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TAIL-WHEEL SHIMMY*

By M. Melzer

The report shows, for stiple cases, under what conditions tail-wheel
shinmy - sometimes observed in rolling of airplanes - may occur. This
is done by calculationof the stability limits decisive for rolling, with
simplifying assumptions. The model tests are described which were per-
formed for checking of the calculation results obtained and of the assump-
tions used.

OUTLINE

1.

2.

3.

4.

5.

on

INTRODIXTION

THE STABILITY CONDI’ITONS FOR INFINITELY LARGE AIRPLANE MASS

INFLUENCE OF TEE AIRPLANE MASS

CONCLUSIONS AND SUMMARY
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1. INTROD~TION

In airplanes manufactured by various firms, oscillation phenomena
the tail wheels occurred in rolling and led to failures in some cases.

One is dealing here with self-excited oscillations of the tail wheel and
of the tail-wheel fork about the swivel axis of the latter, with the air-
frame participating in these oscillations to a higher or lesser degree
according to the ratio of the masses and of the moments of inertia.

The tail-gear assembly should be constructed in such a mzmner that tine
swiveling part (that is, tail wheel plus tail-wheel fork) under the influ-
ence of the restoring forces assumes the mean position without oscillations

*“Beitrag zur T!heoriedes Spornradflatterns. ” Bericht der Focke-

WUM Flugzeugbau G.m.b.H., Bremen, Versuchsabteilung. Technische.Berichte,
vol. 7, no. 2, 1940, pp. 59-70.
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when it had been deflected from the rolling direction by any force what-
ever (aperiodic stable motion). It is also still permissible that the
swiveling part, after a deflection, passes several tbes through the zero
position before it finally remafis in the mean position (strongly damped
oscillation).
the damping of
ative. In the
deflections to
of equilibrium
occurs .

However, the rolling will be considerably disturbed when
these oscillations becomes too small, zero, or worse, neg-
last case the oscillations build up from, at first, small
larger and larger ones until for some deflection a state
is again established or failure of a structural member

The investigations described in the present report had the purpose
of giving an explanation for the origination of these so-called shimmy
oscillations and of demonstrating in general the influence of the various
structural characteristics as far as this is possible in a method not
applied to definite conditions. The numerical investigation required
several assumptions and simplifications; in order to check their permis-
sibility, a series “ofmodel tests were performed after the theoretical
treatment, and were compared with the calculation.

2. STABILITY CONDITIONS FOR INFINITELY LARGE AIRPLANE MASS

For clarification of the question under what conditions tail-wheel
shimmy occurs, the differential equations of motion were set up and
Hurwitz’ criteria of stability were used to examine under what conditions
these equations have solutions with negative damping, that is, with self-
excitation. As a result, one obtains one or more equations which indicate
the boundary between stability and instability. They contain, in general,
the conditions for static and dynamic stability; if a system is recognized
as unstable on the basis of Hurwitz’ stability criteria, periodic motions
(tail-wheel shimmy) as wellas aperiodic ones may occur.

In order to minimize nonessentials, the mass of the airplane was
first assumed to be so large in comparison to the mass of the tail gear
that the motion of the airplane is not influenced by the oscillations of
the tail wheel. In the further course of the calculation, it will be
indicated how the shimmy conditions vary when a motion of the airplane
in one or several degrees of freedom is considered.

A number of forces act on the swiveling part which must be in equi-
librium

tion of

Q

E

among themselves; the following synbols sre used for the deriva-
these equilibrium conditions (fig. 1):

shimmy deflection

displacement of the center point of contact with respect to the
wheel center plane, cm
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distance of the wheel behind the swivel axis, cm

.
loadon tail gear, kg

moment of inertia of the swiveling p’art,refe”rred to the swivel

axis, cmkgs2

the springing coefficient of the wheel for
dicular to the center plane at the point

the springing coefficient of the wheel for

forces acting perpen-
of contact, kg/cm

moments which twist
the wheel around the perpendicular through the center point
of contact, cmkg

the springing coefficient of a tail-wheel restoring spring, cmkg

the total springing coefficient opposing rotation of the wheel
about the VWtiCa~ (q = CFCD+ Crcp)j cmkg

the resistance coefficient for the rotation about the swivel axis,
Cmkgs

rolling velocity, cm/s

friction coefficient between ground and wheel

The following moments act on the swiveling part, referred to the
swivel axis:

1. The inertia resistance
d2

-Jcp-#

2. The restoring moment -cF@ . In the case of retractable tail

wheels, there exists usually a spring which restores the tail gear to
zero position. Even if one imparts to this spring (by catches and similar
devices), a nonlinear regularity, it is, nevertheless, possible to indi-
cate for small deflection angles, a constant springing coefficient CFq.

A second restoring moment stems from the torsional elasticity of the
tire; as long as the friction on the ground is sufficient, the tire
attempts to restore again every rotation about the vertical, since it
has contact with the runway not in a point but in a surface. The moment
originating thereby has the value -%$$P9 so that, because of

cq = cr(p+ CFq, the total restoring moment becomes -c@.

3. All damping forces and moments which originate by bearing friction,
material damping, and the like, are, in first approximation, put

1— ——_—. —. ..— — — — — —
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c,

proportional to the angular velocity of the swiveling part
dq

They
z“

are designated as the natural damping of the oscillation system. The

sum of all these moments is assumed to be of the magnitude -P g.

4. Between runway and tire there originates a frictional force which
acts at the point of contact at right angles to the wheel-center plane.
Without discussing here its magnitude in detail, one may state that it
laterally deforms the wheel. If one designates this deformation by ~
(fig. 1), and the springing coefficient of the wheel opposing this defor-
mation by cr~~ the force is cr~~ and its moment about the swivel axis

The four moments named above must be in equilibrium at any instant.
Therefore the equation

d2q-Jq — -
dq

cPq-pfi+acr~~=O
dt2

(1)

is valid.

Beside this equilibrium condition for the moments about the swivel
axis, a second condition may be stated which asserts that the force Cr&j~
named in point 4 is balanced by the component S (lateral force) of the
frictional force between runway and tire which is at right angles to the
wheel center plane. The velocity and force relations on the rolling wheel
can be seen from figure 2.

The airplane is rolling at the velocity v; this velocity may be
resolved into a velocity component in the wheel plane (v cos P), and into
a velocity component normal to the wheel plane (v sin p). By rolling off
the wheel would attain a peripheral velocity v cos p if no slip would
exist between wheel and runway. Actually, however, the peripheral velo-
city is smaller (vR~) since, due to the elastic deformation of the wheel,

a sliding in the rolling direction occurs. Thereby, a slip of the rolling
wheel is produced, of the magnitude

v Ccls ~ - VRU
s= Av. (2)

v Cos (p v Cos Cp %

The wheel point of contact has therefore a total velocity vBP which

composed of Av and v sin p. The frictional force has the value
with a direction opposed to the velocity vBp so that the component

perpendicular to the wheel-center plane becomes

s.llPcosu (3)
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a may be expressed by q and s

s.— ~na. =~=_.
v sin q tan (p

If this value is introduced into equation (3), S becomes

‘=*

(5)

If one plots S against cp according to this eqyation, the following
diagram results (fig. 3). For the wheel which is entirely free of slip
(s = O), the normal force increases Lmnediatelyto its ulixbnate value
VP for the deflection zero; for the wheel locked by brakes (s = 1),
this force increases according to a sine law and attains the value VP
for cp =fi/2. The actual wheel lies, according to rigidity and friction,
between these two lines; it must be noted that the slip s itself varies
with q so that the curve S = f(q) obtains a shape different from the
form drawn. For the further investigation, the variation in the range
of
at

If

small deflection angles is import~t. The slope of the S/cp curve
the

one
can be

point q = O iS obtained-from
.-

dS
~

I

.;P (6)
ql+o

replaces the lowest pat of the curve by a straight line, which
done with very good approximation, one finds

s=:Pq=p’Pcp (7)

The friction value thus fixed at p’ = w/s must be determined from
e~eriments for every wheel, every load, and rolling velocity since w
as well as s are dependent on these parameters.

If the swiveling part performs a rotation about the swivel axis with
the angular velocity drp/dt,there originates at the point of contact a
lateral velocity adq/dt (fig. 4); if, moreover, the wheel is deformed
by ~ with the velocity d~/dt, the total velocity normal to the wheel
plane becomes

d~
vsin@+a~+~=v sincptaq’+~’ (8)
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The velocity of the point of
direction. The direction is

tan a

and after introduction of s

tan

contact varies thereby
given by

Av=
vsinrp+aq’+~’

and (p

a. s

NACA TM 1380

in magnitude and

(9)

(lo)

As can be seen immediately from figure k, the denominator of this expres-
sion equals tan d, where O is the angle between the velocity of the
wheel center (vw) and the wheel center plane (sideslip or yaw angle).

For transition to SUll angles, one finds for the case where a lateral
motion of the point of contact is added to the rolling motion according
to equation (7)

(11)

Since, as was mentioned before, the force S thus found must balance
the elastic force cr~~> the second condition of equilibrium becomes

(
a dq 1 d~

)
cr~E+@Pcp+---+ —— =0

V dt
(12)

The two equations (1) and (12) represent the differential equations for
the motion of the swiveling psrt and of the point of contact.

Without discussing in detail the complete solution of the equations
of motion (1) and (12), one can determine, with the aid of Hurwitz’ sta-
bility criteria, under what conditions the occurring oscillations sre
damped, undamped, or excited.

—

If one introduces the expressions

(p . @ert and ~ .~ert

wherein r = d + i%f (d... damping, f . . . frequency),

equations named above and cancels out ert, one obtains from

(13)

into the
(1)
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from (12)=--—_.

.—

(-Jqr2 - ~ - pr)~ + acr~~ ‘ O

(
Uj=+.lp(l+:r);=ocr~ + ~ (15)

By elimination of @ and ~, there results from (14) and (15) the main

7

(14)

equation of the system

‘o Al

(16)

It can be shown that the system is stable under the conditions (and only
under those conditions), that the coefficients ~ to A3 and the deter-

A2 As
minant D= are positive. Since the coefficients of the main

A. Al

equation always are ~rger than zero, the stability of the oscillation
diagram depends solely on the sign of the determinant. If one introduces
into the latter the values for A. to A3, one obtains the following

condition for stable rolling

The frequency of the occurring oscillations may be given from the equa-
tion (%f)2 = A2/~ as

I

CT + a2Cr~ + pcr~v/V’P
f=& (18)

The equation for the oscillation frequency applies rigorously only to the
undamped oscillation; the self-excited as well as the damped oscillations
more or less deviate in their frequency from the value thus calculated.
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From equation (17), one recognizes that the rolling velocity v
appears only in the expression which is dependent on P. If the natural
damping of the oscillat.im system is SIIB1l so that it may be neglected
with respect to the other forces acting on the tail wheel, the conditional
equation for stable running assumes the following extraordinarily simple
form

Thus
by a
ring

(19)

the wheel runs stably as long as the frictional force u’m, produced
deflection cp, is smaller than the deformation force sqlcr~,occur-
from the same deflection.

If the complete equation (17) is solved with respect to P, p indi- ‘
cates a measure for the magnitude of the required damping if for struc-
tural reasons the rearward position resulting from equation (19) cannot
be adhered to. This case is important partictirly for nose wheels.

One recognizes from equation (17) that, in the case of swivel axis
with high friction or with artificial damping, a stable region exists
even for very small rearward positions since the second term on the right
side of the equation then becomes larger due to p/aCr ~.

The influence of the rolling velocity will be expounded in more
detail in the discussion of the test results.

Tests

As mentioned at the beginning, the results derived in the previous
section were checked by means .ofmodel tests. For this purpose we used
the test arrangement described below and represented in figure 5. Sinee
it was important to make experiments also for the cases where the air-
plhne mass can no longer be assumed as infinitely large or completely
rigid, the arrangement of the test apparatus was already provided for
th=se”conditions~ in particular, the-rotation of the
about the longitudinal axis of the airplane had been
consideration.

The pipe 1 represents the mass of the fuselage;
the longitudinal axis in a self-alining ball bearing
bearing as point of rotation in the perpendicular (x

atip-iane fuselage
taken into

it may rotate about
2 and about this

z) plane. A motion
out of this plane is prevented by the bearing-equipped guide 3. The
rotation about the x axis is opposed by two springs 4. Adjustable
masses 5 are rigidly connected to the pipe by which the moment of inertia
about the longitudinal axis may be varied within broad limits. The



NACA w 1380 9

bearing load P of the tail wheel on the runway is adjusted by means of
the sliding weight 6 and the spring 7. The tail wheel 8 consists of
soft solid rubber; it is rotatable about the swivel axis 9; its distance
behind the swivel axis a is adjustable. For the mounting of the swiv-
“HTiig part as well as of the tail wheel; ball bearings were used. In a few
tests, a tail-wheel-restoring spring 10 was installed which restores the
swiveling part to mean position in the range of small angles with linearly
increasing moment. The tail wheel runs on a slightly roughened leather
belt 11 which is driven by an electric motor.

Since for these first investigations the airplane mass was assumed
to be so large that it was not influenced by the relatively quick motions
of the tail gear, the rotation of the pipe 1 about the x axis had to be
prevented. For this purpose the springs k were replaced by rigid con-
nections and the swivel-axis bearing was laterally restrained.

The first measurements were to yield the initial values (cr~, CW,

c~, Jq, v’) used ~n the equations (17) and (18). The springing coef-

ficients of the wheel could be determined from the natural frequency of
the swiveling part. With the belt stationery, the wheel was given a
slight impact for various wheel-rear positions a and for several tail-
wheel loads P, and the deflection curve was plotted. If one disregards
the slight influence of the natural damping p, one obtains

4.fi2f2= (Cq + a2cr~)/JT. If one plots therefore J+fi2f2JT against a2,

a straight line must result which has a slope of cr~ with respect to

the abscissa and intersects the ordinate scale at the value Cq. As an

example, this curve has been plotted for the test series A2 in figure 6;
since for this series a tail-wheel restoring spring had been installed,
the oscillation frequency was measured once with this spring and once
without it, and the springing coefficient cm was determined from the

I difference.

In order to obtain the friction coefficients v’P, the deflection
forces S were measured normal to the wheel plane for increasing deflec-
tion angles by means of a spring balance for all tail-wheel loads con-
cerned; the rearward position of the wheel was selected as far to the
rear as possible in order to avoid oscillations. The w’P values were
determined for various rolling velocities; however, the influence of the
velocity was so small that it remained within the experimental scatter.
The result of these measurements in the range of small angles (approxi-
mately up to 5°) is given in tables 3 and 4.

The moment of inertia of the swiveling part Jm ,increases with

increasing distance behind the swivel axis a. Its’

I from oscillation tests about the swivel axis set up
I purpose.

magnitude resulted
horizontally for this
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a = 0.3 1 1.> 2 3
Jq X 102 = 4.14 4.27 4.35 4.47 ::;9 4.72 %gs2

+
h’
$

Shimmy tests .- In these tests the tail-wheel load P was adjusted,
d

for a certain r~nard position of the wheel a, in turn to P = 1, 2,
2.8, and 3.6 kg by shifting of the weight 6 and by compression of the
spring 7, and then the number rpm of revolutions of the driving shaft
was regulated by stages between n = 50 and n = 1000/minute corresponding
to a velocity v = 41.5 and 83o cm/s. The range of revolution below
100/minute could not be satisfactorily evaluated because of uneven pro-
pulsion; the same was true for the range about 600/minute because of
resonance between th’enatural frequency of the belt and the propulsion
rotational frequency. At each rpm-stage the wheel was given a short
impact; it was then observed whether oscillations of constant or of
increasing amplitude occurred. If all decisive coefficients (for instance,
for springing, friction, etc.) were constant - as they had to be assumed ,
to be in the calculation - the amplitude of the occurring shimmy oscil-
lation would increase m~re smd more with time without attaining a fixed
ultimate value. Actually, however, this is not the case; rather, the
values are constant only in the range of small angles but vary with
increasing deflection as was shown, for instance, for the value v’P in
figure 3. Hence, there appears in many cases a constant deflection which
is the larger, the smaller the total damping of the system is under the
various test conditions.

For a deflection of O= t45°, the swiveling part strikes against
its limiting stops so that no larger deflections could be measured.

The tests were subdivided into two series, Al and A2, which differ
by the fact that for the tests of the first series no tail-wheel restoring
spring was used whereas for the tests of the second series, a spring with
a restoring moment of 19.7 cmkg had been installed. Due to changes on
the wheel, the springing coefficients of the latter were, moreover, some-
what increased.

The numerical tables 1 and 2 contain the test results of both series:~~
the deflections and frequencies measured for the various tail-wheel loads,]~

(/
-1

)
1f:,/

rearward positions, and numbers of revolutions vcm s = 0.83nmin . As &

can be seen from the tables, the rearward position was changed each time
by O.~ cm; the limiting rearward position for which shimqying stops is,

WI
]?)

therefore, known, in general, only within this accuracy. When more exact ~1~
data are given below, they have been derived from the variation of the ~1
deflections as a function of the rearward position. t.L,

The numerical tables 3 and 4 indicate the critical springing and
friction coefficients for the two series. Furthermore, the result of
the calculation is given as it was obtained from the equation (19)
a= = V’P/cr~. For comparison there appears underneath the limiting
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rearward position a
1?

from the
the tail wheel for w ~ch, in the
investigated, no oscillations of

e-.

11

test; this is that resrward position of
entire range of revolution (or velocity)
constant or increasing amplitude occurred.

The comparison of test and calculation shows a satisfactory agreement
so that one may regard as permissible the assumptions made for the inves-
tigation considered.

In the model test the rolling velocity did not play an essential role
for answering the question whether or not shimmy is possible for certain
tail-wheel loads, rearward positions, springing and friction coefficients.
If one investigates the terms of the complete equation (17)

(20)

which sre dependent on the velocity and on the natural damping, one finds
that they become infinitely large for v = O and v = m so that for very
small and for very large velocities, no shimmy oscillations are possible.
In between a minimum value of the expression (20) lies at

(21)

For checking of these relations in the model test, we plotted for a
few tests the variation of the deflections for equal resrwsrd position
and equal tail-wheel load, but for different velocities, against the rpm
of the shaft. As an example, we show this for the test of the series A2
with P = 2.8 kg and a . 2.5 cm (fig. 7). In this figure the value of
the expression (20) is plotted neglecting the term pcr~/Jq for the
values indicated in table 4, with consideration of the ratio between
velocity smd rpm of the driving shaft. P was inserted as 0.0186 cmkgs;
since for n = 770/minute the shimny deflection becomes zero, the left
side of the equation (17) is equal to the right one at this point, and
one may calculate p
with the variation of
smallest in the range
Furthermore, one sees
about n = 140/minute
equation (19) amounts

from it. One sees from the comparison of this curve
20 from the test that the deflections 20 are

where the dsmping term is largest, and vice versa.
that the minhmxn value of the damping term lies at
with 0.52 kg so that the error of the simplified
to only

0.52_ 0.52
100 percent = 4.9 percent

acr~ 2.5 x 4.25

.
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One finds a further qualitative confirmation of equation (21) when
considering tables 1 and 2. On the one hand, the rpm pertaining to the
maximum deflection increases within the same series (Al or A2) with
increasing rearward position a and with increasing tail-wheel load P.
On the other hand, these velocities lie, for otherwise approximately
equal conditions, for the series A2 higher than for the series Al as
is to be expected on the basis of equation (21) from the difference of
the Cq values.

According to equation (17), it should be possible to find a stable
range even for very small resxwsxd positions since the second term of
the right part of the equation then becomes very large. For satisfactory
installation in the model test (small P) this stable position occurs for
resmwrd offsets close to zero, and could therefore not be proved reliably.

3. INFLUENCE OF THE AIRPLANE MASS

Whereas, it was assumed in the investigations described so far that
the airplane, due to its size, is not influenced in its motion by the
tail-wheel oscillations, it will be indicated in the following section
how the stability conditions vary if this shnplifying assumption is
dropped. We shall not attempt to give a complete solution for it since -
with consideration of the nmnerous degrees of freedom of the motion of
the airplane - the stability condition would contain so many parameters,
and in very complicated relations, that a survey of the influence of the
individual qualifying factors would not be possible after all. Conditions
become more favorable only where one deals with the complete calculation
of a definite case for which the majority of structural characteristics
is fixed and only those need be considered which can still be modified
by the type of construction of the

In this part of the report we
bility condition for the case that
about its longitudinal axis. Such
oscillates on the two front wheels
tires. A similar motion occurs in
oscillation of the wing since here

tail-gesr assembly.

shall treat, as an example, the sta-
the airplane can rotate elastically
a motion comes about when the airplane
due to alternating yielding of their
the case of unsymmetrical forms of
also the fuselage (and therewith the

swivel axis) must perform torsional oscillations about the longitudinal .
axis (x axis) of the airplane.

For the numerical treatment of the degree of freedom of the motion
thus fixed, the following symbols are used in addition to those enumera-
ted in section 2 (fig. 8):

A deflection angle about the x axis (tramping angie)

h distance of x axis from runway, cm
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J1 moment of inertia of the airplane (or of the fuselage) about the
x axis, ‘cmkgs2

J->.Xz centrifugal moment of swiveling part referred to the swivel sxis

J

and the x axis, cnikgs~

moment of inertia of tail wheel, referred to the tail-wheel
axis, Cmkgsp

sngulsx velocity of the tail wheel

springing coefficient for the rotation about the x axis, cmkg

The equilibrium conditions of this oscillation form read:

1. Moments about the swivel axis (compare equation (l))

2. Moments about the x axis

(22)

(23)

3. Equilibrium between frictional force and deformation force (com-
pare equation (12))

( 1 d~ h dA

)
cr~~+U’pT’+$~+– —+-— .0

v dt v dt
(24)

The following remarks are to be made regsrding these equations:

To equation (22): The first four terms correspond exactly to equa-
tion (l). The fifth represents the mass coupling; if the swiveling
part is deflected by A, there originates at any arbitrary mass point

of it an inertia resistance of the magnitude -zdm~, if z is the

distance of the point from the x axis. If one designates the distsmce
from the swivel axis by x, the moment of this inertia resistance about

d2A
the swivel axis becomes -XZ dm — and for the entire swiveling part

dt2’

(25)
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The sixth term -Jo R indicates the

is required for deflecting the tail wheel>
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magnitude of the moment which

rotating with the velocity u,

about the x axis with the angulsx velocity ~ (gJKroscopiccoupling).

To equation (23): This equation has a structure exactly corre-
sponding to that of the previous equation, and expresses the equilibrium
of the moments about the x axis.

TO equation (24): The equation (11) states that the force component
S of the frictional force vP, which is normal to the wheel plane, is
proportional to the single of sideslip 0. The angle of sideslip was
given by the right psrt of the equation (11). Due to the motion of the
swiveling part about the x axis, there originates at the point of contact

of the wheel, a further velocity component of the smount h ~ so that

the angle of sideslip becomes for this case:

adcp+~%+~h
o=q+–— (26)

v dt V dt

For the further development, the terms P g,
dh

% ~ Jo ~, and

Ju~ sre neglected. Whereas the influence of the first two expressions
dt

can be estimated from the results of the first part, the influence of the
~oscopic coupling cannot be given immediately. One recognizes, however,
that these terms also make the stability condition dependent on the veloc-
ity, and that this deviation must take effect for large velocities, since
Jo vanishes for v . 0. It seemed useful to neglect the expressions
mentioned above in the calculation, and to clarify the problem of the
influence of the velocity by model tests carried out shniltaneously.

For the determination of the stability condition, one uses again an
expression of the form

CP = @ert, g =~ert, 1 = Aert (27) ~

;

If one introduces these expressions into the equations (22) to (24) and i
cancels out ert, there re~ults three equations in r,
the denominator determinant of which must disappear

_JQr2 - Cq

-Jxzr2

“’PF’=)
(28)
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By solution of this determinant one obtains an equation of the
5th degree in r of the form

—.

with

when

than

AOr5 +

the coefficients

Alr4 i-A~3 + A3r2+A4r+A=0 5

A. = (JTJA -

Al s (JqJA -

A2 = (Jqcl+

A3 = (JQCA+

A4 = (cqc~+

Jxz2)w’P/v

Jxz2)cr~

J~cQ + JQcr~h2 + JAcr~a2 - 2Jxzcr~ah)~’P/v

According to Hurwitz’ investigations, the

AD ~y andy in addition, the following

zero after A. has been made positive..

A2 A5

% = A. Al

AZ A4 A5

D2 = ‘1 ‘2 ‘3

o ‘o ‘1

A4 A5 O 0

% A3 A4 A5
D3 = A. Al A2 A3

I00 A. Al

(29)

oscillation form is stable
determinants are lsrger

(30)

(31)

(32)

If even only one of these determinants becomes smaller than zero,
self-excited oscillations or generally unstable motions of the system



occur . A survey of the stability conditions thereby obtained is consid-
erably facilitated by the introduction of the following (dimensionless)
quantities:

(33)

In order to obtain an idea of the influence of the individual param-
eters on the stability conditions, we performed initially a calculation
for ~ = O. ~ = O signifies that the swiveling psrt is statically and
dynamically balanced with respect to the swivel axis, and that, therefore,
the center of gravity of every section, laid psrallel to the x axis,
falls on the swivel axis. For the system simplified in this manner, the
stability limits fixed by the determinants Dl~ D2~ and D3 become

from D1>O: x>y(y -y) (34)

from D2 > 0: px*+yyX>- Y[# + (a - 72)y - W] (35)

from D > 0:
3

xpy-(p+ l)q$[&+(a-#)y -a~
(36)

for x$a/~ and Y>O

If one represents the limits determinedly (34) to (36) by y = f(x),
one obtains three limiting curves as plotted in figure 9. The numbers 1,
2, 3 assigned to the curves refer to the determinants Dl, D2, and D3.

Which one of the three curves indicates the actual limit depends on the

ratio ~2/4 : a/~. Figure 9 is &rawn for a/~ > 72/4. If, however,

a/~ < 72/4, the lowest part of the limiting curve is modified according
to figure 9a. The curve given by D2 has not been plotted because it

lies between 1 and 3 and is never the stability limit. The system “
appears stable when

We shall point
curves for the case

1. For x = O,

the first and third conditions are satisfied.

out in particular two characteristics of the limiting
~=o:

that is, for Jo = O or J~ = m, one obtains Y = 7;

if one introduces again the original designations, tiis yields:
a/h = p’P/cr~h or acr~ = u’P, thus the condition found in section 2

(equation (19)) for the stability limit for the case of infinitely large
airplane mass. This ssme limiting condition is valid with good approxi-
mation also for the points with small Jq/Jl as may be recognized from

I
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the variation of the curve. One may also expect for this range that the
dependence on the rolling velocity which is not contained in the eqyation
due to the neglect of the natural damping is similar to the one derived
previously.

2. The straight line x . a/~ is a stability limit. With the orig-
inal designations, the equation of this straight line is transformed into

~ .$ or ~ . ~, that is,the systemis stable only as long as the

natural frequency of the swiveling part about the swivel axis (with the
springing Cq) is larger than the natural fkequency of the airplane or
of the airplane fuselage about the x axis. Closely below this limit
(see fig. 9) the wheel runs evenly even for very small rearward posi-
tions whereas closely above it no stable run is attainable even for
very lsxge rearward positions.

Of particular interest is the question whether the lateral rigidity
of the wheel Cr

k
has in all cases such a decisive significance for the

occurrence of tail-wheel shimmy as was found in the investigation of the
case of infinite airplane mass (see equation (19)). Since the lateral
rigidity of the wheel cr~ is in the denominator of the values a, ~,

y, all three expressions will become zero for the completely rigid wheel
(Crg = ~). / B/Y) maintain their former values.Only the ratios (u p,

The limiting curves thereby vary according to figure 10. For
x <alp = cq~h the system is always stable, whereas in the region

Ix > a ~, the stability range has increased and has been shifted into the
range of smaller rearward positions. The horizontal asymptote decreases

The foregoing investigations of this section referred to the fully
balanced swiveling part. If one eliminates this stiplification, the
stability conditions fixed by the determinants DI} D2, and D3, turn

into the following equations:

from D1 > 0: X(l + y~ - 2~y) >y(y -y) (37)

from D2 >0: (Bx + a + y-y- y~x)(x + ~~x - 2~xy
+y2_ m) + (x - L2X2) (pm - CL (38)
_ @y2)>0

from D3 >0: (x + y~x - 2~xy - ~ + y2)[a2 + am
+ x(~2y2 - ~27y - ~yy + 2a~(y

+ 0%y2 - apfi - uK)] - (x’- g2x2) (39)

x(p~-u-PY2)2>o

h,,.-—- ,- ,-,,,,,. ,,,,,,,,..,,----.!... —m. ,. - . . . . , . . . ..-. —--—— ——..
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If one plots, in the same manner as for the mass-balanced swiveling
part, y as a function of x, one obtains a variation similar to fig-
ure 9: figure 11. One notices as an essential difference that the rec-
ta~~ set of strai@t lines ( horizontal straight line from x = O

to x = a/P and vertical straight line through x = a/~) has become a
curved line passing through the origin. In the range of small x values
the branch of the limiting curve going through x = O, y = y has not
been changed greatly.

In the case of the balanced swiveling part, it has been pointed out
that the natural frequency of the swiveling part @Jql must be higher

than that of the fuselage if stable rolling is to be attained without
damping with wheel rearward positions equal to or smaller than ~’P/cr~.

For the nonbalzmced swiveling part one finds the corresponding condition
by searching for the point of the limiting curve for which y = y. If
one substitutes y = Y into the ~qyation (39), one obtains after a few
transformations

‘=;’++-’) (40)

Thus it is valid in first approximation for this case, too, that one must
have x < a/p, that is, cQ~Jq > c~/JA if shimmy oscillations sre to be
prevented for relatively small rearward positions. Figure 12 shows
difference of the stability limits for a balanced swiveling part (~
for the following relationships

a = 0.0174
~ =1.2
7 =0.115

c = 0, respectively, 2.25

Tests

Adjoining the calculation of the stability conditions, several
tests with the arrangement described in section 2 were csrried out.
are to serve on the one hand for control of the calculation and its
assumptions, and, on the other hand, me to show the influence of the
rolling velocity which had dropped out of the stability equations due to
neglect of the mtural dsmping and the gyroscopic coupling. l?romthe
various test series which were performed for several tail-wheel loads
and springing characteristics of the tail wheel and of the airplane fuse-
lage about the x axis, two will be singled out here: One series with
balanced swiveling part (series B7), and one with non-mass-balanced

the
= o)

model
They
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1, swiveling part (series Cl). For both series we plotted, on the basis of
the stability conditions derived, the boundary y = f(x) for values a,
~,, y kept constant and then adjusted successively different resrward
positions a of the tail wheel for a certain J

Y“
Thereafter all rolling

velocities in question were executed for every a; every time the wheel
was given a short impact, and the occurring oscillations were observed.
The results are shown in the curves (figs. 13 =d 14) by means of the
type of designation of the test points. Points with equal moment of
inertia JA have a common series symbol (for instance B71, B72, Cll,

C12, etc.). The characteristic values for the two series may be taken
from tables 5 and 6.

The introduction of the value ~ - which had taken place already
in the calculation - requires a certain explanation. ~ was determined
by ~

/
= Jxz Jq. With increasingly resmwsrd position of the wheel, Jxz

increases; so does Jq~ but not in the same manner. Therefore, it csmnot
be expected that ~ remains equal for all resrward positions. And, it
is not the case, either. Rather, ~ fluctuates for the test series Cl
mentioned according to the following table 7.

The comparative calculation should be csrried out for all these ~
values. This was omitted, however; we calculated throughout with

c s 2.25. We thus achieved numerically an essential simplification with-
out significantly falsifying the result. The value 2.25 was singled
out because it is a good mesm value for the mean rearwsrd positions which
are of the greatest interest. On which side the error is made at the
individual point may be estimated from consideration of figure 12, since
here the curves for ~ = O and C =2.25 sre plotted.

Regarding the value ~ = O of the series B7, it should be noted that
it was realized in the test arrangement as closely as possible. The
static equilibrium of the swiveling psrt about the swivel sxis was
achieved completely, the dynamic equilibrium, however, only with a more
or less satisfactory approximation. Possibly this error could be the rea-
son for the deviation between test and calculation in the region of the
vertical stability limit at x = 0.0232.

In general, a comparison between test and calculation shows good
agreement. Whereas, in the series B7, the influence of velocity is insig-
nificant, it is found in series Cl in the sense that in the range of small
x values, shimmy occurs particularly at small velocities and ceases in
case of more rapid rolling, as known from the tests with infinitely lsrge
airplane mass. In contrast, the influence of the rolling velocity in the
range of larger x values is exactly the opposite.

l—
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4. CONCLUSIONS AND SUMMARY

The conditions for a stable run of the tail wheel, that is, for the
avoidance of shimmy oscillations were numerically investigated, under
simplifying assumptions; the results obtained were checked by model tests.
The essential asswnption was that the center of gravity of the airplane
moves rectilinearly in the rolling direction. !the following degrees of
freedom were treated:

1. Rotation of the swiveling psrt about the vertical swivel sxis
plus lateral deformation of the wheel, and

2. Rotation of the swiveling part about the swivel axis plus lateral
deformation of the wheel plus rotation of the airplane, and therewith of
the swivel axis, about the longitudinal sxis of the airplane.

The complete calculation of the first case yielded as the most impor-
tant result that the stable run of the tail wheel is dependent on a suit-
able rigidity of the wheel and, of course, also of its support in the
lateral direction. In the case of practically frictionless mounting of
the swivel axis, the equation (19): v’P <acrg is decisive which states

that the run of the tail wheel is stable as long as the frictional force
(normal to the wheel plane) originating for a deflection Q is smaller
than the deformation force aCpCr~ appearing for the same deflection.

For a given tail-wheel load, the stability is thus favorably influenced
by a large distance of the wheel behind the swivel axis a, a large lat.
eral rigidity of the wheel cr~, and a small ground friction V’ . The

rolling velocity has no effect on the onset of the shimqy oscillations.
If, however, the mounting is affected by friction, or if dampers had to
be applied for attainment of rolling stability, the stability conditions
are regulated according to equation (17) which also shows the dependence
on the rolling velocity.

For the second case where the rotation of the swivel axis about the
longitudinal axis of the airplane was taken into consideration, the same
distsmce of the wheel behind the swivel axis a = ~’P/Cr~ is sufficient

as long as the natural frequency of the swiveling part about the swivel

axis - given by cq/Jq - is sufficiently lsrge with respect to the

natural frequency of the airplane or the fuselage about the longitudinal
axis of the airplane. This can be concluded from the behavior of the
swiveling part possessing mass balance where for c$dJq < CX/J~ sh-

occurs for all distances of the wheel behind the swivel axis (fig. 9).
For the nonbalanced swiveling part, the exact limit is fixed by the
equation (40). If the ratio of the moments of inertia Jq/JA is larger
than the value determined by this equation, shimmy can be prevented only
by very large distances of the wheel behind the swivel axis. Only when
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the two natural frequencies lie sufficiently fsr apsxt, smaller distsmces
of.the wheel behind the swivel axis are again sufficient. In the range
mentioned, tail-wheel shimmy may occur also for a perfectly rigid wheel
(fig. 10), since the lateral elasticity of the wheel is replaced by the
torsional elasticity of the fuselage (cA).—

It appesrs expedient to determine, for the tail-wheel loads in ques-
tion, the values ~’ (for instance, on a-concrete runway), cr~ and

therewith a= = W’P/cr~ of the usual tail-wheel types by experiments

since one must not select a distance behind the swivel axis smaller than
agr if one wants to enforce a stable run without damping. The two quan-
tities are the only qualifying psmameters which must be known about the
tail wheel to make the design of a stable assembly possible.

All considerations and tests were csrried out with the swivel axis
in vertical position. On the basis of the considerations which led to
the determination of the stability conditions, it,is immediately possible
to draw conclusions as to the behavior in case of an inclination of the
swivel sxis, the more so, since for the usual tail-gear assemblies, only
small singlesof inclination have to be considered.

If one introduces into the differential smd stability equations the
normal distance of the point of contact from the swivel axis a (fig. 15)
as the distance of the wheel behind the swivel sxis, all equations remain
valid, and it is clear that, for equal design of the tail gear, a will
be the larger and the stability condition the more easily satisfied, the
steeper the inclination of the swivel axis. It is true that the inclina-
tion of the swivel axis produces a restoring moment which is to be derived
from the tail-wheel load and which should be included into the calcula-
tion of the smount of CT so that thereby the natural frequency about

the swivel axis is increased. However, in the individual case, it must
be examined whether it is not possible to produce the moment required
for this purpose by a tail-wheel restoring spring of suitable dtiensions,
without reducing the distance a of the wheel behind the swivel axis.

A complete solution of the problem requires the consideration of all
degrees of freedom of the motion of the airplane. As long as any motion
of the overall center of gravity is disregarded, the following motions
are of particular interest: the rotation of the airplane about the ver-
tical axis, and the lifting motion of the swivel axis. T!hislast men-
tioned motion originates through the deflection of the swiveling psrt
about the inclined swivel axis.

The nunerical treatment of these two additional degrees of freedom
does not show any basic difficulties. A further differential equation
would have to be set up for each one of them so that the denominator
determinant becomes of the 7th or gth degree. However, the solution of
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the corresponding Hurwitz determinants results in a calculation expendi- .
ture which can be justified only in special cases.

Translated by Msry L. Mshler
National Advisory Coxmnittee
for Aeronautics
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TABLE II (Series A2)

P =2kg P = 2.8kg P=3.6kg

2Do f, Cps zoo f, Cps 2@ 0 I f, Cps
*

Ei=zcm

4.6
4.4
4.5
4.7
4.9

45
47
60
56
69
40
27
30
27
21

1

——

4.65
4.55
4.55
4.65
4.4
4.7

;:;

;::5

60
72
76
76
76

E
44
40
23
20
0

50
100
200
300
400
500
600
700
800
goo
1000
1100

27
27
27
27
18
0

~

4.6
4.55
4.65
4.65
4.6
4.75
5.1
5.1
5.25

;:2
----

----

a = 2.5cm
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lo(n)
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;:;
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----
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----
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---
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----
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TABLE 111 (Series Al)

—

P u 1 2 2.8 3.6
~’P u 7.83 10.65 12.3 13.1
cr~ kg/cm 3.03 3.74 3.82 3.86
C(p=c Cmkg 3.56 6.7 8.3

;::2. ~P/Cr~ ~W cmag 2.58 2.85 3.40
From the tests cm 2.5 3.0 3.1 3.4

TABLE IV (Series A2)

P Q 1 2 2.8 3.6
~’P kg 7.83 10.65 12.3 13.1
Cr~ kg/cm :.0 4.1 4.25 4.5
crq Cmkg 7 8 8
Cq)= crp + cFq Cmkg 25.7 26.7 27.7 27.7
agr = p’P/Cr cm 1.96 2.60 2.% 2.91
l?romthe tests ag cm 2.0 2+ 2.25 -2.7 -2.8

TABLE v - Moment of Inertia JA

For the series
B71 B72 B73 B74 B75
Cll CU2’ C13 C14 C15

J~ cmkgs2 10.7 4.76 2.6 1.8 0.72 -H-.k2J
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Series B~ cl

P kg 2.5
CT Cmkg 54 3%
CA Cmkg 2320 2320

crF kg/cm 4.2 4.2
p’F kg 10.4 10.4
a 0.0278 0.0174

P 1.2 1.2
0.115 0.115

[ o 2.25

TABLE VII

a
cm

2.05
2.19
2.24
2.29
2.26
2.18
2.08
1.97
1.86
1.74
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Figure 1.- Tail-wheel assembly.
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tact

Figure 2.- Velocityand force relationsfor a deflectedtailwheel.

Figure 3.- Dependence of the lateralforce S on the deflectionangle.
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Swivel axis
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Figure 4.- Vel~cityand force relationsfor a deflectedtailwheel for
additionallateralvelocity.
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Figure 5.- Test setup.
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Figure 6.- Determination of the springing coefficients. P = 2.8 kg;

cr~ = 4.72 kg/cm; Crq = 8 cmkg; cF~ = 19.7 cmkg.
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Figure 8.- Basic. setup for rotation of the airplane about the x axis.
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Figures 9 and 9a.- Stabilityconditionsfor a swivelingpart possessing
mass balance (C = O).
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Stability conditions for swiveling part possessing mass
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balance and perfectly rigid wheel c ~ = =
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Figure 11.- Stabilityconditionsfor swivelingpart not possessing mass
balance ({ # O).
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Figure 12.- Comparison between swivelingparts with and without
mass balance.
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Figure 13. - Test B7; series B7. P = 2,5 kg; Cq = 54 cmkg; CA = 2320 cmkg;
u = 0.0278: p = 1.2; Y = 0.115.
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Figure 14. - Test Cl; series Cl. P = 2.5 kg; Cq = 33.6 cmkg; CA = 2320 cmkg;
u = 0.0174; B = 1.2; 7 = 0.115; c= 2.25.



NACA TM 138Q 37

/

\

\

\

\

,

\

p-i

Rol Iing direction
4

Figure 15. - Inclined position of the swive 1 axis.
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