the velocity potential (3.1) is 

Cj)l (X,y, z,t) 

where 

" = 
and 

:imu 

(4.1) 

phase of the oscillations. 

and equation (3.5), the 
represented as 

(4. 2) 

Keeping the second inequality of equation (3.9) in mind, let us 
compute the inner integral after which vTe obtain a solution of the prob­
l em for a wing of infinite span 

'PJ. (x, z, t) " - ~ e~x IaX

-

kZ {!: t"O e -~'IO [, V(x - ,)
2 -k

2
Z
2] d, 

(4.3) 
where 10 is the Bessel function of zero order. 

By means of equation (4.3) the velocity potential may be computed at 
those points of the x,z-plane for which the interval of integration on 
the Ox-axis does not extend beyond the wing, i.e., at those points of the 
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x,z-plane not 

the function 

affected by the vortices trailing from the wing because 

oCPl is given only on the wing. In order to compute the 
oz 

15 

velocity potential at 

necessary to determine 

any point of 
ocp 
--.1, using 
oz 

the x,z-plane by equation (4.3) it is 

equation (1.8), everywhere on the 

Ox-axis outside the wing. 

Let us express, by equation (4.3), the velocity potential CPl 
any points lying on the Ox-axis outside the wing, which, according to 
equation (l.B), equals on the Ox-axis everywhere outside the wing 

for 

where 

- () ( ) v(x-l) CPl x,t = R.P. CPl 1 e 

v 1m 
u 

(4.4) 

and 2 is the abscissa of the trailing edge. Then we obtain the integral 
equation 

-kiP1 e -~x - t {::It=o e -~, Io {A( x - 'l} a, 
(4.5) 

ocp 
which --.1 satisfies on the Ox-axis outside the Wing. In reference 5, 

oz 
we solved such an integral equation. The inversion of equation (4.5) is 

(4.6) 

where F* denotes the right side of equation (4.5), the known function, 
and where 11 is the Bessel function of first order. 

Therefore, keeping equation (4.6) in mind, we can calculate the 
velocity potential at any point of the x,z-plane by equation (4.3). 
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The problem considered in this section was solved and explained 
in reference 5 from another point of view. 

5. INFLUENCE OF THE TIP EFFECT 

1. To calculate the velocity potential according to equation (3.1) 
and also through equation (3.10) or (4.2) for those points ~(x,y,z) of 
space for which the region of integration S extends outside the limits 
of the wing surface, it is necessary to determine the normal velocity 

ocp 
component --1 everywhere in the region of integration S from the oz 
boundary conditions of the problem on the z = 0 plane. 

Let us consider the case when the region of integration S inter­
sects the wing surface and the region ~3 lying outside the wing and 
outside the region of the vortex system from the wing. Region ~3 

(fig. 6) is part of the region ~2 defined above. That is, let us con­

sider the case when the wing tips - the arcs ED and E'D' of the wing 
contour - act on the point M(x,y,z) or so to speak, the influence of 
the "tip effect" and not the influence of the vortex sheet trailing from 
the wing surface. 

The point E on the leading edge is defined so that condition (3.7) 
is fulfilled to its left and violated to its right. The point E' is 
similarly defined. The points D and D' are, respectively, the right­
most and leftmost points on the wing contour as shown in figure 6. 

Let us construct the integral equation for C(x,y), connected to 

by relation (3.5), in ~3· 

Let us select the velocity potential ~ at any point N(x,y,O) 

lying in ~3 by means of equation (3.1), equal to zero everywhere in ~ 

according to equation (1.12). The region of integration S(x,y,O) is 
divided into two parts, as shown in figure 7; the region s(x,y) is 
that part of the wing falling in the Mach fore-cone from N(x,y,O), and 
the region a(x,y) is that part of ~3 lying in the same fore - cone. 

According to equation (3:6) C(x,y) is given in s . In a, C(x,y) is 
unknovn. We therefore arrive at the integral equation which C(x,y) 
satisfies in ~3 . 

- --- ----------~ 
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where the kernel is 

K = ( 5, T) ix, y ,t) 

_ u(x -..ll _ a V(x _ ~)2 _ k 2(y _ T)2} 
u2 _ a 2 u2 _ a 2 + 

vex _ ;)2 _ k2(y _ T))2 

ff + a(~,l1) - ~~x_-a~) + u2 ~. a',2 V(x - s)2 - k
2

(y - T))2} 

Vex - ~)2 _ k2 (y _ T))2 

and the known function 

If the characteristic coordinates are introduced 
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(5.1) 

(5·4) 
(where XC ant YO may be any numbers) then integral equation (5.1) is 
simplified and in some cases this integral equation is easily inverted 
as wil l be shown below. 

6. SOLUTION OF THE INTEGRAL EQUATION FOR A HARMONICALLY OSCILLATING WING 

1. If the additional motions of the w~ng are harmonic oscillations, 
i.e., the condition on the wing is given in the form of (4.1), then 
equation (5. 1) becomes 

( 6.1) 
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where the function 

function is 

F(x,y) ~ _ ~ A(,,~) cos[, 

s(x,y) 

where A(x,y) in s. 
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cr and where the known 

In order to solve this integral 

equation we introduce the characteristic coordinates ~'Yl' zl with 

origin at "0" by means of the formula 

(6.3) 

In the new coordinates the variables of integration in cr will vary 
oetween the limi ts 

(6.4) 

where Yl = ~(xl) is the equation of the wing tip - the arc ED of 

the wing contour - in the transformed coordinates, and xE is the 

abscissa of E defined in section 5 in these same coordinates (fig. 8) . 
Equation (6.1) is transformed to 

d~ld~l = F1(Xl , Yl) 

(6.5) 

1 
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where the function 

and where the known function is 

(6.6) 

Let us note that the normal velocity of the perturbed flow 

is related to d~/dZl by 

For brevity, the index "1" will be left off' the independent variable 
everywhere from now on. 

2. Let us look for a solution of equation (6.5) in the form of the 
power series 

00 

e(x,y;"A) = L e2n (x,y) "A
2n 

(6.7) 
n=O 

Into both sides of equation (6.5) let us introduce 



20 NAeA TM 1383 

Keeping the absolute convergence of equations (6.7) and (6.8) in 
mind, we multiply them term by term with the result 

Substituting equations (6.7), (6.8) and (6.9) into equation (6.5) 
the latter becomes 

n+l 
= JJ A(LT)) .z.. (-1) ,,2n[(x - ~) 

:J I1--0 (2n) 1 
s(x,y) 

1 n--
2 

d1'\ ds 
(6.10) 

Taking into account the uniform convergence of the series in both 
sides of equation (6.10) with respect to the variables ~ and 1'\ we 
integrate term by term 

n-k-d::. 

92k (~,ll) [(x - ~) (y - T))] 2 dT] d~ 

(6.11) 
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In equation (6.ll) equating coefficients in identical powers of A 
we obtain the integral equation which the functions 92n(X,y) satisfy 

where 

where, in its turn, 

F (x,y) 
n 

(6.12) 

(6.13) 

(2n)! JJ 
1 

n--

A(s,1)) [(x - S)(y - 1))J :£d1) ds (6.14) 

s(x,y) 
and 

(6.15) 

from which the functions f~ are defined for k ~ 0 and n > O. Let 
us note that the right side Fn(x,y) of equation (6.12) depends, for 
82n, on the coeff1cients 82k but only for k == O,1,2, ••• ,n-l. There­

fore, if we find 80 , 82, 84, ••• , 82 (n_l), then Fn(x,y) is a known 
function in the equation which the coefficient 82n in the general term 

of series equation (6.7) satisfies. For n=O the right side in equa­
tion (6.12) 

FO(X,y) == iO(x,y) = JJ' 
s(x,y) 

is a known function of x and y. 

A(s,T)) dT) ds 

~x - s)(y - 1)) 

Let us solve equation (6.12) for e2n(x,y). 

(6.16) 
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The two dimensional integral equation (6.l2) is equivalent to the 
two homogeneous integral equations 

(6.17) 

and 

(6.18) 

each of which reduces to an Abel equation. 

Using the inversion formula of the Abel integral equation and 
observing that for any n functions Fn(xEJY) = 0 hence the solution of 

equation (6.17) for the function 62n(xJy) is 

(6.19) 

Let us turn to equation (6.18). We denote the parameter ~ by x J 
and again using the inversion formula for the Abel equation and kee~ing 
in mind that according to equation (6.19) the right side 62n[xJ~(x~ of 

equation (6.18) for Y = ~(x) is different from zero, the solution of 
equation (6.18) for 62n is 

8
2n

(X J Y) (6.20) 

Substituting in equation (6.20) in place of 6~(xJY) its value from 

equation (6.19) we obtain the solution of equation (6.12) in the follOwing 
form: 

(6.21) 
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Thus, according to equation (6.21), we can evaluate successively, 
the coefficients SO, S2' 84, ••• , 82k, etc. 

Formula (6.21) shows that all the coefficients (n=0,1,2, ... ) for 

y = ~(x), i.e., on the wing tip ED, become infinite as R- l / 2 where R 
is the distance of the point (x,y) from ED. Therefore, the velocity 
of the perturbed stream becomes infinite as the specified order on the 
wing tips, approaching from outside the wing. 

It is possible to represent the inversion (6.21) of (6.12) as 

(6.22) 

which can be confirmed without difficulty by direct differentiation with 
respect to the parameter. 

Therefore, the solutions of integral equation (6.5) are constructed 
in the form of the absolutely convergent series (6.7) for any value of 
the parameter A. 

The coefficients 8~(X,y) are expanded in the series 

(6.23) 

S' (x,y) = {OCP1} 
OZ z=O 

We find the function 

(fig. 6) lying off the wing to the left, from equations (6.21) or (6.22) 
by replacing in the latter the function ~(x) by ~2(x) (where 
y = ~2(x) is the equation of the arc E'D' of the wing contour _ 

the left wing tip) and interchange the role of the coordinates. 
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3. Let us consider a wing of small span. Let the characteristic 
cones from El and El' intersect the wing as shown in figure 9. The 

points El and El' are defined just as are E and El in section 5. 

Let us divide the x,y-plane where the medium is perturbed into the 
regions So, Sl, S2, . . ., Sn' . 

The region Sn is the M-shaped region lying within the character­
istic aft-cones from En and En' (or within one of them) and outside 

the characteristic aft-cones from En+l and En+l " In its turn, we 
divide the part of the x,y-plane lying to the right and left of the wing , , 
into the strips al, a2' ... , an, .. and al' a2' ... , 

an', ... , respectively. The strip an 

aft-cone from En. Therefore, an and 
lies within the characteristic 

a ' n are the parts of 

respectively to the right and to the left of the wing. 

lying 

Let us return to the fundamental formula for the velocity potential, 
equation (4.2), which is in the characteristic coordinates 

'P:l(x,y,z,t) = 

if i:: L-o e 
S(x,y,z) -

In order to compute the velocity potential by means of this formula 
in those parts of the space (or, in particular, on the wing surface) for 
which the region of integration S(x,y,z) intersects the region Sn of 

the x,y-plane, we must first determine 
ocp -13 (x+y) 
---.1 e 2 
oz 

outside the 

wing in the strips a
2

, • • ., I a2 , . . ., , 
an , ... , 

respectively. 
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d:p -(3 (x+y) 
Let us denote ~ e 2 in the ~1' ~2' 

dZ 

st:vips by e, ., e(n). . . and in ~2" • • ., 

by e' , e,(2) , . , e,(n), .. 

Let us construct the integral equation for e(2). 

Let us express the velocity potential at the point N(x,y,O) in a2 
by formula (6.24) which is equal to zero everywhere in the strips ~l, 
~2, ~n (correspondingly in ~l" ~2" . . ~n'). 

Let us divide the region of integration into the three parts 
S =: S + ~ + al '* as shown in figure 10. 

The funct. i OJ' 

d:p - (3 (x+y) 
~ e 2 =: A(x,y) 
dZ 

is given in s(x,y) on the 
d:p -(3 (x+y) 

wing. In ~l'*(x,y) of all, the function --1 e 2 =: e'(x,y) 
dZ 

determined by the solution of equation (6 . 23). 

~" (x+y) 

is 

In a( x,y) we denote 
LAVl - (3 2 
- e by e(2) (x,y). Then we arrive at 
dZ 

the integral equation satisfied by e(2) 

JJ 
~(x,y) 

e(2)(S, TJ) cos [" I(x - ~ ) (y - 1) J dTj ds =: F( 2)(x,y) 

Y(x- S)(y - Tj ) 
(6.25) 
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< < where the limits of integration are bounded by xE = ~ = x and 

~(~) ~ Tj ~ y and the known function F(2) is defined as 

F(2) (x,y) = - JJ 
s(X,y) 

A(~,Tj) COS[A{(X - ~)(y - Tj)] dTj d~ -

~X - ~)(y - Tj) 

JJ e " (~,l1) cos [A/(X - ~)(y - Tj)] dTj d~ 
J {(x - ~) (y - Tj) 

(6.26) 

rJ '* l 
We look for the solution of integral eQuation (6.25) in the form of 

the :power series 

(6.27) 

Moreover, by reasoning similarly to the :preceding section we arrive 

at an integral eQuation for the coefficient e~~) in the general term 

of series (6.27) 

(6.28) 

where 

(2) k=n (2)k 
Fn (x,y) = Fn(x,y) + ~ fn (x,y) (6.29) 

k;::() 

where, in its turn, 

. n-k+l 1 
f(2)k(x y) = (-1) . . r,Te

2k
' (~,Tj)[(X - ~)(y - Tj)]n- k -2' dTj d~ 

n ' ~(n _ k )] ~ ) J 

rJl '* ( 6 .30) 

EQuation (6.28) differs from eQuation (6.12) only in the form of the 

F(2) function on the right side . Taking into account the condition on 
n 

the boundary F~2)(XE'Y) = 0 for any n=O, 1, 2, ••• the solution of 

(6.28 ) for 8~1) is obtained by using the solution (6 . 21) or (6 .22) of 

(6.12) as a final formula if Fn (2) re:places Fn in the latter. The 
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function Fn (2) (x,y) depends on the coefficient 92k(2) where k=O, 
1, 2, ••• , n-l. Therefore, just as in the previous section, if the 

82k(2) for k = 0,1,2, ... , n-1 are already found, then Fn (2) in the 

right side of (6.28) is a known Quantity. Therefore, the functions 

90 (2), 92 (2), ••• , 82n(2), ••• may be found successively. 

Let US note that Fn (2), and therefore the coefficient 8 (2) 2n , 
I 

depends only on the first n + 1 coefficients 80 , 82', • . ., 
of the series expansion of 

Reasoning in the same manner, we may find the values of 

8(4), • 

8,(3) , in 

. , aN' • •• (correspondingly 

a2~ . . . aN I) . 

Therefore, the velocity potential can be computed by eQuation (6.24) 
at every point M(x,y,z) of the space for which the region S(x,y,z) 
intersects any number of strips aN or aN'. 

All the results hold for the case when the wing tips are not given 
by one eQuation Y = t(x) but consist of curves given by the eQuations 
y = ~k(X) k = 1, 2, .,m. The same observation applies to the 
leading edges E'E (or E1E1 ') of the wing. Therefore, in our problc~ 

the wing contour may be piecewise smooth. 

If the freQuency of oscillation m of the wing be put eQual to zero 

then the coefficients 80' 8
0
(2), ••• , 80 (N) ••• coincide with the 

values of the derivatives ~ojdz in the strips al' a2" .. , aN' . 
respectively, for the steady motion of a wing when the streamline condi­
tion (1.6) on the wing is given in the form 
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7. JNFLUENCE OF TRE VORTEX SYSTEM FROM THE WJNG FOR A HARMONICALLY 

OSCJLLATlllG WING 

1. Let us consider the case when the region of integration S(x,y,z) 
in formula (4.2) for the velocity potential intersects the vortex sheet 
~l as shown in figure 26(a) (see also fig. 11). That is, let us consider 

the case when the trailing edge of the wing - the arc Dr of the wing 
contour - or, so to speak, the vortex sheet, acts on the point M(x,y,z) 
of space. 

Using condition (1.10) we determine ~l/dZ in the region n of · 

the x,y-plane and shown in figure 11. 

The region n is off the wing within the characteristic aft-cone 
from D and outside the characteristic cones from T. Therefore, n 
is affected by the vortices trailing from the edge Dr of the wing but 
not from D'T'. The region n partially intersects the vortex sheet 
Ll' 

Let us return to the characteristic coordinates Xl' Yl' zl which 
we introduced earlier by formula (6.3). 

As before, for brevity we omit the subscript 1 from the independent 
variables. 

is 
Condition (1.10) fulfilled on Ll in the characteristic coordinates 

dC!>J. dC!>J. dC!>J. 
--+u--+u--=O 
dt dX dY 

From equation (7.1) it follows that the function 

.ill x+y 
1- --

~ill = ~l(x,y,O,t)e u 2 

remains constant everywhere on the vortex sheet along lines parallel to 
the direction of the incoming stream, i.e., along vortex lines from the 
wing. 

• 

.. 

-~ 
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Since the velocity potential ~ == ° everywhere in the x,y-plane 
off the wing surface and the vortex sheet, then it may be verified that 
~ill possesses the specified property everywhere in n. 

Let us construct the equation for the function 

-a(x,y) 

in n. 

== fd~J e _l'x~Y 
@z Jz=o 

Let us express ~ill at the arbitrary point N(x,y,O) lying in n 
by using the basic formula for the velocity potential (6.24). We divide 
the region of integration S 
into s(x,y), crl*(x,y) and 

parts of the wing surface and 

into three parts, as shown in figure 12, 
cr(x, y ). The regions sand cr1* are 

6 3' defined above, r espectively, which 

fall within the characteristic fore-cone from N(x,y,O). The region a is 
the part of n in the same cone. The variab l es of integration in a 
vary between xD ~ ; ~ x and X (;) ~ Tj ~ y where xD is the abscissa 

of D and y == X(x) is the equation of the arc DT of the wing contour. 
The expression obtained for ~ill is differentiated in a direction parallel 

to the velocity vector of the impinging stream. 

Therefore we arrive at the integro-differential equation which ~ 

satisfies in n 
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. u2 _ a 2 
~ = -1 and the known function is 

Uill 

~ (x,y) = ~L [-ff A(~, 11)K1 (~, 11;x,y;,,) d11 ds -

s(x,y) 

ff e(~,11)Kl(~,11;x,y; ,, ) d11 d~}­
<1l(x,y) 

~,,2 II A(~,11)Kl(~,11;x,y;,,) d11 d~ -

s(x,y) 

~,,2 ff e(t,11)Kl(~,l1;x,Y;A) dl1 d~ 

o'l(X,Y) 

_ cos[,,~x - ~) (y - 11)1 where Kl(~,11; x,Y;") - and the operator 
~x - s)(y - 11) 

d d d (6 - = - + -. The £'unction e is determined from equation .7) of the 
dL dX dy 

preceding section. 

2. We will look for a solution of equation (7.2) in the form of the 
power series 

00 

~(x,y;,,) = ~ ~2n(X'Y) ,,2n 
n...-G 

Keeping in mind the absolute convergence of equation (7.4) and using 
the expansion (6.8) for "the cosine we obtain 

-a(S,l1;")cos["V(x - ~)(y - 11)] = 

t= ,2n =. t~)n - k

J 
~2k(;'~) [(x - ;)(y - ~)] n - k (7.5) 

n==O k==O 2 ( n - k) ~ 

, 
I 

~ 
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Substituting equation (7.5), (6.8), and (6.9) into equation (7.2), 
the latter becomes 

(7.6) 

Taking into account the uniform convergence of the series with 
respect to S and ~ in both sides of e.quation (7.6), we integrate it 
term by term. Then, keeping in mind, the uniform convergence of the 
obtained series with respect to x and y which is also maintained after 
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differentiation, we differentiate the spectfied series term by term with 
respect to x and y. After these operations on both sides of the 
obtained equation we equate coefficients in identical powers of A. There­
fore we arrive at the integro-differential equation which the coefficients 
of equation (7.4) satisfy 

where 

+ 

(_l)n+l JJ n-3/2 
[2(n _ k)]! Il s A(~,l1)[(x - ~)(y - 11)] dl1 d~ + 

1 n-k- -
11)] 2 dl1 d~ + 

(7.8) 
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in which the last sum and also the terms in ~ are defined for n>O. 

Let us note that the right side, ~n' of equation (7.7) for 

contains terms with coefficients ~2k but only for k = 0, 1, 2, 

n-l. 

~2n 
. , 

Let us transform equation (7.7). We integrate by parts with respect 
to s the first integral on the left side of equation (7.7), the second 
by parts with respect to ~,afterward we differentiate with respect to 
the parameters x and y, respectively. Equation (7.7) becomes 

~n*(x,y) (7.9) 

where 

fdX(S) _ l}dS + ~ (x y) L ds n ' 

(7·10) 

Let us note that the first term in" equatipn (7.10) of the right side 
of equation (7.9) becomes infinite for x = xn. 

Let us return to expression (7.8) for ~n and separate out of it 

the terms corresponding to the value k = n in the first sum - the compo­
nent 

We integrate this integral by parts with respect to s keeping in 
mind that the limits of integration in al * are xE ~ S ~ xD and 
~(~) ~ ~ ~ y and that 82n(xE,Y) = O. Then we differentiate with respect 

to x 
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R == 

(7.ll) 

Let us subject the desired function ~ in equation (7.2) to a sup­
plementary condition. 

Let us assume that at the trailing edges - the arc Dr (or DITI, 
respectively) of the wing contour - and on the straight line DD* 
(figs. 11 and 12) - the intersection of the characteristic aft-cone from D 
with the z=O plane (correspondingly the line DID1*) - the velocity of 
the perturbed flow, and therefore the function ~, is a continuous func­
tion, then the conditions are fulfilled 

These conditions are analogous to the Joukowsky condition for flow around 
a wing by an incompressible fluid. From equation (7.13) follows 

since X(xn) = ~(XD). 

Substituting equations (7.11) and (7.14) in equation (7.10), the 
latter becomes 

(7.15) 
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where 

(7.16) 

For n = ~ the right side in equation (7.9) is a known function of 
x and y 

d II A(s,11) dTl ds 
dL s V(X - s) (y - 11) 

(7.17) 

Let us solve equation (7.9) for ~2nx + ~2ny. 

The two-dimensional integral equation (7.9) is equivalent to two 
homogeneous equations 

and 

(7.19) 

each of which reduces to an Abel equation. Using the Abel inversion 
formula we find the solutions of equations (7.l8) and (7.l9) as 
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Substituting equation (7.20) into equation (7.2l), first replacing 
i n the latter by x, we obtain the solution of equation (7.9) as 

+ 

1 1 IX <lin~*[s,x(x)J - ds + 
,,2 Jy - X(x) xD Ix - s 

(7.22) 

Integrating equation (7.22) alQng the straight line parallel to the 
free-stream between the limits of N(x,y,O) and N(x,y,O) we find the 
formula determining ~2n in the general form of equation (7.4) 
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1 

2 :J{ 

+ 

1 l X l Xl [Xl+y-X ____ <fJ_n_~1)_*_(_~_J_1)_) __ _ 

:J{2 X xD l X(xl ) ,/xl J V ~ VXl + Y - x - 1) 

37 

d1) d~ dxl 

(7· 23) 

If in equation (7.23) the coordinates 
tions of y - x + x - y = 0 and y - XCi) 
is determined from condition (7.12) on the 
~2n on the vortex sheet. 

x and y are taken as solu­
= 0 and the value of ~2n(X,y) 
trailing edge, then we find 

If in the same formula, the coordinates x and y 
x = xD and y = y - x + xD and the value of ~2n(x,y) 
from equation (7.13) on the line x = xD, then we find 

vortex sheet in the region it affects. 

are set equal to 
is determined 

~2n outside the 

Thus, through equation (7.23), we can compute successively the coef­
ficients ~OJ ~2' • •• J ~2n' 

Therefore, the solution of equation (7.2) is Gonstructed as the 
absolutely convergent series (7.4) for any value of ~. 

The coefficients I 
~2n are expanded in the series 

00 

~1(X,y;~) = ~ ~2n'(x,y)~2n 
n:;() 
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(fig. 11) may be computed through 

equation (7 .23) if the function X2(x) replaces X(x) in it (where 

y = X2(x) is the equation of D' T' of the wing contour) and we inter­

change the role of the coordinates . 

3. Let us consider the general case of the flow over an oscillating 
wing by a supersonic stream. Let the characteristic aft-cones from El 

and E ' and Dl and D ' 1 1 intersect the wing as ·shown in figure 13 . 
Then El (correspondingly El '), as shown above, are defined so that to 

the left on the leading edge equation (3 .7) is satisfied and to the right 
it is not . The points Dl and Dl' are, respectively, the most right 

and left points on the wing plan form . 

The space of the considered wing plan form as transformed by equa­
tion (5 .4) is illustrated in figure 14. 

Let us divide the x,y-plane where the medium is perturbed into a 
series of regions : the regions considered in the preceding section, 
SO , Sl' . . . , Sn, . . ., S:r~ and the regions 61' ~, . . . , 

41, . . . . The region ~ is the H-shaped region bounded downstream 

by the intersection of the characteristic cones from Dl and Dl ' with 

the Z = ° plane. In the Z = ° plane, these lines are the upper 
bounds of the region of influence of the trailing vortex sheet. 

The region ~ is M-shaped lying between the characteristic cones 

fror.l Dn, Dn ' , 

x,y-plane lying 
the strips 0'1' 

°2' . , on, 

Dn+l' Dn+l " We divide, in its turn, the part of the 

to the right and left of the wing, respectively, into 
0'2, . an' ... , aN defined above and into 01, 

and into 
, , , 

aN 
, 

0'1 , 0'2 , . , an ' . , 
defined above and °1 ' , 02 ' , . , on ' , correspondingly . The 

strip on is that part of Ln to the right and on 
, 

is the corresponding 

part of In to the left of the wing . It is easy to see that the region 

defined at the beginning of this section is in 01' 

In order to solve completely the problem of the flow over the wing 
shown in figures 13 and 14, the derivative (Xpl/dZ must be determined 

D 

_I 
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in On, ... 

Let us denote the function 

and -6 ' , 

and in 

A.-" (x+y) 
'-"+'1 -~--
-- e 2 
dz 

02', . . ., 

by ,s, ,s (2) , 

and 01', 02', ' .. , On', ... strips, respectively. 

39 

. ., 

Applying equation (6 .24) for the velocity potential we construct ~w 

for any point N(x,y,O) in 02' 

We divide the region of integration S which depends on the form of 

the fUnction 
A.-" AX+Y '-"+'1 -1-'-
- e 2 into the following: 
dZ 

S =: S + cr* + C1 1*' + S* + C1, 

as shown in figure 15. This function is given in s. It was determined 
in cr* and C1'* in the preceding section by the solutions of equa­
tions (6.7), (6 . 23), (6.27), etc. I n s* it is determined by the solu-

tion of equation (7.24). We denote 
(Xpl _f3x+y 
- e 2 :i,n C1 by -6( 2) . 
dZ 

Using the boundary conditions (1.10) and (1.12) we arrive at the integro-

differential equation which ~(2) 
tion (7.2) only in the form of the 

side depends on the solutions e, 

satisfies and which differs from equa­
right side . On the one hand the right 

e (2), . . ., e (N) , e' , e' (2), . . ., 

e'eN) and on the other hand on the soluti ons -6'. We construct -6(2) in 
the form of a power series in the parameter A. 

Requiring the fulfillment of equations (7.12) and (7.13) for -6(2) 

we obtain for the coefficients -60(2), -62(2), ... , -62n(2) , .. 

an expansion in series of -6(2) of equations of the form (7.9) which 
differ from each other in the form of the right side. 

The right side in the equation for the coefficient -62n(2) 

general term of the series for -6(2) depends on the first n+l 

in the 

coef-

ficients of the expansion of e(i) and e,(i) where i takes all values 

less than or equal to N, and on the first n coefficients -60(2), 

,')2(2), ... , -62k(2) (l;;=:0, 1, 2, ... , n-l) of the series expansion of 
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the desired function ~(2). Therefore, it is possible to find succes­

sively the coefficients ~O(2)J ~2(2), • •• , ~2n(2) using the solu­

tion (7.22) of (7.9) as a final formula if there is put in the latte~ 
instead of ~n*' right sides in the equations of the form of (7.9) f~r 

the respective coefficients of the expansion of ~ (2) 2n • 

By the same reasoning, values may be found of ~(3) , (4) {i )... , 

~(k) , . in °3' °4, . . . , Ok' 

Therefore the velocity potential may be computed by equation (6.24) 
at any point of the space perturbed by the motion of the wing shown in 
figures 13 and 14. In particular, the velocity potential may be eval­
uated at any point of the wing surface. 

All the results are valid when the contour of the wing is piecewise 
smooth. 

If the frequency of the oscillations of the wing, ill, be put equal 

to zero, then the coefficients ~O, ~o(2), • •• , ~o(k), coin-
cide, respectively, with the values of d~/dZ in 01' 02' • •• , 
Ok' • • • for steady motion when the streamline condition (1.6) is given 

on the wing as d~/dZ = Al(x,y). 

We apply the proposed method of determining d~/dZ for the oscil­

lating motion of a wing by constructing an integral equation, to wings 
of completely arbitrary plan form. For example, the wing contour may not 
be cambered but may have the shape shown in figures 18, 24, etc. 

In all cases, the part of the x,y-plane where d~/dZ must be deter­
mined should be divided into the corresponding characteristic regions. 
Then successively passing downstream from one region to another, construct 
the integral and integro-differential equations using the boundary condi­
tions on the x,y-plane. The solution of these equations for d~l/dZ or 

for functions related to d~/dZ is obtained as a series in even powers 

of the parameter A, which defines the frequency of oscillation. The 
whole problem of determining the coefficients of the expansion reduces to 
a double integral equation in each characteristic region. Each of the 
equations after transformation appears to be an equation of the same type 
which is solved by means of a double application of the inversion formula 
for the Abel integral equation. The form of the wing contour is the limits 
of integration. The influence on the considered region, of determining 
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the desired function in the preceding upstream characteristic region, is 
reflected in the form of the function in the right side of the integral 
eQuations. 

8. FLOW AROUND AN OSCJLLA.TING WING OF NON-ZERO THICKNESS 

1. Let us consider the motion of a thin wing at a small angle of 
attack (fig. 15a). 

Let the wing be moving forward in a straight line with the constant 
supersonic velocity u. Let an additional small oscillating motion be 
superposed on the basic motion of the wing so that the wing surface may 
be deformed. 

The normal velocity component on the upper surface of the wing will 
be considered given by 

(8.1) 

and on the lower surface by 

lihere Anu and AO I define the wing surfaces and 

A2u = A1U(x,y)e iau(x,y) and A21 = Al1(x,y)eial(X,y) define the ampli­

tude and initial phases of the ad~itional oscillating motion of the wing. 
We consider the functions Anu, Alu and au given at each point of the 

upper surface and AoI' All' and al given on the lower surface. The 
x,y,z coordinates were defined in section 1. 

The velocity potential ~ is 

~p(x,y,z,t) = ~(x,y,z,t) + ~s(x,y,z,t) 

::OJ "I 
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The potential ~ is specified by the motion of an oscillating wing 
of zero thickness, which creates at each moment an antisymmetric flow with 
respect to the x,y-plane (fig. l5b). The potential ~s is specified by 

the motion of a thin oscillating wing with a profile symmetric relative 
to the x,y-plane. Therefore the motion proceeds in such a manner that at 
each moment the wing surface will be symmetric relative to a designated 
plane (fig. l5c). Such a wing creates a symmetric flow and ~s satisfies 

~s(x,y,-z,t) = ~s(x,y,z,t) (8.4 ) 

Each of the potentials ~ and ~s is represented, in its turn, by 

~s = CPOs + ~s (8.6) 

where ~O and ~Os correspond to the steady motion of the wing and ~ 

and ~s correspond to the additional motion of the wing. 

Let us set up the streamline condition using the representation (8.3) 
for the velocity potential. 

We transfer the boundary conditions on the wing surface parallel to 
the Oz axis onto the projection L of the wing on the x,y-plane 
(fig. 1). 

Therefore, we obtain the streamline conditions based on equa­
tions (8.1) and (8 .2) 

- - -------~ 
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and 

which must be satisfied on the upper and lower sides of 
tively. 

43 

(B.B) 

2:, respec-

Using e~uations (B.5) and (B.6) we establish boundary conditions 
for the desired potentials CPO, CPl' CPOs, and CPls· 

Keeping in mind that on the z=O plane the normal derivatives of 
the potentials ~s and ~s are specified by the symmetry of the flow 

over the wing satisfying the condition 

We find the boundary conditions for ~s and ~s which must be satis­

fie1 on the upper surfa ce ~ to be 

(B.10) 

where the functions fO and f2 are related to ~uantities given on the 

wing surface through 

( B.ll) 

The conditions to be satisfied by CPOs and ~s on the lower surface of 

~ tir e 

I 
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Since the normal derivative of the potentials ~o and ~ specified 

by the antisymmetric flow over the wing, on the z=O plane, satisfy 

(B.13) 

the boundary conditions which must be satisfied simultaneously on the 
upper and lower surfaces of L are 

d~O 
- = Ao(x,y) 
dZ 

dCJ\ 
-- = 
dZ 

( . rut R.P. A2 x,y)e l (B.14) 

where Ao and ~ are related to quantities given on the wing through 

Ao= 
Aou + Aol 

2 
~= 

A2u + ~l 

2 
(B.15) 

The boundary problems for ~(x,y,z,t) and ~O(x,y,z) were set up 
in section 1 where in the case of a harmonjcall y oscillating wing, equa­
tion (B.14) rather than equation (1.6) should be taken on the wing. The 
solution of these boundary problems is contained in the present work. 

Let us formulate the boundary problems for ~s and ~Os: 

I. Find ~s(x,y,z,t) satisfying equation (1.4), condition (1.11) on 
the disturbance wave, condition (B.10) on the plane region Land 

d~lS 
--= 0 

dZ 
(B.16) 

everywhere in the x,y-plane off L where the medium is perturbed. 

II. Find the function ~s(x,y,z) satisfying equation (1.5), condi­
tion (1.11) on the disturbance wave, condition (B.10) in the plane 
region L: , and 

everywhere off 

d~OS 
--= 0 

dZ 
(B.17) 

L: in the x,y-plane where the medium is perturbed. 
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Since the potentials ~s and ~s are functions which are symmetric 
relative to the x,y-plane, it is sufficient to solve the problem for the 
upper half-space. 

The solution .of boundary problem I is given by eq~tion (4.2). By 
means of this formula it is possible to compute the velocity poten-
tial ~s everywhere since in the case of symmetric flow over a wing the 

derivative O~s;loz is a given quantity for any point M(x,y,z) of the 

space in the region of integration S(x,y,z). To compute ~s at M 
according to equation (4.2) the function 

{d~lS} = R.P. r2(x,y)eimt 
OZ z=+o 

must be substituted for lrd~l and integration is over that part of 
dZ z=O 

the wing within the characteristic cone from M. 

The solution of boundary problem II as is known (refs. 21 and 22), is 

given by formula (3.10) if the function {d~O} is replaced by 
OZ z=O 

{~osl = rO(x,y) and integration is also over the region defined innne-
oz r z=+o 

diately above. 

If the wing is vibrating 'as a rigid body then the functions A2u and 

~l coincide and therefore, to solve the flow problem in this case, it is 
sufficient in antisynnnetric streams excited by the motion of an oscillating 
wing with profile of zero thickness to superpose steady symmetric streams. 

- - - - --~---------. -~---
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PART 113 

To apply the integral eq:uations method explained in Part I of the 
present work, let us consider the problem of the flow over thin wings of 
finite span in st eady supersonic flow. 

The velocity potential ~ specified by the steady motion of the 

wing may be computed through equation (3·10) at those points M(Xl,Yl,Zl) 

of the space for which the region of integration S(xl'Yl,zl)' already 
known from Part I, does not extend outside the limits of the wing where 

is given. 

I f ~O/dzl appears to be unknown at any part of S, then, to use 
equation (3 .10) in these cases, where it has in the characteristic 
coordinates (6.3) the form 

::: _ l 
2rc 

and to obtain the effective solution of the problem, it is necessary, first 
of al l , to find ~O/dZl everywhere in S by constructing and solving 

an integral equation. 

1 . INFLUENCE OF THE TIP EFFECT FOR STEADY WING MOTION 

1 . The integral equation (5.1) in the coordinates (6.3) is, for the 
steady wing motion 

(21.2 ) 

~e results of Part II, sections 1, 2, and 3 were completed in 
April, 1948 at the Math. Inst. of the Acad. of SCience, USSR. 
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where 9:l is the value of dqJO/dZl on L: 3 (fig. 6) and where the 
known function is 

The function A given on the wing is 

It is easy to see that the velocity of the perturbed flow 

normal to the x,y-plane is related to d~/dZl through 

The regions of integration in a are xlE ? Sl ? Xl and 

(21..3) 

(21..4) 

V(Sl) ? ~l ? Yl where, as before, Yl = V(Xl) is the equation of the 
wing tip ED in the transformed coordinates and xlE is the abscissa 

of E in the same coordinates. The regions of integration for sl in 

s are the same limits xlE ~ Sl ? Xl and ViC Sl) ~ ~l ? 1j!( Sl) where 

Yl = Vl(Xl) is the equation of the leading edge E'E of the wing contour. 

Let us note that equation (21..2) may also be obtained from equa­
tion (6.5) if the frequency m of the wing oscillation is set equal to 
zero in it. 

Let us delete the index "1" from the independent variables. 

We solve the double integral equation (21..2) with respect to Et, by 

means of a repeated application of the inversion formula for Abel's inte­
gral equation. 

--" 
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We write equation (21.2) as 

This is an Abel equation with right side identically zero, therefore, 
the brace equals zero for ~ = x. Hence, equation (21.5) is equivalent to 

(21.6) 

which is also an Abel equation. Noting that the right side of equa­
tion '(21.6) is, generally speaking, different from zero for y = ~(x) 
we find the solution using the well-known inversion formula for the 
Abel equation 

1 l Y 
1 

1t ~(x) Vy 

Let us note that the solution (21.7) for the steady motion of a wing may 
be obtained from the solution (6.22) of equation (6.12) for the vibrating 
wing if the index n and the frequency of oscillation w are both set 
equal to zero. 

Carrying out the operations specified on the right side of equa­
tion (21.7) we find the solution of equation (21.2) to be 

(21.8) 
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In a similar maImer, we find the value 
dz 

81' (x,y) in ~3' 

(fig. 6) 

~' (x,y) (21.9) 

The fUnctions x = ~l(Y) and x = 'lr2(Y) are, r espectively, the equa­
tions of the arcs ED and E'D' of the wing contour solved for x. The 
solutions (21. 8) and (21.9) show that the velocity of the perturbed stream, 
when the arCS ED and E'D' are approached from off the wing, - goes to 

1 
infinity as R- 2" where R is the distance of N(x,y,O) from the points 
ED or E'D' (see fig. 7). 

2. Let us find the velocity potential according to equation (21.1) at 
the point M(x,y,z) of space for which the region of integration S 
intersects the wing surface L: and the region I: 3 or L:.3 I • 

The r egion of integration S in equation (21.1) is divided into three 
parts: S = sl + s2 + sO' as shown in figure 16 

CPO(X,y,z) _1- JJ A(~,TJ.) dTl d~ 
= 21r V(X - ~)(y - Tl) 

60+s2 

1 If 81(~,Tl) dTl d~ 

21c V(X - ~)(y - 1)) 
(21.10) 

sl 

The limits of region sl are xE ~ ~ ~ xA and V (~) ~ 1) ~ y _ z2 
x - ~ 

,{here xA is the coordinate of the point A which is the intersection 
of the characteristic forecone from M with the side edge ED of the 
.nng. The equation Tl = y - z2/x - ~ is the equation of the hyperbola 
in which the aforementioned cone intersects the z=O plane. The limits 
of region s2 are xE ~ S ~ XA, and Vl (S) ? 1) ~ ,( S) • 
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Using equation (2l.8), let us evaluate the integral over sl in 

equation (2l.l0) 

I = JJ ~ ( ~) d11 d~ 
,11 vex _ 0 (y - 11) 

A(~,1)') 0"¥(~) - 1)1 dTJ l } d1) d~ 
(ri- ljr(S)(11 - 11') vex - ~)(y - 11)_z2 

(2l.ll) 

we interchange the order of integration of 11',11 

(a.12) 

The result of the inner integration is 

1) 1 ), I~ -~ - 1) 
V x - ~ 

(2l.l3) 

Putting the value of equation (2l.l3) into equation (2l.l2) we obtain 

I := - JJ" A( ~,1) 1 ) d11 ds 

s J vex - s)(y - 11) - z2 
2 

(2l.l4 ) 

- -----
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Equating (21.14) and (21.11) we obtain 

dT} d~ 

- ~)(y - T}) 2 
- z 

(21.15) 

Therefore, to find the velocity potential, on the basis of equa-
tion (21.1), at a point M(x,y,z) projected onto M'(x,y,O) in the 
x,y-plane as shown in figure 16, it is sufficient to integrate over So 

The limits of region 
< < xA = ~ = xB where xB 

the Mach fore cone from 

1 
2.r 

- ~) (y - T}) - z2 

So are 1jrl(~) ~ T} ~ y - z2/¥-_~ and. 

(21.16) 

is the abscissa of the point of intersection of 

M with the leading edge E'E. 

The velocity pote~tial on the wing surface can be calculated from 
equation (21.16) by setting z=O in it and considering the region of 
integration to be xA ~ ~ ~ x and 1jrl(~) ~ T} ~ y because the lines of 
intersection of the characteristic forecone from M with the x,y-plane, 
in this case, are the lines ~ = x and T} = y. 

In order to compute the velocity potential at points of space, or in 
particular, on the surface of the wing for which the region of inte-
gration S intersects simultaneously L:.3 and L.3 r; that is, at points 

of space where there is felt the effect of both side edges ED and E'D', 
it is sufficient to integrate equation (21.1) over the region 
6 = S e+ S e' the cross-hatched region in figure 17. Hence the integral 

over S e in equation (21.1) must be taken with the opposite Sign, i.e., 
the plus sign. 

_.~ ____ _ _ ____ eo-J 



52 NACA 'I'M 1383 

3. Let us consider the wing of more general form shown in figure 18. 
Let the forward part of the wing have the break, the arc EGG'El ', in the 

wing contour which affects the flow just as do the side edges. 

Let us show how to compute the velocity potential at all pOints 
M(x,Y,z) of the space disturbed by the motion of the wing, which is not 
affected by the trailing vortex sheet, in particular, on all points of t he 
wing surface. 

We divide the wing surface into the characteristic regions shown in 
figure 18. 

If the region of integration S in equation (21.1) intersects 
regions 2, 2', 3 and does not intersect 4~ then the velocity potential 
may be evaluated by using equation (21.16) (see figs. 16 and 17). 

The simple result which is expressible by equation (21.16) doe s not 
hold in the general case. 

If S intersects 4 on the wing, in the curvilinear triangle K101K, 

then according to equation (21.1) d~jdZ must first of all be found in 

the triangle. 

Let us express, by equation (21.1), the velocity potential at any 
point of K'OlK as equal to zero everywhere outside the wing and the 

vortex sheet from the wing, hence in K'OlK. Therefore, we arrive at an 

integral equation of the form of (21.2) for the function 
~*(x,y) = d~/dZ in K'OlK but with a more complicated known function. 

Applying the Abel inversion formula twice, we arrive at the solution 
in the following final form: 

where y = 1jr(x ) 

x = ~2(Y ) of 

= _ 1 1 
7t VY - t(x) 

r 1Jr(x) A( X, T))\J¥(x) 

J "+'l (x) Y - T) 

- T) 
dT) -

1 
1! {x _ 

1 fV2(Y) A(s , y)'I *2 (Y) 

*2(y) tl(y) x - s (21.17) 

- s 

is the equation of EG, 

El' G' and x = ~12 ( Y) of 

i s the equation of E 'E, 
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Substituting e quations (21.17), (21. 8), and ( 21. 9 ) into equa-
tion (21.1) we obtain the formula for the velocity potential at M which 
has the projection M' shown on figure 18, and for which the region S 
intersects 4 on the wing and, therefore, the region K'OlK outside the 
wing, as 

CJlo(x,y,z) = - 1:.-
2rc JJ 

s*(x,y,z) 

(2l.18) 

where y = V*(x) and x = t*(y) are the equations of GG' of the wing 
contour in terms of x and y, respectively. 

The region S* is the part of the wing shown cross-hatched in fig­
ure 18 . The regions 81* and 82* are part of 8* and are marked in 

t he same figure by horizontal stripes. The regions Sl* and S2* are 
bounded downstream by lines parallel to the coordinate axes passing 
through G and Gr. The points G and G' are respectively the points 
with the largest x and y coordinate on the arc EGG'E1 '. 

By combining the results of equations (21.1) and (21.18) there is 
found in the form of integrals taken over the wing surface, an effective 
expression for the velocity potential at points of space for which 8 in 
equation (21.1) intersects 5 or 6 on the wing and therefore 6 K'OlK 
and and L.3' off the wing. 

---- - ._- -
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2. FLOW OVER wnms OF SMALL SPAN 

1. Let us assume that the characteristic cones from El and Ell 

intersect the wing as shown in figure 19. This occurs, for example, 
for small span wings. 

Let us divide the x,y-plane where the medium is disturbed into the 
regions SO' Sl' ... , Sn' ... 

The region Sn is an M-shaped region lying between the character­

istic cones from En and Enl (or in one of them) and En+l 

and En+l l . In its turn, we divide the part of the x,y-plane to the 

right and left of the wing into the strips CJ'1' CJ'2, ... , CJ'n, 

and I 
CJ'2 ' . . ., CJ'n I, ., respectively. The strip 

between the after cones from En and En+l. Therefore, CJ'n is that 

part of Sn lying to the right of the wing. The coordinates of E 
and EI ~ith their indices are shown in figure 19. 

similarly defined. 

The strip CJ' I n is 

Let the leading edge 

the equation y = ~l(x) 
be given as in part I, 

and the side edges 

and y = ~2(X), respectively, or as 

EIEn+l and 

x = "f(y) 

section 6, by 

EIIEn+ll by 

and x = "f2(y) 

correspondingly. 

To compute the velocity potential at 
in that part of space (or, in particular, 
of which intersects Sn of the x,y-plane 

of all determine ~O/dZ off the wing in 

M according to equation (21.1) 
on the wing surface) the region 
but not Sn+l, we must first 

CJ'1' CJ'2' CJ'3' ... , CJ'n 

and also in I 
CJ'3 ' . . ., 

I CJ'n , .. 

We construct the integral equation for ~O/dZ in the arbitrary 

strip CJ'k' 

Let us express a velocity potential which is equal to zero every­
where off the wing and outside the region of influence of the vortex 
system from the wil~, at N of the CJ'k strip (fig. 20) according to 

the fundamental formula (21.1) 
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JJ {dd~ L --;:/<==x ==_ ==:~=(:=5 ==_ 1)==) = ° 
S(x,y,O) 

(22.1) 

The limits of integration in S are xl ~ ~ ~ x and Yl ~ 1) ~ y. 
For convenience in later writing, we make S a rectangle, which is pos­
sible since the medium ahead of the wing is not disturbed and d~/dZ 
is zero. The region S is shown in figure 20 bounded by the lines LN, 
NLl , L10l and 0lL. 

92 
, , 

Let us denote dClb/dZ by 81 , 82 , 8k' and 91 
r . . . , . . . , 

9k 
, 

in the respective . , , regions 0"1' 0"2' . , O"k' 
and I 

0"2 
, , 

0"1 ' , . , O"k , . . . 

In conformance with this new notation we write equation (22.1) as 

I x 1 

xD vx -

~-l (~,1)) 
--;::====- d1) d~ = ° 

VY - 1) 

(22.2) 
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Applying the Abel inversion formula twice to equation (22.2) we find 
~ for k ~ 2 

(22.3) 

Correspondingly, for ~' we obtain 

(22.4) 
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where the terms in equations (22.3) and (22.4) containing the summations 
are defined only for k ~ 3. 

If ~, 82,..., ~-1 and therefore, 81 ' , 82 ',..., 8k _1 ' 
are already defined in 01', 02', • •• , 0k_l' then we can compute 
8k in Ok for any k by meaDE of equation (22.3). 

The value of OCfbfdz in 01 and aI' is determined by solving 
equations (21.8) and (21.9). 

The value of O~O/dZ in 02 is found from equation (22.3) by 

putting k = 2: 

_1 1 1*2(X) 1*2(11) I,(x) - 11 V*2(T)) - ~ 
A(~,T)) ds dT) 

~2 f,i - ~(x) Yl tl(T)) (y - T))(X - s)~ - *2(11) 

We find OCfb/dz in a ' 2 in the same way 

Thus, step by step we compute o~/oz in Ok. 

(22.5) 

(22.6) 
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Using the solution of equation (22.3), we now prove the relation 

where ~ * and x2 * are any numbers satisfying ~ < x2 * ;;; xA (xA is 

the coordinate of the point A shown in fig. 2l), xl ~ xl* < xAo 

For the proof, we write n in the equivalent form 

f~* l Y z2 ~(S,T)) dT) ds 
n _ ' -x---s -;::::===::======== + 

~ * V ( S ) ~ x - s) (y - 11) - z2 

L 
i=l 

* 9 I(S n) d11 ds j X2* V2(S) 9k_l
l (s,11) dT) ds 

j,X*2 j Yi+l i' 'I + 1 
'''e 1:) ( ) ? Xl* Yk-l /,(x _ 1:) (y - n) - z2 ' ~ Y i Y\ x -:. Y - 11 - z:- V\ :. 'I 

i=k- 2 

(22.8) 
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where ek in the first of the integrals is replaced by its value 

according to e~uatio~ (22.3). 

Then, we obtain 

i=k-2 * eit(~,~I)/v(~) _ ~' 
-::;1 C 1~* j Yi+l V " ___ -;::====-__ 1* d1) I d~ -

i=l xl Yi Ix - ~ 

J~* JV2(~) ek_lt(~,1)) d1) d~ 

x2* Yk-l Ax _ ~)(y - 1)) _ z2 

I* d~' d~ + 

59 

where I* denotes the integral (21.13) evaluated before. It is easy to 
see that all the terms in the right side of e~uation (22.9) cancel in 
pairs. Hence, e~uation (22.7) is proved. 

It is also clear that the following holds 
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where Y1* and Y2* are any numbers satisfying Y1 ~ Y1* < YB and 

Y1 < Y2* ~ YB (YB is the coordinate of B shown in fig. 21). 

Using e~uations (22.3) and (22.4) it is possible to prove e~ua­
tions (22.ll) and (22.12) correspondingly 

[(x - s)(y - TJ) - z2J[y* - t(s) ] ds dTJ 

~x - s)(y - y*) - z2J[ t(s) - TJ] 

< z2 
where y* may depend on ~ and satisfies y(x1*) < y* = Y-

x
-;: 

(22.11) 

[(x - s)(y - TJ) - z2J[ x* - t2(TJ) ] ds d 

[(x - x*)(y - TJ) - z2J[ t 2 (TJ) - s J TJ 

(22.12) 

where x* may depend on ~ and satisfies t
2

(Y
l

*) < x* ~ x- z2. 

Y-T] 
The relations (22.10) and (22.12) may be obtained, respectively, 

from equations (22.7) and (22.11) if the role of the coordinates is inter­
changed in the latter. 
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Let us note that the result of a single application of the 
Abel inversion formula to equation (22.2) or directly to equation (22.1) 
yields 

(22.13) 

Interchanging the role of the coordinates in equation (22.13) we obtain 

t.' { 1 d~O ds _ 0 

L' dZ z==o (x - S 
(22.14) 

It is possible to consider equations (22.13) and (22.14) as rela­
tions fulfilled along the characteristic lines LN and LfN' in the 
x,y-plane where y and x are, respectively, the coordinates of N or 
N' lying off the wing and off the region of influence of the trailing 
vortex system (fig. 20). The points N and N' lie to the right and 
left of the Wing, respectively. These relations can be useful for compu­
tations. 

2. Let us turn to the fundamental formula (21.1). Using equations (22·7), 
(22.10), (22.11), and (22.12) we obtain, by calculation, the formula 
for the velocity potential ~O at M(x,y,z) for which S intersects 

Sn for any n > 0 

(22 .15 ) 
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where the functions ~ and n2 are defined as 

-1 [(x s) (y Tl) - z2][YB - w(s)] 
nl = tan 

[(x - s) (y - YB) - z2] [1jr( 0 - Tl ] 

~ tan -1 [(x - s)(y - Tl) - z2J~A- ~2(Tl)J 
= 

[(x - XA)(Y - Tl) - z2] [~2( Tl) - sJ 

and where the regions 8e and 8a are regions of the wing marked on 

figure 21. The region 81* is the vertically-striped region on the wing 

surface. The region 82* is the horizontally-striped region of the wing 

surface. It is clear that 81 * and 82 * intersect each other and 8 e 
on the wing. 

The region 81 lies off the wing and is vertically-striped in 

figure 21. This region is the sum of the regions over which are taken the 
integrals containing 8k ' for k=l, 2, ••• , n-2 in e~uation (22.15). 

The region E2 lies off the wing and is horizontally-striped in 
the figure. All the integrals are evaluated over it which together con­
tain 8k for k=l, 2, ••• , n-2. 

If M is such that 8 in the basic formula intersects 8n falling 

in the characteristic cone from En and lying outside the cone from En', 
then n must be replaced by n-l in the second sum and in the last term 
of e~uation (22.15). If 8 falls inside the cone from En' and lies 

outside the cone from En then n-l must be substituted for n in the 
first sum and the penultimate term of e~uation (22.15). 

Let us note that the sums in e~uation (22.15) are defined for n > 3 
and the last two terms in e~uation (22.15) for n~ 3. 
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If n=l, then the formula for the velocity potential in equa-
tion (22.l5) is limited to the first two t erms . This result was already 
obtained before. 

If n=2, the formula in equation (22.l5) is limited to the first 
four terms, the region of integration is shown in figure 22. 

Thus, to evaluate the velocity potential, by equati on (22.l5), at 
a point M(x,y)z) which has the projection M'(x,y,O) shown in fig­
ure 2l, it is necessary, first of all, to compute Sk for k=l, 2, 3, 

., n-2 by equation (22.3) for ~2 and by equation (2l.8) for 

k=l (Sk' correspondingly) . 

As an example we present the expression for the potential for n=3 
in the expanded form 

= l JJ A( £, Tj)dTj d£ +..1. JJ A( £, Tj)dTj d£ 

- 21{ S e I(x - £) (y - Tj) - z2 2:rr S e I(x - £) (y - Tj) - z2 

_ 1:.. fJ A( £, Tj)n2 dTj d£ + 

:rr2 82* Kx _ £)(y _ Tj) _ z2 

(22ol6 ) 
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The region of integration 
are, respectively, the regions 

striped in figure 23. 
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in the last two integrals over £ and ~ 

Sl and S2 lying off the wing and shown 

Formula (22.15) for the velocity potential contains an n-iterated 
integral with the integrand an arbitrary given function on the wing: 
?XPO/dZ = A(x,y). 

In the general case, it is not possible to reduce the number of 
iterations in the computation of equation (22.15) for arbitrary wing­
tip shapes since the arbitrary functions ~, ~2' and A all contain 

the variables of integration. If the functions ~ and ~2 are fixed 

then the wing to be considered has completely determined tips and it 
is easy to see that all the integrals in equation (22.15) are reduced 
to double integrals taken over the wing surface with integrands containing 
the arbitrary given function A(x,y) which defines the form of the wing 
surface. 

Let us turn to the wing of small span which has a break in its 
leading edge as shown, for example, in figure 24. 

The derivative ?XPO/dZ may be evaluated in al and a2 by equa­

tions (21.8) and (22.3). It is impossible to evaluate ?XPO/dZ in a3 

using equation (22.3) and, therefore, a surface-integral equation must 
again be constructed which will also reduce to two Abel equations but 
with more complex right sides than occurred for a3 in figure 19. 

Hence, we note that it is impossible to construct one formula which 
would determine ?XPO/dZ for all cases, but a single method of solution, 

may be shown to depend on the wing plan form. 

The formation of the surface-integral equation for ?XPO/dZ is 

explained above, for each characteristic region. Each of these equa­
tions is of the same type, reducing to two Abel equations with different 
right sides in different cases. In particular, the right side of one 
of the Abel equations, in some cases, may be identically zero. 
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3. INFLUENCE OF THE VORTEX SYSTEM FROM THE wnm FOR STEADY WING MOTION 

1. To study t he influence on t he air flow of the trailing vortex 
system in steady motion, it is convenient to operate with the acceleration 
potential ~O which, in linearized theory, is related to the velocity 

potential derivatives in the characteristic coordinates through 

Let us turn to the wing shown in figure 25. Let us take a point 
M(x,y,O) on the wing surface, which lies between the characteristic 
cones from D and DI. Therefore the trailing edge DT affects M. 

Usin~ equation (21.15 ) the velocity potential at M according to 
equation t2l.l) i6 

C!b(x,y,O) ::: 1 
21t 

(23.2) 

where the regi ons S: 61 + So and s2 are shown i n figure 25. The 

region s2 belongs to D, cons.idered in section 7 of part I and shown 

in figure 11. We denoted the derivative ~O/oz in D by ~ where 

this derivative is an unknown. 

We subject ~O/oz to an additional condition, analogous to the 

Kutta-Joukowsky incompressible-flow condition . 
perturbation velocity potential at the trailing 
and D'T' of the wing contour (fi gs. 11 or 25) 
specified derivative, i s a continuous function. 
conditions are fulfilled : 

We assume that the 
edge - the arcs DI' 
- and therefore, the 
Then the respective 
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(23.4) 

where, as above, the function y = x(x) is the equation of DT and 
y = X2(x) is the equation of D'T' of the wing contour. 

In order to obtain the acceleration potential ¢o at M on the 

wing surface, we must take the derivative of equation (23.2) in a direc­
tion parallel to the oncoming stream. Before differentiating the double 
integral with respect to x and y we integrate by parts - in the first 
case with respect to ~,in the second with respect to ~. 

During these operations, we use equation (23.3) and the relation 
(22.13) which is fulfilled along characteristic lines, and which on the 
line DD* (fig. 25) is 

We keep in mind, moreover, that the limits of 

xD ~ ~ ~ xA and X( S) ~ ~ ~ 1Jrl ( ; ) where xD 

integration of sl are 
is the abscissa of D and 

xA = xA(y) is the abscissa of A, the limits of So are xA ~ ~ ~ x 

and 1Jrl ( ;) ~ ~ ~ y and finally the limits of s2 are xD ~ ; ~ xA and 

X(~) ~ ~ ~ y. 

After the specified operations, the results of differentiation are 

CPQx(x,y) + croy(x,y) = - ~ If 
sl+sO 

A;(;,~) + ~(;,~) d~ d; _ 

Vex - ~) (y - ~) 

~~(s,~) + ~~(~,~) 

{(x - ~)(y - 1)) 
d~ d~ - (23.6) 

A [~, 1Jrl (~D 

(23.6) 
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where the arc 2 = RP is shown in figure 25. In order to evaluate the 
acceleration potential ~O at M according to equation (23.6) it is 

first of all necessary to determine ~ + ~y in s2. 

2. Let us construct the integral equation for ~x + ~y. Let us 

express the accleration potential through equation (21.1) at an arbitrary 
point N(x,y,O) outside the wing in n affected by the vortex sheet 
trailing from the wing 

~o(x,y,O) = - 1 JJ A(~, 11) 
2:n: d ds-

s(x,y) vex - ~)(y - 11) T} 

.1.. JJ ~(s,T)) 
2:n: dT) d~ 

vCx - ~)(y - TJ) cr(x,y) 

(23.7) 

for which the limits of integration in cr are xD ~ s ~ x and 
< < -

X ( ~) = 11 '= y and in s, s varies between the same limits but 11 
between 1fl(S); T) ~ X(s ) (fig . 26). 

Let us differentiate this expression in the free-stream direction. 
Since, according to t he condit i on ((l.lO) of part I) the velocity poten­
tial ~O off the wing in the x,y-plane remains constant along lines in 
the specified diYection, then the l eft side of equation (23.7) goes to 
zero as a result of differentiation and therefore we obtain 

dT) ds + 

(23.8) 

--- -- --
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We integrate the first two integrals in equation (23. 8) by parts 
with respect to sJ after which we differentiate with respect to x. The 
result is 

and 

(23.10) 

Keeping equation (23.5) in mind, which is fulfilled on the characteristic 
DD* we substitute equations (23.10) and (23 . 9) into equation (23. 8) 
obtaining 

dT} + 

(23.11) 
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This equati~n is equivalent to 

d (Y -a(x, Tl) dTl + ~ l X
(x) A(x, Tl) dTl = 0 

dY JX(x) {y _ Tl dy *l(x) {y - Tl 
(23.12) 

according to the inversion of the Abel integral equation. 

We integrate the last two integrals in equation (23.12) by parts 
with respect to Tl after which, as above, we differentiate with respect 
to the parameter. Using equation (23.3) we arrive at 

(23.13) 

Let us apply once again Abel's inversion formula, keeping in mind 
that the right side of equation (23.13), generally speaking, is different 
from zero for y = x (x) we obtain the solution for -ax + -ay as 

l
x(x) { 

*l(x) 
~(x,"1) + 

1 1 r ~ { d*l (x) (J /X(x) - *1 (x) 
-;====;== Alx'*l(x) 1 - ---

~ iy - X(x) L dx Y - *l(x) 

(23.14) 
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Using equation (23.14) we prove 

(23 .15) 

where 21 = RQ. The regions s2 and sl are shown in figure 25. 

Substituting equation (23.15) into equation (23.6) we obtain the 
formula for the acceleration potential 

<po(x)y) 
--- = CfJox + 

u 

(23.16) 

where L = QP) the direction of the integration is shown by the arrows in 
figure 25. 

Thus to evaluate the acceleration potential at M on a wing sur­
face two integrals) the surface integral over So and the contour inte-

gral over L of the leading edge are to be computed. 

Let us turn to equation (23.12) and write it in the form 

d l Y 
{dCPO l d 1) d j Y rdCPo} d11 

dX 'h(x) dZ 1z=0 rY - 11 + dy '\flex) 1 dZ z=o ~ = 0 

(23.17) 

--------~ 
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Interchanging the role of the coordinates in equation (23.17) we 
obtain 

(23.18) 

where x = ~l(Y) is the equation of EIE of the wing leading edge solved 

for x in terms of y. 

It is possible to consider equations (23.17) and (23.18) as rela­
tions which hold along characteristic lines in the x,y-plane where the vor­
tex sheet has effect. 

Relation (23.17) is fulfilled along characteristic lines parallel 
to the Oy-axis (the line NQ on figure 26); the y-parameter is the 
ordinate of a point lying off the wing to the right, in the effective 
range of the vortex sheet (point N in fig. 26). Relation (23.18) is 
fulfilled along lines parallel to the Ox-axis; the x parameter is the 
abscissa of a point lying off the wing to the left. 

If the point N is thus located to the right of the vortex line DR 
or to the left of DIR', then along characteristic lines the respective 
relations (22.13) and (22.14) also hold. 

If N is located to the left of DR or to the right of D'R', 
respectively, then relations (23.17) and (23.18) hold along characteristic 
lines. In this case, equations (22.13) and (22.14) are not fulfilled. 

In this section, we wrote down the transformation and obtained 
the formula for the accleration potential in the simplest case of the vor­
tex sheet affecting the flow. 

For any other case, the potential ¢O is found in an analogous way. 

In each case an integral equation is constructed for ~x + -By. All the 

integral equations are of the same type but with different right sides in 
the different cases, and they are inverted by means of a double application 
of the Abel integral equation inversion formula. 

In the following paragraph we present results defining the accelera­
tion potential ~O at any point of a wing surface. 
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3. Let us find the velocity potential ~(x,y,z ) at a point M 
lying within the characteristic aft-cone from D and outside the charac­
teristic aft-cone from Dl. The r egion of integration S i n the funda­
mental formula (21.1) intersects the plane region D (fig. 11) in this 
case . 

The projection M' of M on the x,y-plane is shown in figure 26a . 

Starting from condition (1.12) (of part I) we express the derivative 
~O/dZ for any point where the velocity potential eQuals zero and where, 

simultaneously, the effect of the vortex sheet is felt through the same 
derivative at points located upstream on the same characteristic line 
with the point studied . To do this we reason just as we did to obtain 
formula (21 . 8). We then obtain the desired representation for the 
derivative 

~O ~ - 11 
d T) -- = -

dZ 

(23 .19 ) 

Using eQuation (23 .19 ) it i s easy to prove 

(23 . 20) 

by the same methods used in proving eQuation (21 .15 ). 

- . - ---------
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The limits of int egration in equation (23.20), xl* and x2*' are 
b t · fy' < * < < * < any num ers sa lS lng xD = xl = xF and xD = x2 = xF where xF is 

the coordinate of the point F shown in figure 26a. The point F is the 
intersection of the vortex line DR, whi ch has the equation 
y = x + YD - xD' with the characteristic cone from t he point with the 
coordinates (x,y,z) . 

In particular, there holds 

(23 .21) 

where the regions 81 and 82 are shown in figure 26a. The r egion 81 
is marked with horizontal and t he region 82 with vertical crosslines. 

Keeping in mind equation (23 . 21 ) we obtain an expression for the 
velocity potential at the point M defined above 

cpo(X,y,z) 1 JJ i(x 

A ( ~,11 ) d11 d~ 2~ JJ -6(~,11)d11 d~ 
2n - ~ ) (y - '11) - z2 V(x - ~)(y - 11) -80 8' 

(23.22) 

where 80 and 8' are shown on figure 26a . 

z2 

Therefore, the region of integration 8 
sects the wing surface only in that part of 
the vortex line DR. 

in equation (23.22) inter­
n which lies to the left of 

Before evaluating the velocity potential by equation (23 .22) it is 
necessary to determine OCPo/dz = -6 in the region 8' of n. 

We find -6 from the solution (23 .14 ) if the latter i s integrated 
in a free stream direction between N(x,y) and N (~,Y). Hence in order 
that the obtained expression correspond to the value of the deriva-
tive OCPo/dz = -6 in n to t he left of DH, the coordinates x and y 
on the vortex sheet should be taken as the solution of the equa-
tions y - x - YD+ xD = 0 and y = X(x) and the value of ~(x,y) is 
determined from equation (23.3) at the trailing edge. 
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If the X and y coordinates are set equal to x = xD and 

Y = y-x+xD and the value of ~(x,y) is determined on DR from the 
solution of equation (21.8) then the obtained expression will correspond 
to the value of d~/dZ in n to the right of DR off the vortex sheet 
but in its sphere of influence. 

4. PRESSURE DISTRIBUTION ON A WJNG SURFACE 

1. Let us consider a wing of arbitrary plan form. Let the wing 
contour in the characteristic coordinates be given by the following equa­
tions: The leading edge E'E by y= ~(x) or x = ~l(Y)' the side 
edges ED and E'D' by Y = ~(x) and y = ~2(x) or x = t "(y) and 

x t 2 (y), the trailing edges DT' and D'T' by Y = X(x) and 

y = ~(x) or x = X(y) and x = ~(y). 

Let us find the pressure of the flow on the wing surface. 

According to the Bernoulli integral, the pressure difference of the 
flow above and below the wing is related to the acceleration potential ~O 

by 

p(x,y) = PZ(x,y) - pu(x,y) = 2p~O(x,y) (24.1) 

where p is the density of the undisturbed flow. 

We divide the wing surface into the ten characteristic regions shown 
in figures 27 and 28. 

Let us express the stream pressure on the wing surface in each 
characteristic region by the function A(x,Y) which is given on the wing, 
defining the shape of the surface. 

We denote by M and M with a subscript the ends of line segments 
parallel to the coordinate axes and lying in the x,y-plane. It is clear 
that these segments are parts of the lines of intersection of the charac­
teristic cones, with vertices in the x,y-plane, and the x,y-plane itself. 

Region I is the region where the tip effect is not felt. This part 
of the wing lies ahead of the characteristic aft-cones with vertices at 
E' and E. 
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Region II is where the tip effect is felt but not the influence of 
the trailing vortex sheet. This region lies between the characteristic 
aft-cones from E' and E and D and D'. At M of region II, for 
which the lines M1M3 and ~M4 intersect on the wing as shown on 

figure 27, the pressure difference is 

p (x,y) ; ff D(s,T};x,y)dT} ds + ~p ffD(s,T};X,Y) dT} ds + 

81 82 

(24.2) 

1;here 81 is the region of the wing bounded by the lines MMlJ ~, 

N1M3 and ~4' 82 is the region bounded by M1M3, M~4 and the 

~rc L = M4M3 and where 

.. " 
I 
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If the lines ~M3 and ~M4 do not intersect on the wing, as shown 

in figure 28, then the pressure difference is 

where 81 is bounded by the lines MMlJ M1M) , ~, ~ and 

L = M)t\. 

Arrows in the figures shmr the direction of integration in the con­
tour integral and the integrals taken over the lines Ll = M)Ml and 

L2 = ~~. 

In region III, which lies between the characteristic cones from E 
and the characteristic cones from EI, D and DI, the pressure differ­
ence is 

p(x,y) ~ -': JJ D«, ~;x,y)d~ d< - ;' J B [<, tl «) ;x,y] {l -
81 L . 

(24.4) ': {l -d~Y)} J BL~(y),~;x,y)d~ 
L2 

The pressure difference in region IIII is expressed in the same way. 
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p(X,y) 

Region IV lies in the characteristic cones from E and E' and D 
and outside the characteristic cone from D'. Region IV' is defined cor­
respondingly. At M(x,y) of region IV, when M1M3 and M2M4 intersect 
on the wing, the pressure difference is 

p(x,y) = - : If D( s, T};x,y)dT} ds + ~ If D( s, T};x,y)dT} ds + 

Sl S2 

(24.6) 

For the M, for which M1M3 and M2M4 do not intersect on the wing, 

the pressure difference is expressed by equation (24.5). Similarly, the 
pressure difference for region IV' is 

p(x, y) = - u~fJ D( s, T};x,y )dT} ds + ': If D( s, T};x,y )dT} ds + 

Sl S2 

J r d~l(S) 1 
': B[s'~l ( S);X,YJ 11 - ds JdS 

L 

u~ {l -d~Y)k B~(Y)'P,YJa~ 
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if MIM3 and ~ 
sect on the wing the 
tion (24.4). 

intersect on the wing. If these lines do not inter­

pressure difference can be expressed by equa-

In region V, which lies within the characteristic cones from E, E', 
D and D' where the influence of the trailing vortex sheet is felt, the 
pressure difference is 

p(x,y) = - : jJ D( s, l);x,y)dT} ds 

81 

': j B[s,Vl(s);x,yl{l -
L 

+ : jJ D( S, T};x,y)dT} ds + 

82 

if MIM3 and ~M4 intersect on the wing, and 

p(x,y) = ': jJD(S,TJ;X,Y)dT} ds 

81 

if they do not intersect. 

': jB[S,Vl(<);X,y1{1 
L 

(24.8) 

In region VI, lying in the characteristic cones from E and D 
and outside the characteristic cones from E' and D' (also in 
region VI') the pressure difference is expressed by equation (24.9). The 
pressure difference for r\~~ ion I has the same form. 

Thus, if M, at which the pressure is desired~ is in one of the 
regions II, IV (IV' correspondingly), or V, as shown in the figures, then 
to set up the regions and contours of integration in the pressure formulas 
it is necessary to proceed as follows: Draw two lines MMl and ~ 

upstream from M to intersect with the side (or trailing) edges of the 
wing. From these points of intersection Ml and M2 again draw lines 
MIM3 and ~ upstream to intersect the leading edge E'E at M3 and 

~. 

If M is in region III or VI (III' or VI' correspondingly) then from 
M draw the lines MM4 and MMl upstream; the line MM4 immediately 

intersects the leadip~ edge E'E at M4; MM1 intersects the side edge 
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ED in the case of region III or the trailing edge DT' in the case of 
region VI. From the point of intersection Ml again draw the line M1M3 

to intersect the leading edge E' E. 

Let us consider particular cases. 

(I) Let the side edges of the wing ED and E'D' be straight 
lines parallel to the free stream. In this case 

1 

and, therefore, formulas (24.2) and (24.3) are simplified substantially, 
because the last two terms in them become zero. 

A particular wing of this class is the rectangular wing. 

(II) Let the wing surface be such that 

This holds, firstly, when the wing surface is a plane, i.e., the 

function A = -u~O/k is given on the Wing, where ~O is the angle of 
attack, as a constant. 

Secondly, this holds when the wing surface is linear, generally 
speaking, uncambered, with generators lying in planes parallel to the 
y = x-plane (x,z-plane in the original coordinates), then the derivative 
of the function A(x,y) given on the wing satisfies the rela-
tion Ax = - Ay. In particular this is a wing with a cylindrical surface 
formed in the manner described. 

In these cases, only the oontour integrals and the integrals over the 
line segments Ll and L2 remain in the formulas for the pressure. 

(III) The pressure formulas take an especially simple form when 
the wing surface is such that the function D(s,~;x,y) =0 on the wing, 
at the same time as the side edges ED and E'D' are straight lines 
parallel to the stream (combination of cases I and II). In this case, the 
pressure difference above and below the wing in any region can be repre­
sented by 

p(x,y) = (24.10) 
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where the plus sign is taken if the lines M1M3 and M2M4 intersect on 

the wing and the minus sign if these lines do not intersect on the wing. 

Hence, the pressure on the wing surface is expressed by the curvi­
linear integral taken over the arc L of the wing leading edge. 

(IV) Let the wing plan form be such that the points D and E 
and E' and D' coincide. In this case, calculation of the pressure 
on the wing surface is also simplified because there are no regions II, 
III and III' on the wing. In particular, the trapezoidal wing belongs 
to this case. 

2 . The pressure formulas show that there can exist a geometrical 
locus F* (x,Y) = 0 where the pressure on the wing p(x,y) = O. Down­
stream of this geometrical locus, the pressure difference p = PI - Pu 

is negative . 

For example, if D(~,~;x,y) = 0 on the wing then the geometrical 
locus F* = 0 is found in the region of the wing lying inside the char­
acteristic cones with vertices E and E' and passing through either 
regions II and IV or through IV and V or or lying entirely in V. 
The first case occurs only when K, the intersection of the lines 0lK 

and 02K parallel to the coordinate axes, appears to be outside the 

region of influence of the vortex sheet, as 
example.. In all these cases, the points T 
metrical locus of F* = O. The curve F* = 
downstream and not as shown on the figures. 

shown in figure 27, for 
and T' are on the geo-

o may also be shaped convex 

Let us write the equation for the geometrical locus F* = O. 

In region II: 

F*(x,y) 

2 {l - ddty(Y) Jl y - 1Jrl [HY) ] 
VX - 'if(y) 

(24.11) 
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In region IV: 

F*(x,y) 

(24.12) 

In region V: 

(24.13) 

If the side edges of the Hing are lines parallel to the free stream 
direction or the wing i s such that E and D (E' and D' correspond­
ingly) coincide, then F* = 0 takes a simple form . In region V it is 
not changed, but in regions II and IV, we have, respectively, in place 
of e~uations (24.11) and (24.12 ) 

(24.14) 

and 

o (24.15) 

In all cases when the pressure difference on the wing, according to 
e~uations (24 . 2 ) to (24 . 9), i s expr essed only by means of curvilinear 
integrals taken over L of the wing contour, it is easy to construct the 
zero-pressure curve graphically, keeping in mind that the zero-pressure 
curve in these cases i s the geometrical locus of such points M on the 
wing surface for which the points M3 and M4 on t he wing contour coin-
cide. That is, the arc on the l eadi ng edge over which the curvilinear 
integral is taken shrinks to a point. 

We construct the zero-pressure curve as follOlvs: 
on the leading edge we draw the lines NoNl and 

From each point 
NON2 parallel to 

the coordinate axes intersecting the s i de edges ED and E'D ' as shown 
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in figures 29 and 30, or the trailing edges as shown in figures 31 and 32. 
From the points of intersection Nl and N2 wi thin the wing again \.,e 

draw lines NIN* and N2N* parallel to the coordinate axes. The geo­

metrical locus of N*, where these lines intersect, is the desired zero­
pressure line. 

For example, for a symmetric wing, if the side edges ED and E'D' 
are parallel to the stream, the zero-pressure curve passes through G 
and G' and is the line e~uidistant from the leading edge (fig . 30). 
The points G and G' are shol-Tn on figures 29 to 32. If E and D, 
E' and Dr, correspondingly, coincide and the trailing edges are straight 
lines then F* = 0 passes through G and G' and is the curve obtained 
by inverting the leading edge ErE relative to the center of inver-
sion 0*. The center 0* is the point of intersection of the trailing 
edges (fig. 31). 

If the wing is asymmmetric and if the side edges ED and E'D' are 
parallel to the free stream then the zero-pressure curve is the reflection 
of the curve e~uidistant to the leading edge and passing through G and 
G', relative to the line e~uidistant from the side edges (fig. 29). If 
the points E and D, and also E' and D', coincide and the trailing 
edges are straight lines making identical angles with the stream then the 
geometrical locus F* = 0 is the reflection of the curve obtained by an 
inversion, with center 0*, of the leading edge and passing through the 
points G and G' relative to the line e~uidistant from the side edges 
(fig. 32). 

3. All the obtained results are generalized to the case when the 
leading edge ErE is given not by one e~uation y = ~l(x ) but consists of 

segments of smooth curves given by y = ~lk(x), where k = 1, 2, ••. , n 

with n any integer. In such cases the surface and contour integrals in 
the formulas for the pressure should be divided into component parts for 
the actual evaluations. 

The Side, ED and E'D', and trailing, DT' and D'T, edges may 
also be piecewise smooth. 

The same generalization holds for the previous three sections. 

4. All the results are generalized in the case of the asymmetric 
flow over a wing which occurs, for example, in the motion of a yawed wing. 

Let us consider a wing of arbitrary plan form with an angle of 
yaw r as shol-Tn in figure 33· 

_.---' 
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The pressure on the wing can be computed by the same formulas if 
the equation of the arc Eo 'EO, in the coordinates transformed to the 
origin 0, is taken as the function y::: 1jIl(x). 

The equation of (correspondingly 

this case EODO acts as the wing tip_ 

E 'D ') is o 0 y ::: 1jI(x). In 

Finally, for the trailing edge, DOTO' we have the equation y::: X(x) 

(correspondingly for DalTO'). 

5. As is known, knowing the acceleration potential or the velocity 
potential on the wing surface, we can easily compute the aerodynamic 
forces on the wing. 

In order, we represent the aerodynamic-force formulas using the ori­
ginal coordinate system shown in figures 1 and 2. 

The lift P on the wing is 

P ::: 2p ff cl>O(x,y) dx dy 

L: 

(24.16) 

where the region of integration in L: is defined by ~O(y) ~ x ~ Xl(y) 

and YD' ~ Y ~ YD 
x = Xl(y) is the 

The limits YD
l 

of the wing. 

where x = ~O(y) is the equation of D'E'ED and 

equation of the trailing edge D'TT'D (figs. 27 and 28). 

and YD are respectively the coordinates of D' and D 

Since according to linearized theory cl>O(x,y) ::: u d~o/dX then 
integrating (24.16) over x and keeping in mind that the velocity poten­
tial is zero on DIE IED from conditions (1.11) and (1.12) of part I, 
the lift is 

If the trailing edge is piecewise smooth, then in actual computa­
tions the contour integral must be divided into its component parts. 
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The expression for the moment May due to lift relative to the 

Oy-axis is 

May == 2p JI'IfJO(x,y)x dx dy 

L: 

The moments relative to the other axes have the same form. 

(24.17) 

·6. The explained theory can be generalized to the case of the flow 
over a tailor over a biplane in tandem. 

We proceed as follows to obtain formulas to compute the pressure on 
the tail taking into account the influence of the wing. 

Express 'tJOx + ~y at M(x,y) on the tail using the basic formula 

(21.1). In the expression for ~x + ~y under the integral sign insert 

~x + ~y on the vortex sheet. The function ~x + ~y is found fr~m the 
Abel integral equation which is constructed by the method of sectlon 3· 

In the case of flow over the tail the different characteristic 
regions on the tail must be separated just as was done in figures 27 and 
28 for the uniform motion over a wing. 

Only in this case, to divide the tail surface into regions, there 
must be taken into account, on the one hand, the wing effect and on the 
other hand, the tip effect and also the effect of the vortex sheet of 
the tail itself. 
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APPENDIX 

EXAMPLES 

The following examples, solved by N. S. Burrow and M. M. Priluk, 
will serve to illustrate the methods explained before. 

A. Arrow-Shaped (or Swallowtail) Wing 

Let us consider the arrow-shaped (or swallowtail) wing plan form 
where the leading edges are formed by the segments AD and AD' and 
the trailing edges by the segments DB and D'B as shown in figure 34. 
Let the following geometric parameters be given: 01 the angle between 
the leading edge and the free-stream direction; 02 the angle between 
the trailing edge and the free-stream direction and I the wing semispan. 

The equations of the wing leading edges in the x,y Gharacteristic 
coordinates with origin at 0 are 

and 

line AD 

Y 1 = -l-+--co-t--'~~*-t-a-n-o-~ {< ~ - cot 0.* 

line AD' 

y 1 = ___ ~l ____ J( 1 + cot 0.* tan 01) Xl - 27, cot a.*} 
1 - cot 0.* tan °1 1 

the trailing edge equations are 

line DB 

1 
{(l - cot a* tan 82)Xl + 21 cot a*} Yl = 

1 + cot 0.* tan °2 

line D'B 

Yl 
1 tl + cot a* tan 82)X~ - 21 cot a*} = 

1 - cot 0.* tan 02 

where the angle 0.* is the semiapex angle of the characteristic cone. 

Let us consider the wing for which 01 > a* and 02 > a*; that is, 

a wing surface not affected by the trailing vortex sheet. 
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We will assume that the wing surface is a plane inclined by an 

angle ~o to the free-stream direction. Therefore, the derivative 

.nll b e a constant everywhere on both sides of the wing surface and will 
be given in the form 

dCPO 
-- = - u~O tan 0.* 
dz 

(Al) 

In conformance with the method we divide the wing surface into the 
three characteristic regions la, Ib, and Ic, with each region having its 
own analytic characteristic solution and taking into account the angular 
point A of the leading edge (fig. 34). Let us compute the stream 
pressure on the wing surface in each region. 

Using the formula (5. 9), we find the pressure in the regions Ia and Ib, 
lying outside t he characteristic cone from A, to be 

p 

This formula shows that the pressure in regions Ia and Ib is a constant. 

In region Ic, lying inside the characteristic cone from A, we find, 
by using the same formula, the pressure to be 

p(X,y) 
2u2p~O tan 01 [ 

= ~cot2 0.* tan2 01 _ 1 11 

2 tan-l 1 - cot 0.* tan 01 1 cot 01 - Xl + 

~ 1 t cot 0.* tan 01 Yl - 1 cot 01 

cot 0.* tan 01 1 cot 01 -

cot 0.* tan 01 Yl - 1 cot 
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In the original coordinate system shown in figures 34 and 35, (A3) 
becomes 

() 
2u2p~O tan 01 

p x,y = X 
Jcot2 a* tan2 01 - 1 

{~ - ~ tan-~ 1 - cot a* tan 01 1- cot °1 - x+ Y cot a* 
+ 

1 + cot a* tan °1 y cot a* + x - 1- cot °1 

2 t -1 1 + cot a* tan 01 1- cot B~ - x + y cot ~*} - an n 1 - cot a* tan °1 Y cot a* + X - I cot 51 
(A4) 

These formulas show that the pressure is constant along each ray from A 
in region Ic. 

Shown in figures 36 and 37, respectively, are the pressures along a 
section A1Bl parallel to the y-axis and along the section ~2 par-

allel to the x-axis. 

The lift P of the considered wing is 

P = 1 + - tan-
2u2p~01-2(tan 01 - tan 02) { 2 1 cot a* ~an 01 - 1 

------~--~~--+ 
tan 02Jcot2 a* tan2 01 _ 1 n cot a* tan 01 + 1 

g tan 01 - tan 52 tan-l.!cot a* tan 01 + 1 + 
:J{ tan 01 + tan 02 V 'cot a* tan 01 - 1 

4 tan3 02 tan-l 

1C tan 01 (tan2 01 - tan2 02) 

cot a* tan 02 - ~} 
cot a* tan 02 + 

The lift coefficient Cz is 

Cz = -;::=======::;::==== 1 - - tan 
4~O tan 01 { 2 -1 

Jcot2 a* tan2 01 _ 1 :J{ 

cot a* tan 01 - 1 
cot a* tan 01 + 1 + 

g tan 01 - tan 02 
1C tan 01 + tan 02 

-1 Vcot a* tan 01 + lj tan + 
cot a* tan 01 - 1 

16~O tan2 02 ______________ ~~==============~ tan-l 

1C(tan 01 + tan 02)Jcot2 a* tan2 02 - 1 

---~--~~ 

cot a* tan 02 - 1 
cot a* tan 02 + 1 

(A6) 
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As is well known, the wave drag coefficient Cx is related to the lift 

coefficient through Cx = ~OCz' 

Let us consider particular cases of (A6). In the limit as Ol-?~' 

we obtain for the triangular wing 

the well known result4 for the lift coefficient of a triangle. 

Comparing (A6) and (A7) we conclud~ that for identical wing speeds 
and identical angles of attack the lift coefficient of the arrow-shaped 
wing exceeds the lift coefficient of the triangular wing. 

In the particular case when 02 = 01, we obtain the infinite span 
arrow-shaped \-ring. In the limit as °2~01 (A6) yields 

Cz = 
4130 tan 01 

ycot2 0..* tan2 01 - 1 

This result shows that the lift coefficient of an infinite span arrow­
shaped wing eQuals the lift coefficient of an infinite span slipping 
wing with slip angle 01. 

Formula (A6) shows that with increasing 01 and 02' the angles 
between the leading and trailing edges and the free stream, respectively, 
the wing lift coefficient decreases. The dependence of Cz for an 

arrow-shaped wing on 01 and 02 is shown in figures 38 and 39. 

Bo Semielliptic Wing 

Let us consider the wing plan form which is half an ellipse as shown 
in figure 40. Let t he semiaxis al and b l of the ellipse be given. 
Let us assume that the wing moves, as shown in the figure, in the direc­
tion of the axis of symmetry. 

4See the work of M. I. Gurevich: On the Lift of an Arrow-Shaped 
Wing in Supersonic Flow. Prik. Mate. Nekh., Vol. X, No.4, 1946. 
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The equation of the leading edge, the line D'D, in characteristic 
coordinates with origin at 0 is 

and the trailing edge equation in these same coordinates is 

a12 - b12 cot2 ~*)xl t 2al b l cot ~*Ja12 + b12 cot2 ~* - x12 

a12 + bl 2 cot2 ~* 

In the original x,y coordinates the trailing edge equation is 

(Bl) 

The plus sign relates to the arc CD of the ellipse and the minus sign 
to the arc CD'. 

Let us assume that the wing surface is a plane inclined at an angle 

~o to the free-stream direction, therefore the normal derivative 
dCPO 

as given by (AI). 

Let us consider the flow around the semiellipse when the character­
istic cones from D and D' intersect on the wing surface. In con­
formance ,d th the method we divide the wing surface into the four 
regions I, VI, VI', and V. Region I is outside the characteristic cones 
from . D and D', hence the vortex sheet trailing from t he wing exerts 
no effect here. Region VI is within the characteristic cone from D 
but outside the cone from D'. Conversely, VI' is within the cone 
from D' and outside the cone from D. Region V, however, falls within 
both the characteristic cones from D and D'. 

Using the formulas, we compute the pressure in each region on the 
wing surface. The pressure in I is constant everywhere and expressed 
by (A2). In VI the pressure distribution in the x,y coordinates is 
given by 

p = u2p~O tan ~* x 

[1 ~ sin-1 cot a* ElY + E2f1 + ~lb1 cot a*VE1 - f12 } (B2) 
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where 

fl = x + y cot a* 

Similarly for region VI'. The pressure distribution in V is 

2 
2u P130 tan a* 

p(x,y) = ------ X 
j{ 

cot a* ~y' + 
sin-l 

sin- l cot a* Bl y + B2f2 - 2albl cot a*JBl - f22 

xB:i 
(B3) 

where f2 = x - y cot a* and Bl , B2 , and fl are as defined in (B2). 
Graphs of the pressure distributions a long the respective sections AlBl 

and ~B2 parallel to the y - axis are given in figures 41 and 42 and 

along the corresponding segments A3B3 and A4B4 parallel to the 
x- axis are shown in figures 43 and 44 . Spanwise section lines AIBl 

and A2B2 are shown in figure 45; whereas chordwise section lines A3B3 

and A4B4 are shown in figure 40 . 

I f the semiaxis of the elli pse are given in a special way; namely, 
if there exi sts between the semiaxes the r elation al = b l cot a*, then 

formula (B2) for the pressure distribution in region VI simplifies, 
becoming 

{
cot a * y + / 2a1

2 
x- (x + cot a*y) 2 1 

p (x,y) = ~Pl3o tan a* 1 - ~ sin-l J 
(B4) 

This corresponds to the case where the characteristic cones with apexes 
at D and D' intersect the wing trailing edge on the axis of symmetry 
of the wing at the point C; consequently the region V on the wing now 
vanishes. 
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In the general case for the flow around a seroielliptical wing, it 
may be shown that on the surface of the wing in region V, there exists 
a certain curve along which the pressure difference between the upper 
and lower surfaces of the wing reduces to zero. Downstream from this 
curve on the surface of the wing the pressure difference becomes nega­
tive. We find the equation for this line of zero pressure by equating 
the right side of (B3) to zero. 

After obvious transformations, we represent the desired geometric locus 
in the following final form 

where 

(B6) 
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These results show that the zero-pressure line is the arc of an ellipse 

wi th semiaxes a2 and b2 related through (B6) to the semiaxes al 

and bl of the arc of the ellipse which is the wing trailing edge. The 

directions of the semiaxes a2 and b2 coincide with those of the semi­

axes a l and bl • In order that the zero-pressure line should not pass 

through the wing surface, the elliptical arc forming the trailing edge 

of the wing should not have a real point of intersection with (B5), which 

determines the zero-pressure line. Comparing (Bl) and (B5) we obtain the 

following result. In order that the zero-pressure line, of a plane wing 

of semielliptic plan form moving at the supersonic speed u, should not 

pass through the wing surface, it is necessary and sufficient that the 

geometric parameters of the wing satisfy the condition 

Constructed in figure 46 is an isometric view of the pressure on a 

semielliptic wing in the general case when (B7) is not fulfilled and 

there exist the regions I, VI, VI', V on the wing. 

C. Hexagonal Wing 

Let us consider the wing of hexagonal plan form shown in figure 47. 

Let the leading edges be the l ines OE1' and OE1 ' , the side edges E1D 

and El'D ' parallel to the free stream, and the trailing edges DB and 

D'B. In characteristic- coordinate space, the wing has plan form as shown 

in figure 48 . 

Let,us assign the following geometric parameters: cr _ the 

the lead~ng ~dge makes with the free stream; y _ the angle the 

edge makes w~ th the free stream; I - semispan and h chord . 

angle 
trailing 

Let us consider that wing for which cr > N* ~ > * 
i l't '-'- 'I a,. 

,ne~ua ~ y means that the wing surface extends outside of 

~st~c c~ne from O. The second inequality means that the 

~s outs~de the sphere of influence of the trailing vortex 

The first 
the character_ 
Wing surface 
sheet . 

---~-~-----
----~~ 
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The equations of the lines forming t he wing contours are: the 
line OEl 

Y = x tan C1 

or in characteristic coordinates 

where 

1 - cot 0.* tan (J m = =---~~~------
1 + ctg a* tg C1 

here m< 0, since 5> a*; the line OE1 ' 

the line E 'D' 1 

the line DB 

Y = - x tan (J and Yl = rnxl 

Y = I and Yl = Xl + 2 cot a*l 

Y = - I and Yl = Xl - 2 cot a*1 

Y = - x tan / + h tan / 

93 
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and finally DIB 

y = x tan / - h tan / and Yl 

I{here 

1 + cot 0.* tan / 
1 - cot 0.* tan / 

2h cot 0.7(0 tan / 
1 - cot 0.* tan. / 

2h cot 0.* tan / 

1 + cot 0.* tan / 

In conformance with the method we divide the wing surface into the 
13 characteristic r egions shown in figure 48 . 

Assuming that the surface of the wing is a plane, we give the stream­
line condition in the form (Al ) and we compute the pressure in each 
characteristic region . We produce below the results of comput ing the 
pressure on the wing surface as formulas already transf ormed back to the 
original coordinate system. 

The pressure in Ia and Ib is constant and expressed by (A2 ). 
In I c the pressure is 

2 
2u Pi30 { 

p (x,Y) = ------
1r v---::-m cot 0.* 0-

2!. + tan- l 
2 

_ tan-1 ~ x - cot 0.* yl 
x + cot 0.* yJ 

1 x - cot 0.* y 

x + cot 0.* y 

Hence it follows that the pressure is constant along each ray starting 
from 0 in Ic. In IlI a 

tan- l .C 2 cot 0.* ( 2 - y ) 
r(m - l )(x + cot 0.* y ) + 22 cot 0.* 

( C2) 

-----~-----~ 
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In 11Th 

p(x,Y) 

In IIIc 

In IIa 

p(x,y) 

= 2U
2

Pf30 (m - 1) {t -1 1 Ix - cot 0..* Y 
rc v-::m cot 0..* an r-m x + cot a. * Y 

1 ~
- 2 cot o..*(l - y) 

tan-
(1 - m)(x + cot 0..* y) + 22 cot 0..* 

l .em x - cot 0-* y} tan- r- m 
x + cot 0..* Y 

(C3) 

t -1 .~ 2m cot o..*(y - 2) 

an ~ (1 _ m) ( x + cot 0..* y) + 2m2 cot 0..* 

(c4) 

r--- 2m cot o..* (y - 2) 

~~)(x + cot 0..* y) + 2m2 cot 0..* 

tan-1 ,~rn)(x· ; cot ,,* y) - 21 cot ,,* t 
V- cot o..*(l + y) J 

95 
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In IIb 

p(x,y) 

In IIc 

= 2u2p~O(1 - m) { -1 1 Ix - cot 0,* y 
rc r-m cot 0,* tan V - m V-x-+-c-o-t-o,-*"--::"'y 

2 cot 0,*( l - y) 
----------~-~~---- + 
(1 - m) (x + cot 0,* y) - 2l cot 0,* 

tan- l (1 - m) (x + cot 0,* y) - 2l cot 0,* 
2 cot o,*(l + y) 

tan- .r:-m 1 x - cot 0,* y} 
r --- x + cot 0,* y (c6) 

p(x,y) = 2u
2 
P~O (m - 1) f tan -1_1_ ~ -_m.....;).-;(:-x_-_co_t_o,_*-=..y..:....) _+_2m_l_c_o_t_o, __ * 

rc ~ cot 0,* 1 ~ ~- 2 cot o,*(Z + y) 

tan- l -_l -r::-m 
x - cot 0,* Y 1 -------.:::.- + tan - r-:m 
x + cot 0,* y 

2 cot 0,*( l - y) 

(1 - m)(x + cot 0,* y) + 2ml 

x - cot 0,* Y 
x + cot 0,* y 

Formulas for the pressure distribution on the wing surface in 
regions IIIa', IIIb', IIIc', and IIa' may be obtained from (C2), (C3), (c4), 
and (C5), respective1y~ if coordinates appropriate to the specific 
regions are chosen. 

The formulas for the pressure show that there is a zero-pressure 
line on the wing slrrface, downstream of which the pressure difference 
below and above the wing becomes negative. This line is formed of the 
two segments KN and KN' the equations of which are 
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y = x tan 5 - 22 tan a* tan a y = - x tan 5 + 22 tan a* tan a (c8) 

and which are parallel to the leading edges E10 and El'a. 

The zero-pressure line may easily be constructed graphically. 

Graphical representations of the respective pressure distributions 
in the sections A1Bl, A2B2, A3B3' A4B4, and A5B5 parallel to the 
y-axis are given in figures 49, 50, 51, 52, and 53. 

An isometric pressure surface is shown in figure 54 for the 
hexagonal plane wing. 

Translated by Morris D. Friedman 



98 NACA 'I'M 1383 

REFERENCES 

1. Sedoy, L. I.: Theory of Plane Motion of an Ideal Fluid, 1939. 
(Russian) 

2. Kochin, N. E.: On the Steady Oscillations of a Wing of Circular Plan 
Form. P.M.M., yolo VI, no. 4, 1942. NACA translation. 

3. Prandtl, L.: Theorie des F1UgzeugtragflUgels 1m Zusa.mmendruckbaren 
Medium. Luftfahrtforschung, no. 10, yolo 13, 1936. 

4. Ackeret, .I.: Gasdynamik. Handbuch der Physik, yolo VII. 

5. Krasilshcbikoya, E. A.: Disturbed Motion of Air for a Vibrating Wing 
MOYing at Supersonic Speeds. P.M.M., yolo XI, 1947. Also D.A.N., 
yolo LVI, no. 6, 1947. Brown translation. 

6. KrasilshchikoYa, E. A.: Tip Effect on a Vibrating Wing at Supersonic 
Speeds. D.A.N., yolo LVIII, no. 5, 1947. 

7. Krasilshcbikoya, E. A.: Effect of the Vortex Sheet on the Steady 
Motion of a Wing at Supersonic Speeds. D.A.N., yolo LVIII, no. 6, 
1947. 

8. Krasilshchikoya, E. A.: Tip Effect on a Wing MOYing at Supersonic 
Speed. D.A.N., yolo LVIII, no. 4, 1947. 

9. Krasilshchikoya, E. A.: On the Theory of the Unsteady Motion of a 
Compressible Fluid. D.A.N., yolo LXXII, no. 1, 1950. 

10. FalkoYich, S. V.: On the Lift of a Finite Span Wing in a Supersonic 
Flow. P.M.M., yolo XI, no. 1, 1947. 

11. GureYich, M. I.: On the Lift on an Arrow-Shaped Wing in a Supersonic 
Flow. P.M.M., yolo X, no. 2, 1947. 

12. GureYich, M. I.: Remarks on the Flow OYer Triangular Wings in Super­
sonic Flow. P.M.M., yolo XI, no. 2, 1947. 

13. KarpoYich, E. A., and Frankl, F. I.: Drag of an Arrow-Shaped Wing at 
Supersonic Speeds. P.M.M., yolo XI, no. 4, 1947. Brown translation. 

14. Frankl, F. I., and KarpoYich, E. A.: Gas Dynamics of Thin Bodies. 
1948. Translation published by Interscience Publ., N. Y. 1954. 



NACA 'I'M 1383 99 

15. Panichkin, I. A.: On the Forces Acting on an Oscillating Wing 
Profile in a Supersonic Gas Flow. P.M.M., vol. XI, no. 1, 1947. 

16. Galin, L. A.: On a Finite-Span Wing in Supersonic Flow. P.M.M., 
vol. XI, no. 3, 1947. 

17. Falkovich, S. V.: On the Theory of Finite-Span Wings in Supersonic 
Flow. P.M.M., vol. XI, no. 3, 1947. 

18. Khaskind, M. D., and Falkovich, S. V.: Finite-Span Oscillating Wing 
in Supersonic Flow. P.M.M., vol. XI, no. 3, 1947. 

19. Gurevich, M. I.: On the Question of the Thin Triangular Wing Moving 
at Supersonic Speeds. P.M.M., vol. XI, no. 3, 1947. 

20. Galin, L. A.: Wing of Triangular Plan Form in Supersonic Flow. 
P.M.M., vol. XI, no. 4, 1947. 

21. Puckett, A.: Supersonic Wave Drag of Thin Aerofoils. Jnl. Aero. SCi., 
vol. 13, no. 9, 1946. 

, 
22. Von Karman, T.: Supersonic Aerodynamics. Jnl. Aero. SCi., vol. 14, 

no. 7, 1947. 

23. Ackeret, J.: Luftkrafte auf F1Ugel, die mit grosserer, als schallge­
schwindigkeit bewegt werden. Zeit. fur Flugt. u. Mot., vol. 16, 
1928. 

24. Schlichting, H.: Tragflugeltheorie bei Uberschallgeschwindigkeit. 
Luftfahrtforschung., vol. 13, No. 10, 1936. 

.. .. 
25· Borbely, N.: Uber die Luftkrafte, die auf einen harmonischschwingenden 

zweidimensionalen Flugel bei Uberschallstromung wirken. ZAMM, 
vol. 22, no. 4, 1943. 

.. 
26. Busemann, A.: Infinitesimale kegelige Uberschallstromung. Luftfahrt-

forschung, no. 3, 1943. 

27. Frenkel: Electrodynamics, vol. 1. 



100 

z 

A 

o ~ 
o 

__ -r-~---- y 

x 

Figure 1. 

z 

F i gure 2. 

Figure 3. 

NACA TM 1383 

z 

o 



NACA TM 1383 101 

--"'"'"'"'~---- Y.., r; 

F i gure 4. 

-

;~ 
o 

Y 

F igure 5. 

l 



102 NACA TM 1383 

x 

Figure 6. 

x 

Figure 7. 



NACA 'I'M 1383 103 

y 

Figure 8. 



104 NACA 'I'M 1383 

Figure 9. 



~ 4A 
NACA 'I'M l.38.3 l05 

x 

I 

0"2 

Figure 10. 

u~ 
__ --0r-~~----__ ~y 

Figure 11 . 



106 NACA 'IM 1383 

Figure 12. 

E'U~ 
f 0 E - y 

/ - -L '\. 

0' S 
0 1 1\ -\. J f -, / 

........ ./ - -' ---r---==== 
l~ 

X 

Figure 13. 



NACA TM 1383 107 

Figure 14. 

- -----------------------



108 NACA TM 1383 

y 

F igure 15. 

z 

a* 

Figure 15(a ). 



NACA TM 1383 

z 

a* 

Li 
x ...... f-------L...4~----~'/ 0 ~ 

Figure 15(b). 

z 

a* 

Figure 15(c). 

109 



110 NACA TM 1383 

IT~ 
o 

y 

Figure 16. 

u~ 
o 

y 

M'(x,Y,O) 

Figure 17. 

- - ------



NACA TM 1383 111 

o 

A y 

M' (x,y,o) 

Figure 18. 



112 

Ut 
o 

E~(X2'Y1) 

E2 (X 3 'Y2) 

E3 (X4 ' Y 3) --,,'-/-+--.~ 
(J'I 

1 

X 

0:' 

(J" 
3 

NACA TM 1383 

~....---E2(X2 'Y3) 

-E3 (X3'Y4 ) 

Figure 19. 



113 
5A 

NACA TM 1383 

0:' 
E~ '; 
" ~<Tk 

Figure 20. 



114 

Figure 21 . 

u~ 

o 

" / " / 

/ 
/ 

~~ 

Figure 22. 

NACA TM 1383 

y 



NACA 'I'M 1383 115 

y 

Figur e 23 . 

I 

()n 

Figure 24. 

---------------------~ 



116 

x 

x 

H 

M(x,y,O) 

Figure 25. 

u~ 
Q-£R 

H 

Figure 26. 

NACA 'I'M 1383 

0* 

y 

y 



NACA TM 1383 117 

Figure 26(a). 

Figure 27. 



118 

*" F=O-

Figure 28. 

Figure 29. 

NACA 'I'M 1383 

E 



NACA 'IM l383 

Figure 30 . 

I 
I 

I 
I 

I 
\ I 
\ I 
\ I 

\ / 
\ 
\ I 
\ I 
\ I 

I *" 
1\ 

0 

Figure 31. 

ll9 



120 

x 

\ 

"* F=O 

\ 
\ 

NACA TM 1383 

E 

Figure 32. 

, y 

\ 
\ 

Figure 33. 



6A 
NACA TM 1383 

121 

u 

t 
.~------~--~-y 

-......J---~- 81 

°2 
a* 

x 

Figure 34. 

u 

+ 
t-----~-~y 

a* 

x 

F igure 35. 



122 NACA TM 1383 

p 

y 

Figure 36. 

p 

p = p (x) 

~---L------~------~--~X 

o 

Figure 37. 



NACA TM 1383 

o 

Figure 38. 

°1=Const 

Tr 
2 

4/3, 
C =_0 

Z K 
--il ___ 8

1 

L--___________ - ~ 0 
7T 2 o 2 

Figure 39. 

123 



124 

x 

Figure 40 . 

p 

1 
p=p (y) 

Figure 41. 

p 

Figure 42 . 

NACA TM 1383 



NACA TM 1383 125 

• 

p 

p=p (x) 

Figure 43. 

p 

~--~ ____ ~ __ ~x 

Figure 44 . 



126 

x 

u , 
0

1 o o 
~--------~--~~--~~--.-y 

~~--~~---+--~~~-+~81 

A2~--~~~~~~=-~~~-B2 

x 

Figure 45 . 

z 

I 
......... ', I 
-~----~ --- T I 

IDI 

Figure 46 . 

NACA 'I'M 1383 

y 



• 

NACA 'I'M 1383 

X1 1 A - --- --
5 0' 

127 

x 

Figure 47. 

Figure 48. 



128 NACA TM 1383 

• 

p P=P(y) 

~L/ 

__ ~~ ____ -+ ____ L-__ +-____ ~~ ____ y 
2 3 4 

Figure 49 . 

p 

~---+----+-------~------~--~--~-----y 
2 3 4 5 6 

Figure 50 . 



.7A 
NACA TM 1383 129 

P 

p=p{ y) 

~~--~---4-------L ______ 4-__ ~~~~ __ y 
234 5 6 

Figure 51. 

p 

P = p (y) 

Figure 52 . 



130 

, , , 

p 

F igure 53. 

....... 8 
5 

F igure 54 . 

NACA TM 1383 

....... , 
"8 , 

'-
" ',82 '- 8 

' 3 

y 

NACA - Langley FIeld, V., 

• 


